meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. meta_ae/action_items.py +10 -2
  2. meta_ae/baker_recipes.py +1 -2
  3. meta_ae/tests/tests/test_actions.py +1 -2
  4. meta_analytics/README.rst +1 -2
  5. meta_analytics/notebooks/anu.ipynb +95 -0
  6. meta_analytics/notebooks/appointment_planning.ipynb +329 -0
  7. meta_analytics/notebooks/arvs.ipynb +103 -0
  8. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
  9. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
  10. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
  11. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
  12. meta_analytics/notebooks/followup_examination.ipynb +141 -0
  13. meta_analytics/notebooks/hba1c.ipynb +136 -0
  14. meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
  15. meta_analytics/notebooks/incidence.ipynb +232 -0
  16. meta_analytics/notebooks/liver.ipynb +389 -0
  17. meta_analytics/notebooks/magreth.ipynb +645 -0
  18. meta_analytics/notebooks/monitoring_report.ipynb +721 -448
  19. meta_analytics/notebooks/pharmacy.ipynb +405 -306
  20. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
  21. meta_analytics/notebooks/steering.ipynb +61 -0
  22. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
  23. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
  24. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
  25. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
  26. meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
  27. meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
  28. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
  29. meta_analytics/notebooks/ven.ipynb +191 -0
  30. meta_analytics/notebooks/vitals.ipynb +263 -0
  31. meta_edc/settings/debug.py +3 -2
  32. meta_edc/urls.py +1 -0
  33. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
  34. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
  35. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
  36. meta_labs/reportables.py +14 -11
  37. meta_labs/tests/test_reportables.py +33 -12
  38. meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
  39. meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
  40. meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
  41. meta_prn/form_validators/end_of_study.py +2 -2
  42. meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
  43. meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
  44. meta_prn/models/end_of_study.py +2 -0
  45. meta_prn/models/off_study_medication.py +2 -0
  46. meta_reports/admin/last_imp_refill_admin.py +3 -2
  47. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
  48. meta_screening/form_validators/screening_part_three.py +6 -1
  49. meta_screening/tests/meta_test_case_mixin.py +3 -0
  50. meta_screening/tests/tests/test_forms.py +9 -2
  51. meta_screening/tests/tests/test_screening_part_three.py +11 -14
  52. meta_subject/action_items.py +2 -3
  53. meta_subject/choices.py +2 -1
  54. meta_subject/form_validators/delivery_form_validator.py +1 -0
  55. meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
  56. meta_subject/forms/delivery_form.py +2 -0
  57. meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
  58. meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
  59. meta_subject/tests/tests/test_egfr.py +5 -5
  60. meta_analytics/dataframes/enrolled/__init__.py +0 -0
  61. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
  62. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
  63. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,958 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "%%capture\n",
11
+ "# output is suppressed but normally would spew out all the edc loading messages\n",
12
+ "\n",
13
+ "import os\n",
14
+ "from pathlib import Path\n",
15
+ "from datetime import datetime\n",
16
+ "import pandas as pd\n",
17
+ "import numpy as np\n",
18
+ "import math\n",
19
+ "# import matplotlxib.pyplot as plt\n",
20
+ "# import seaborn as sns\n",
21
+ "import scipy.stats as stats\n",
22
+ "\n",
23
+ "from dj_notebook import activate\n",
24
+ "\n",
25
+ "env_file = os.environ[\"META_ENV\"]\n",
26
+ "documents_folder = os.environ[\"META_DOCUMENTS_FOLDER\"]\n",
27
+ "report_folder = Path(documents_folder)\n",
28
+ "\n",
29
+ "plus = activate(dotenv_file=env_file)\n"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "id": "1",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "import itertools\n",
40
+ "from meta_analytics.dataframes import GlucoseEndpointsByDate, get_eos_df, get_screening_df\n",
41
+ "from meta_analytics.dataframes.screening import get_glucose_tested_only_df\n"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": null,
47
+ "id": "2",
48
+ "metadata": {},
49
+ "outputs": [],
50
+ "source": [
51
+ "\n",
52
+ "df = get_screening_df()\n"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "id": "3",
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "# unwilling to stay or not living nearby\n",
63
+ "df[(df[\"reasons_ineligible_part_one\"].str.contains(\"nearby\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))].reasons_ineligible_part_one.value_counts(dropna=False)\n"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": null,
69
+ "id": "4",
70
+ "metadata": {},
71
+ "outputs": [],
72
+ "source": [
73
+ "df[(df[\"reasons_ineligible_part_one\"].str.contains(\"nearby\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & (~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))].reasons_ineligible_part_one.count()"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": null,
79
+ "id": "5",
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "df[\n",
84
+ "(df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & \n",
85
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & \n",
86
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & \n",
87
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))\n",
88
+ "].reasons_ineligible_part_one.count()"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": null,
94
+ "id": "6",
95
+ "metadata": {},
96
+ "outputs": [],
97
+ "source": [
98
+ "# VL not suppressed or not measured within last 6-12\n",
99
+ "df[\n",
100
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & \n",
101
+ "(df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & \n",
102
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & \n",
103
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))\n",
104
+ "].reasons_ineligible_part_one.count()"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": null,
110
+ "id": "7",
111
+ "metadata": {},
112
+ "outputs": [],
113
+ "source": [
114
+ "# pregnant (unconfirmed)\n",
115
+ "df[\n",
116
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & \n",
117
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & \n",
118
+ "(df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & \n",
119
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))\n",
120
+ "].reasons_ineligible_part_one.counts()"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": null,
126
+ "id": "8",
127
+ "metadata": {},
128
+ "outputs": [],
129
+ "source": [
130
+ "# META 2 participant\n",
131
+ "df[\n",
132
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"ART\", na=False)) & \n",
133
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"VL\", na=False)) & \n",
134
+ "(~df[\"reasons_ineligible_part_one\"].str.contains(\"Pregnant\", na=False)) & \n",
135
+ "(df[\"reasons_ineligible_part_one\"].str.contains(\"META\", na=False))\n",
136
+ "].reasons_ineligible_part_one.count()"
137
+ ]
138
+ },
139
+ {
140
+ "cell_type": "code",
141
+ "execution_count": null,
142
+ "id": "9",
143
+ "metadata": {},
144
+ "outputs": [],
145
+ "source": [
146
+ "prods = list(itertools.product([\"Yes\", \"No\", \"tbd\"], repeat=3))\n",
147
+ "dfs = []\n",
148
+ "for p in prods:\n",
149
+ " if p[0] == \"tbd\":\n",
150
+ " continue\n",
151
+ " dfs.append(\n",
152
+ " pd.DataFrame([[\n",
153
+ " p[0], \n",
154
+ " p[1],\n",
155
+ " p[2],\n",
156
+ " df[\n",
157
+ " (df.eligible_part_one==p[0]) & \n",
158
+ " (df.eligible_part_two==p[1]) &\n",
159
+ " (df.eligible_part_three==p[2])\n",
160
+ " ].eligible_part_three.count()]],\n",
161
+ " columns=[\"p1\", \"p2\", \"p3\", \"count\"]))\n",
162
+ "\n",
163
+ "df_eligibility = pd.concat(dfs, ignore_index=True)\n",
164
+ "df_eligibility"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "code",
169
+ "execution_count": null,
170
+ "id": "10",
171
+ "metadata": {},
172
+ "outputs": [],
173
+ "source": []
174
+ },
175
+ {
176
+ "cell_type": "code",
177
+ "execution_count": null,
178
+ "id": "11",
179
+ "metadata": {},
180
+ "outputs": [],
181
+ "source": [
182
+ "# assessed part one only\n",
183
+ "p1 = df_eligibility[df_eligibility.p2.isin([\"tbd\"])][\"count\"].sum()\n",
184
+ "p1"
185
+ ]
186
+ },
187
+ {
188
+ "cell_type": "code",
189
+ "execution_count": null,
190
+ "id": "12",
191
+ "metadata": {},
192
+ "outputs": [],
193
+ "source": [
194
+ "# assessed part one and part two\n",
195
+ "p12 = df_eligibility[\n",
196
+ " (df_eligibility.p1.isin([\"Yes\", \"No\"])) & \n",
197
+ " (df_eligibility.p2.isin([\"Yes\", \"No\"])) & \n",
198
+ " (df_eligibility.p3 == \"tbd\")\n",
199
+ "][\"count\"].sum()\n",
200
+ "p12"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": null,
206
+ "id": "13",
207
+ "metadata": {},
208
+ "outputs": [],
209
+ "source": [
210
+ "# assessed part one, part two, part three\n",
211
+ "p123 = df_eligibility[\n",
212
+ " (df_eligibility.p1.isin([\"Yes\", \"No\"])) & \n",
213
+ " (df_eligibility.p2.isin([\"Yes\", \"No\"])) & \n",
214
+ " (df_eligibility.p3 != \"tbd\")\n",
215
+ "][\"count\"].sum()\n",
216
+ "p123"
217
+ ]
218
+ },
219
+ {
220
+ "cell_type": "code",
221
+ "execution_count": null,
222
+ "id": "14",
223
+ "metadata": {},
224
+ "outputs": [],
225
+ "source": [
226
+ "assert p1+p12+p123 == 10574"
227
+ ]
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "id": "15",
233
+ "metadata": {},
234
+ "outputs": [],
235
+ "source": [
236
+ "p12 + p123"
237
+ ]
238
+ },
239
+ {
240
+ "cell_type": "code",
241
+ "execution_count": null,
242
+ "id": "16",
243
+ "metadata": {},
244
+ "outputs": [],
245
+ "source": [
246
+ "cond = (df[\"eligible_part_one\"] == \"Yes\") \n",
247
+ "df[cond].count()"
248
+ ]
249
+ },
250
+ {
251
+ "cell_type": "code",
252
+ "execution_count": null,
253
+ "id": "17",
254
+ "metadata": {},
255
+ "outputs": [],
256
+ "source": [
257
+ "# 9706 evaluated for part one and two\n",
258
+ "cond = (df[\"eligible_part_one\"].isin([\"Yes\", \"No\"])) & (df[\"eligible_part_two\"].isin([\"Yes\", \"No\"]))\n",
259
+ "df[cond].count()"
260
+ ]
261
+ },
262
+ {
263
+ "cell_type": "code",
264
+ "execution_count": null,
265
+ "id": "18",
266
+ "metadata": {},
267
+ "outputs": [],
268
+ "source": []
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": null,
273
+ "id": "19",
274
+ "metadata": {},
275
+ "outputs": [],
276
+ "source": []
277
+ },
278
+ {
279
+ "cell_type": "code",
280
+ "execution_count": null,
281
+ "id": "20",
282
+ "metadata": {},
283
+ "outputs": [],
284
+ "source": []
285
+ },
286
+ {
287
+ "cell_type": "code",
288
+ "execution_count": null,
289
+ "id": "21",
290
+ "metadata": {},
291
+ "outputs": [],
292
+ "source": [
293
+ "# 9706 evaluated for part one and two\n",
294
+ "cond = (df[\"eligible_part_one\"].isin([\"Yes\", \"No\"])) & (df[\"eligible_part_two\"].isin([\"Yes\", \"No\"]))\n",
295
+ "df[cond].eligible_part_three.value_counts()\n",
296
+ "\n"
297
+ ]
298
+ },
299
+ {
300
+ "cell_type": "code",
301
+ "execution_count": null,
302
+ "id": "22",
303
+ "metadata": {},
304
+ "outputs": [],
305
+ "source": []
306
+ },
307
+ {
308
+ "cell_type": "code",
309
+ "execution_count": null,
310
+ "id": "23",
311
+ "metadata": {},
312
+ "outputs": [],
313
+ "source": []
314
+ },
315
+ {
316
+ "cell_type": "code",
317
+ "execution_count": null,
318
+ "id": "24",
319
+ "metadata": {},
320
+ "outputs": [],
321
+ "source": [
322
+ "df_glu = get_glucose_tested_only_df()"
323
+ ]
324
+ },
325
+ {
326
+ "cell_type": "code",
327
+ "execution_count": null,
328
+ "id": "25",
329
+ "metadata": {},
330
+ "outputs": [],
331
+ "source": [
332
+ "df_glu.eligible_part_three.value_counts()\n"
333
+ ]
334
+ },
335
+ {
336
+ "cell_type": "code",
337
+ "execution_count": null,
338
+ "id": "26",
339
+ "metadata": {},
340
+ "outputs": [],
341
+ "source": [
342
+ "cond = (df[\"eligible_part_one\"].isin([\"Yes\"])) & (df[\"eligible_part_two\"].isin([\"Yes\"]))\n",
343
+ "df[cond].agree_to_p3.value_counts()"
344
+ ]
345
+ },
346
+ {
347
+ "cell_type": "code",
348
+ "execution_count": null,
349
+ "id": "27",
350
+ "metadata": {},
351
+ "outputs": [],
352
+ "source": [
353
+ "df_glu.gender.value_counts()"
354
+ ]
355
+ },
356
+ {
357
+ "cell_type": "code",
358
+ "execution_count": null,
359
+ "id": "28",
360
+ "metadata": {},
361
+ "outputs": [],
362
+ "source": [
363
+ "df_glu = df_glu.set_index(\"screening_identifier\")"
364
+ ]
365
+ },
366
+ {
367
+ "cell_type": "code",
368
+ "execution_count": null,
369
+ "id": "29",
370
+ "metadata": {},
371
+ "outputs": [],
372
+ "source": [
373
+ "cond = (df[\"eligible_part_one\"].isin([\"Yes\", \"No\"])) & (df[\"eligible_part_two\"].isin([\"Yes\", \"No\"]) & (df[\"has_dm\"]==\"No\"))\n",
374
+ "df[cond].eligible_part_three.count()\n"
375
+ ]
376
+ },
377
+ {
378
+ "cell_type": "code",
379
+ "execution_count": null,
380
+ "id": "30",
381
+ "metadata": {},
382
+ "outputs": [],
383
+ "source": [
384
+ "df2 = df[cond].copy()\n",
385
+ "df2 = df2.reset_index(drop=True)\n",
386
+ "df2 = df2.set_index(\"screening_identifier\")\n",
387
+ "df2.count()"
388
+ ]
389
+ },
390
+ {
391
+ "cell_type": "code",
392
+ "execution_count": null,
393
+ "id": "31",
394
+ "metadata": {},
395
+ "outputs": [],
396
+ "source": [
397
+ "df2 = df2.drop(index=df_glu.index)"
398
+ ]
399
+ },
400
+ {
401
+ "cell_type": "code",
402
+ "execution_count": null,
403
+ "id": "32",
404
+ "metadata": {},
405
+ "outputs": [],
406
+ "source": [
407
+ "df2.count()"
408
+ ]
409
+ },
410
+ {
411
+ "cell_type": "code",
412
+ "execution_count": null,
413
+ "id": "33",
414
+ "metadata": {},
415
+ "outputs": [],
416
+ "source": [
417
+ "df2.gender.value_counts()"
418
+ ]
419
+ },
420
+ {
421
+ "cell_type": "code",
422
+ "execution_count": null,
423
+ "id": "34",
424
+ "metadata": {},
425
+ "outputs": [],
426
+ "source": [
427
+ "df2[df2[\"gender\"] == \"F\"].age_in_years.describe()"
428
+ ]
429
+ },
430
+ {
431
+ "cell_type": "code",
432
+ "execution_count": null,
433
+ "id": "35",
434
+ "metadata": {},
435
+ "outputs": [],
436
+ "source": [
437
+ "df_glu[df_glu[\"gender\"] == \"F\"].age_in_years.describe()"
438
+ ]
439
+ },
440
+ {
441
+ "cell_type": "code",
442
+ "execution_count": null,
443
+ "id": "36",
444
+ "metadata": {},
445
+ "outputs": [],
446
+ "source": [
447
+ "df_glu.age_in_years.describe()"
448
+ ]
449
+ },
450
+ {
451
+ "cell_type": "code",
452
+ "execution_count": null,
453
+ "id": "37",
454
+ "metadata": {},
455
+ "outputs": [],
456
+ "source": [
457
+ "df_glu[df_glu[\"gender\"] == \"M\"].age_in_years.describe()"
458
+ ]
459
+ },
460
+ {
461
+ "cell_type": "code",
462
+ "execution_count": null,
463
+ "id": "38",
464
+ "metadata": {},
465
+ "outputs": [],
466
+ "source": [
467
+ "import scipy.stats as stats\n",
468
+ "df_glu[(df_glu[\"gender\"] == \"F\")].count()"
469
+ ]
470
+ },
471
+ {
472
+ "cell_type": "code",
473
+ "execution_count": null,
474
+ "id": "39",
475
+ "metadata": {},
476
+ "outputs": [],
477
+ "source": [
478
+ "cond_fasting = (df_glu.fasting == \"Yes\") & (df_glu.fasting_fbg_hrs >= 8.0)\n",
479
+ "cond_f = (df_glu[\"gender\"] == \"F\")\n",
480
+ "cond_m = (df_glu[\"gender\"] == \"M\")\n",
481
+ "\n",
482
+ "df_glu[(df_glu.fasting == \"Yes\") & (df_glu.fasting_fbg_hrs >= 8.0)].gender.value_counts()"
483
+ ]
484
+ },
485
+ {
486
+ "cell_type": "code",
487
+ "execution_count": null,
488
+ "id": "40",
489
+ "metadata": {},
490
+ "outputs": [],
491
+ "source": [
492
+ "df_glu[cond_fasting & cond_f].count()\n",
493
+ "df_glu[cond_fasting & cond_f & (df_glu.ogtt.notna())].count()"
494
+ ]
495
+ },
496
+ {
497
+ "cell_type": "code",
498
+ "execution_count": null,
499
+ "id": "41",
500
+ "metadata": {},
501
+ "outputs": [],
502
+ "source": []
503
+ },
504
+ {
505
+ "cell_type": "code",
506
+ "execution_count": null,
507
+ "id": "42",
508
+ "metadata": {},
509
+ "outputs": [],
510
+ "source": [
511
+ "df_glu[\"fbg_threshold\"] = df_glu[cond_fasting].fbg >= 7.0\n",
512
+ "df_glu[\"ogtt_threshold\"] = df_glu[cond_fasting].ogtt >= 11.1\n"
513
+ ]
514
+ },
515
+ {
516
+ "cell_type": "code",
517
+ "execution_count": null,
518
+ "id": "43",
519
+ "metadata": {},
520
+ "outputs": [],
521
+ "source": [
522
+ "df_glu_female = df_glu[cond_f & cond_fasting][[\"fbg_threshold\", \"ogtt_threshold\"]].value_counts().to_frame().reset_index()"
523
+ ]
524
+ },
525
+ {
526
+ "cell_type": "code",
527
+ "execution_count": null,
528
+ "id": "44",
529
+ "metadata": {},
530
+ "outputs": [],
531
+ "source": [
532
+ "assert df_glu_female[\"count\"].sum() == 4201"
533
+ ]
534
+ },
535
+ {
536
+ "cell_type": "code",
537
+ "execution_count": null,
538
+ "id": "45",
539
+ "metadata": {},
540
+ "outputs": [],
541
+ "source": [
542
+ "assert df_glu_female[df_glu_female.fbg_threshold == True][\"count\"].sum() == 534"
543
+ ]
544
+ },
545
+ {
546
+ "cell_type": "code",
547
+ "execution_count": null,
548
+ "id": "46",
549
+ "metadata": {},
550
+ "outputs": [],
551
+ "source": [
552
+ "assert df_glu_female[df_glu_female.ogtt_threshold == True][\"count\"].sum() == 148"
553
+ ]
554
+ },
555
+ {
556
+ "cell_type": "code",
557
+ "execution_count": null,
558
+ "id": "47",
559
+ "metadata": {},
560
+ "outputs": [],
561
+ "source": [
562
+ "assert df_glu[cond_f & cond_fasting & (df_glu.fbg >= 7.0)][\"gender\"].count() == 534\n",
563
+ "assert df_glu_female[df_glu_female.fbg_threshold == True][\"count\"].sum() == 534"
564
+ ]
565
+ },
566
+ {
567
+ "cell_type": "code",
568
+ "execution_count": null,
569
+ "id": "48",
570
+ "metadata": {},
571
+ "outputs": [],
572
+ "source": []
573
+ },
574
+ {
575
+ "cell_type": "code",
576
+ "execution_count": null,
577
+ "id": "49",
578
+ "metadata": {},
579
+ "outputs": [],
580
+ "source": []
581
+ },
582
+ {
583
+ "cell_type": "code",
584
+ "execution_count": null,
585
+ "id": "50",
586
+ "metadata": {},
587
+ "outputs": [],
588
+ "source": []
589
+ },
590
+ {
591
+ "cell_type": "code",
592
+ "execution_count": null,
593
+ "id": "51",
594
+ "metadata": {},
595
+ "outputs": [],
596
+ "source": []
597
+ },
598
+ {
599
+ "cell_type": "code",
600
+ "execution_count": null,
601
+ "id": "52",
602
+ "metadata": {},
603
+ "outputs": [],
604
+ "source": []
605
+ },
606
+ {
607
+ "cell_type": "code",
608
+ "execution_count": null,
609
+ "id": "53",
610
+ "metadata": {},
611
+ "outputs": [],
612
+ "source": [
613
+ "# men fbg\n",
614
+ "df_glu[cond_m & cond_fasting][[\"fbg\", \"ogtt\"]].count()"
615
+ ]
616
+ },
617
+ {
618
+ "cell_type": "code",
619
+ "execution_count": null,
620
+ "id": "54",
621
+ "metadata": {},
622
+ "outputs": [],
623
+ "source": [
624
+ "# men fbg\n",
625
+ "assert df_glu[cond_m & cond_fasting & (df_glu.fbg >= 7.0)][\"gender\"].count() == 194"
626
+ ]
627
+ },
628
+ {
629
+ "cell_type": "code",
630
+ "execution_count": null,
631
+ "id": "55",
632
+ "metadata": {},
633
+ "outputs": [],
634
+ "source": [
635
+ "# men fbg\n",
636
+ "194/1414"
637
+ ]
638
+ },
639
+ {
640
+ "cell_type": "code",
641
+ "execution_count": null,
642
+ "id": "56",
643
+ "metadata": {},
644
+ "outputs": [],
645
+ "source": [
646
+ "# men ogtt\n",
647
+ "assert df_glu[cond_m & cond_fasting & (df_glu.ogtt >= 11.1)][\"gender\"].count() == 76"
648
+ ]
649
+ },
650
+ {
651
+ "cell_type": "code",
652
+ "execution_count": null,
653
+ "id": "57",
654
+ "metadata": {},
655
+ "outputs": [],
656
+ "source": [
657
+ "76/1393"
658
+ ]
659
+ },
660
+ {
661
+ "cell_type": "code",
662
+ "execution_count": null,
663
+ "id": "58",
664
+ "metadata": {},
665
+ "outputs": [],
666
+ "source": [
667
+ "\n",
668
+ "df_glu_male = df_glu[cond_m & cond_fasting & (df_glu.)][\n",
669
+ "[\"fbg_threshold\", \"ogtt_threshold\"]].value_counts().to_frame().reset_index()\n"
670
+ ]
671
+ },
672
+ {
673
+ "cell_type": "code",
674
+ "execution_count": null,
675
+ "id": "59",
676
+ "metadata": {},
677
+ "outputs": [],
678
+ "source": [
679
+ "df_glu_male"
680
+ ]
681
+ },
682
+ {
683
+ "cell_type": "code",
684
+ "execution_count": null,
685
+ "id": "60",
686
+ "metadata": {},
687
+ "outputs": [],
688
+ "source": [
689
+ "assert df_glu_male[\"count\"].sum() == 1414"
690
+ ]
691
+ },
692
+ {
693
+ "cell_type": "code",
694
+ "execution_count": null,
695
+ "id": "61",
696
+ "metadata": {},
697
+ "outputs": [],
698
+ "source": []
699
+ },
700
+ {
701
+ "cell_type": "code",
702
+ "execution_count": null,
703
+ "id": "62",
704
+ "metadata": {},
705
+ "outputs": [],
706
+ "source": []
707
+ },
708
+ {
709
+ "cell_type": "code",
710
+ "execution_count": null,
711
+ "id": "63",
712
+ "metadata": {},
713
+ "outputs": [],
714
+ "source": []
715
+ },
716
+ {
717
+ "cell_type": "code",
718
+ "execution_count": null,
719
+ "id": "64",
720
+ "metadata": {},
721
+ "outputs": [],
722
+ "source": [
723
+ "from scipy.stats.contingency import odds_ratio\n",
724
+ "\n",
725
+ "# female\n",
726
+ "df_glu_female"
727
+ ]
728
+ },
729
+ {
730
+ "cell_type": "code",
731
+ "execution_count": null,
732
+ "id": "65",
733
+ "metadata": {},
734
+ "outputs": [],
735
+ "source": [
736
+ "# female\n",
737
+ "res = odds_ratio([[98, 436], [50,3617]])\n",
738
+ "res.statistic"
739
+ ]
740
+ },
741
+ {
742
+ "cell_type": "code",
743
+ "execution_count": null,
744
+ "id": "66",
745
+ "metadata": {},
746
+ "outputs": [],
747
+ "source": [
748
+ "# male\n",
749
+ "df_glu_male"
750
+ ]
751
+ },
752
+ {
753
+ "cell_type": "code",
754
+ "execution_count": null,
755
+ "id": "67",
756
+ "metadata": {},
757
+ "outputs": [],
758
+ "source": [
759
+ "# male\n",
760
+ "df_glu_male\n",
761
+ "res = odds_ratio([[44, 32], [150,1188]])\n",
762
+ "res.statistic"
763
+ ]
764
+ },
765
+ {
766
+ "cell_type": "code",
767
+ "execution_count": null,
768
+ "id": "68",
769
+ "metadata": {},
770
+ "outputs": [],
771
+ "source": [
772
+ "# female\n",
773
+ "res.confidence_interval(confidence_level=0.95)"
774
+ ]
775
+ },
776
+ {
777
+ "cell_type": "code",
778
+ "execution_count": null,
779
+ "id": "69",
780
+ "metadata": {},
781
+ "outputs": [],
782
+ "source": [
783
+ "res.confidence_interval(confidence_level=0.95)"
784
+ ]
785
+ },
786
+ {
787
+ "cell_type": "code",
788
+ "execution_count": null,
789
+ "id": "70",
790
+ "metadata": {},
791
+ "outputs": [],
792
+ "source": [
793
+ "df_glu[\"ogtt\"].dtype"
794
+ ]
795
+ },
796
+ {
797
+ "cell_type": "code",
798
+ "execution_count": null,
799
+ "id": "71",
800
+ "metadata": {},
801
+ "outputs": [],
802
+ "source": [
803
+ "# df_glu[cond_f & cond_fasting & (df_glu.ogtt.notna()) & ((df_glu.fbg>=7.0) | (df_glu.ogtt>=11.1))].count()\n",
804
+ "\n",
805
+ "# when ogtt not done \n",
806
+ "# df_glu[cond_f & cond_fasting & (df_glu.ogtt.isna())].fbg.describe()\n",
807
+ "\n",
808
+ "# we never have ogtt w/o fbg\n",
809
+ "# df_glu[cond_f & cond_fasting & (df_glu.fbg.isna())].ogtt.describe()\n",
810
+ "df_glu2 = get_glucose_tested_only_df()\n",
811
+ "cond_fasting2 = (df_glu2.fasting == \"Yes\") & (df_glu2.fasting_fbg_hrs >= 8.0)\n",
812
+ "\n",
813
+ "# df_glu = df_glu.reset_index(drop=False)\n",
814
+ "def dx(row):\n",
815
+ " # print((row.fbg>=7.0) & (row.ogtt>=11.1))\n",
816
+ " # print(row.fbg, row.ogtt)\n",
817
+ " if (row.fbg>=7.0) & (row.ogtt>=11.1):\n",
818
+ " ret = \"fbg_ogtt\"\n",
819
+ " elif (row.fbg>=7.0) & (row.ogtt<11.1):\n",
820
+ " ret = \"fbg_only\"\n",
821
+ " elif (row.fbg<7.0) & (row.ogtt>=11.1):\n",
822
+ " ret = \"ogtt_only\"\n",
823
+ " elif (row.fbg<7.0) & (row.ogtt<11.1):\n",
824
+ " ret = \"neither\"\n",
825
+ " else:\n",
826
+ " ret = \"error\"\n",
827
+ " return ret\n",
828
+ " \n",
829
+ "df_glu2[\"glucose\"] = \"\" \n",
830
+ "df_glu2[\"glucose\"] = df_glu2[cond_fasting2].apply(lambda r: dx(r), axis=1)\n",
831
+ "df_glu2[\"glucose\"].value_counts()\n",
832
+ "# df_glu[cond_fasting & cond_f]\n"
833
+ ]
834
+ },
835
+ {
836
+ "cell_type": "code",
837
+ "execution_count": null,
838
+ "id": "72",
839
+ "metadata": {},
840
+ "outputs": [],
841
+ "source": []
842
+ },
843
+ {
844
+ "cell_type": "code",
845
+ "execution_count": null,
846
+ "id": "73",
847
+ "metadata": {},
848
+ "outputs": [],
849
+ "source": [
850
+ "df_glu[cond_m & cond_fasting & ((df_glu.fbg>=7.0) | (df_glu.ogtt>=11.1))].count()"
851
+ ]
852
+ },
853
+ {
854
+ "cell_type": "code",
855
+ "execution_count": null,
856
+ "id": "74",
857
+ "metadata": {},
858
+ "outputs": [],
859
+ "source": [
860
+ "df_glu_female = df_glu[\n",
861
+ " cond_f & \n",
862
+ " cond_fasting & \n",
863
+ " ((df_glu.fbg>=7.0) | (df_glu.fbg.isna()) | (df_glu.ogtt>=11.1) | (df_glu.ogtt.isna()) )\n",
864
+ "][[\"fbg_threshold\", \"ogtt_threshold\"]].value_counts().to_frame().reset_index()\n",
865
+ "df_glu_female"
866
+ ]
867
+ },
868
+ {
869
+ "cell_type": "code",
870
+ "execution_count": null,
871
+ "id": "75",
872
+ "metadata": {},
873
+ "outputs": [],
874
+ "source": [
875
+ "res = odds_ratio([[98, 50], [436,3619]])\n",
876
+ "res.statistic"
877
+ ]
878
+ },
879
+ {
880
+ "cell_type": "code",
881
+ "execution_count": null,
882
+ "id": "76",
883
+ "metadata": {},
884
+ "outputs": [],
885
+ "source": [
886
+ "res.confidence_interval(confidence_level=0.95)"
887
+ ]
888
+ },
889
+ {
890
+ "cell_type": "code",
891
+ "execution_count": null,
892
+ "id": "77",
893
+ "metadata": {},
894
+ "outputs": [],
895
+ "source": [
896
+ "import numpy as np\n",
897
+ "from scipy.stats import hypergeom\n",
898
+ "table = np.array([[98, 436], [50, 3619]])\n",
899
+ "M = table.sum()\n",
900
+ "n = table[0].sum()\n",
901
+ "N = table[:, 0].sum()\n",
902
+ "start, end = hypergeom.support(M, n, N)\n",
903
+ "hypergeom.pmf(np.arange(start, end+1), M, n, N)\n"
904
+ ]
905
+ },
906
+ {
907
+ "cell_type": "code",
908
+ "execution_count": null,
909
+ "id": "78",
910
+ "metadata": {},
911
+ "outputs": [],
912
+ "source": [
913
+ "from scipy.stats import fisher_exact\n",
914
+ "res = fisher_exact(table, alternative='two-sided')\n",
915
+ "res.pvalue"
916
+ ]
917
+ },
918
+ {
919
+ "cell_type": "code",
920
+ "execution_count": null,
921
+ "id": "79",
922
+ "metadata": {},
923
+ "outputs": [],
924
+ "source": [
925
+ "res.statistic"
926
+ ]
927
+ },
928
+ {
929
+ "cell_type": "code",
930
+ "execution_count": null,
931
+ "id": "80",
932
+ "metadata": {},
933
+ "outputs": [],
934
+ "source": []
935
+ }
936
+ ],
937
+ "metadata": {
938
+ "kernelspec": {
939
+ "display_name": "Python 3 (ipykernel)",
940
+ "language": "python",
941
+ "name": "python3"
942
+ },
943
+ "language_info": {
944
+ "codemirror_mode": {
945
+ "name": "ipython",
946
+ "version": 3
947
+ },
948
+ "file_extension": ".py",
949
+ "mimetype": "text/x-python",
950
+ "name": "python",
951
+ "nbconvert_exporter": "python",
952
+ "pygments_lexer": "ipython3",
953
+ "version": "3.12.4"
954
+ }
955
+ },
956
+ "nbformat": 4,
957
+ "nbformat_minor": 5
958
+ }