meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. meta_ae/action_items.py +10 -2
  2. meta_ae/baker_recipes.py +1 -2
  3. meta_ae/tests/tests/test_actions.py +1 -2
  4. meta_analytics/README.rst +1 -2
  5. meta_analytics/notebooks/anu.ipynb +95 -0
  6. meta_analytics/notebooks/appointment_planning.ipynb +329 -0
  7. meta_analytics/notebooks/arvs.ipynb +103 -0
  8. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
  9. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
  10. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
  11. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
  12. meta_analytics/notebooks/followup_examination.ipynb +141 -0
  13. meta_analytics/notebooks/hba1c.ipynb +136 -0
  14. meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
  15. meta_analytics/notebooks/incidence.ipynb +232 -0
  16. meta_analytics/notebooks/liver.ipynb +389 -0
  17. meta_analytics/notebooks/magreth.ipynb +645 -0
  18. meta_analytics/notebooks/monitoring_report.ipynb +721 -448
  19. meta_analytics/notebooks/pharmacy.ipynb +405 -306
  20. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
  21. meta_analytics/notebooks/steering.ipynb +61 -0
  22. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
  23. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
  24. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
  25. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
  26. meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
  27. meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
  28. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
  29. meta_analytics/notebooks/ven.ipynb +191 -0
  30. meta_analytics/notebooks/vitals.ipynb +263 -0
  31. meta_edc/settings/debug.py +3 -2
  32. meta_edc/urls.py +1 -0
  33. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
  34. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
  35. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
  36. meta_labs/reportables.py +14 -11
  37. meta_labs/tests/test_reportables.py +33 -12
  38. meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
  39. meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
  40. meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
  41. meta_prn/form_validators/end_of_study.py +2 -2
  42. meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
  43. meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
  44. meta_prn/models/end_of_study.py +2 -0
  45. meta_prn/models/off_study_medication.py +2 -0
  46. meta_reports/admin/last_imp_refill_admin.py +3 -2
  47. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
  48. meta_screening/form_validators/screening_part_three.py +6 -1
  49. meta_screening/tests/meta_test_case_mixin.py +3 -0
  50. meta_screening/tests/tests/test_forms.py +9 -2
  51. meta_screening/tests/tests/test_screening_part_three.py +11 -14
  52. meta_subject/action_items.py +2 -3
  53. meta_subject/choices.py +2 -1
  54. meta_subject/form_validators/delivery_form_validator.py +1 -0
  55. meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
  56. meta_subject/forms/delivery_form.py +2 -0
  57. meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
  58. meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
  59. meta_subject/tests/tests/test_egfr.py +5 -5
  60. meta_analytics/dataframes/enrolled/__init__.py +0 -0
  61. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
  62. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
  63. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,296 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "%%capture\n",
11
+ "# output is suppressed but normally would spew out all the edc loading messages\n",
12
+ "\n",
13
+ "import os\n",
14
+ "from pathlib import Path\n",
15
+ "from datetime import datetime\n",
16
+ "import pandas as pd\n",
17
+ "import numpy as np\n",
18
+ "import math\n",
19
+ "# import matplotlxib.pyplot as plt\n",
20
+ "# import seaborn as sns\n",
21
+ "import scipy.stats as stats\n",
22
+ "\n",
23
+ "from dj_notebook import activate\n",
24
+ "\n",
25
+ "env_file = os.environ[\"META_ENV\"]\n",
26
+ "documents_folder = os.environ[\"META_DOCUMENTS_FOLDER\"]\n",
27
+ "report_folder = Path(documents_folder)\n",
28
+ "\n",
29
+ "plus = activate(dotenv_file=env_file)\n"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "id": "1",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "import itertools\n",
40
+ "from meta_analytics.dataframes import GlucoseEndpointsByDate, get_eos_df, get_screening_df\n",
41
+ "from meta_analytics.dataframes.screening import get_glucose_tested_only_df\n"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": null,
47
+ "id": "2",
48
+ "metadata": {},
49
+ "outputs": [],
50
+ "source": [
51
+ "df_glu2 = get_glucose_tested_only_df()\n",
52
+ "cond_fasting2 = (df_glu2.fasting == \"Yes\") & (df_glu2.fasting_fbg_hrs >= 8.0)\n",
53
+ "cond_f2 = (df_glu2[\"gender\"] == \"F\")\n",
54
+ "cond_m2 = (df_glu2[\"gender\"] == \"M\")\n"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": null,
60
+ "id": "3",
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "# df_glu[cond_f & cond_fasting & (df_glu.ogtt.notna()) & ((df_glu.fbg>=7.0) | (df_glu.ogtt>=11.1))].count()\n",
65
+ "\n",
66
+ "# when ogtt not done \n",
67
+ "# df_glu[cond_f & cond_fasting & (df_glu.ogtt.isna())].fbg.describe()\n",
68
+ "\n",
69
+ "# we never have ogtt w/o fbg\n",
70
+ "# df_glu[cond_f & cond_fasting & (df_glu.fbg.isna())].ogtt.describe()\n",
71
+ "\n",
72
+ "# df_glu = df_glu.reset_index(drop=False)\n",
73
+ "def dx(row):\n",
74
+ " # print((row.fbg>=7.0) & (row.ogtt>=11.1))\n",
75
+ " # print(row.fbg, row.ogtt)\n",
76
+ " if (row.fbg>=7.0) & (row.fbg<10.0) & (row.ogtt>=11.1):\n",
77
+ " ret = \"fbg_ogtt\"\n",
78
+ " elif (row.fbg>=7.0) & (row.fbg<10.0) & (row.ogtt<11.1):\n",
79
+ " ret = \"fbg_only\"\n",
80
+ " elif (row.fbg<7.0) & (row.ogtt>=11.1):\n",
81
+ " ret = \"ogtt_only\"\n",
82
+ " elif (row.fbg<7.0) & (row.ogtt<11.1):\n",
83
+ " ret = \"neither\"\n",
84
+ " else:\n",
85
+ " ret = None\n",
86
+ " # print(row.fbg, row.ogtt)\n",
87
+ " return ret\n",
88
+ " \n",
89
+ "df_glu2[\"glucose\"] = \"\" \n",
90
+ "df_glu2[\"glucose\"] = df_glu2[cond_fasting2].apply(lambda r: dx(r), axis=1)\n",
91
+ "# df_glu[cond_fasting & cond_f]\n"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": null,
97
+ "id": "4",
98
+ "metadata": {},
99
+ "outputs": [],
100
+ "source": [
101
+ "df_glu2[\"glucose\"].value_counts()\n"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": null,
107
+ "id": "5",
108
+ "metadata": {},
109
+ "outputs": [],
110
+ "source": [
111
+ "df_glu2[cond_fasting2 & cond_f2][\"glucose\"].value_counts()\n"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": null,
117
+ "id": "6",
118
+ "metadata": {},
119
+ "outputs": [],
120
+ "source": [
121
+ "df_glu2[cond_fasting2 & cond_m2][\"glucose\"].value_counts()"
122
+ ]
123
+ },
124
+ {
125
+ "cell_type": "code",
126
+ "execution_count": null,
127
+ "id": "7",
128
+ "metadata": {},
129
+ "outputs": [],
130
+ "source": [
131
+ "from sklearn.metrics import cohen_kappa_score"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": null,
137
+ "id": "8",
138
+ "metadata": {},
139
+ "outputs": [],
140
+ "source": [
141
+ "df_glu2[cond_fasting2 & cond_m2 & (df_glu2.fbg>=7.0) & (df_glu2.fbg<10.0) ].glucose.value_counts()\n",
142
+ "# y2 = df_glu2[cond_fasting2 & cond_f2 & (df_glu2.fbg<7.0)].glucose"
143
+ ]
144
+ },
145
+ {
146
+ "cell_type": "code",
147
+ "execution_count": null,
148
+ "id": "9",
149
+ "metadata": {},
150
+ "outputs": [],
151
+ "source": [
152
+ "# cohen_kappa_score(y1, y2)"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": null,
158
+ "id": "10",
159
+ "metadata": {},
160
+ "outputs": [],
161
+ "source": [
162
+ "cond_fasting = (df_glu2.fasting == \"Yes\") & (df_glu2.fasting_fbg_hrs >= 8.0)\n",
163
+ "\n",
164
+ "df_glu2[\"fbg_threshold\"] = (df_glu2[cond_fasting].fbg >= 7.0) & (df_glu2[cond_fasting].fbg < 10.0)\n",
165
+ "df_glu2[\"ogtt_threshold\"] = df_glu2[cond_fasting].ogtt >= 11.1\n"
166
+ ]
167
+ },
168
+ {
169
+ "cell_type": "code",
170
+ "execution_count": null,
171
+ "id": "11",
172
+ "metadata": {},
173
+ "outputs": [],
174
+ "source": [
175
+ "df_glu2[\"fbg_threshold\"].value_counts()"
176
+ ]
177
+ },
178
+ {
179
+ "cell_type": "code",
180
+ "execution_count": null,
181
+ "id": "12",
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "df_glu2[\"ogtt_threshold\"].value_counts()"
186
+ ]
187
+ },
188
+ {
189
+ "cell_type": "code",
190
+ "execution_count": null,
191
+ "id": "13",
192
+ "metadata": {},
193
+ "outputs": [],
194
+ "source": [
195
+ "# female\n",
196
+ "df_glu2[cond_f2][[\"fbg_threshold\", \"ogtt_threshold\"]].value_counts()"
197
+ ]
198
+ },
199
+ {
200
+ "cell_type": "code",
201
+ "execution_count": null,
202
+ "id": "14",
203
+ "metadata": {},
204
+ "outputs": [],
205
+ "source": [
206
+ "# male\n",
207
+ "df_glu2[cond_m2][[\"fbg_threshold\", \"ogtt_threshold\"]].value_counts()"
208
+ ]
209
+ },
210
+ {
211
+ "cell_type": "code",
212
+ "execution_count": null,
213
+ "id": "15",
214
+ "metadata": {},
215
+ "outputs": [],
216
+ "source": [
217
+ "from scipy.stats.contingency import odds_ratio\n",
218
+ "\n",
219
+ "# female\n",
220
+ "res = odds_ratio([[76, 414], [72,3639]])\n",
221
+ "res.statistic"
222
+ ]
223
+ },
224
+ {
225
+ "cell_type": "code",
226
+ "execution_count": null,
227
+ "id": "16",
228
+ "metadata": {},
229
+ "outputs": [],
230
+ "source": [
231
+ "res.confidence_interval(confidence_level=0.95)"
232
+ ]
233
+ },
234
+ {
235
+ "cell_type": "code",
236
+ "execution_count": null,
237
+ "id": "17",
238
+ "metadata": {},
239
+ "outputs": [],
240
+ "source": [
241
+ "# male\n",
242
+ "res = odds_ratio([[28, 141], [48,1197]])\n",
243
+ "res.statistic"
244
+ ]
245
+ },
246
+ {
247
+ "cell_type": "code",
248
+ "execution_count": null,
249
+ "id": "18",
250
+ "metadata": {},
251
+ "outputs": [],
252
+ "source": [
253
+ "res.confidence_interval(confidence_level=0.95)"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": null,
259
+ "id": "19",
260
+ "metadata": {},
261
+ "outputs": [],
262
+ "source": [
263
+ "df_glu2[cond_fasting].count()"
264
+ ]
265
+ },
266
+ {
267
+ "cell_type": "code",
268
+ "execution_count": null,
269
+ "id": "20",
270
+ "metadata": {},
271
+ "outputs": [],
272
+ "source": []
273
+ }
274
+ ],
275
+ "metadata": {
276
+ "kernelspec": {
277
+ "display_name": "Python 3 (ipykernel)",
278
+ "language": "python",
279
+ "name": "python3"
280
+ },
281
+ "language_info": {
282
+ "codemirror_mode": {
283
+ "name": "ipython",
284
+ "version": 3
285
+ },
286
+ "file_extension": ".py",
287
+ "mimetype": "text/x-python",
288
+ "name": "python",
289
+ "nbconvert_exporter": "python",
290
+ "pygments_lexer": "ipython3",
291
+ "version": "3.12.4"
292
+ }
293
+ },
294
+ "nbformat": 4,
295
+ "nbformat_minor": 5
296
+ }
@@ -0,0 +1,273 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "%%capture\n",
11
+ "import os\n",
12
+ "from pathlib import Path\n",
13
+ "import pandas as pd\n",
14
+ "from dj_notebook import activate\n",
15
+ "import numpy as np\n",
16
+ "from django_pandas.io import read_frame\n",
17
+ "\n",
18
+ "env_file = os.environ[\"META_ENV\"]\n",
19
+ "reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
20
+ "analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
21
+ "pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
22
+ "plus = activate(dotenv_file=env_file)"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "id": "1",
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "from meta_analytics.dataframes.screening import get_screening_df\n",
33
+ "from django.contrib.sites.models import Site"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": null,
39
+ "id": "2",
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "df = get_screening_df()\n",
44
+ "sites = {obj.domain: obj.id for obj in Site.objects.all()}\n",
45
+ "df[\"site\"] = df[\"site\"].map(sites)\n",
46
+ "df = df.rename(columns={\"report_datetime\": \"screening_datetime\"})\n"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": null,
52
+ "id": "3",
53
+ "metadata": {},
54
+ "outputs": [],
55
+ "source": [
56
+ "df.to_csv(analysis_folder, index=False, sep=\"|\")"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": null,
62
+ "id": "4",
63
+ "metadata": {},
64
+ "outputs": [],
65
+ "source": [
66
+ "df = pd.read_csv(analysis_folder, sep=\"|\")"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "id": "5",
73
+ "metadata": {},
74
+ "outputs": [],
75
+ "source": [
76
+ "df"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": null,
82
+ "id": "6",
83
+ "metadata": {},
84
+ "outputs": [],
85
+ "source": [
86
+ "columns = [\"screening_identifier\", \"site\", \"screening_datetime\", \"fbg_datetime\", \"fbg_value\", \"ogtt_value\", \"repeat_glucose_performed\", \"fbg2_value\", \"ogtt2_value\", \"fbg2_datetime\", \"ogtt2_datetime\", \"consented\"]"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type": "code",
91
+ "execution_count": null,
92
+ "id": "7",
93
+ "metadata": {},
94
+ "outputs": [],
95
+ "source": [
96
+ "\n",
97
+ "df[(df[\"fbg_value\"].notna()) & (df[\"ogtt_value\"].isna()) & (df[\"unsuitable_agreed\"]!=\"Yes\")][columns].count()"
98
+ ]
99
+ },
100
+ {
101
+ "cell_type": "code",
102
+ "execution_count": null,
103
+ "id": "8",
104
+ "metadata": {},
105
+ "outputs": [],
106
+ "source": [
107
+ "columns = [\"screening_identifier\", \"site\", \"screening_datetime\", \"fbg_datetime\", \"fbg_value\", \"ogtt_value\", \"repeat_glucose_performed\", \"fbg2_value\", \"ogtt2_value\", \"fbg2_datetime\", \"ogtt2_datetime\", \"consented\"]"
108
+ ]
109
+ },
110
+ {
111
+ "cell_type": "code",
112
+ "execution_count": null,
113
+ "id": "9",
114
+ "metadata": {},
115
+ "outputs": [],
116
+ "source": [
117
+ "df[(df[\"fbg_value\"].notna()) & (df[\"ogtt_value\"].isna()) & (df[\"repeat_glucose_performed\"]==\"Yes\")][columns]"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "id": "10",
124
+ "metadata": {},
125
+ "outputs": [],
126
+ "source": [
127
+ "from edc_constants.constants import YES, NO\n",
128
+ "df = get_screening_df()\n",
129
+ "\n"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": null,
135
+ "id": "11",
136
+ "metadata": {},
137
+ "outputs": [],
138
+ "source": [
139
+ "df.groupby(by=[\"eligible_part_one\", \"eligible_part_two\"], dropna=True).size()"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "id": "12",
146
+ "metadata": {},
147
+ "outputs": [],
148
+ "source": [
149
+ "erik = list(df[(df.eligible_part_one==YES) & (df.eligible_part_two==YES) & (df.hiv_pos==YES)].screening_identifier)\n"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "code",
154
+ "execution_count": null,
155
+ "id": "13",
156
+ "metadata": {},
157
+ "outputs": [],
158
+ "source": [
159
+ "df_peiyun = pd.read_csv(Path(\"~/Documents/ucl/protocols/intecomm/analysis/primary\") / \"peiyun.csv\")\n",
160
+ "peiyun = list(df_peiyun.screening_identifier)"
161
+ ]
162
+ },
163
+ {
164
+ "cell_type": "code",
165
+ "execution_count": null,
166
+ "id": "14",
167
+ "metadata": {},
168
+ "outputs": [],
169
+ "source": [
170
+ "[x for x in erik if x not in peiyun]"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": null,
176
+ "id": "15",
177
+ "metadata": {},
178
+ "outputs": [],
179
+ "source": [
180
+ "df[df.screening_identifier == \"SR9E8B4D\"][[\"site\", 'eligible_part_one', 'eligible_part_two', \"hiv_pos\"]]"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "code",
185
+ "execution_count": null,
186
+ "id": "16",
187
+ "metadata": {},
188
+ "outputs": [],
189
+ "source": [
190
+ "[x for x in peiyun if x not in erik]"
191
+ ]
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": null,
196
+ "id": "17",
197
+ "metadata": {},
198
+ "outputs": [],
199
+ "source": [
200
+ "df.groupby(by=[\"eligible_part_one\", \"eligible_part_two\", \"agree_to_p3\"], dropna=True).size()\n"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": null,
206
+ "id": "18",
207
+ "metadata": {},
208
+ "outputs": [],
209
+ "source": [
210
+ "df[~(df.subject_identifier.isna()) & (df.agree_to_p3==NO)][[\"subject_identifier\", \"eligible_part_one\", \"eligible_part_two\", \"agree_to_p3\", \"screening_identifier\"]]"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "id": "19",
217
+ "metadata": {},
218
+ "outputs": [],
219
+ "source": [
220
+ "df[~(df.subject_identifier.str.startswith(\"105-\")) & (df.eligible_part_one==YES) & (df.eligible_part_two==YES)][[\"subject_identifier\", \"eligible_part_one\", \"eligible_part_two\", \"agree_to_p3\", \"screening_identifier\"]]\n"
221
+ ]
222
+ },
223
+ {
224
+ "cell_type": "code",
225
+ "execution_count": null,
226
+ "id": "20",
227
+ "metadata": {},
228
+ "outputs": [],
229
+ "source": [
230
+ "df[(df.subject_identifier.str.startswith(\"105-\"))][[\"subject_identifier\", \"eligible_part_one\", \"eligible_part_two\", \"agree_to_p3\", \"screening_identifier\"]]\n"
231
+ ]
232
+ },
233
+ {
234
+ "cell_type": "code",
235
+ "execution_count": null,
236
+ "id": "21",
237
+ "metadata": {},
238
+ "outputs": [],
239
+ "source": [
240
+ "df[df.agree_to_p3==NO][[\"screening_identifier\", \"subject_identifier\", \"eligible_part_one\", \"eligible_part_two\", \"eligible_part_three\"]]\n"
241
+ ]
242
+ },
243
+ {
244
+ "cell_type": "code",
245
+ "execution_count": null,
246
+ "id": "22",
247
+ "metadata": {},
248
+ "outputs": [],
249
+ "source": []
250
+ }
251
+ ],
252
+ "metadata": {
253
+ "kernelspec": {
254
+ "display_name": "Python 3 (ipykernel)",
255
+ "language": "python",
256
+ "name": "python3"
257
+ },
258
+ "language_info": {
259
+ "codemirror_mode": {
260
+ "name": "ipython",
261
+ "version": 3
262
+ },
263
+ "file_extension": ".py",
264
+ "mimetype": "text/x-python",
265
+ "name": "python",
266
+ "nbconvert_exporter": "python",
267
+ "pygments_lexer": "ipython3",
268
+ "version": "3.12.4"
269
+ }
270
+ },
271
+ "nbformat": 4,
272
+ "nbformat_minor": 5
273
+ }