meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. meta_ae/action_items.py +10 -2
  2. meta_ae/baker_recipes.py +1 -2
  3. meta_ae/tests/tests/test_actions.py +1 -2
  4. meta_analytics/README.rst +1 -2
  5. meta_analytics/notebooks/anu.ipynb +95 -0
  6. meta_analytics/notebooks/appointment_planning.ipynb +329 -0
  7. meta_analytics/notebooks/arvs.ipynb +103 -0
  8. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
  9. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
  10. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
  11. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
  12. meta_analytics/notebooks/followup_examination.ipynb +141 -0
  13. meta_analytics/notebooks/hba1c.ipynb +136 -0
  14. meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
  15. meta_analytics/notebooks/incidence.ipynb +232 -0
  16. meta_analytics/notebooks/liver.ipynb +389 -0
  17. meta_analytics/notebooks/magreth.ipynb +645 -0
  18. meta_analytics/notebooks/monitoring_report.ipynb +721 -448
  19. meta_analytics/notebooks/pharmacy.ipynb +405 -306
  20. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
  21. meta_analytics/notebooks/steering.ipynb +61 -0
  22. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
  23. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
  24. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
  25. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
  26. meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
  27. meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
  28. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
  29. meta_analytics/notebooks/ven.ipynb +191 -0
  30. meta_analytics/notebooks/vitals.ipynb +263 -0
  31. meta_edc/settings/debug.py +3 -2
  32. meta_edc/urls.py +1 -0
  33. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
  34. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
  35. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
  36. meta_labs/reportables.py +14 -11
  37. meta_labs/tests/test_reportables.py +33 -12
  38. meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
  39. meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
  40. meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
  41. meta_prn/form_validators/end_of_study.py +2 -2
  42. meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
  43. meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
  44. meta_prn/models/end_of_study.py +2 -0
  45. meta_prn/models/off_study_medication.py +2 -0
  46. meta_reports/admin/last_imp_refill_admin.py +3 -2
  47. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
  48. meta_screening/form_validators/screening_part_three.py +6 -1
  49. meta_screening/tests/meta_test_case_mixin.py +3 -0
  50. meta_screening/tests/tests/test_forms.py +9 -2
  51. meta_screening/tests/tests/test_screening_part_three.py +11 -14
  52. meta_subject/action_items.py +2 -3
  53. meta_subject/choices.py +2 -1
  54. meta_subject/form_validators/delivery_form_validator.py +1 -0
  55. meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
  56. meta_subject/forms/delivery_form.py +2 -0
  57. meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
  58. meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
  59. meta_subject/tests/tests/test_egfr.py +5 -5
  60. meta_analytics/dataframes/enrolled/__init__.py +0 -0
  61. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
  62. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
  63. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,306 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "%%capture\n",
11
+ "import pandas as pd\n",
12
+ "from django_pandas.io import read_frame\n",
13
+ "from pathlib import Path\n",
14
+ "from dj_notebook import activate\n",
15
+ "\n",
16
+ "plus = activate(dotenv_file=\"/Users/erikvw/source/edc_source/meta-edc/.env\")\n",
17
+ "report_folder = Path(\"/Users/erikvw/Documents/ucl/protocols/meta3/reports/\")\n",
18
+ "# output is suppressed -- normally would spew out all the edc loading messages\n"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": null,
24
+ "id": "1",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "from meta_rando.models import RandomizationList\n",
29
+ "from meta_consent.models import SubjectConsent\n"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "id": "2",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "cnt = 0\n",
40
+ "df_hm = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/HINDU_MANDAL.xlsx\")\n",
41
+ "df_hm = df_hm.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
42
+ "cnt += len(df_hm)\n",
43
+ "print(\"df_hm\", len(df_hm), cnt)\n",
44
+ "\n",
45
+ "df_amana = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/AMANA.xlsx\")\n",
46
+ "df_amana = df_amana.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
47
+ "cnt += len(df_amana)\n",
48
+ "print(\"df_amana\", len(df_amana), cnt)\n",
49
+ "\n",
50
+ "df_mnazi = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/mnazi.xlsx\")\n",
51
+ "df_mnazi = df_mnazi.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
52
+ "cnt += len(df_mnazi)\n",
53
+ "print(\"df_mnazi\", len(df_mnazi), cnt)\n",
54
+ "\n",
55
+ "df_mwana = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/MWANANYAMALA.xlsx\")\n",
56
+ "df_mwana = df_mwana.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
57
+ "cnt += len(df_mwana)\n",
58
+ "print(\"df_mwana\", len(df_mwana), cnt)\n",
59
+ "\n",
60
+ "df_temeke = pd.read_excel(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/TEMEKE.xlsx\")\n",
61
+ "df_temeke = df_temeke.groupby(\"sid\").agg({\"qty\":\"sum\"})\n",
62
+ "cnt += len(df_temeke)\n",
63
+ "print(\"df_temeke\", len(df_temeke), cnt)\n",
64
+ "\n",
65
+ "df_sites = pd.concat([df_hm, df_amana, df_mnazi, df_mwana, df_temeke], axis=0)\n",
66
+ "df_sites"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "id": "3",
73
+ "metadata": {},
74
+ "outputs": [],
75
+ "source": [
76
+ "# get rando, this is slow (col assignment is encrypted)\n",
77
+ "df_rando = read_frame(RandomizationList.objects.values(\"subject_identifier\", \"sid\", \"site_name\", \"assignment\", \"allocated_site\").all(), verbose=False)\n",
78
+ "df_rando = df_rando.rename(columns={\"allocated_site\": \"site_id\"})\n",
79
+ "df_rando = df_rando[[\"subject_identifier\", \"sid\", \"site_name\", \"assignment\", \"site_id\"]]\n",
80
+ "df_rando = df_rando.reset_index(drop=True)\n"
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "code",
85
+ "execution_count": null,
86
+ "id": "4",
87
+ "metadata": {},
88
+ "outputs": [],
89
+ "source": [
90
+ "# merge rando w/ hindu_mandal\n",
91
+ "df_sites = df_sites.merge(df_rando, on='sid', how='left', suffixes=('', '_rando'))\n",
92
+ "df_sites = df_sites[[\"subject_identifier\", \"sid\", \"site_id\", \"qty\", \"site_name\", \"assignment\"]]\n",
93
+ "df_sites\n"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": null,
99
+ "id": "5",
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "# merge hindu_mandal w/ consent to get \"consent_datetime\", \"gender\", \"dob\"\n",
104
+ "df_consent = read_frame(SubjectConsent.objects.values(\"subject_identifier\", \"consent_datetime\", \"gender\", \"dob\"), verbose=False)\n",
105
+ "df_consent[\"consent_datetime\"] = pd.to_datetime(df_consent[\"consent_datetime\"]).dt.tz_localize(None)\n",
106
+ "df_consent[\"consent_datetime\"] = df_consent[\"consent_datetime\"].dt.normalize()\n",
107
+ "df_sites = df_sites.merge(df_consent, on=\"subject_identifier\", how=\"left\")\n",
108
+ "df_sites"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": null,
114
+ "id": "6",
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "df_sites = df_sites.reset_index(drop=True)\n",
119
+ "df_sites\n"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": null,
125
+ "id": "7",
126
+ "metadata": {},
127
+ "outputs": [],
128
+ "source": [
129
+ "df_sites.site_name.value_counts()"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": null,
135
+ "id": "8",
136
+ "metadata": {},
137
+ "outputs": [],
138
+ "source": [
139
+ "df_sites"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "id": "9",
146
+ "metadata": {},
147
+ "outputs": [],
148
+ "source": [
149
+ "df_sites[(df_sites.qty.notna())][\"site_name\"].value_counts()"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "code",
154
+ "execution_count": null,
155
+ "id": "10",
156
+ "metadata": {},
157
+ "outputs": [],
158
+ "source": [
159
+ "df_sites[(df_sites.subject_identifier.isna())][\"site_name\"].value_counts()\n"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "id": "11",
166
+ "metadata": {},
167
+ "outputs": [],
168
+ "source": [
169
+ "# lists SIDs that do not match an allocated subject_identifier \n",
170
+ "export_errors_df = df_sites[(df_sites.subject_identifier.isna())][[\"subject_identifier\", \"sid\", \"site_id\", \"qty\", \"site_name\", \"consent_datetime\", \"gender\", \"dob\"]].copy()\n",
171
+ "export_errors_df = export_errors_df.reset_index(drop=True)\n",
172
+ "export_errors_df.to_csv(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/imp_stock_20241016-errors.csv\")\n"
173
+ ]
174
+ },
175
+ {
176
+ "cell_type": "code",
177
+ "execution_count": null,
178
+ "id": "12",
179
+ "metadata": {},
180
+ "outputs": [],
181
+ "source": [
182
+ "# safe file to show pharmacist and coordinators\n",
183
+ "export_wo_assignment_df = df_sites[(df_sites.subject_identifier.notna()) & (df_sites.qty.notna())][[\"subject_identifier\", \"sid\", \"site_id\", \"qty\", \"site_name\", \"consent_datetime\", \"gender\", \"dob\"]].copy()\n",
184
+ "export_wo_assignment_df = export_wo_assignment_df.reset_index(drop=True)\n",
185
+ "export_wo_assignment_df.to_csv(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/imp_stock_20241016-calvin.csv\")"
186
+ ]
187
+ },
188
+ {
189
+ "cell_type": "code",
190
+ "execution_count": null,
191
+ "id": "13",
192
+ "metadata": {},
193
+ "outputs": [],
194
+ "source": [
195
+ "# this is a secure file, for Buma only!!\n",
196
+ "export_with_assignment_df = df_sites[(df_sites.subject_identifier.notna()) & (df_sites.qty.notna())][[\"subject_identifier\", \"sid\", \"site_id\", \"qty\", \"site_name\", \"consent_datetime\", \"gender\", \"dob\", \"assignment\"]].copy()\n",
197
+ "export_with_assignment_df = export_with_assignment_df.reset_index(drop=True)\n",
198
+ "export_with_assignment_df.to_csv(\"/Users/erikvw/Documents/ucl/protocols/meta3/pharmacy/imp_stock_20241016-buma.csv\")\n"
199
+ ]
200
+ },
201
+ {
202
+ "cell_type": "code",
203
+ "execution_count": null,
204
+ "id": "14",
205
+ "metadata": {},
206
+ "outputs": [],
207
+ "source": [
208
+ "# summary of bottles\n",
209
+ "btl_df = export_wo_assignment_df.groupby(\"site_name\").agg({\"qty\":\"sum\"})\n",
210
+ "btl_df"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "id": "15",
217
+ "metadata": {},
218
+ "outputs": [],
219
+ "source": [
220
+ "# summary of subjects\n",
221
+ "export_wo_assignment_df.site_name.value_counts()"
222
+ ]
223
+ },
224
+ {
225
+ "cell_type": "code",
226
+ "execution_count": null,
227
+ "id": "16",
228
+ "metadata": {},
229
+ "outputs": [],
230
+ "source": [
231
+ "# summary of tabs\n",
232
+ "btl_df * 128"
233
+ ]
234
+ },
235
+ {
236
+ "cell_type": "code",
237
+ "execution_count": null,
238
+ "id": "17",
239
+ "metadata": {},
240
+ "outputs": [],
241
+ "source": [
242
+ "(btl_df * 128).qty.sum()"
243
+ ]
244
+ },
245
+ {
246
+ "cell_type": "code",
247
+ "execution_count": null,
248
+ "id": "18",
249
+ "metadata": {},
250
+ "outputs": [],
251
+ "source": [
252
+ "df_assign = export_with_assignment_df.groupby(\"assignment\").agg({\"qty\":\"sum\"})\n",
253
+ "df_assign"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "id": "19",
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": [
263
+ "df_assign * 128"
264
+ ]
265
+ },
266
+ {
267
+ "cell_type": "code",
268
+ "execution_count": null,
269
+ "id": "20",
270
+ "metadata": {},
271
+ "outputs": [],
272
+ "source": [
273
+ "(df_assign * 128).qty.sum()"
274
+ ]
275
+ },
276
+ {
277
+ "cell_type": "code",
278
+ "execution_count": null,
279
+ "id": "21",
280
+ "metadata": {},
281
+ "outputs": [],
282
+ "source": []
283
+ }
284
+ ],
285
+ "metadata": {
286
+ "kernelspec": {
287
+ "display_name": "Python 3",
288
+ "language": "python",
289
+ "name": "python3"
290
+ },
291
+ "language_info": {
292
+ "codemirror_mode": {
293
+ "name": "ipython",
294
+ "version": 2
295
+ },
296
+ "file_extension": ".py",
297
+ "mimetype": "text/x-python",
298
+ "name": "python",
299
+ "nbconvert_exporter": "python",
300
+ "pygments_lexer": "ipython2",
301
+ "version": "2.7.6"
302
+ }
303
+ },
304
+ "nbformat": 4,
305
+ "nbformat_minor": 5
306
+ }
@@ -0,0 +1,61 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": []
10
+ },
11
+ {
12
+ "cell_type": "markdown",
13
+ "id": "1",
14
+ "metadata": {},
15
+ "source": [
16
+ "incidence of the endpoints (dm)\n",
17
+ "1st year (0-1)\n",
18
+ "2nd year (1-2)\n",
19
+ "\n",
20
+ "markers\n",
21
+ "- overall (met endpoint)\n",
22
+ "- hba1c (after baseline w/ hba1c >6.5)\n",
23
+ "- fbc\n",
24
+ "- ogtt\n",
25
+ "\n",
26
+ "other conditions\n",
27
+ "- numbers w/ SAE\n",
28
+ "- types of SAEs\n",
29
+ "- SAE's not reported at baseline\n",
30
+ "- "
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "markdown",
35
+ "id": "2",
36
+ "metadata": {},
37
+ "source": []
38
+ }
39
+ ],
40
+ "metadata": {
41
+ "kernelspec": {
42
+ "display_name": "Python 3",
43
+ "language": "python",
44
+ "name": "python3"
45
+ },
46
+ "language_info": {
47
+ "codemirror_mode": {
48
+ "name": "ipython",
49
+ "version": 2
50
+ },
51
+ "file_extension": ".py",
52
+ "mimetype": "text/x-python",
53
+ "name": "python",
54
+ "nbconvert_exporter": "python",
55
+ "pygments_lexer": "ipython2",
56
+ "version": "2.7.6"
57
+ }
58
+ },
59
+ "nbformat": 4,
60
+ "nbformat_minor": 5
61
+ }