meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- meta_ae/action_items.py +10 -2
- meta_ae/baker_recipes.py +1 -2
- meta_ae/tests/tests/test_actions.py +1 -2
- meta_analytics/README.rst +1 -2
- meta_analytics/notebooks/anu.ipynb +95 -0
- meta_analytics/notebooks/appointment_planning.ipynb +329 -0
- meta_analytics/notebooks/arvs.ipynb +103 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
- meta_analytics/notebooks/followup_examination.ipynb +141 -0
- meta_analytics/notebooks/hba1c.ipynb +136 -0
- meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
- meta_analytics/notebooks/incidence.ipynb +232 -0
- meta_analytics/notebooks/liver.ipynb +389 -0
- meta_analytics/notebooks/magreth.ipynb +645 -0
- meta_analytics/notebooks/monitoring_report.ipynb +721 -448
- meta_analytics/notebooks/pharmacy.ipynb +405 -306
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
- meta_analytics/notebooks/steering.ipynb +61 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
- meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
- meta_analytics/notebooks/ven.ipynb +191 -0
- meta_analytics/notebooks/vitals.ipynb +263 -0
- meta_edc/settings/debug.py +3 -2
- meta_edc/urls.py +1 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
- meta_labs/reportables.py +14 -11
- meta_labs/tests/test_reportables.py +33 -12
- meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
- meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
- meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
- meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
- meta_prn/models/end_of_study.py +2 -0
- meta_prn/models/off_study_medication.py +2 -0
- meta_reports/admin/last_imp_refill_admin.py +3 -2
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
- meta_screening/form_validators/screening_part_three.py +6 -1
- meta_screening/tests/meta_test_case_mixin.py +3 -0
- meta_screening/tests/tests/test_forms.py +9 -2
- meta_screening/tests/tests/test_screening_part_three.py +11 -14
- meta_subject/action_items.py +2 -3
- meta_subject/choices.py +2 -1
- meta_subject/form_validators/delivery_form_validator.py +1 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
- meta_subject/forms/delivery_form.py +2 -0
- meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
- meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
- meta_subject/tests/tests/test_egfr.py +5 -5
- meta_analytics/dataframes/enrolled/__init__.py +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,306 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"%%capture\n",
|
11
|
+
"import pandas as pd\n",
|
12
|
+
"from django_pandas.io import read_frame\n",
|
13
|
+
"from pathlib import Path\n",
|
14
|
+
"from dj_notebook import activate\n",
|
15
|
+
"\n",
|
16
|
+
"plus = activate(dotenv_file=\"/Users/erikvw/source/edc_source/meta-edc/.env\")\n",
|
17
|
+
"report_folder = Path(\"/Users/erikvw/Documents/ucl/protocols/meta3/reports/\")\n",
|
18
|
+
"# output is suppressed -- normally would spew out all the edc loading messages\n"
|
19
|
+
]
|
20
|
+
},
|
21
|
+
{
|
22
|
+
"cell_type": "code",
|
23
|
+
"execution_count": null,
|
24
|
+
"id": "1",
|
25
|
+
"metadata": {},
|
26
|
+
"outputs": [],
|
27
|
+
"source": [
|
28
|
+
"from meta_rando.models import RandomizationList\n",
|
29
|
+
"from meta_consent.models import SubjectConsent\n"
|
30
|
+
]
|
31
|
+
},
|
32
|
+
{
|
33
|
+
"cell_type": "code",
|
34
|
+
"execution_count": null,
|
35
|
+
"id": "2",
|
36
|
+
"metadata": {},
|
37
|
+
"outputs": [],
|
38
|
+
"source": [
|
39
|
+
"cnt = 0\n",
|
40
|
+
"df_hm = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/HINDU_MANDAL.xlsx\")\n",
|
41
|
+
"df_hm = df_hm.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
|
42
|
+
"cnt += len(df_hm)\n",
|
43
|
+
"print(\"df_hm\", len(df_hm), cnt)\n",
|
44
|
+
"\n",
|
45
|
+
"df_amana = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/AMANA.xlsx\")\n",
|
46
|
+
"df_amana = df_amana.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
|
47
|
+
"cnt += len(df_amana)\n",
|
48
|
+
"print(\"df_amana\", len(df_amana), cnt)\n",
|
49
|
+
"\n",
|
50
|
+
"df_mnazi = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/mnazi.xlsx\")\n",
|
51
|
+
"df_mnazi = df_mnazi.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
|
52
|
+
"cnt += len(df_mnazi)\n",
|
53
|
+
"print(\"df_mnazi\", len(df_mnazi), cnt)\n",
|
54
|
+
"\n",
|
55
|
+
"df_mwana = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/MWANANYAMALA.xlsx\")\n",
|
56
|
+
"df_mwana = df_mwana.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
|
57
|
+
"cnt += len(df_mwana)\n",
|
58
|
+
"print(\"df_mwana\", len(df_mwana), cnt)\n",
|
59
|
+
"\n",
|
60
|
+
"df_temeke = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/TEMEKE.xlsx\")\n",
|
61
|
+
"df_temeke = df_temeke.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
|
62
|
+
"cnt += len(df_temeke)\n",
|
63
|
+
"print(\"df_temeke\", len(df_temeke), cnt)\n",
|
64
|
+
"\n",
|
65
|
+
"df_sites = pd.concat([df_hm, df_amana, df_mnazi, df_mwana, df_temeke], axis=0)\n",
|
66
|
+
"df_sites"
|
67
|
+
]
|
68
|
+
},
|
69
|
+
{
|
70
|
+
"cell_type": "code",
|
71
|
+
"execution_count": null,
|
72
|
+
"id": "3",
|
73
|
+
"metadata": {},
|
74
|
+
"outputs": [],
|
75
|
+
"source": [
|
76
|
+
"# get rando, this is slow (col assignment is encrypted)\n",
|
77
|
+
"df_rando = read_frame(RandomizationList.objects.values(\"subject_identifier\", \"sid\", \"site_name\", \"assignment\", \"allocated_site\").all(), verbose=False)\n",
|
78
|
+
"df_rando = df_rando.rename(columns={\"allocated_site\": \"site_id\"})\n",
|
79
|
+
"df_rando = df_rando[[\"subject_identifier\", \"sid\", \"site_name\", \"assignment\", \"site_id\"]]\n",
|
80
|
+
"df_rando = df_rando.reset_index(drop=True)\n"
|
81
|
+
]
|
82
|
+
},
|
83
|
+
{
|
84
|
+
"cell_type": "code",
|
85
|
+
"execution_count": null,
|
86
|
+
"id": "4",
|
87
|
+
"metadata": {},
|
88
|
+
"outputs": [],
|
89
|
+
"source": [
|
90
|
+
"# merge rando w/ hindu_mandal\n",
|
91
|
+
"df_sites = df_sites.merge(df_rando, on='sid', how='left', suffixes=('', '_rando'))\n",
|
92
|
+
"df_sites = df_sites[[\"subject_identifier\", \"sid\", \"site_id\", \"qty\", \"site_name\", \"assignment\"]]\n",
|
93
|
+
"df_sites\n"
|
94
|
+
]
|
95
|
+
},
|
96
|
+
{
|
97
|
+
"cell_type": "code",
|
98
|
+
"execution_count": null,
|
99
|
+
"id": "5",
|
100
|
+
"metadata": {},
|
101
|
+
"outputs": [],
|
102
|
+
"source": [
|
103
|
+
"# merge hindu_mandal w/ consent to get \"consent_datetime\", \"gender\", \"dob\"\n",
|
104
|
+
"df_consent = read_frame(SubjectConsent.objects.values(\"subject_identifier\", \"consent_datetime\", \"gender\", \"dob\"), verbose=False)\n",
|
105
|
+
"df_consent[\"consent_datetime\"] = pd.to_datetime(df_consent[\"consent_datetime\"]).dt.tz_localize(None)\n",
|
106
|
+
"df_consent[\"consent_datetime\"] = df_consent[\"consent_datetime\"].dt.normalize()\n",
|
107
|
+
"df_sites = df_sites.merge(df_consent, on=\"subject_identifier\", how=\"left\")\n",
|
108
|
+
"df_sites"
|
109
|
+
]
|
110
|
+
},
|
111
|
+
{
|
112
|
+
"cell_type": "code",
|
113
|
+
"execution_count": null,
|
114
|
+
"id": "6",
|
115
|
+
"metadata": {},
|
116
|
+
"outputs": [],
|
117
|
+
"source": [
|
118
|
+
"df_sites = df_sites.reset_index(drop=True)\n",
|
119
|
+
"df_sites\n"
|
120
|
+
]
|
121
|
+
},
|
122
|
+
{
|
123
|
+
"cell_type": "code",
|
124
|
+
"execution_count": null,
|
125
|
+
"id": "7",
|
126
|
+
"metadata": {},
|
127
|
+
"outputs": [],
|
128
|
+
"source": [
|
129
|
+
"df_sites.site_name.value_counts()"
|
130
|
+
]
|
131
|
+
},
|
132
|
+
{
|
133
|
+
"cell_type": "code",
|
134
|
+
"execution_count": null,
|
135
|
+
"id": "8",
|
136
|
+
"metadata": {},
|
137
|
+
"outputs": [],
|
138
|
+
"source": [
|
139
|
+
"df_sites"
|
140
|
+
]
|
141
|
+
},
|
142
|
+
{
|
143
|
+
"cell_type": "code",
|
144
|
+
"execution_count": null,
|
145
|
+
"id": "9",
|
146
|
+
"metadata": {},
|
147
|
+
"outputs": [],
|
148
|
+
"source": [
|
149
|
+
"df_sites[(df_sites.qty.notna())][\"site_name\"].value_counts()"
|
150
|
+
]
|
151
|
+
},
|
152
|
+
{
|
153
|
+
"cell_type": "code",
|
154
|
+
"execution_count": null,
|
155
|
+
"id": "10",
|
156
|
+
"metadata": {},
|
157
|
+
"outputs": [],
|
158
|
+
"source": [
|
159
|
+
"df_sites[(df_sites.subject_identifier.isna())][\"site_name\"].value_counts()\n"
|
160
|
+
]
|
161
|
+
},
|
162
|
+
{
|
163
|
+
"cell_type": "code",
|
164
|
+
"execution_count": null,
|
165
|
+
"id": "11",
|
166
|
+
"metadata": {},
|
167
|
+
"outputs": [],
|
168
|
+
"source": [
|
169
|
+
"# lists SIDs that do not match an allocated subject_identifier \n",
|
170
|
+
"export_errors_df = df_sites[(df_sites.subject_identifier.isna())][[\"subject_identifier\", \"sid\", \"site_id\", \"qty\", \"site_name\", \"consent_datetime\", \"gender\", \"dob\"]].copy()\n",
|
171
|
+
"export_errors_df = export_errors_df.reset_index(drop=True)\n",
|
172
|
+
"export_errors_df.to_csv(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/imp_stock_20241016-errors.csv\")\n"
|
173
|
+
]
|
174
|
+
},
|
175
|
+
{
|
176
|
+
"cell_type": "code",
|
177
|
+
"execution_count": null,
|
178
|
+
"id": "12",
|
179
|
+
"metadata": {},
|
180
|
+
"outputs": [],
|
181
|
+
"source": [
|
182
|
+
"# safe file to show pharmacist and coordinators\n",
|
183
|
+
"export_wo_assignment_df = df_sites[(df_sites.subject_identifier.notna()) & (df_sites.qty.notna())][[\"subject_identifier\", \"sid\", \"site_id\", \"qty\", \"site_name\", \"consent_datetime\", \"gender\", \"dob\"]].copy()\n",
|
184
|
+
"export_wo_assignment_df = export_wo_assignment_df.reset_index(drop=True)\n",
|
185
|
+
"export_wo_assignment_df.to_csv(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/imp_stock_20241016-calvin.csv\")"
|
186
|
+
]
|
187
|
+
},
|
188
|
+
{
|
189
|
+
"cell_type": "code",
|
190
|
+
"execution_count": null,
|
191
|
+
"id": "13",
|
192
|
+
"metadata": {},
|
193
|
+
"outputs": [],
|
194
|
+
"source": [
|
195
|
+
"# this is a secure file, for Buma only!!\n",
|
196
|
+
"export_with_assignment_df = df_sites[(df_sites.subject_identifier.notna()) & (df_sites.qty.notna())][[\"subject_identifier\", \"sid\", \"site_id\", \"qty\", \"site_name\", \"consent_datetime\", \"gender\", \"dob\", \"assignment\"]].copy()\n",
|
197
|
+
"export_with_assignment_df = export_with_assignment_df.reset_index(drop=True)\n",
|
198
|
+
"export_with_assignment_df.to_csv(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/imp_stock_20241016-buma.csv\")\n"
|
199
|
+
]
|
200
|
+
},
|
201
|
+
{
|
202
|
+
"cell_type": "code",
|
203
|
+
"execution_count": null,
|
204
|
+
"id": "14",
|
205
|
+
"metadata": {},
|
206
|
+
"outputs": [],
|
207
|
+
"source": [
|
208
|
+
"# summary of bottles\n",
|
209
|
+
"btl_df = export_wo_assignment_df.groupby(\"site_name\").agg({\"qty\":\"sum\"})\n",
|
210
|
+
"btl_df"
|
211
|
+
]
|
212
|
+
},
|
213
|
+
{
|
214
|
+
"cell_type": "code",
|
215
|
+
"execution_count": null,
|
216
|
+
"id": "15",
|
217
|
+
"metadata": {},
|
218
|
+
"outputs": [],
|
219
|
+
"source": [
|
220
|
+
"# summary of subjects\n",
|
221
|
+
"export_wo_assignment_df.site_name.value_counts()"
|
222
|
+
]
|
223
|
+
},
|
224
|
+
{
|
225
|
+
"cell_type": "code",
|
226
|
+
"execution_count": null,
|
227
|
+
"id": "16",
|
228
|
+
"metadata": {},
|
229
|
+
"outputs": [],
|
230
|
+
"source": [
|
231
|
+
"# summary of tabs\n",
|
232
|
+
"btl_df * 128"
|
233
|
+
]
|
234
|
+
},
|
235
|
+
{
|
236
|
+
"cell_type": "code",
|
237
|
+
"execution_count": null,
|
238
|
+
"id": "17",
|
239
|
+
"metadata": {},
|
240
|
+
"outputs": [],
|
241
|
+
"source": [
|
242
|
+
"(btl_df * 128).qty.sum()"
|
243
|
+
]
|
244
|
+
},
|
245
|
+
{
|
246
|
+
"cell_type": "code",
|
247
|
+
"execution_count": null,
|
248
|
+
"id": "18",
|
249
|
+
"metadata": {},
|
250
|
+
"outputs": [],
|
251
|
+
"source": [
|
252
|
+
"df_assign = export_with_assignment_df.groupby(\"assignment\").agg({\"qty\":\"sum\"})\n",
|
253
|
+
"df_assign"
|
254
|
+
]
|
255
|
+
},
|
256
|
+
{
|
257
|
+
"cell_type": "code",
|
258
|
+
"execution_count": null,
|
259
|
+
"id": "19",
|
260
|
+
"metadata": {},
|
261
|
+
"outputs": [],
|
262
|
+
"source": [
|
263
|
+
"df_assign * 128"
|
264
|
+
]
|
265
|
+
},
|
266
|
+
{
|
267
|
+
"cell_type": "code",
|
268
|
+
"execution_count": null,
|
269
|
+
"id": "20",
|
270
|
+
"metadata": {},
|
271
|
+
"outputs": [],
|
272
|
+
"source": [
|
273
|
+
"(df_assign * 128).qty.sum()"
|
274
|
+
]
|
275
|
+
},
|
276
|
+
{
|
277
|
+
"cell_type": "code",
|
278
|
+
"execution_count": null,
|
279
|
+
"id": "21",
|
280
|
+
"metadata": {},
|
281
|
+
"outputs": [],
|
282
|
+
"source": []
|
283
|
+
}
|
284
|
+
],
|
285
|
+
"metadata": {
|
286
|
+
"kernelspec": {
|
287
|
+
"display_name": "Python 3",
|
288
|
+
"language": "python",
|
289
|
+
"name": "python3"
|
290
|
+
},
|
291
|
+
"language_info": {
|
292
|
+
"codemirror_mode": {
|
293
|
+
"name": "ipython",
|
294
|
+
"version": 2
|
295
|
+
},
|
296
|
+
"file_extension": ".py",
|
297
|
+
"mimetype": "text/x-python",
|
298
|
+
"name": "python",
|
299
|
+
"nbconvert_exporter": "python",
|
300
|
+
"pygments_lexer": "ipython2",
|
301
|
+
"version": "2.7.6"
|
302
|
+
}
|
303
|
+
},
|
304
|
+
"nbformat": 4,
|
305
|
+
"nbformat_minor": 5
|
306
|
+
}
|
@@ -0,0 +1,61 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": []
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"cell_type": "markdown",
|
13
|
+
"id": "1",
|
14
|
+
"metadata": {},
|
15
|
+
"source": [
|
16
|
+
"incidence of the endpoints (dm)\n",
|
17
|
+
"1st year (0-1)\n",
|
18
|
+
"2nd year (1-2)\n",
|
19
|
+
"\n",
|
20
|
+
"markers\n",
|
21
|
+
"- overall (met endpoint)\n",
|
22
|
+
"- hba1c (after baseline w/ hba1c >6.5)\n",
|
23
|
+
"- fbc\n",
|
24
|
+
"- ogtt\n",
|
25
|
+
"\n",
|
26
|
+
"other conditions\n",
|
27
|
+
"- numbers w/ SAE\n",
|
28
|
+
"- types of SAEs\n",
|
29
|
+
"- SAE's not reported at baseline\n",
|
30
|
+
"- "
|
31
|
+
]
|
32
|
+
},
|
33
|
+
{
|
34
|
+
"cell_type": "markdown",
|
35
|
+
"id": "2",
|
36
|
+
"metadata": {},
|
37
|
+
"source": []
|
38
|
+
}
|
39
|
+
],
|
40
|
+
"metadata": {
|
41
|
+
"kernelspec": {
|
42
|
+
"display_name": "Python 3",
|
43
|
+
"language": "python",
|
44
|
+
"name": "python3"
|
45
|
+
},
|
46
|
+
"language_info": {
|
47
|
+
"codemirror_mode": {
|
48
|
+
"name": "ipython",
|
49
|
+
"version": 2
|
50
|
+
},
|
51
|
+
"file_extension": ".py",
|
52
|
+
"mimetype": "text/x-python",
|
53
|
+
"name": "python",
|
54
|
+
"nbconvert_exporter": "python",
|
55
|
+
"pygments_lexer": "ipython2",
|
56
|
+
"version": "2.7.6"
|
57
|
+
}
|
58
|
+
},
|
59
|
+
"nbformat": 4,
|
60
|
+
"nbformat_minor": 5
|
61
|
+
}
|