meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- meta_ae/action_items.py +10 -2
- meta_ae/baker_recipes.py +1 -2
- meta_ae/tests/tests/test_actions.py +1 -2
- meta_analytics/README.rst +1 -2
- meta_analytics/notebooks/anu.ipynb +95 -0
- meta_analytics/notebooks/appointment_planning.ipynb +329 -0
- meta_analytics/notebooks/arvs.ipynb +103 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
- meta_analytics/notebooks/followup_examination.ipynb +141 -0
- meta_analytics/notebooks/hba1c.ipynb +136 -0
- meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
- meta_analytics/notebooks/incidence.ipynb +232 -0
- meta_analytics/notebooks/liver.ipynb +389 -0
- meta_analytics/notebooks/magreth.ipynb +645 -0
- meta_analytics/notebooks/monitoring_report.ipynb +721 -448
- meta_analytics/notebooks/pharmacy.ipynb +405 -306
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
- meta_analytics/notebooks/steering.ipynb +61 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
- meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
- meta_analytics/notebooks/ven.ipynb +191 -0
- meta_analytics/notebooks/vitals.ipynb +263 -0
- meta_edc/settings/debug.py +3 -2
- meta_edc/urls.py +1 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
- meta_labs/reportables.py +14 -11
- meta_labs/tests/test_reportables.py +33 -12
- meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
- meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
- meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
- meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
- meta_prn/models/end_of_study.py +2 -0
- meta_prn/models/off_study_medication.py +2 -0
- meta_reports/admin/last_imp_refill_admin.py +3 -2
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
- meta_screening/form_validators/screening_part_three.py +6 -1
- meta_screening/tests/meta_test_case_mixin.py +3 -0
- meta_screening/tests/tests/test_forms.py +9 -2
- meta_screening/tests/tests/test_screening_part_three.py +11 -14
- meta_subject/action_items.py +2 -3
- meta_subject/choices.py +2 -1
- meta_subject/form_validators/delivery_form_validator.py +1 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
- meta_subject/forms/delivery_form.py +2 -0
- meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
- meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
- meta_subject/tests/tests/test_egfr.py +5 -5
- meta_analytics/dataframes/enrolled/__init__.py +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,141 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"%%capture\n",
|
11
|
+
"import os\n",
|
12
|
+
"from pathlib import Path\n",
|
13
|
+
"import pandas as pd\n",
|
14
|
+
"from dj_notebook import activate\n",
|
15
|
+
"\n",
|
16
|
+
"env_file = os.environ[\"META_ENV\"]\n",
|
17
|
+
"reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
|
18
|
+
"analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
19
|
+
"pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
|
20
|
+
"plus = activate(dotenv_file=env_file)"
|
21
|
+
]
|
22
|
+
},
|
23
|
+
{
|
24
|
+
"cell_type": "code",
|
25
|
+
"execution_count": null,
|
26
|
+
"id": "1",
|
27
|
+
"metadata": {},
|
28
|
+
"outputs": [],
|
29
|
+
"source": [
|
30
|
+
"from edc_pdutils.dataframes.get_subject_visit import convert_visit_code_to_float\n",
|
31
|
+
"from edc_pdutils.dataframes import get_crf\n",
|
32
|
+
"from edc_model_to_dataframe import read_frame_edc\n",
|
33
|
+
"from meta_subject.models import FollowupExamination\n"
|
34
|
+
]
|
35
|
+
},
|
36
|
+
{
|
37
|
+
"cell_type": "code",
|
38
|
+
"execution_count": null,
|
39
|
+
"id": "2",
|
40
|
+
"metadata": {},
|
41
|
+
"outputs": [],
|
42
|
+
"source": [
|
43
|
+
"\n",
|
44
|
+
"df = read_frame_edc(FollowupExamination.objects.all(), drop_sys_columns=True, drop_action_item_columns=True)\n",
|
45
|
+
"df = df.replace(\"none\", pd.NA)\n",
|
46
|
+
"df = df.replace(\"none\", pd.NA)\n",
|
47
|
+
"df = df.fillna(pd.NA)\n",
|
48
|
+
"convert_visit_code_to_float(df)"
|
49
|
+
]
|
50
|
+
},
|
51
|
+
{
|
52
|
+
"cell_type": "code",
|
53
|
+
"execution_count": null,
|
54
|
+
"id": "3",
|
55
|
+
"metadata": {},
|
56
|
+
"outputs": [],
|
57
|
+
"source": [
|
58
|
+
"from edc_analytics.stata import get_stata_labels_from_model\n",
|
59
|
+
"\n",
|
60
|
+
"df = df[[\"subject_identifier\", \"subject_visit_id\", \"report_datetime\", \"visit_code\", \"site_id\", \"site_name\", \"visit_reason\", \"symptoms\",\"symptoms_detail\", \"symptoms_sought_care\", \"symptoms_g3\", \"symptoms_g4\", \"comment\"]].copy().reset_index(drop=True)\n",
|
61
|
+
"\n",
|
62
|
+
"df = df.astype(\n",
|
63
|
+
" {col: \"Float64\" for col in df.select_dtypes(include=[\"float\", \"float64\"]).columns}\n",
|
64
|
+
")\n",
|
65
|
+
"df_meds = df.astype(\n",
|
66
|
+
" {col: \"Int64\" for col in df.select_dtypes(include=[\"int\", \"int64\"]).columns}\n",
|
67
|
+
")\n",
|
68
|
+
"df = df.astype(\n",
|
69
|
+
" {\n",
|
70
|
+
" col: \"datetime64[ns]\"\n",
|
71
|
+
" for col in df.select_dtypes(include=[\"datetime\", \"datetime64\"]).columns\n",
|
72
|
+
" }\n",
|
73
|
+
")\n",
|
74
|
+
"df = df.astype(\n",
|
75
|
+
" {\n",
|
76
|
+
" col: str\n",
|
77
|
+
" for col in df.select_dtypes(include=[\"object\"]).columns\n",
|
78
|
+
" }\n",
|
79
|
+
")\n",
|
80
|
+
"df = df.fillna(pd.NA)\n",
|
81
|
+
"\n",
|
82
|
+
"variable_labels = {}\n",
|
83
|
+
"variable_labels.update(**get_stata_labels_from_model(df, model=\"meta_subject.followupexamination\", suffix=None))\n",
|
84
|
+
"\n",
|
85
|
+
"df.to_stata(\n",
|
86
|
+
" path=analysis_folder / \"followupexamination.dta\",\n",
|
87
|
+
" variable_labels=variable_labels,\n",
|
88
|
+
" version=118,\n",
|
89
|
+
" write_index=False,\n",
|
90
|
+
")"
|
91
|
+
]
|
92
|
+
},
|
93
|
+
{
|
94
|
+
"cell_type": "code",
|
95
|
+
"execution_count": null,
|
96
|
+
"id": "4",
|
97
|
+
"metadata": {},
|
98
|
+
"outputs": [],
|
99
|
+
"source": [
|
100
|
+
"# with get_crf\n",
|
101
|
+
"df2 = get_crf(model=\"meta_subject.followupexamination\", subject_visit_model=\"meta_subject.subjectvisit\")\n"
|
102
|
+
]
|
103
|
+
},
|
104
|
+
{
|
105
|
+
"cell_type": "code",
|
106
|
+
"execution_count": null,
|
107
|
+
"id": "5",
|
108
|
+
"metadata": {},
|
109
|
+
"outputs": [],
|
110
|
+
"source": [
|
111
|
+
"df2.to_stata(\n",
|
112
|
+
" path=analysis_folder / \"followupexamination.dta\",\n",
|
113
|
+
" variable_labels=variable_labels,\n",
|
114
|
+
" version=118,\n",
|
115
|
+
" write_index=False,\n",
|
116
|
+
")"
|
117
|
+
]
|
118
|
+
}
|
119
|
+
],
|
120
|
+
"metadata": {
|
121
|
+
"kernelspec": {
|
122
|
+
"display_name": "Python 3",
|
123
|
+
"language": "python",
|
124
|
+
"name": "python3"
|
125
|
+
},
|
126
|
+
"language_info": {
|
127
|
+
"codemirror_mode": {
|
128
|
+
"name": "ipython",
|
129
|
+
"version": 2
|
130
|
+
},
|
131
|
+
"file_extension": ".py",
|
132
|
+
"mimetype": "text/x-python",
|
133
|
+
"name": "python",
|
134
|
+
"nbconvert_exporter": "python",
|
135
|
+
"pygments_lexer": "ipython2",
|
136
|
+
"version": "2.7.6"
|
137
|
+
}
|
138
|
+
},
|
139
|
+
"nbformat": 4,
|
140
|
+
"nbformat_minor": 5
|
141
|
+
}
|
@@ -0,0 +1,136 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"%%capture\n",
|
11
|
+
"import os\n",
|
12
|
+
"import pandas as pd\n",
|
13
|
+
"import numpy as np\n",
|
14
|
+
"from dj_notebook import activate\n",
|
15
|
+
"from django_pandas.io import read_frame\n",
|
16
|
+
"from pathlib import Path\n",
|
17
|
+
"\n",
|
18
|
+
"env_file = os.environ[\"META_ENV\"]\n",
|
19
|
+
"documents_folder = os.environ[\"META_DOCUMENTS_FOLDER\"]\n",
|
20
|
+
"plus = activate(dotenv_file=env_file)\n",
|
21
|
+
"report_folder = Path(documents_folder)\n"
|
22
|
+
]
|
23
|
+
},
|
24
|
+
{
|
25
|
+
"cell_type": "code",
|
26
|
+
"execution_count": null,
|
27
|
+
"id": "1",
|
28
|
+
"metadata": {},
|
29
|
+
"outputs": [],
|
30
|
+
"source": [
|
31
|
+
"from meta_screening.models import SubjectScreening\n",
|
32
|
+
"\n",
|
33
|
+
"df = read_frame(SubjectScreening.objects.values(\"screening_identifier\", \"hba1c_performed\", \"hba1c_datetime\", \"hba1c_value\").all())"
|
34
|
+
]
|
35
|
+
},
|
36
|
+
{
|
37
|
+
"cell_type": "code",
|
38
|
+
"execution_count": null,
|
39
|
+
"id": "2",
|
40
|
+
"metadata": {},
|
41
|
+
"outputs": [],
|
42
|
+
"source": [
|
43
|
+
"df.hba1c_value.describe()"
|
44
|
+
]
|
45
|
+
},
|
46
|
+
{
|
47
|
+
"cell_type": "code",
|
48
|
+
"execution_count": null,
|
49
|
+
"id": "3",
|
50
|
+
"metadata": {},
|
51
|
+
"outputs": [],
|
52
|
+
"source": [
|
53
|
+
"df[\"hba1c_value\"] = df.hba1c_value.astype(float)"
|
54
|
+
]
|
55
|
+
},
|
56
|
+
{
|
57
|
+
"cell_type": "code",
|
58
|
+
"execution_count": null,
|
59
|
+
"id": "4",
|
60
|
+
"metadata": {},
|
61
|
+
"outputs": [],
|
62
|
+
"source": [
|
63
|
+
"df.hba1c_value.describe()\n"
|
64
|
+
]
|
65
|
+
},
|
66
|
+
{
|
67
|
+
"cell_type": "code",
|
68
|
+
"execution_count": null,
|
69
|
+
"id": "5",
|
70
|
+
"metadata": {},
|
71
|
+
"outputs": [],
|
72
|
+
"source": [
|
73
|
+
"df[df.hba1c_value<=6.4][\"hba1c_value\"].describe()"
|
74
|
+
]
|
75
|
+
},
|
76
|
+
{
|
77
|
+
"cell_type": "code",
|
78
|
+
"execution_count": null,
|
79
|
+
"id": "6",
|
80
|
+
"metadata": {},
|
81
|
+
"outputs": [],
|
82
|
+
"source": [
|
83
|
+
"df[df.hba1c_value<6.5][\"hba1c_value\"].describe()\n"
|
84
|
+
]
|
85
|
+
},
|
86
|
+
{
|
87
|
+
"cell_type": "code",
|
88
|
+
"execution_count": null,
|
89
|
+
"id": "7",
|
90
|
+
"metadata": {},
|
91
|
+
"outputs": [],
|
92
|
+
"source": [
|
93
|
+
"df[df.hba1c_value>=6.5][\"hba1c_value\"].describe()\n"
|
94
|
+
]
|
95
|
+
},
|
96
|
+
{
|
97
|
+
"cell_type": "code",
|
98
|
+
"execution_count": null,
|
99
|
+
"id": "8",
|
100
|
+
"metadata": {},
|
101
|
+
"outputs": [],
|
102
|
+
"source": [
|
103
|
+
"df.to_csv(report_folder / \"hba1c.csv\")\n"
|
104
|
+
]
|
105
|
+
},
|
106
|
+
{
|
107
|
+
"cell_type": "code",
|
108
|
+
"execution_count": null,
|
109
|
+
"id": "9",
|
110
|
+
"metadata": {},
|
111
|
+
"outputs": [],
|
112
|
+
"source": []
|
113
|
+
}
|
114
|
+
],
|
115
|
+
"metadata": {
|
116
|
+
"kernelspec": {
|
117
|
+
"display_name": "Python 3",
|
118
|
+
"language": "python",
|
119
|
+
"name": "python3"
|
120
|
+
},
|
121
|
+
"language_info": {
|
122
|
+
"codemirror_mode": {
|
123
|
+
"name": "ipython",
|
124
|
+
"version": 2
|
125
|
+
},
|
126
|
+
"file_extension": ".py",
|
127
|
+
"mimetype": "text/x-python",
|
128
|
+
"name": "python",
|
129
|
+
"nbconvert_exporter": "python",
|
130
|
+
"pygments_lexer": "ipython2",
|
131
|
+
"version": "2.7.6"
|
132
|
+
}
|
133
|
+
},
|
134
|
+
"nbformat": 4,
|
135
|
+
"nbformat_minor": 5
|
136
|
+
}
|