meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- meta_ae/action_items.py +10 -2
- meta_ae/baker_recipes.py +1 -2
- meta_ae/tests/tests/test_actions.py +1 -2
- meta_analytics/README.rst +1 -2
- meta_analytics/notebooks/anu.ipynb +95 -0
- meta_analytics/notebooks/appointment_planning.ipynb +329 -0
- meta_analytics/notebooks/arvs.ipynb +103 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
- meta_analytics/notebooks/followup_examination.ipynb +141 -0
- meta_analytics/notebooks/hba1c.ipynb +136 -0
- meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
- meta_analytics/notebooks/incidence.ipynb +232 -0
- meta_analytics/notebooks/liver.ipynb +389 -0
- meta_analytics/notebooks/magreth.ipynb +645 -0
- meta_analytics/notebooks/monitoring_report.ipynb +721 -448
- meta_analytics/notebooks/pharmacy.ipynb +405 -306
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
- meta_analytics/notebooks/steering.ipynb +61 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
- meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
- meta_analytics/notebooks/ven.ipynb +191 -0
- meta_analytics/notebooks/vitals.ipynb +263 -0
- meta_edc/settings/debug.py +3 -2
- meta_edc/urls.py +1 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
- meta_labs/reportables.py +14 -11
- meta_labs/tests/test_reportables.py +33 -12
- meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
- meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
- meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
- meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
- meta_prn/models/end_of_study.py +2 -0
- meta_prn/models/off_study_medication.py +2 -0
- meta_reports/admin/last_imp_refill_admin.py +3 -2
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
- meta_screening/form_validators/screening_part_three.py +6 -1
- meta_screening/tests/meta_test_case_mixin.py +3 -0
- meta_screening/tests/tests/test_forms.py +9 -2
- meta_screening/tests/tests/test_screening_part_three.py +11 -14
- meta_subject/action_items.py +2 -3
- meta_subject/choices.py +2 -1
- meta_subject/form_validators/delivery_form_validator.py +1 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
- meta_subject/forms/delivery_form.py +2 -0
- meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
- meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
- meta_subject/tests/tests/test_egfr.py +5 -5
- meta_analytics/dataframes/enrolled/__init__.py +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,191 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"%%capture\n",
|
11
|
+
"import os\n",
|
12
|
+
"from pathlib import Path\n",
|
13
|
+
"import pandas as pd\n",
|
14
|
+
"from dj_notebook import activate\n",
|
15
|
+
"import numpy as np\n",
|
16
|
+
"from django_pandas.io import read_frame\n",
|
17
|
+
"\n",
|
18
|
+
"env_file = os.environ[\"META_ENV\"]\n",
|
19
|
+
"reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
|
20
|
+
"analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
21
|
+
"pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
|
22
|
+
"plus = activate(dotenv_file=env_file)\n",
|
23
|
+
"pd.set_option('future.no_silent_downcasting', True)"
|
24
|
+
]
|
25
|
+
},
|
26
|
+
{
|
27
|
+
"cell_type": "code",
|
28
|
+
"execution_count": null,
|
29
|
+
"id": "1",
|
30
|
+
"metadata": {},
|
31
|
+
"outputs": [],
|
32
|
+
"source": [
|
33
|
+
"from matplotlib import pyplot as plt\n",
|
34
|
+
"from matplotlib_venn import venn3, venn2\n",
|
35
|
+
"from meta_analytics.dataframes import get_screening_df\n",
|
36
|
+
"\n"
|
37
|
+
]
|
38
|
+
},
|
39
|
+
{
|
40
|
+
"cell_type": "code",
|
41
|
+
"execution_count": null,
|
42
|
+
"id": "2",
|
43
|
+
"metadata": {},
|
44
|
+
"outputs": [],
|
45
|
+
"source": [
|
46
|
+
"def get_fbg_value(r):\n",
|
47
|
+
" if not pd.isna(r[\"converted_fbg2_value\"]):\n",
|
48
|
+
" return r[\"converted_fbg2_value\"]\n",
|
49
|
+
" return r[\"converted_fbg_value\"]\n",
|
50
|
+
"\n",
|
51
|
+
"def get_ogtt_value(r):\n",
|
52
|
+
" if not pd.isna(r[\"converted_ogtt2_value\"]):\n",
|
53
|
+
" return r[\"converted_ogtt2_value\"]\n",
|
54
|
+
" return r[\"converted_ogtt_value\"]\n"
|
55
|
+
]
|
56
|
+
},
|
57
|
+
{
|
58
|
+
"cell_type": "code",
|
59
|
+
"execution_count": null,
|
60
|
+
"id": "3",
|
61
|
+
"metadata": {},
|
62
|
+
"outputs": [],
|
63
|
+
"source": [
|
64
|
+
"from meta_analytics.dataframes import get_screening_df\n",
|
65
|
+
"\n",
|
66
|
+
"df_screening = get_screening_df()\n",
|
67
|
+
"df_screening[\"visit_code\"] = \"Enrol\"\n",
|
68
|
+
"df_screening[\"fbg_value\"] = df_screening.apply(get_fbg_value, axis=1)\n",
|
69
|
+
"df_screening[\"ogtt_value\"] = df_screening.apply(get_ogtt_value, axis=1)\n",
|
70
|
+
"df_screening[\"site_id\"] = df_screening.site.astype(int)\n",
|
71
|
+
"df_screening = df_screening.drop(columns=[\"site\"])\n"
|
72
|
+
]
|
73
|
+
},
|
74
|
+
{
|
75
|
+
"cell_type": "code",
|
76
|
+
"execution_count": null,
|
77
|
+
"id": "4",
|
78
|
+
"metadata": {},
|
79
|
+
"outputs": [],
|
80
|
+
"source": [
|
81
|
+
"df_screening.query(\"\")"
|
82
|
+
]
|
83
|
+
},
|
84
|
+
{
|
85
|
+
"cell_type": "code",
|
86
|
+
"execution_count": null,
|
87
|
+
"id": "5",
|
88
|
+
"metadata": {},
|
89
|
+
"outputs": [],
|
90
|
+
"source": [
|
91
|
+
"fbg = set(df_screening[df_screening.fbg_value>=7.0][[\"id\"]].id.to_list())\n",
|
92
|
+
"ogtt = set(df_screening[df_screening.ogtt_value>=11.1][[\"id\"]].id.to_list())\n",
|
93
|
+
"hba1c = set(df_screening[df_screening.hba1c_value>=6.5][[\"id\"]].id.to_list())\n"
|
94
|
+
]
|
95
|
+
},
|
96
|
+
{
|
97
|
+
"cell_type": "code",
|
98
|
+
"execution_count": null,
|
99
|
+
"id": "6",
|
100
|
+
"metadata": {},
|
101
|
+
"outputs": [],
|
102
|
+
"source": [
|
103
|
+
"\n",
|
104
|
+
"# plt.figure(figsize=(6, 6))\n",
|
105
|
+
"fig, ax = plt.subplots(figsize=(8, 8))\n",
|
106
|
+
"venn = venn3([fbg, ogtt, hba1c], set_labels=('FBG≥7.0 mmol/L', 'OGTT≥11.1 mmol/L', 'HBA1C≥6.5%'), ax=ax)\n",
|
107
|
+
"plt.title(\"Overlap in diabetes indicators for all screened patients (n=5552)\")\n",
|
108
|
+
"\n",
|
109
|
+
"region_ids = ['100', '010', '001']\n",
|
110
|
+
"for idx, region_id in enumerate(region_ids):\n",
|
111
|
+
" patch = venn.get_patch_by_id(region_id)\n",
|
112
|
+
" label = venn.set_labels[idx]\n",
|
113
|
+
" if patch and label:\n",
|
114
|
+
" label.set_color(patch.get_facecolor())\n",
|
115
|
+
" label.set_fontweight('bold')\n",
|
116
|
+
"\n",
|
117
|
+
"# Show the plot\n",
|
118
|
+
"# plt.show()\n",
|
119
|
+
"plt.savefig(analysis_folder / \"meta3_venn.png\", bbox_inches='tight')\n",
|
120
|
+
"\n"
|
121
|
+
]
|
122
|
+
},
|
123
|
+
{
|
124
|
+
"cell_type": "code",
|
125
|
+
"execution_count": null,
|
126
|
+
"id": "7",
|
127
|
+
"metadata": {},
|
128
|
+
"outputs": [],
|
129
|
+
"source": []
|
130
|
+
},
|
131
|
+
{
|
132
|
+
"cell_type": "code",
|
133
|
+
"execution_count": null,
|
134
|
+
"id": "8",
|
135
|
+
"metadata": {},
|
136
|
+
"outputs": [],
|
137
|
+
"source": [
|
138
|
+
"\n",
|
139
|
+
"import matplotlib.pyplot as plt\n",
|
140
|
+
"from matplotlib_venn import venn2\n",
|
141
|
+
"from pathlib import Path\n",
|
142
|
+
"\n",
|
143
|
+
"# Define the output folder\n",
|
144
|
+
"analysis_folder = Path(\"analysis_output\")\n",
|
145
|
+
"analysis_folder.mkdir(parents=True, exist_ok=True)\n",
|
146
|
+
"\n",
|
147
|
+
"# Define the sets\n",
|
148
|
+
"set1 = set(['A', 'B', 'C', 'D'])\n",
|
149
|
+
"set2 = set(['C', 'D', 'E', 'F'])\n",
|
150
|
+
"\n",
|
151
|
+
"# Create the figure and axis\n",
|
152
|
+
"fig, ax = plt.subplots(figsize=(6, 6))\n",
|
153
|
+
"\n",
|
154
|
+
"# Draw the Venn diagram on the axis\n",
|
155
|
+
"venn2([set1, set2], set_labels=('Set 1', 'Set 2'), ax=ax)\n",
|
156
|
+
"\n",
|
157
|
+
"# Save the figure\n",
|
158
|
+
"fig.savefig(analysis_folder / \"meta3_venn.png\", bbox_inches='tight')\n"
|
159
|
+
]
|
160
|
+
},
|
161
|
+
{
|
162
|
+
"cell_type": "code",
|
163
|
+
"execution_count": null,
|
164
|
+
"id": "9",
|
165
|
+
"metadata": {},
|
166
|
+
"outputs": [],
|
167
|
+
"source": []
|
168
|
+
}
|
169
|
+
],
|
170
|
+
"metadata": {
|
171
|
+
"kernelspec": {
|
172
|
+
"display_name": "Python 3",
|
173
|
+
"language": "python",
|
174
|
+
"name": "python3"
|
175
|
+
},
|
176
|
+
"language_info": {
|
177
|
+
"codemirror_mode": {
|
178
|
+
"name": "ipython",
|
179
|
+
"version": 2
|
180
|
+
},
|
181
|
+
"file_extension": ".py",
|
182
|
+
"mimetype": "text/x-python",
|
183
|
+
"name": "python",
|
184
|
+
"nbconvert_exporter": "python",
|
185
|
+
"pygments_lexer": "ipython2",
|
186
|
+
"version": "2.7.6"
|
187
|
+
}
|
188
|
+
},
|
189
|
+
"nbformat": 4,
|
190
|
+
"nbformat_minor": 5
|
191
|
+
}
|
@@ -0,0 +1,263 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"%%capture\n",
|
11
|
+
"import os\n",
|
12
|
+
"import pandas as pd\n",
|
13
|
+
"from dj_notebook import activate\n",
|
14
|
+
"from pathlib import Path\n",
|
15
|
+
"env_file = os.environ[\"META_ENV\"]\n",
|
16
|
+
"analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
17
|
+
"reports_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
|
18
|
+
"plus = activate(dotenv_file=env_file)"
|
19
|
+
]
|
20
|
+
},
|
21
|
+
{
|
22
|
+
"cell_type": "code",
|
23
|
+
"execution_count": null,
|
24
|
+
"id": "1",
|
25
|
+
"metadata": {},
|
26
|
+
"outputs": [],
|
27
|
+
"source": [
|
28
|
+
"from edc_pdutils.dataframes import get_crf\n",
|
29
|
+
"from edc_appointment.analytics import get_appointment_df\n",
|
30
|
+
"from edc_appointment.constants import MISSED_APPT\n",
|
31
|
+
"\n"
|
32
|
+
]
|
33
|
+
},
|
34
|
+
{
|
35
|
+
"cell_type": "code",
|
36
|
+
"execution_count": null,
|
37
|
+
"id": "2",
|
38
|
+
"metadata": {},
|
39
|
+
"outputs": [],
|
40
|
+
"source": [
|
41
|
+
"df_visit = get_crf(\"meta_subject.glucosefbg\", subject_visit_model=\"meta_subject.subjectvisit\")"
|
42
|
+
]
|
43
|
+
},
|
44
|
+
{
|
45
|
+
"cell_type": "code",
|
46
|
+
"execution_count": null,
|
47
|
+
"id": "3",
|
48
|
+
"metadata": {},
|
49
|
+
"outputs": [],
|
50
|
+
"source": [
|
51
|
+
"df_missedvisit = get_crf(\"meta_subject.subjectvisitmissed\", subject_visit_model=\"meta_subject.subjectvisit\")\n"
|
52
|
+
]
|
53
|
+
},
|
54
|
+
{
|
55
|
+
"cell_type": "code",
|
56
|
+
"execution_count": null,
|
57
|
+
"id": "4",
|
58
|
+
"metadata": {},
|
59
|
+
"outputs": [],
|
60
|
+
"source": [
|
61
|
+
"df_missedvisit[df_missedvisit.appt_timing!=MISSED_APPT]"
|
62
|
+
]
|
63
|
+
},
|
64
|
+
{
|
65
|
+
"cell_type": "code",
|
66
|
+
"execution_count": null,
|
67
|
+
"id": "5",
|
68
|
+
"metadata": {},
|
69
|
+
"outputs": [],
|
70
|
+
"source": []
|
71
|
+
},
|
72
|
+
{
|
73
|
+
"cell_type": "code",
|
74
|
+
"execution_count": null,
|
75
|
+
"id": "6",
|
76
|
+
"metadata": {},
|
77
|
+
"outputs": [],
|
78
|
+
"source": [
|
79
|
+
"dffbg = get_crf(\"meta_subject.glucosefbg\", subject_visit_model=\"meta_subject.subjectvisit\")"
|
80
|
+
]
|
81
|
+
},
|
82
|
+
{
|
83
|
+
"cell_type": "code",
|
84
|
+
"execution_count": null,
|
85
|
+
"id": "7",
|
86
|
+
"metadata": {},
|
87
|
+
"outputs": [],
|
88
|
+
"source": [
|
89
|
+
"dffbg[dffbg.fbg_value<=3.0][[\"subject_identifier\", \"visit_code\", \"fbg_value\"]]"
|
90
|
+
]
|
91
|
+
},
|
92
|
+
{
|
93
|
+
"cell_type": "code",
|
94
|
+
"execution_count": null,
|
95
|
+
"id": "8",
|
96
|
+
"metadata": {},
|
97
|
+
"outputs": [],
|
98
|
+
"source": [
|
99
|
+
"dfglu = get_crf(\"meta_subject.glucose\", subject_visit_model=\"meta_subject.subjectvisit\")\n"
|
100
|
+
]
|
101
|
+
},
|
102
|
+
{
|
103
|
+
"cell_type": "code",
|
104
|
+
"execution_count": null,
|
105
|
+
"id": "9",
|
106
|
+
"metadata": {},
|
107
|
+
"outputs": [],
|
108
|
+
"source": [
|
109
|
+
"dfglu.fbg_value.describe()\n"
|
110
|
+
]
|
111
|
+
},
|
112
|
+
{
|
113
|
+
"cell_type": "code",
|
114
|
+
"execution_count": null,
|
115
|
+
"id": "10",
|
116
|
+
"metadata": {},
|
117
|
+
"outputs": [],
|
118
|
+
"source": [
|
119
|
+
"df_appt = get_appointment_df()"
|
120
|
+
]
|
121
|
+
},
|
122
|
+
{
|
123
|
+
"cell_type": "code",
|
124
|
+
"execution_count": null,
|
125
|
+
"id": "11",
|
126
|
+
"metadata": {},
|
127
|
+
"outputs": [],
|
128
|
+
"source": [
|
129
|
+
"df_appt"
|
130
|
+
]
|
131
|
+
},
|
132
|
+
{
|
133
|
+
"cell_type": "code",
|
134
|
+
"execution_count": null,
|
135
|
+
"id": "12",
|
136
|
+
"metadata": {},
|
137
|
+
"outputs": [],
|
138
|
+
"source": [
|
139
|
+
"dffbg.visit_code.value_counts()"
|
140
|
+
]
|
141
|
+
},
|
142
|
+
{
|
143
|
+
"cell_type": "code",
|
144
|
+
"execution_count": null,
|
145
|
+
"id": "13",
|
146
|
+
"metadata": {},
|
147
|
+
"outputs": [],
|
148
|
+
"source": [
|
149
|
+
"dfglu.visit_code.value_counts()\n"
|
150
|
+
]
|
151
|
+
},
|
152
|
+
{
|
153
|
+
"cell_type": "code",
|
154
|
+
"execution_count": null,
|
155
|
+
"id": "14",
|
156
|
+
"metadata": {},
|
157
|
+
"outputs": [],
|
158
|
+
"source": [
|
159
|
+
"df = df_appt.merge(dffbg[[\"subject_identifier\", \"visit_code\", \"fbg_value\"]], on=[\"subject_identifier\", \"visit_code\"], how=\"left\")"
|
160
|
+
]
|
161
|
+
},
|
162
|
+
{
|
163
|
+
"cell_type": "code",
|
164
|
+
"execution_count": null,
|
165
|
+
"id": "15",
|
166
|
+
"metadata": {},
|
167
|
+
"outputs": [],
|
168
|
+
"source": [
|
169
|
+
"df[df.visit_code==1005.0].appt_status.value_counts()"
|
170
|
+
]
|
171
|
+
},
|
172
|
+
{
|
173
|
+
"cell_type": "code",
|
174
|
+
"execution_count": null,
|
175
|
+
"id": "16",
|
176
|
+
"metadata": {},
|
177
|
+
"outputs": [],
|
178
|
+
"source": [
|
179
|
+
"df[(df.visit_code==1005.0) & (df.fbg_value.isna())].appt_status.value_counts()\n"
|
180
|
+
]
|
181
|
+
},
|
182
|
+
{
|
183
|
+
"cell_type": "code",
|
184
|
+
"execution_count": null,
|
185
|
+
"id": "17",
|
186
|
+
"metadata": {},
|
187
|
+
"outputs": [],
|
188
|
+
"source": [
|
189
|
+
"from datetime import datetime\n",
|
190
|
+
"\n",
|
191
|
+
"df[(df.visit_code==1005.0) & (df.fbg_value.isna()) & (df.appt_datetime<=pd.to_datetime(datetime(2024,3,4)))].appt_status.value_counts()"
|
192
|
+
]
|
193
|
+
},
|
194
|
+
{
|
195
|
+
"cell_type": "code",
|
196
|
+
"execution_count": null,
|
197
|
+
"id": "18",
|
198
|
+
"metadata": {},
|
199
|
+
"outputs": [],
|
200
|
+
"source": [
|
201
|
+
"missed_subjects = [\n",
|
202
|
+
" \"105-60-0164-5\",\n",
|
203
|
+
" \"105-20-0384-3\",\n",
|
204
|
+
" \"105-60-0196-7\",\n",
|
205
|
+
" \"105-60-0157-9\",\n",
|
206
|
+
" \"105-40-0324-7\",\n",
|
207
|
+
" \"105-30-0118-4\",\n",
|
208
|
+
"]\n",
|
209
|
+
"\n",
|
210
|
+
"df[(df.visit_code==1005.0) & (df.fbg_value.isna()) & (df.appt_datetime<=pd.to_datetime(datetime(2024,3,4)))].subject_identifier"
|
211
|
+
]
|
212
|
+
},
|
213
|
+
{
|
214
|
+
"cell_type": "code",
|
215
|
+
"execution_count": null,
|
216
|
+
"id": "19",
|
217
|
+
"metadata": {},
|
218
|
+
"outputs": [],
|
219
|
+
"source": [
|
220
|
+
"df[(df.visit_code==1005.0) & (df.fbg_value.isna()) & (df.appt_datetime<=pd.to_datetime(datetime(2024,3,4))) & (df.appt_timing) ][[\"subject_identifier\", \"appt_timing\", \"appt_status\", \"visit_code\"]]\n"
|
221
|
+
]
|
222
|
+
},
|
223
|
+
{
|
224
|
+
"cell_type": "code",
|
225
|
+
"execution_count": null,
|
226
|
+
"id": "20",
|
227
|
+
"metadata": {},
|
228
|
+
"outputs": [],
|
229
|
+
"source": [
|
230
|
+
"df_appt[df_appt.subject_identifier==\"105-60-0157-9\"]"
|
231
|
+
]
|
232
|
+
},
|
233
|
+
{
|
234
|
+
"cell_type": "code",
|
235
|
+
"execution_count": null,
|
236
|
+
"id": "21",
|
237
|
+
"metadata": {},
|
238
|
+
"outputs": [],
|
239
|
+
"source": []
|
240
|
+
}
|
241
|
+
],
|
242
|
+
"metadata": {
|
243
|
+
"kernelspec": {
|
244
|
+
"display_name": "Python 3",
|
245
|
+
"language": "python",
|
246
|
+
"name": "python3"
|
247
|
+
},
|
248
|
+
"language_info": {
|
249
|
+
"codemirror_mode": {
|
250
|
+
"name": "ipython",
|
251
|
+
"version": 2
|
252
|
+
},
|
253
|
+
"file_extension": ".py",
|
254
|
+
"mimetype": "text/x-python",
|
255
|
+
"name": "python",
|
256
|
+
"nbconvert_exporter": "python",
|
257
|
+
"pygments_lexer": "ipython2",
|
258
|
+
"version": "2.7.6"
|
259
|
+
}
|
260
|
+
},
|
261
|
+
"nbformat": 4,
|
262
|
+
"nbformat_minor": 5
|
263
|
+
}
|
meta_edc/settings/debug.py
CHANGED
@@ -7,12 +7,13 @@ from .defaults import * # noqa
|
|
7
7
|
print(f"Settings file {__file__}")
|
8
8
|
|
9
9
|
# TZ Sites:
|
10
|
-
|
10
|
+
SITE_ID = SiteID(default=20) # Amana
|
11
11
|
# SITE_ID = SiteID(default=10) # Hindu Mandal
|
12
12
|
# SITE_ID = SiteID(default=40) # Mwananyamala
|
13
13
|
# SITE_ID = SiteID(default=50) # Mbagala
|
14
|
-
SITE_ID = SiteID(default=60) # Mnazi-Moja
|
14
|
+
# SITE_ID = SiteID(default=60) # Mnazi-Moja
|
15
15
|
# SITE_ID = SiteID(default=30) # Temeke
|
16
|
+
|
16
17
|
INDEX_PAGE = "http://localhost:8000"
|
17
18
|
EDC_SITES_UAT_DOMAIN = False
|
18
19
|
DEBUG = True
|
meta_edc/urls.py
CHANGED
@@ -51,6 +51,7 @@ urlpatterns = [
|
|
51
51
|
*paths_for_urlpatterns("edc_protocol_incident"),
|
52
52
|
*paths_for_urlpatterns("edc_qol"),
|
53
53
|
*paths_for_urlpatterns("edc_randomization"),
|
54
|
+
*paths_for_urlpatterns("edc_reportable"),
|
54
55
|
*paths_for_urlpatterns("edc_refusal"),
|
55
56
|
*paths_for_urlpatterns("edc_registration"),
|
56
57
|
*paths_for_urlpatterns("edc_review_dashboard"),
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: meta-edc
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.1.1
|
4
4
|
Summary: META Trial EDC (http://www.isrctn.com/ISRCTN76157257)
|
5
5
|
Home-page: https://github.com/meta-trial/meta-edc
|
6
6
|
Author: Erik van Widenfelt
|
@@ -683,7 +683,7 @@ License: GNU GENERAL PUBLIC LICENSE
|
|
683
683
|
Keywords: django,clinicedc,META EDC,EDC,clinical trials
|
684
684
|
Classifier: Environment :: Web Environment
|
685
685
|
Classifier: Framework :: Django
|
686
|
-
Classifier: Framework :: Django :: 5.
|
686
|
+
Classifier: Framework :: Django :: 5.2
|
687
687
|
Classifier: Intended Audience :: Developers
|
688
688
|
Classifier: Intended Audience :: Science/Research
|
689
689
|
Classifier: Operating System :: OS Independent
|
@@ -693,7 +693,7 @@ Requires-Python: >=3.12
|
|
693
693
|
Description-Content-Type: text/x-rst
|
694
694
|
License-File: LICENSE
|
695
695
|
License-File: AUTHORS.rst
|
696
|
-
Requires-Dist: edc==1.
|
696
|
+
Requires-Dist: edc==1.1.1
|
697
697
|
Requires-Dist: edc-microscopy
|
698
698
|
Requires-Dist: beautifulsoup4
|
699
699
|
Requires-Dist: celery[redis]
|