meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- meta_ae/action_items.py +10 -2
- meta_ae/baker_recipes.py +1 -2
- meta_ae/tests/tests/test_actions.py +1 -2
- meta_analytics/README.rst +1 -2
- meta_analytics/notebooks/anu.ipynb +95 -0
- meta_analytics/notebooks/appointment_planning.ipynb +329 -0
- meta_analytics/notebooks/arvs.ipynb +103 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
- meta_analytics/notebooks/followup_examination.ipynb +141 -0
- meta_analytics/notebooks/hba1c.ipynb +136 -0
- meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
- meta_analytics/notebooks/incidence.ipynb +232 -0
- meta_analytics/notebooks/liver.ipynb +389 -0
- meta_analytics/notebooks/magreth.ipynb +645 -0
- meta_analytics/notebooks/monitoring_report.ipynb +721 -448
- meta_analytics/notebooks/pharmacy.ipynb +405 -306
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
- meta_analytics/notebooks/steering.ipynb +61 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
- meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
- meta_analytics/notebooks/ven.ipynb +191 -0
- meta_analytics/notebooks/vitals.ipynb +263 -0
- meta_edc/settings/debug.py +3 -2
- meta_edc/urls.py +1 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
- meta_labs/reportables.py +14 -11
- meta_labs/tests/test_reportables.py +33 -12
- meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
- meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
- meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
- meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
- meta_prn/models/end_of_study.py +2 -0
- meta_prn/models/off_study_medication.py +2 -0
- meta_reports/admin/last_imp_refill_admin.py +3 -2
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
- meta_screening/form_validators/screening_part_three.py +6 -1
- meta_screening/tests/meta_test_case_mixin.py +3 -0
- meta_screening/tests/tests/test_forms.py +9 -2
- meta_screening/tests/tests/test_screening_part_three.py +11 -14
- meta_subject/action_items.py +2 -3
- meta_subject/choices.py +2 -1
- meta_subject/form_validators/delivery_form_validator.py +1 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
- meta_subject/forms/delivery_form.py +2 -0
- meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
- meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
- meta_subject/tests/tests/test_egfr.py +5 -5
- meta_analytics/dataframes/enrolled/__init__.py +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,664 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"%%capture\n",
|
11
|
+
"import os\n",
|
12
|
+
"from pathlib import Path\n",
|
13
|
+
"import pandas as pd\n",
|
14
|
+
"from dj_notebook import activate\n",
|
15
|
+
"env_file = os.environ[\"META_ENV\"]\n",
|
16
|
+
"reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
|
17
|
+
"analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
18
|
+
"pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
|
19
|
+
"plus = activate(dotenv_file=env_file)\n",
|
20
|
+
"pd.set_option('future.no_silent_downcasting', True)"
|
21
|
+
]
|
22
|
+
},
|
23
|
+
{
|
24
|
+
"cell_type": "code",
|
25
|
+
"execution_count": null,
|
26
|
+
"id": "1",
|
27
|
+
"metadata": {},
|
28
|
+
"outputs": [],
|
29
|
+
"source": [
|
30
|
+
"import numpy as np\n",
|
31
|
+
"import io\n",
|
32
|
+
"import msoffcrypto\n",
|
33
|
+
"import mempass\n",
|
34
|
+
"\n",
|
35
|
+
"from datetime import datetime\n",
|
36
|
+
"from edc_appointment.constants import ONTIME_APPT, NEW_APPT, CANCELLED_APPT, MISSED_APPT\n",
|
37
|
+
"from edc_pdutils.dataframes import get_crf, get_subject_visit\n",
|
38
|
+
"from tabulate import tabulate\n",
|
39
|
+
"from meta_analytics.dataframes import get_glucose_fbg_ogtt_df, get_glucose_fbg_df\n",
|
40
|
+
"from meta_analytics.dataframes import GlucoseEndpointsByDate\n",
|
41
|
+
"from meta_analytics.dataframes import get_glucose_df\n",
|
42
|
+
"from meta_analytics.dataframes import EndpointByDate"
|
43
|
+
]
|
44
|
+
},
|
45
|
+
{
|
46
|
+
"cell_type": "code",
|
47
|
+
"execution_count": null,
|
48
|
+
"id": "2",
|
49
|
+
"metadata": {},
|
50
|
+
"outputs": [],
|
51
|
+
"source": [
|
52
|
+
"cls = GlucoseEndpointsByDate()"
|
53
|
+
]
|
54
|
+
},
|
55
|
+
{
|
56
|
+
"cell_type": "code",
|
57
|
+
"execution_count": null,
|
58
|
+
"id": "3",
|
59
|
+
"metadata": {},
|
60
|
+
"outputs": [],
|
61
|
+
"source": [
|
62
|
+
"cls.run()"
|
63
|
+
]
|
64
|
+
},
|
65
|
+
{
|
66
|
+
"cell_type": "code",
|
67
|
+
"execution_count": null,
|
68
|
+
"id": "4",
|
69
|
+
"metadata": {},
|
70
|
+
"outputs": [],
|
71
|
+
"source": [
|
72
|
+
"cls.endpoint_only_df.endpoint_label.value_counts()"
|
73
|
+
]
|
74
|
+
},
|
75
|
+
{
|
76
|
+
"cell_type": "code",
|
77
|
+
"execution_count": null,
|
78
|
+
"id": "5",
|
79
|
+
"metadata": {},
|
80
|
+
"outputs": [],
|
81
|
+
"source": [
|
82
|
+
"cls.endpoint_only_df"
|
83
|
+
]
|
84
|
+
},
|
85
|
+
{
|
86
|
+
"cell_type": "code",
|
87
|
+
"execution_count": null,
|
88
|
+
"id": "6",
|
89
|
+
"metadata": {},
|
90
|
+
"outputs": [],
|
91
|
+
"source": [
|
92
|
+
"df_glu = get_glucose_df()\n",
|
93
|
+
"df_glu.query(\"subject_identifier=='105-40-0379-1'\")\n",
|
94
|
+
"\n",
|
95
|
+
"ep = EndpointByDate(subject_df=df_glu.query(\"subject_identifier=='105-40-0379-1'\").copy().sort_values(by=[\"visit_code\"]).reset_index(drop=True), fbg_threshhold=7.0, ogtt_threshhold=11.1)\n",
|
96
|
+
"ep.evaluate()\n",
|
97
|
+
"ep.subject_df"
|
98
|
+
]
|
99
|
+
},
|
100
|
+
{
|
101
|
+
"cell_type": "code",
|
102
|
+
"execution_count": null,
|
103
|
+
"id": "7",
|
104
|
+
"metadata": {},
|
105
|
+
"outputs": [],
|
106
|
+
"source": [
|
107
|
+
"df_katie = pd.read_csv(analysis_folder / \"katie_endpoint_subjects.csv\")"
|
108
|
+
]
|
109
|
+
},
|
110
|
+
{
|
111
|
+
"cell_type": "code",
|
112
|
+
"execution_count": null,
|
113
|
+
"id": "8",
|
114
|
+
"metadata": {},
|
115
|
+
"outputs": [],
|
116
|
+
"source": [
|
117
|
+
"cls.endpoint_only_df[~cls.endpoint_only_df.subject_identifier.isin(df_katie.subject_identifier)]"
|
118
|
+
]
|
119
|
+
},
|
120
|
+
{
|
121
|
+
"cell_type": "code",
|
122
|
+
"execution_count": null,
|
123
|
+
"id": "9",
|
124
|
+
"metadata": {},
|
125
|
+
"outputs": [],
|
126
|
+
"source": [
|
127
|
+
"df_katie[~df_katie.subject_identifier.isin(cls.endpoint_only_df.subject_identifier)]\n"
|
128
|
+
]
|
129
|
+
},
|
130
|
+
{
|
131
|
+
"cell_type": "code",
|
132
|
+
"execution_count": null,
|
133
|
+
"id": "10",
|
134
|
+
"metadata": {},
|
135
|
+
"outputs": [],
|
136
|
+
"source": [
|
137
|
+
"df_katie"
|
138
|
+
]
|
139
|
+
},
|
140
|
+
{
|
141
|
+
"cell_type": "code",
|
142
|
+
"execution_count": null,
|
143
|
+
"id": "11",
|
144
|
+
"metadata": {},
|
145
|
+
"outputs": [],
|
146
|
+
"source": [
|
147
|
+
"df_glu = get_glucose_df()\n",
|
148
|
+
"df_glu.query(\"subject_identifier=='105-40-0370-0'\")\n"
|
149
|
+
]
|
150
|
+
},
|
151
|
+
{
|
152
|
+
"cell_type": "code",
|
153
|
+
"execution_count": null,
|
154
|
+
"id": "12",
|
155
|
+
"metadata": {},
|
156
|
+
"outputs": [],
|
157
|
+
"source": [
|
158
|
+
"df_visit = get_subject_visit(model=\"meta_subject.subjectvisit\")"
|
159
|
+
]
|
160
|
+
},
|
161
|
+
{
|
162
|
+
"cell_type": "code",
|
163
|
+
"execution_count": null,
|
164
|
+
"id": "13",
|
165
|
+
"metadata": {},
|
166
|
+
"outputs": [],
|
167
|
+
"source": [
|
168
|
+
"# Table 1 Visits completed to date\n",
|
169
|
+
"df_tbl1 = df_visit[(df_visit.visit_code_sequence==0) & (df_visit.appt_timing==ONTIME_APPT) & ~(df_visit.appt_status.isin([NEW_APPT, CANCELLED_APPT]))].groupby(by=[\"visit_code\", \"site_id\"]).size().to_frame().reset_index()\n",
|
170
|
+
"df_tbl1.columns = [\"visit_code\", \"site_id\", \"visits\"]\n",
|
171
|
+
"df1 = df_tbl1.pivot(index=\"visit_code\", columns=\"site_id\", values=\"visits\").reset_index()\n",
|
172
|
+
"df1.columns.name = None\n",
|
173
|
+
"df1.columns = ['visit_code', \"10\", \"20\", \"30\", \"40\", \"60\"]\n",
|
174
|
+
"df1['total'] = df1[['10', '20', '30', '40', '60']].sum(axis=1)\n",
|
175
|
+
"df1.fillna(0, inplace=True)\n",
|
176
|
+
"df_attended = df1.copy()\n",
|
177
|
+
"df_attended"
|
178
|
+
]
|
179
|
+
},
|
180
|
+
{
|
181
|
+
"cell_type": "code",
|
182
|
+
"execution_count": null,
|
183
|
+
"id": "14",
|
184
|
+
"metadata": {},
|
185
|
+
"outputs": [],
|
186
|
+
"source": [
|
187
|
+
"# Table 2 Visits Missed to Date as % of Visits Attended + Visits Missed\n",
|
188
|
+
"df_tbl12 = df_visit[(df_visit.visit_code_sequence==0) & (df_visit.appt_timing==MISSED_APPT) & ~(df_visit.appt_status.isin([NEW_APPT, CANCELLED_APPT]))].groupby(by=[\"visit_code\", \"site_id\"]).size().to_frame().reset_index()\n",
|
189
|
+
"df_tbl12.columns = [\"visit_code\", \"site_id\", \"visits\"]\n",
|
190
|
+
"df1 = df_tbl12.pivot(index=\"visit_code\", columns=\"site_id\", values=\"visits\").reset_index()\n",
|
191
|
+
"df1.columns.name = None\n",
|
192
|
+
"df1.columns = ['visit_code', \"10\", \"20\", \"30\", \"40\", \"60\"]\n",
|
193
|
+
"df1['total'] = df1[['10', '20', '30', '40', '60']].sum(axis=1)\n",
|
194
|
+
"df1.fillna(0, inplace=True)\n",
|
195
|
+
"df_missed = df1.copy()\n",
|
196
|
+
"\n",
|
197
|
+
"df_attended.set_index([\"visit_code\"], inplace=True)\n",
|
198
|
+
"df_missed.set_index([\"visit_code\"], inplace=True)\n",
|
199
|
+
"\n",
|
200
|
+
"attended_and_missed = df_attended + df_missed\n",
|
201
|
+
"attended_and_missed.fillna(0, inplace=True)\n",
|
202
|
+
"attended_and_missed.reset_index(inplace=True)\n",
|
203
|
+
"attended_and_missed.set_index([\"visit_code\"], inplace=True)\n",
|
204
|
+
"attended_and_missed_perc = df_missed/attended_and_missed\n",
|
205
|
+
"attended_and_missed_perc.fillna(0, inplace=True)\n",
|
206
|
+
"attended_and_missed_perc.reset_index(inplace=True)\n",
|
207
|
+
"attended_and_missed_perc.set_index([\"visit_code\"], inplace=True)\n",
|
208
|
+
"\n",
|
209
|
+
"df_result = df_missed.merge(attended_and_missed_perc, on=[\"visit_code\"], suffixes=(\"\", \"_perc\"))\n",
|
210
|
+
"for col in [\"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]:\n",
|
211
|
+
" col_perc = f\"{col}_perc\"\n",
|
212
|
+
" df_result[col] = df_result.apply(lambda x: f\"{x[col]} ({x[col_perc]*100:.2f})\", axis=1)\n",
|
213
|
+
"df_result.reset_index(inplace=True)\n",
|
214
|
+
"df_result.sort_values(by=[\"visit_code\"], ascending=True, inplace=True)\n",
|
215
|
+
"df_result[[\"visit_code\", \"10\", \"20\", \"30\", \"40\", \"60\", \"total\"]]"
|
216
|
+
]
|
217
|
+
},
|
218
|
+
{
|
219
|
+
"cell_type": "code",
|
220
|
+
"execution_count": null,
|
221
|
+
"id": "15",
|
222
|
+
"metadata": {},
|
223
|
+
"outputs": [],
|
224
|
+
"source": [
|
225
|
+
"\n",
|
226
|
+
"# Table 3: OGTT and FBG at 12-month visit"
|
227
|
+
]
|
228
|
+
},
|
229
|
+
{
|
230
|
+
"cell_type": "code",
|
231
|
+
"execution_count": null,
|
232
|
+
"id": "16",
|
233
|
+
"metadata": {},
|
234
|
+
"outputs": [],
|
235
|
+
"source": [
|
236
|
+
"def get_row_df(row_df:pd.DataFrame, label:str)->pd.DataFrame:\n",
|
237
|
+
" row_df = row_df.groupby(by=[\"site_id\"]).site_id.count().to_frame(name=\"n\")\n",
|
238
|
+
" row_df[\"label\"] = label\n",
|
239
|
+
" row_df = row_df.reset_index()\n",
|
240
|
+
" row_df = row_df.pivot(index=\"label\", values=\"n\", columns=\"site_id\").reset_index()\n",
|
241
|
+
" row_df.columns.name = \"\"\n",
|
242
|
+
" all_sites = [10, 20, 30, 40, 60]\n",
|
243
|
+
" for site in all_sites:\n",
|
244
|
+
" if site not in row_df.columns:\n",
|
245
|
+
" row_df[site] = None\n",
|
246
|
+
" row_df = row_df.reset_index(drop=True)\n",
|
247
|
+
" return row_df\n",
|
248
|
+
"\n",
|
249
|
+
"\n",
|
250
|
+
"def get_table_df(df_source:pd.DataFrame, visit_code:float)->pd.DataFrame:\n",
|
251
|
+
" df_month = df_source[df_source.visit_code==visit_code].copy()\n",
|
252
|
+
" \n",
|
253
|
+
" row_df = df_month.copy()\n",
|
254
|
+
" table_df = get_row_df(row_df, \"Total (n)\")\n",
|
255
|
+
" \n",
|
256
|
+
" row_df = df_month[(df_month.ogtt_value<7.8) & (df_month.fbg_value<6.1)].copy()\n",
|
257
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"2-hour OGTT <7.8; FBG <6.1\")])\n",
|
258
|
+
" \n",
|
259
|
+
" row_df = df_month[(df_month.ogtt_value<7.8) & (df_month.fbg_value>=6.1) & (df_month.fbg_value<7.0)].copy()\n",
|
260
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"2-hour OGTT <7.8; FBG >=6.1 <7.0\")])\n",
|
261
|
+
" \n",
|
262
|
+
" row_df = df_month[(df_month.ogtt_value<7.8) & (df_month.fbg_value>=7.0)].copy()\n",
|
263
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"2-hour OGTT <7.8; FBG >=7.0\")])\n",
|
264
|
+
" \n",
|
265
|
+
" row_df = df_month[(df_month.ogtt_value>=7.8) & (df_month.ogtt_value<11.1) & (df_month.fbg_value<6.1)].copy()\n",
|
266
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"2-hour OGTT ≥7.8 to <11.1; FBG <6.1\")])\n",
|
267
|
+
" \n",
|
268
|
+
" row_df = df_month[(df_month.ogtt_value>=7.8) & (df_month.ogtt_value<11.1) & (df_month.fbg_value>=6.1) & (df_month.fbg_value<7.0)].copy()\n",
|
269
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"2-hour OGTT ≥7.8 to <11.1; FBG >=6.1 <7.0\")])\n",
|
270
|
+
" \n",
|
271
|
+
" row_df = df_month[(df_month.ogtt_value>=7.8) & (df_month.ogtt_value<11.1) & (df_month.fbg_value>=7.0)].copy()\n",
|
272
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"2-hour OGTT ≥7.8 to <11.1; FBG >=7.0\")])\n",
|
273
|
+
" \n",
|
274
|
+
" row_df = df_month[(df_month.ogtt_value>=11.1) & (df_month.fbg_value<6.1)].copy()\n",
|
275
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"2-hour OGTT ≥11.1; FBG <6.1\")])\n",
|
276
|
+
" \n",
|
277
|
+
" row_df = df_month[(df_month.ogtt_value>=11.1) & (df_month.fbg_value>=6.1) & (df_month.fbg_value<7.0)].copy()\n",
|
278
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"2-hour OGTT ≥11.1; FBG >=6.1 <7.0\")])\n",
|
279
|
+
" \n",
|
280
|
+
" row_df = df_month[(df_month.ogtt_value>=11.1) & (df_month.fbg_value>=7.0)].copy()\n",
|
281
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"2-hour OGTT ≥11.1; FBG >=7.0\")])\n",
|
282
|
+
"\n",
|
283
|
+
" row_df = df_month[(df_month.ogtt_value.isna())].copy()\n",
|
284
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"Missing OGTT\")])\n",
|
285
|
+
" return table_df\n",
|
286
|
+
"\n"
|
287
|
+
]
|
288
|
+
},
|
289
|
+
{
|
290
|
+
"cell_type": "code",
|
291
|
+
"execution_count": null,
|
292
|
+
"id": "17",
|
293
|
+
"metadata": {},
|
294
|
+
"outputs": [],
|
295
|
+
"source": [
|
296
|
+
"def format_table_df(tbl_df, rename_columns:bool|None=None, add_totals:bool|None=None):\n",
|
297
|
+
" add_totals = True if add_totals is None else add_totals\n",
|
298
|
+
" tbl_df = tbl_df.fillna(0.0)\n",
|
299
|
+
" tbl_df[\"total\"] = tbl_df.iloc[:,1:].sum(axis=1)\n",
|
300
|
+
" tbl_df = tbl_df.reset_index(drop=True)\n",
|
301
|
+
"\n",
|
302
|
+
" if add_totals:\n",
|
303
|
+
" df_last = tbl_df[1:].sum().to_frame()\n",
|
304
|
+
" df_last.loc[\"label\"] = np.nan\n",
|
305
|
+
" df_last = df_last.reset_index()\n",
|
306
|
+
" df_last.columns = [\"label\", \"value\"]\n",
|
307
|
+
" df_last = df_last.pivot_table(columns=\"label\", values=\"value\").reset_index(drop=True)\n",
|
308
|
+
" df_last.columns.name = \"\"\n",
|
309
|
+
" df_last[\"label\"] = \"totals\"\n",
|
310
|
+
"\n",
|
311
|
+
" tbl_df = pd.concat([tbl_df, df_last])\n",
|
312
|
+
" tbl_df = tbl_df.reset_index(drop=True)\n",
|
313
|
+
"\n",
|
314
|
+
" tbl_df.columns = [\"label\", \"10\", \"20\", \"30\", \"40\", \"60\", \"Total\"]\n",
|
315
|
+
"\n",
|
316
|
+
" for site in [\"10\", \"20\", \"30\", \"40\", \"60\", \"Total\"]:\n",
|
317
|
+
" tbl_df[f\"{site}_perc\"] = (tbl_df[site]/tbl_df.iloc[0][site]) * 100 if tbl_df.iloc[0][site]>0 else 0\n",
|
318
|
+
" tbl_df[f\"{site}_perc_str\"] = tbl_df[f\"{site}_perc\"].map('{:.1f}'.format)\n",
|
319
|
+
"\n",
|
320
|
+
"\n",
|
321
|
+
" for site in [\"10\", \"20\", \"30\", \"40\", \"60\", \"Total\"]:\n",
|
322
|
+
" tbl_df[f\"{site}_str\"] = tbl_df[[f\"{site}\", f\"{site}_perc_str\"]].apply(lambda x: ' ('.join(x.astype(str)), axis=1)\n",
|
323
|
+
" tbl_df[f\"{site}_str\"] = tbl_df[f\"{site}_str\"] + \")\"\n",
|
324
|
+
"\n",
|
325
|
+
" cols = [\"label\", *[f\"{site}_str\" for site in [\"10\", \"20\", \"30\", \"40\", \"60\", \"Total\"]]]\n",
|
326
|
+
" tbl_df1 = tbl_df[cols]\n",
|
327
|
+
" tbl_df1.loc[tbl_df.label==\"Total (n)\"] = tbl_df.iloc[0][[\"label\", \"10\", \"20\", \"30\", \"40\", \"60\", \"Total\"]].to_list()\n",
|
328
|
+
" if rename_columns:\n",
|
329
|
+
" tbl_df1 = tbl_df1.rename(columns={\"10_str\": \"Hindu Mandal\", \"20_str\": \"Amana\", \"30_str\": \"Temeke\", \"40_str\": \"Mwananyamala\", \"60_str\": \"Mnazi Moja\", \"Total_str\": \"Total\"})\n",
|
330
|
+
" return tbl_df1\n"
|
331
|
+
]
|
332
|
+
},
|
333
|
+
{
|
334
|
+
"cell_type": "code",
|
335
|
+
"execution_count": null,
|
336
|
+
"id": "18",
|
337
|
+
"metadata": {},
|
338
|
+
"outputs": [],
|
339
|
+
"source": [
|
340
|
+
"df_glucose = get_glucose_fbg_ogtt_df()\n",
|
341
|
+
"df_glucose_fbg = get_glucose_fbg_df()\n",
|
342
|
+
"df_glucose = pd.concat([df_glucose, df_glucose_fbg])"
|
343
|
+
]
|
344
|
+
},
|
345
|
+
{
|
346
|
+
"cell_type": "code",
|
347
|
+
"execution_count": null,
|
348
|
+
"id": "19",
|
349
|
+
"metadata": {},
|
350
|
+
"outputs": [],
|
351
|
+
"source": [
|
352
|
+
"df_table3 = get_table_df(df_glucose, 1120.0)\n",
|
353
|
+
"df_table3 = format_table_df(df_table3, rename_columns=True)\n",
|
354
|
+
"df_table3"
|
355
|
+
]
|
356
|
+
},
|
357
|
+
{
|
358
|
+
"cell_type": "code",
|
359
|
+
"execution_count": null,
|
360
|
+
"id": "20",
|
361
|
+
"metadata": {},
|
362
|
+
"outputs": [],
|
363
|
+
"source": [
|
364
|
+
"df_table4 = get_table_df(df_glucose, 1240.0)\n",
|
365
|
+
"df_table4 = format_table_df(df_table4, rename_columns=True)\n",
|
366
|
+
"df_table4"
|
367
|
+
]
|
368
|
+
},
|
369
|
+
{
|
370
|
+
"cell_type": "code",
|
371
|
+
"execution_count": null,
|
372
|
+
"id": "21",
|
373
|
+
"metadata": {},
|
374
|
+
"outputs": [],
|
375
|
+
"source": [
|
376
|
+
"df_table5 = get_table_df(df_glucose, 1360.0)\n",
|
377
|
+
"df_table5 = format_table_df(df_table5, rename_columns=True)\n",
|
378
|
+
"df_table5\n"
|
379
|
+
]
|
380
|
+
},
|
381
|
+
{
|
382
|
+
"cell_type": "code",
|
383
|
+
"execution_count": null,
|
384
|
+
"id": "22",
|
385
|
+
"metadata": {},
|
386
|
+
"outputs": [],
|
387
|
+
"source": [
|
388
|
+
"# df_table6 = get_table_df(df_glucose, 1480.0, rename_columns=True)\n",
|
389
|
+
"# df_table6"
|
390
|
+
]
|
391
|
+
},
|
392
|
+
{
|
393
|
+
"cell_type": "code",
|
394
|
+
"execution_count": null,
|
395
|
+
"id": "23",
|
396
|
+
"metadata": {},
|
397
|
+
"outputs": [],
|
398
|
+
"source": [
|
399
|
+
"row_df = df_glucose[df_glucose.ogtt_value>=11.1].copy()\n",
|
400
|
+
"table_df = get_row_df(row_df, \"Total (n)\")\n",
|
401
|
+
"df_table6 = format_table_df(table_df, rename_columns=True)\n",
|
402
|
+
"df_table6[:1]"
|
403
|
+
]
|
404
|
+
},
|
405
|
+
{
|
406
|
+
"cell_type": "code",
|
407
|
+
"execution_count": null,
|
408
|
+
"id": "24",
|
409
|
+
"metadata": {},
|
410
|
+
"outputs": [],
|
411
|
+
"source": [
|
412
|
+
"def get_table7_df(df_source:pd.DataFrame, visit_code:float)->pd.DataFrame:\n",
|
413
|
+
" df_month = df_source[(df_source.visit_code>=visit_code) & (df_source.visit_code<=visit_code + 0.9)].copy()\n",
|
414
|
+
"\n",
|
415
|
+
" row_df = df_month.copy()\n",
|
416
|
+
" table_df = get_row_df(row_df, \"Total (n)\")\n",
|
417
|
+
"\n",
|
418
|
+
" row_df = df_month[(df_month.fbg_value<6.1)].copy()\n",
|
419
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"FBG <6.1\")])\n",
|
420
|
+
"\n",
|
421
|
+
" row_df = df_month[(df_month.fbg_value>=6.1) & (df_month.fbg_value<7.0)].copy()\n",
|
422
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"FBG >=6.1 <7.0\")])\n",
|
423
|
+
"\n",
|
424
|
+
" row_df = df_month[(df_month.fbg_value>=7.0)].copy()\n",
|
425
|
+
" table_df = pd.concat([table_df, get_row_df(row_df, \"FBG >=7.0\")])\n",
|
426
|
+
" return table_df\n"
|
427
|
+
]
|
428
|
+
},
|
429
|
+
{
|
430
|
+
"cell_type": "code",
|
431
|
+
"execution_count": null,
|
432
|
+
"id": "25",
|
433
|
+
"metadata": {},
|
434
|
+
"outputs": [],
|
435
|
+
"source": [
|
436
|
+
"from meta_visit_schedule.constants import MONTH15, MONTH18, MONTH21, MONTH27, MONTH30, MONTH33, MONTH39\n",
|
437
|
+
"\n",
|
438
|
+
"df_table7 = get_table7_df(df_glucose, 1150.0)\n",
|
439
|
+
"df_table7 = format_table_df(df_table7, rename_columns=True, add_totals=False)\n",
|
440
|
+
"df_table7[\"visit_code\"] = MONTH15\n",
|
441
|
+
"\n",
|
442
|
+
"df_table71 = get_table7_df(df_glucose, 1180.0)\n",
|
443
|
+
"df_table71 = format_table_df(df_table71, rename_columns=True, add_totals=False)\n",
|
444
|
+
"df_table71[\"visit_code\"] = MONTH18\n",
|
445
|
+
"\n",
|
446
|
+
"df_table72 = get_table7_df(df_glucose, 1210.0)\n",
|
447
|
+
"df_table72 = format_table_df(df_table72, rename_columns=True, add_totals=False)\n",
|
448
|
+
"df_table72[\"visit_code\"] = MONTH21\n",
|
449
|
+
"\n",
|
450
|
+
"df_table73 = get_table7_df(df_glucose, 1270.0)\n",
|
451
|
+
"df_table73 = format_table_df(df_table73, rename_columns=True, add_totals=False)\n",
|
452
|
+
"df_table73[\"visit_code\"] = MONTH27\n",
|
453
|
+
"\n",
|
454
|
+
"df_table74 = get_table7_df(df_glucose, 1300.0)\n",
|
455
|
+
"df_table74 = format_table_df(df_table74, rename_columns=True, add_totals=False)\n",
|
456
|
+
"df_table74[\"visit_code\"] = MONTH30\n",
|
457
|
+
"\n",
|
458
|
+
"df_table75 = get_table7_df(df_glucose, 1330.0)\n",
|
459
|
+
"df_table75 = format_table_df(df_table75, rename_columns=True, add_totals=False)\n",
|
460
|
+
"df_table75[\"visit_code\"] = MONTH33\n",
|
461
|
+
"\n",
|
462
|
+
"df_table76 = get_table7_df(df_glucose, 1390.0)\n",
|
463
|
+
"df_table76 = format_table_df(df_table76, rename_columns=True, add_totals=False)\n",
|
464
|
+
"df_table76[\"visit_code\"] = MONTH39\n",
|
465
|
+
"\n",
|
466
|
+
"df_table = pd.concat([df_table7, df_table71, df_table72, df_table73, df_table74, df_table75, df_table76])\n",
|
467
|
+
"df_table[[\"visit_code\", \"label\", \"Hindu Mandal\", \"Amana\", \"Temeke\", \"Mwananyamala\", \"Mnazi Moja\", \"Total\"]]\n"
|
468
|
+
]
|
469
|
+
},
|
470
|
+
{
|
471
|
+
"cell_type": "code",
|
472
|
+
"execution_count": null,
|
473
|
+
"id": "26",
|
474
|
+
"metadata": {},
|
475
|
+
"outputs": [],
|
476
|
+
"source": [
|
477
|
+
"cls = GlucoseEndpointsByDate()\n",
|
478
|
+
"cls.run()\n",
|
479
|
+
"# cls.endpoint_only_df.endpoint_type.value_counts()\n",
|
480
|
+
"# cls.endpoint_only_df.endpoint_label.value_counts(dropna=False)"
|
481
|
+
]
|
482
|
+
},
|
483
|
+
{
|
484
|
+
"cell_type": "code",
|
485
|
+
"execution_count": null,
|
486
|
+
"id": "27",
|
487
|
+
"metadata": {},
|
488
|
+
"outputs": [],
|
489
|
+
"source": [
|
490
|
+
"df = cls.endpoint_only_df.groupby(by=[\"site_id\", \"endpoint_label\"]).size().to_frame().reset_index()\n",
|
491
|
+
"df.columns = [\"site_id\", \"label\", \"endpoints\"]\n",
|
492
|
+
"df = df.pivot_table(index=\"label\", columns=\"site_id\", values=\"endpoints\").reset_index()\n",
|
493
|
+
"df.columns.name = \"\"\n",
|
494
|
+
"df.columns = ['label', \"10\", \"20\", \"30\", \"40\", \"60\"]\n",
|
495
|
+
"df.loc[len(df)] = df[['10', '20', '30', '40', '60']].sum().to_dict()\n",
|
496
|
+
"df.at[len(df)-1, 'label'] = 'Total'\n",
|
497
|
+
"df['Total'] = df[['10', '20', '30', '40', '60']].sum(axis=1)\n",
|
498
|
+
"df.fillna(0, inplace=True)\n",
|
499
|
+
"df\n",
|
500
|
+
"print(tabulate(df[['label', '10', '20', '30', '40', '60', 'Total']], showindex=False, headers=\"keys\", tablefmt=\"simple_grid\"))\n"
|
501
|
+
]
|
502
|
+
},
|
503
|
+
{
|
504
|
+
"cell_type": "code",
|
505
|
+
"execution_count": null,
|
506
|
+
"id": "28",
|
507
|
+
"metadata": {},
|
508
|
+
"outputs": [],
|
509
|
+
"source": [
|
510
|
+
"df"
|
511
|
+
]
|
512
|
+
},
|
513
|
+
{
|
514
|
+
"cell_type": "code",
|
515
|
+
"execution_count": null,
|
516
|
+
"id": "29",
|
517
|
+
"metadata": {},
|
518
|
+
"outputs": [],
|
519
|
+
"source": [
|
520
|
+
"len(cls.endpoint_df[\"subject_identifier\"].unique())"
|
521
|
+
]
|
522
|
+
},
|
523
|
+
{
|
524
|
+
"cell_type": "code",
|
525
|
+
"execution_count": null,
|
526
|
+
"id": "30",
|
527
|
+
"metadata": {},
|
528
|
+
"outputs": [],
|
529
|
+
"source": [
|
530
|
+
"cls.endpoint_df[(cls.endpoint_df[\"endpoint\"]==1)][\"interval_in_days\"].describe()"
|
531
|
+
]
|
532
|
+
},
|
533
|
+
{
|
534
|
+
"cell_type": "code",
|
535
|
+
"execution_count": null,
|
536
|
+
"id": "31",
|
537
|
+
"metadata": {},
|
538
|
+
"outputs": [],
|
539
|
+
"source": [
|
540
|
+
"cls.endpoint_only_df[(cls.endpoint_only_df[\"endpoint\"]==1)][\"days_to_endpoint\"].describe()"
|
541
|
+
]
|
542
|
+
},
|
543
|
+
{
|
544
|
+
"cell_type": "code",
|
545
|
+
"execution_count": null,
|
546
|
+
"id": "32",
|
547
|
+
"metadata": {},
|
548
|
+
"outputs": [],
|
549
|
+
"source": [
|
550
|
+
"len(cls.endpoint_df)"
|
551
|
+
]
|
552
|
+
},
|
553
|
+
{
|
554
|
+
"cell_type": "code",
|
555
|
+
"execution_count": null,
|
556
|
+
"id": "33",
|
557
|
+
"metadata": {},
|
558
|
+
"outputs": [],
|
559
|
+
"source": [
|
560
|
+
"len(cls.endpoint_only_df)"
|
561
|
+
]
|
562
|
+
},
|
563
|
+
{
|
564
|
+
"cell_type": "code",
|
565
|
+
"execution_count": null,
|
566
|
+
"id": "34",
|
567
|
+
"metadata": {},
|
568
|
+
"outputs": [],
|
569
|
+
"source": [
|
570
|
+
"cls.endpoint_only_df[\"subject_identifier\"].nunique()"
|
571
|
+
]
|
572
|
+
},
|
573
|
+
{
|
574
|
+
"cell_type": "code",
|
575
|
+
"execution_count": null,
|
576
|
+
"id": "35",
|
577
|
+
"metadata": {},
|
578
|
+
"outputs": [],
|
579
|
+
"source": [
|
580
|
+
"\n",
|
581
|
+
"fname = \"cross_check_end_fbgdate_pivot.csv\"\n",
|
582
|
+
"df_pivot = cls.endpoint_df.sort_values(by=[\"subject_identifier\"]).set_index(\"subject_identifier\").pivot_table(columns=[\"visit_code\"], values=[\"fbg_value\",\"ogtt_value\"], index=[\"subject_identifier\"])\n",
|
583
|
+
"df_pivot.sort_values(('visit_code'), axis=1).sort_values(\"subject_identifier\").to_csv(analysis_folder / fname, sep=\"|\", encoding=\"utf8\", index=True)"
|
584
|
+
]
|
585
|
+
},
|
586
|
+
{
|
587
|
+
"cell_type": "code",
|
588
|
+
"execution_count": null,
|
589
|
+
"id": "36",
|
590
|
+
"metadata": {},
|
591
|
+
"outputs": [],
|
592
|
+
"source": [
|
593
|
+
"\n",
|
594
|
+
"fname = f\"glucose-{datetime.now().strftime(\"%Y-%m-%d-%H%M\")}.csv\"\n",
|
595
|
+
"get_crf(\"meta_subject.glucose\", subject_visit_model=\"meta_subject.subjectvisit\", drop_columns=[\"consent_model\"]).to_csv(analysis_folder / fname, sep=\"|\", encoding=\"utf8\", index=False)\n"
|
596
|
+
]
|
597
|
+
},
|
598
|
+
{
|
599
|
+
"cell_type": "code",
|
600
|
+
"execution_count": null,
|
601
|
+
"id": "37",
|
602
|
+
"metadata": {},
|
603
|
+
"outputs": [],
|
604
|
+
"source": [
|
605
|
+
"fname = f\"glucosefbg-{datetime.now().strftime(\"%Y-%m-%d-%H%M\")}.csv\"\n",
|
606
|
+
"get_crf(\"meta_subject.glucosefbg\", subject_visit_model=\"meta_subject.subjectvisit\", drop_columns=[\"consent_model\"]).to_csv(analysis_folder / fname, sep=\"|\", encoding=\"utf8\", index=False)\n"
|
607
|
+
]
|
608
|
+
},
|
609
|
+
{
|
610
|
+
"cell_type": "code",
|
611
|
+
"execution_count": null,
|
612
|
+
"id": "38",
|
613
|
+
"metadata": {},
|
614
|
+
"outputs": [],
|
615
|
+
"source": [
|
616
|
+
"\n",
|
617
|
+
"fname = f\"glucose-merged-{datetime.now().strftime(\"%Y-%m-%d-%H%M\")}.csv\"\n",
|
618
|
+
"cls.df.to_csv(analysis_folder / fname, sep=\"|\", encoding=\"utf8\", index=False)\n"
|
619
|
+
]
|
620
|
+
},
|
621
|
+
{
|
622
|
+
"cell_type": "code",
|
623
|
+
"execution_count": null,
|
624
|
+
"id": "39",
|
625
|
+
"metadata": {},
|
626
|
+
"outputs": [],
|
627
|
+
"source": [
|
628
|
+
"passwd = mempass.mkpassword(2)\n",
|
629
|
+
"fname = \"KBs_latest_enders_26072024.xlsx\"\n",
|
630
|
+
"decrypted_workbook = io.BytesIO()\n",
|
631
|
+
"with open(analysis_folder / fname, 'rb') as file:\n",
|
632
|
+
" office_file = msoffcrypto.OfficeFile(file)\n",
|
633
|
+
" office_file.load_key(password=passwd)\n",
|
634
|
+
" office_file.decrypt(decrypted_workbook)\n",
|
635
|
+
" \n",
|
636
|
+
"df_katie2 = pd.read_excel(decrypted_workbook, index_col=0)\n",
|
637
|
+
"df_katie2 = df_katie2.copy()\n",
|
638
|
+
"df_katie2 = df_katie2.reset_index()\n",
|
639
|
+
"print(passwd)"
|
640
|
+
]
|
641
|
+
}
|
642
|
+
],
|
643
|
+
"metadata": {
|
644
|
+
"kernelspec": {
|
645
|
+
"display_name": "Python 3 (ipykernel)",
|
646
|
+
"language": "python",
|
647
|
+
"name": "python3"
|
648
|
+
},
|
649
|
+
"language_info": {
|
650
|
+
"codemirror_mode": {
|
651
|
+
"name": "ipython",
|
652
|
+
"version": 3
|
653
|
+
},
|
654
|
+
"file_extension": ".py",
|
655
|
+
"mimetype": "text/x-python",
|
656
|
+
"name": "python",
|
657
|
+
"nbconvert_exporter": "python",
|
658
|
+
"pygments_lexer": "ipython3",
|
659
|
+
"version": "3.12.4"
|
660
|
+
}
|
661
|
+
},
|
662
|
+
"nbformat": 4,
|
663
|
+
"nbformat_minor": 5
|
664
|
+
}
|