meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- meta_ae/action_items.py +10 -2
- meta_ae/baker_recipes.py +1 -2
- meta_ae/tests/tests/test_actions.py +1 -2
- meta_analytics/README.rst +1 -2
- meta_analytics/notebooks/anu.ipynb +95 -0
- meta_analytics/notebooks/appointment_planning.ipynb +329 -0
- meta_analytics/notebooks/arvs.ipynb +103 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
- meta_analytics/notebooks/followup_examination.ipynb +141 -0
- meta_analytics/notebooks/hba1c.ipynb +136 -0
- meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
- meta_analytics/notebooks/incidence.ipynb +232 -0
- meta_analytics/notebooks/liver.ipynb +389 -0
- meta_analytics/notebooks/magreth.ipynb +645 -0
- meta_analytics/notebooks/monitoring_report.ipynb +721 -448
- meta_analytics/notebooks/pharmacy.ipynb +405 -306
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
- meta_analytics/notebooks/steering.ipynb +61 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
- meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
- meta_analytics/notebooks/ven.ipynb +191 -0
- meta_analytics/notebooks/vitals.ipynb +263 -0
- meta_edc/settings/debug.py +3 -2
- meta_edc/urls.py +1 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
- meta_labs/reportables.py +14 -11
- meta_labs/tests/test_reportables.py +33 -12
- meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
- meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
- meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
- meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
- meta_prn/models/end_of_study.py +2 -0
- meta_prn/models/off_study_medication.py +2 -0
- meta_reports/admin/last_imp_refill_admin.py +3 -2
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
- meta_screening/form_validators/screening_part_three.py +6 -1
- meta_screening/tests/meta_test_case_mixin.py +3 -0
- meta_screening/tests/tests/test_forms.py +9 -2
- meta_screening/tests/tests/test_screening_part_three.py +11 -14
- meta_subject/action_items.py +2 -3
- meta_subject/choices.py +2 -1
- meta_subject/form_validators/delivery_form_validator.py +1 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
- meta_subject/forms/delivery_form.py +2 -0
- meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
- meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
- meta_subject/tests/tests/test_egfr.py +5 -5
- meta_analytics/dataframes/enrolled/__init__.py +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,964 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"%%capture\n",
|
11
|
+
"import pandas as pd\n",
|
12
|
+
"import numpy as np\n",
|
13
|
+
"import math\n",
|
14
|
+
"import matplotlib.pyplot as plt\n",
|
15
|
+
"import scipy.stats as stats\n",
|
16
|
+
"\n",
|
17
|
+
"from dj_notebook import activate\n",
|
18
|
+
"\n",
|
19
|
+
"plus = activate(dotenv_file=\"/Users/erikvw/source/edc_source/meta-edc/.env\")\n",
|
20
|
+
"# output is suppressed ut normally would spew out all the edc loading messages\n"
|
21
|
+
]
|
22
|
+
},
|
23
|
+
{
|
24
|
+
"cell_type": "code",
|
25
|
+
"execution_count": null,
|
26
|
+
"id": "1",
|
27
|
+
"metadata": {},
|
28
|
+
"outputs": [],
|
29
|
+
"source": [
|
30
|
+
"# This notebook is incomplete / not working"
|
31
|
+
]
|
32
|
+
},
|
33
|
+
{
|
34
|
+
"cell_type": "code",
|
35
|
+
"execution_count": null,
|
36
|
+
"id": "2",
|
37
|
+
"metadata": {},
|
38
|
+
"outputs": [],
|
39
|
+
"source": [
|
40
|
+
"from edc_analytics.custom_tables import BpTable\n",
|
41
|
+
"from edc_analytics.table import Table\n",
|
42
|
+
"from meta_screening.models import SubjectScreening\n",
|
43
|
+
"from meta_subject.models import PhysicalExam, SubjectVisit\n",
|
44
|
+
"from django_pandas.io import read_frame"
|
45
|
+
]
|
46
|
+
},
|
47
|
+
{
|
48
|
+
"cell_type": "code",
|
49
|
+
"execution_count": null,
|
50
|
+
"id": "3",
|
51
|
+
"metadata": {},
|
52
|
+
"outputs": [],
|
53
|
+
"source": [
|
54
|
+
"default_columns = [\"id\", \"subject_identifier\", \"report_datetime\", \"visit_code\"]\n",
|
55
|
+
"\n",
|
56
|
+
"title_row = [] # ???????????????"
|
57
|
+
]
|
58
|
+
},
|
59
|
+
{
|
60
|
+
"cell_type": "code",
|
61
|
+
"execution_count": null,
|
62
|
+
"id": "4",
|
63
|
+
"metadata": {},
|
64
|
+
"outputs": [],
|
65
|
+
"source": [
|
66
|
+
"# this step is slow, maybe because it is the first call to the DB\n",
|
67
|
+
"qs_screening = SubjectScreening.objects.all()\n",
|
68
|
+
"df = read_frame(qs_screening)\n"
|
69
|
+
]
|
70
|
+
},
|
71
|
+
{
|
72
|
+
"cell_type": "code",
|
73
|
+
"execution_count": null,
|
74
|
+
"id": "5",
|
75
|
+
"metadata": {},
|
76
|
+
"outputs": [],
|
77
|
+
"source": [
|
78
|
+
"# backup the df\n",
|
79
|
+
"df_screen = df.copy()\n",
|
80
|
+
"# df = df_screen.copy()\n"
|
81
|
+
]
|
82
|
+
},
|
83
|
+
{
|
84
|
+
"cell_type": "code",
|
85
|
+
"execution_count": null,
|
86
|
+
"id": "6",
|
87
|
+
"metadata": {},
|
88
|
+
"outputs": [],
|
89
|
+
"source": [
|
90
|
+
"# convert all to float\n",
|
91
|
+
"cols = [\"fbg_value\", \"fbg2_value\", \"ogtt_value\", \"ogtt2_value\", \"converted_fbg_value\", \n",
|
92
|
+
" \"converted_fbg2_value\", \"converted_ogtt_value\", \"converted_ogtt2_value\",\n",
|
93
|
+
" \"sys_blood_pressure_avg\", \"dia_blood_pressure_avg\",\n",
|
94
|
+
" \"waist_circumference\"]\n",
|
95
|
+
"df[cols] = df[cols].apply(pd.to_numeric)"
|
96
|
+
]
|
97
|
+
},
|
98
|
+
{
|
99
|
+
"cell_type": "code",
|
100
|
+
"execution_count": null,
|
101
|
+
"id": "7",
|
102
|
+
"metadata": {},
|
103
|
+
"outputs": [],
|
104
|
+
"source": [
|
105
|
+
"\n",
|
106
|
+
"# condition to include any glucose test\n",
|
107
|
+
"cond_glu = (\n",
|
108
|
+
" (df['fbg_value'].notna()) | \n",
|
109
|
+
" (df['ogtt_value'].notna()) | \n",
|
110
|
+
" (df['fbg2_value'].notna()) |\n",
|
111
|
+
" (df['ogtt2_value'].notna())\n",
|
112
|
+
")\n",
|
113
|
+
"\n",
|
114
|
+
"# conditions for Male/Female\n",
|
115
|
+
"male = (df[\"gender\"]==\"Male\")\n",
|
116
|
+
"female = (df[\"gender\"]==\"Female\")\n",
|
117
|
+
"\n",
|
118
|
+
"# condition for art stable\n",
|
119
|
+
"cond_art_stable = (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") \n"
|
120
|
+
]
|
121
|
+
},
|
122
|
+
{
|
123
|
+
"cell_type": "code",
|
124
|
+
"execution_count": null,
|
125
|
+
"id": "8",
|
126
|
+
"metadata": {},
|
127
|
+
"outputs": [],
|
128
|
+
"source": []
|
129
|
+
},
|
130
|
+
{
|
131
|
+
"cell_type": "code",
|
132
|
+
"execution_count": null,
|
133
|
+
"id": "9",
|
134
|
+
"metadata": {},
|
135
|
+
"outputs": [],
|
136
|
+
"source": [
|
137
|
+
"# lets fix some columns\n",
|
138
|
+
"# has_dm fillna with unk\n",
|
139
|
+
"df[\"has_dm\"] = df[\"has_dm\"].apply(lambda x: \"unk\" if not x else x)\n",
|
140
|
+
"# lets create a column that summarizes lives_nearby and staying_nearby_12\n",
|
141
|
+
"df[\"in_catchment\"] = (df[\"lives_nearby\"] == \"Yes\") & (df[\"staying_nearby_12\"] == \"Yes\")\n",
|
142
|
+
"\n",
|
143
|
+
"\n",
|
144
|
+
"# glucose\n",
|
145
|
+
"# are all glucose fields filled? YES\n",
|
146
|
+
"# for prefix in [\"fbg\", \"ogtt\", \"fbg2\", \"ogtt2\"]:\n",
|
147
|
+
"# print(df[(df[f\"{prefix}_value\"].isna()) & (df[f\"converted_{prefix}_value\"].notna())][\"gender\"].count())\n",
|
148
|
+
"# print(df[(df[f\"{prefix}_value\"].notna()) & (df[f\"converted_{prefix}_value\"].isna())][\"gender\"].count())\n",
|
149
|
+
"\n",
|
150
|
+
"# create fbg column\n",
|
151
|
+
"df[\"fbg\"] = df[\"converted_fbg_value\"]\n",
|
152
|
+
"df.loc[df[\"fbg\"].notna() & df[\"converted_fbg2_value\"].notna(), \"fbg\"] = df[\"converted_fbg2_value\"]\n",
|
153
|
+
"\n",
|
154
|
+
"# create ogtt column\n",
|
155
|
+
"df[\"ogtt\"] = df[\"converted_ogtt_value\"]\n",
|
156
|
+
"df.loc[df[\"ogtt\"].notna() & df[\"converted_ogtt2_value\"].notna(), \"ogtt\"] = df[\"converted_ogtt2_value\"]\n"
|
157
|
+
]
|
158
|
+
},
|
159
|
+
{
|
160
|
+
"cell_type": "code",
|
161
|
+
"execution_count": null,
|
162
|
+
"id": "10",
|
163
|
+
"metadata": {},
|
164
|
+
"outputs": [],
|
165
|
+
"source": [
|
166
|
+
"# subject SR9E8B4D has eligible part two == No but subject has a glucose value\n",
|
167
|
+
"df.loc[(df[\"screening_identifier\"]==\"SR9E8B4D\"), \"eligible_part_two\"] = \"Yes\"\n"
|
168
|
+
]
|
169
|
+
},
|
170
|
+
{
|
171
|
+
"cell_type": "code",
|
172
|
+
"execution_count": null,
|
173
|
+
"id": "11",
|
174
|
+
"metadata": {},
|
175
|
+
"outputs": [],
|
176
|
+
"source": [
|
177
|
+
"\n",
|
178
|
+
"# condition where subject is eligible P1/P2 and has any type of glucose test\n",
|
179
|
+
"cond = ((df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\") & cond_glu)\n"
|
180
|
+
]
|
181
|
+
},
|
182
|
+
{
|
183
|
+
"cell_type": "code",
|
184
|
+
"execution_count": null,
|
185
|
+
"id": "12",
|
186
|
+
"metadata": {},
|
187
|
+
"outputs": [],
|
188
|
+
"source": [
|
189
|
+
"# filter dataframe\n",
|
190
|
+
"df = df[cond]\n"
|
191
|
+
]
|
192
|
+
},
|
193
|
+
{
|
194
|
+
"cell_type": "code",
|
195
|
+
"execution_count": null,
|
196
|
+
"id": "13",
|
197
|
+
"metadata": {},
|
198
|
+
"outputs": [],
|
199
|
+
"source": [
|
200
|
+
"print(len(df))"
|
201
|
+
]
|
202
|
+
},
|
203
|
+
{
|
204
|
+
"cell_type": "code",
|
205
|
+
"execution_count": null,
|
206
|
+
"id": "14",
|
207
|
+
"metadata": {},
|
208
|
+
"outputs": [],
|
209
|
+
"source": [
|
210
|
+
"wc_describe = df[\"waist_circumference\"].describe()\n",
|
211
|
+
"\n",
|
212
|
+
"# merge with physical exam to get waist circumference if taken at baseline\n",
|
213
|
+
"subject_identifiers = list(df[\"subject_identifier\"])\n",
|
214
|
+
"\n",
|
215
|
+
"qs_subject_visit = SubjectVisit.objects.filter(subject_identifier__in=subject_identifiers)\n",
|
216
|
+
"df_subject_visit = read_frame(qs_subject_visit)\n",
|
217
|
+
"df_subject_visit.rename(columns={\"id\": \"subject_visit\"}, inplace=True)\n",
|
218
|
+
"\n",
|
219
|
+
"qs_physical_exam = PhysicalExam.objects.filter(subject_visit__subject_identifier__in=subject_identifiers)\n",
|
220
|
+
"df_physical_exam = read_frame(qs_physical_exam)\n",
|
221
|
+
"\n",
|
222
|
+
"# merge w/ subject visit to get subject_identifier\n",
|
223
|
+
"df_physical_exam = pd.merge(df_physical_exam, df_subject_visit[[\"subject_visit\", \"subject_identifier\", \"visit_code\", \"visit_code_sequence\"]], on=\"subject_visit\", how=\"left\")\n",
|
224
|
+
"df_physical_exam = df_physical_exam[[\"subject_identifier\", \"visit_code\", \"visit_code_sequence\", \"waist_circumference\"]]\n",
|
225
|
+
"\n",
|
226
|
+
"df_physical_exam[[\"waist_circumference\"]] = df[[\"waist_circumference\"]].apply(pd.to_numeric)\n",
|
227
|
+
"\n",
|
228
|
+
"# rename column to waist_circumference_baseline\n",
|
229
|
+
"df_physical_exam[\"waist_circumference_baseline\"] = df_physical_exam[\"waist_circumference\"]\n",
|
230
|
+
"df_physical_exam.drop(columns=[\"waist_circumference\"])\n",
|
231
|
+
"\n",
|
232
|
+
"df_physical_exam[[\"waist_circumference_baseline\"]] = df_physical_exam[[\"waist_circumference_baseline\"]].apply(pd.to_numeric)\n",
|
233
|
+
"wc_baseline_describe = df_physical_exam[\"waist_circumference_baseline\"].describe()\n",
|
234
|
+
"\n",
|
235
|
+
"# merge on subject_identifier with main DF\n",
|
236
|
+
"df = pd.merge(df, df_physical_exam[[\"subject_identifier\", \"waist_circumference_baseline\"]], on=\"subject_identifier\", how=\"left\")\n",
|
237
|
+
"\n",
|
238
|
+
"# set waist_circumference=waist_circumference_baseline if `waist_circumference` is none and `waist_circumference_baseline` is not\n",
|
239
|
+
"df.loc[(df[\"waist_circumference\"].isna()) & (df[\"waist_circumference_baseline\"].notna()), \"waist_circumference\"] = df[\"waist_circumference_baseline\"]\n",
|
240
|
+
"\n",
|
241
|
+
"# drop waist_circumference_baseline\n",
|
242
|
+
"df.drop(columns=[\"waist_circumference_baseline\"], inplace=True)\n"
|
243
|
+
]
|
244
|
+
},
|
245
|
+
{
|
246
|
+
"cell_type": "code",
|
247
|
+
"execution_count": null,
|
248
|
+
"id": "15",
|
249
|
+
"metadata": {},
|
250
|
+
"outputs": [],
|
251
|
+
"source": [
|
252
|
+
"# gender\n",
|
253
|
+
"def cell(gender, all=None):\n",
|
254
|
+
" cnt = df.loc[gender][\"gender\"].count()\n",
|
255
|
+
" if not all:\n",
|
256
|
+
" tot = df[\"gender\"].count()\n",
|
257
|
+
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
258
|
+
" return f\"{cnt}\"\n",
|
259
|
+
"\n",
|
260
|
+
"df_gender = pd.DataFrame(columns=default_columns)\n",
|
261
|
+
"class GenderTable(Table):\n",
|
262
|
+
" def build_table_df(self):\n",
|
263
|
+
" pass\n",
|
264
|
+
"\n",
|
265
|
+
"tbl = Table(df, label=\"Gender\", columns=default_columns, show_ncol_perc=True)\n",
|
266
|
+
"# df_gender.loc[0] = [\"Gender\", \"n\", cell(female), cell(male), cell((male | female), all=True)]\n",
|
267
|
+
"tbl.table_df\n"
|
268
|
+
]
|
269
|
+
},
|
270
|
+
{
|
271
|
+
"cell_type": "code",
|
272
|
+
"execution_count": null,
|
273
|
+
"id": "16",
|
274
|
+
"metadata": {},
|
275
|
+
"outputs": [],
|
276
|
+
"source": []
|
277
|
+
},
|
278
|
+
{
|
279
|
+
"cell_type": "code",
|
280
|
+
"execution_count": null,
|
281
|
+
"id": "17",
|
282
|
+
"metadata": {},
|
283
|
+
"outputs": [],
|
284
|
+
"source": [
|
285
|
+
"# age\n",
|
286
|
+
"agef = df.loc[female][\"age_in_years\"]\n",
|
287
|
+
"agem = df.loc[male][\"age_in_years\"]\n",
|
288
|
+
"age = df[\"age_in_years\"]\n",
|
289
|
+
"# bins\n",
|
290
|
+
"bin1 = (df[\"age_in_years\"]>=18) & (df[\"age_in_years\"]<35)\n",
|
291
|
+
"bin2 = (df[\"age_in_years\"]>=35) & (df[\"age_in_years\"]<50)\n",
|
292
|
+
"bin3 = (df[\"age_in_years\"]>=50) & (df[\"age_in_years\"]<65)\n",
|
293
|
+
"bin4 = (df[\"age_in_years\"]>=65)\n",
|
294
|
+
"\n",
|
295
|
+
"def cell(cond, gender, all=None):\n",
|
296
|
+
" cnt = df.loc[gender & cond][\"age_in_years\"].count()\n",
|
297
|
+
" if not all:\n",
|
298
|
+
" tot = df.loc[cond][\"age_in_years\"].count()\n",
|
299
|
+
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
300
|
+
" tot = df[\"age_in_years\"].count()\n",
|
301
|
+
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
302
|
+
"\n",
|
303
|
+
"df_age = pd.DataFrame(columns=title_row)\n",
|
304
|
+
"\n",
|
305
|
+
"df_age.loc[0] = [\"Age (years)\", \"n\", agef.count(), agem.count(), age.count()]\n",
|
306
|
+
"df_age.loc[1] = [\n",
|
307
|
+
" \"\", \"Median (IQR)\",\n",
|
308
|
+
" f\"{agef.quantile().astype(int)} ({agef.quantile(0.25).astype(int)}, {agef.quantile(0.75).astype(int)})\",\n",
|
309
|
+
" f\"{agem.quantile().astype(int)} ({agem.quantile(0.25).astype(int)}, {agem.quantile(0.75).astype(int)})\",\n",
|
310
|
+
" f\"{age.quantile().astype(int)} ({age.quantile(0.25).astype(int)}, {age.quantile(0.75).astype(int)})\",] \n",
|
311
|
+
"df_age.loc[2] = [\"\", \"18-34\", cell(female, bin1), cell(male, bin1), cell(bin1, (male | female), all=True)]\n",
|
312
|
+
"df_age.loc[3] = [\"\", \"35-49\", cell(female, bin2), cell(male, bin2), cell(bin2, (male | female), all=True)]\n",
|
313
|
+
"df_age.loc[4] = [\"\", \"50-64\", cell(female, bin3), cell(male, bin3), cell(bin3, (male | female), all=True)]\n",
|
314
|
+
"df_age.loc[5] = [\"\", \"65 and older\", cell(female, bin4), cell(male, bin4), cell(bin4, (male | female), all=True)]\n"
|
315
|
+
]
|
316
|
+
},
|
317
|
+
{
|
318
|
+
"cell_type": "code",
|
319
|
+
"execution_count": null,
|
320
|
+
"id": "18",
|
321
|
+
"metadata": {},
|
322
|
+
"outputs": [],
|
323
|
+
"source": []
|
324
|
+
},
|
325
|
+
{
|
326
|
+
"cell_type": "code",
|
327
|
+
"execution_count": null,
|
328
|
+
"id": "19",
|
329
|
+
"metadata": {},
|
330
|
+
"outputs": [],
|
331
|
+
"source": [
|
332
|
+
"# waist_circumference\n",
|
333
|
+
"desc = df[[\"waist_circumference\"]].describe()\n",
|
334
|
+
"descf = df[df[\"gender\"]==\"Female\"][[\"waist_circumference\"]].describe()\n",
|
335
|
+
"descm = df[df[\"gender\"]==\"Male\"][[\"waist_circumference\"]].describe()\n",
|
336
|
+
"\n",
|
337
|
+
"f = f\"{descf.loc[\"50%\"].values[0]} ({descf.loc[\"25%\"].values[0]}, {descf.loc[\"75%\"].values[0]})\"\n",
|
338
|
+
"m = f\"{descm.loc[\"50%\"].values[0]} ({descm.loc[\"25%\"].values[0]}, {descm.loc[\"75%\"].values[0]})\"\n",
|
339
|
+
"all = f\"{desc.loc[\"50%\"].values[0]} ({desc.loc[\"25%\"].values[0]}, {desc.loc[\"75%\"].values[0]})\"\n",
|
340
|
+
"\n",
|
341
|
+
"df_waist = pd.DataFrame(columns=title_row)\n",
|
342
|
+
"\n",
|
343
|
+
"df_waist.loc[0] = [\"Waist circumference (cm)\", \"n\", descf.loc[\"count\"].values[0].astype(\"int64\"), descm.loc[\"count\"].values[0].astype(\"int64\"), desc.loc[\"count\"].values[0].astype(\"int64\")]\n",
|
344
|
+
"df_waist.loc[1] = [\"\", \"Median (IQR)\", f, m, all]\n"
|
345
|
+
]
|
346
|
+
},
|
347
|
+
{
|
348
|
+
"cell_type": "code",
|
349
|
+
"execution_count": null,
|
350
|
+
"id": "20",
|
351
|
+
"metadata": {},
|
352
|
+
"outputs": [],
|
353
|
+
"source": [
|
354
|
+
"# waist_circumference (cont)\n",
|
355
|
+
"# Women 88 / Men 102\n",
|
356
|
+
"cond_lt_102 = ((df[\"waist_circumference\"]<102.0) & (df[\"gender\"]==\"Male\")) | ((df[\"waist_circumference\"]<88.0) & (df[\"gender\"]==\"Female\"))\n",
|
357
|
+
"cond_gte_102 = ((df[\"waist_circumference\"]>=102.0) & (df[\"gender\"]==\"Male\")) | ((df[\"waist_circumference\"]>=88.0) & (df[\"gender\"]==\"Female\"))\n",
|
358
|
+
"\n",
|
359
|
+
"tot = df[\"waist_circumference\"].count()\n",
|
360
|
+
"\n",
|
361
|
+
"f_cnt = df[cond_lt_102 & female][\"waist_circumference\"].count()\n",
|
362
|
+
"f = f\"{round(f_cnt, 0)} ({round(f_cnt/tot * 100, 1)}%)\"\n",
|
363
|
+
"m_cnt = df[cond_lt_102 & male][\"waist_circumference\"].count()\n",
|
364
|
+
"m = f\"{round(m_cnt, 0)} ({round(m_cnt / tot * 100, 1) }%)\"\n",
|
365
|
+
"value = f\"{round(df[cond_lt_102][\"waist_circumference\"].count(), 3)} ({round(df[cond_lt_102][\"waist_circumference\"].count() / df[\"waist_circumference\"].count(), 3) * 100}%)\"\n",
|
366
|
+
"\n",
|
367
|
+
"\n",
|
368
|
+
"df_waist.loc[2] = [\"\", \"Women<88 / Men<102\", f, m, value]\n",
|
369
|
+
"\n",
|
370
|
+
"\n",
|
371
|
+
"f_cnt = df[cond_gte_102 & female][\"waist_circumference\"].count()\n",
|
372
|
+
"f = f\"{round(f_cnt, 0)} ({round(f_cnt/tot * 100, 1)}%)\"\n",
|
373
|
+
"m_cnt = df[cond_gte_102 & male][\"waist_circumference\"].count()\n",
|
374
|
+
"m = f\"{round(m_cnt, 0)} ({round(m_cnt / tot * 100, 1) }%)\"\n",
|
375
|
+
"value = f\"{round(df[cond_gte_102][\"waist_circumference\"].count(), 3)} ({round(df[cond_gte_102][\"waist_circumference\"].count() / df[\"waist_circumference\"].count(), 3) * 100}%)\"\n",
|
376
|
+
"\n",
|
377
|
+
"df_waist.loc[3] = [\"\", \"Women>=88 / Men>=102\", f, m, value]\n",
|
378
|
+
" "
|
379
|
+
]
|
380
|
+
},
|
381
|
+
{
|
382
|
+
"cell_type": "code",
|
383
|
+
"execution_count": null,
|
384
|
+
"id": "21",
|
385
|
+
"metadata": {},
|
386
|
+
"outputs": [],
|
387
|
+
"source": [
|
388
|
+
"# cond_art\n",
|
389
|
+
"\n",
|
390
|
+
"def cell(gender, all=None):\n",
|
391
|
+
" cnt = df.loc[gender & cond_art_stable][\"gender\"].count()\n",
|
392
|
+
" if not all:\n",
|
393
|
+
" tot = df.loc[cond_art_stable][\"gender\"].count()\n",
|
394
|
+
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
395
|
+
" tot = df[\"gender\"].count()\n",
|
396
|
+
" return f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
397
|
+
" \n",
|
398
|
+
"df_art = pd.DataFrame(columns=title_row)\n",
|
399
|
+
"df_art.loc[0] = [\"Stable on ART\", \"\", cell(female), cell(male), cell((male | female), all=True)]\n"
|
400
|
+
]
|
401
|
+
},
|
402
|
+
{
|
403
|
+
"cell_type": "code",
|
404
|
+
"execution_count": null,
|
405
|
+
"id": "22",
|
406
|
+
"metadata": {},
|
407
|
+
"outputs": [],
|
408
|
+
"source": [
|
409
|
+
"# blood pressure\n",
|
410
|
+
"# print(len(df[(df[\"sys_blood_pressure_one\"].notna()) & (df[\"dia_blood_pressure_one\"].notna())]))\n",
|
411
|
+
"# print(len(df[(df[\"sys_blood_pressure_two\"].notna()) & (df[\"dia_blood_pressure_two\"].notna())]))\n",
|
412
|
+
"# print(len(df[(df[\"sys_blood_pressure_avg\"].notna()) & (df[\"dia_blood_pressure_avg\"].notna())]))"
|
413
|
+
]
|
414
|
+
},
|
415
|
+
{
|
416
|
+
"cell_type": "code",
|
417
|
+
"execution_count": null,
|
418
|
+
"id": "23",
|
419
|
+
"metadata": {},
|
420
|
+
"outputs": [],
|
421
|
+
"source": [
|
422
|
+
"# blood pressure\n",
|
423
|
+
"\n",
|
424
|
+
"# df_tmp = df.copy()\n",
|
425
|
+
"# tot = len(df_tmp)\n",
|
426
|
+
"# print(f\"tot={tot}\")\n",
|
427
|
+
"# len(df_tmp[(df_tmp[\"sys_blood_pressure_avg\"].notna()) & (df_tmp[\"dia_blood_pressure_avg\"].notna())])\n",
|
428
|
+
"# severe_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=180) | (df_tmp[\"dia_blood_pressure_avg\"]>=110)\n",
|
429
|
+
"# severe_htn_df = df_tmp[severe_htn_cond]\n",
|
430
|
+
"# print(f\"severe_htn={len(severe_htn_df)}\")\n",
|
431
|
+
"# df_tmp.drop(severe_htn_df.index, inplace=True)\n",
|
432
|
+
"\n",
|
433
|
+
"# htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=140) | (df_tmp[\"dia_blood_pressure_avg\"]>=90)\n",
|
434
|
+
"# htn_df = df_tmp[htn_cond]\n",
|
435
|
+
"# print(f\"htn={len(htn_df)}\")\n",
|
436
|
+
"# df_tmp.drop(htn_df.index, inplace=True)\n",
|
437
|
+
"\n",
|
438
|
+
"# pre_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=120) | (df_tmp[\"dia_blood_pressure_avg\"]>=80)\n",
|
439
|
+
"# pre_htn_df = df_tmp[pre_htn_cond]\n",
|
440
|
+
"# print(f\"pre_htn={len(pre_htn_df)}\")\n",
|
441
|
+
"# df_tmp.drop(pre_htn_df.index, inplace=True)\n",
|
442
|
+
"\n",
|
443
|
+
"# normal_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=90) | (df_tmp[\"dia_blood_pressure_avg\"]>=60)\n",
|
444
|
+
"# normal_df = df_tmp[normal_cond]\n",
|
445
|
+
"# print(f\"normal={len(normal_df)}\")\n",
|
446
|
+
"# df_tmp.drop(normal_df.index, inplace=True)\n",
|
447
|
+
"\n",
|
448
|
+
"# low_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=0) | (df_tmp[\"dia_blood_pressure_avg\"]>=0)\n",
|
449
|
+
"# low_df = df_tmp[low_cond]\n",
|
450
|
+
"# print(f\"low={len(low_df)}\")\n",
|
451
|
+
"# df_tmp.drop(low_df.index, inplace=True)\n",
|
452
|
+
"\n",
|
453
|
+
" \n",
|
454
|
+
"# def cell(dfx, gender, all=None, perc=True):\n",
|
455
|
+
"# cnt = dfx.loc[gender][\"gender\"].count()\n",
|
456
|
+
"# if not all:\n",
|
457
|
+
"# tot = df.loc[gender][\"gender\"].count()\n",
|
458
|
+
"# return f\"{cnt}\" if not perc else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
|
459
|
+
"# tot = df[\"gender\"].count()\n",
|
460
|
+
"# return f\"{cnt}\" if not perc else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
461
|
+
"\n",
|
462
|
+
"# def quantile(gender, colname):\n",
|
463
|
+
"# q50 = df.loc[gender][colname].quantile()\n",
|
464
|
+
"# q25 = df.loc[gender][colname].quantile(0.25)\n",
|
465
|
+
"# q75 = df.loc[gender][colname].quantile(0.75)\n",
|
466
|
+
"# return f\"{q50} ({q25}, {q75})\"\n",
|
467
|
+
"\n",
|
468
|
+
"# df_bp = pd.DataFrame(columns=title_row)\n",
|
469
|
+
"# df_bp.loc[0] = [\"Blood pressure at baseline (mmHg)\", \"n\", cell(df_tmp, female), cell(df_tmp, male), cell(df_tmp, (male | female), all=True, perc=False)]\n",
|
470
|
+
"# df_bp.loc[1] = [\"\", \"Low (<90/60)\", cell(low_df, female), cell(low_df, male), cell(low_df, (male | female), all=True)]\n",
|
471
|
+
"# df_bp.loc[2] = [\"\", \"Normal (<120/80)\", cell(normal_df, female), cell(normal_df, male), cell(normal_df, (male | female), all=True)]\n",
|
472
|
+
"# df_bp.loc[3] = [\"\", \"Pre-hypertension (<140/90)\", cell(pre_htn_df, female), cell(pre_htn_df, male), cell(pre_htn_df, (male | female), all=True)]\n",
|
473
|
+
"# df_bp.loc[4] = [\"\", \"Hypertension (>=140/90)\", cell(htn_df, female), cell(htn_df, male), cell(htn_df, (male | female), all=True)]\n",
|
474
|
+
"# df_bp.loc[5] = [\"\", \"Severe hypertension (>=180/110)\", cell(severe_htn_df, female), cell(severe_htn_df, male), cell(severe_htn_df, (male | female), all=True)]\n",
|
475
|
+
"# df_bp.loc[6] = [\"\", \"Systolic - median (IQR)\", quantile(female, \"sys_blood_pressure_avg\"), quantile(male, \"sys_blood_pressure_avg\"), quantile((female | male), \"sys_blood_pressure_avg\")]\n",
|
476
|
+
"# df_bp.loc[7] = [\"\", \"Diastolic - median (IQR)\", quantile(female, \"dia_blood_pressure_avg\"), quantile(male, \"dia_blood_pressure_avg\"), quantile((female | male), \"dia_blood_pressure_avg\")]\n",
|
477
|
+
"\n"
|
478
|
+
]
|
479
|
+
},
|
480
|
+
{
|
481
|
+
"cell_type": "code",
|
482
|
+
"execution_count": null,
|
483
|
+
"id": "24",
|
484
|
+
"metadata": {},
|
485
|
+
"outputs": [],
|
486
|
+
"source": []
|
487
|
+
},
|
488
|
+
{
|
489
|
+
"cell_type": "code",
|
490
|
+
"execution_count": null,
|
491
|
+
"id": "25",
|
492
|
+
"metadata": {},
|
493
|
+
"outputs": [],
|
494
|
+
"source": [
|
495
|
+
"# columns = [\n",
|
496
|
+
"# 'Characteristics', 'Statistics', \"F\", \"M\", 'All', \n",
|
497
|
+
"# \"fnum\",\"f_prop\",\"fq25\",\"fq50\",\"fq75\",\n",
|
498
|
+
"# \"mnum\",\"m_prop\",\"mq25\",\"mq50\",\"mq75\",\n",
|
499
|
+
"# \"q25\",\"q50\",\"q75\",\"tot\"]\n",
|
500
|
+
"\n",
|
501
|
+
"# class SubjectRow:\n",
|
502
|
+
"# def __init__(self, gender, dfx, main_df, iqr_col=None):\n",
|
503
|
+
"# self.num = dfx.loc[gender][\"gender\"].count()\n",
|
504
|
+
"# self.total = len(main_df.loc[gender])\n",
|
505
|
+
"# self.perc = self.num/self.total\n",
|
506
|
+
"# if iqr_col:\n",
|
507
|
+
"# self.q25, self.q50, self.q75 = dfx.loc[gender][iqr_col].quantile([0.25, 0.50, 0.75])\n",
|
508
|
+
"# else:\n",
|
509
|
+
"# self.q25, self.q50, self.q75 = np.nan,np.nan,np.nan\n",
|
510
|
+
"\n",
|
511
|
+
"# class MaleRow(SubjectRow):\n",
|
512
|
+
"# def __init__(self, dfx, main_df, iqr_col=None):\n",
|
513
|
+
"# super().__init__(male, dfx, main_df, iqr_col)\n",
|
514
|
+
"\n",
|
515
|
+
"# class FemaleRow(SubjectRow):\n",
|
516
|
+
"# def __init__(self, dfx, main_df, iqr_col=None):\n",
|
517
|
+
"# super().__init__(female, dfx, main_df, iqr_col)\n",
|
518
|
+
"\n",
|
519
|
+
"# class Row:\n",
|
520
|
+
"# def __init__(self, dfx, main_df, label=None, statistic=None, iqr_col=None, columns=None):\n",
|
521
|
+
"# self.m = MaleRow(dfx, main_df, iqr_col)\n",
|
522
|
+
"# self.f =FemaleRow(dfx, main_df, iqr_col)\n",
|
523
|
+
"# self.total = len(main_df)\n",
|
524
|
+
"# self.subtotal = len(dfx)\n",
|
525
|
+
"# if iqr_col:\n",
|
526
|
+
"# self.q25, self.q50, self.q75 = main_df[iqr_col].quantile([0.25, 0.50, 0.75])\n",
|
527
|
+
"# else:\n",
|
528
|
+
"# self.q25, self.q50, self.q75 = np.nan,np.nan,np.nan \n",
|
529
|
+
"# self.label = label or \"\"\n",
|
530
|
+
"# self.statistic = statistic\n",
|
531
|
+
"# self.df = pd.DataFrame(columns=columns)\n",
|
532
|
+
"\n",
|
533
|
+
"# def with_perc(total=None):\n",
|
534
|
+
"# if total:\n",
|
535
|
+
"# return f\"{self.num} ({round(self.num/self.total *100, 1)}%)\"\n",
|
536
|
+
"# return f\"{self.num} ({round(self.num/self.subtotal *100, 1)}%)\"\n",
|
537
|
+
" \n",
|
538
|
+
"# def values(self):\n",
|
539
|
+
"# if self.statistic==\"n\":\n",
|
540
|
+
"# return [\n",
|
541
|
+
"# self.label, self.statistic, \"\", \"\", \"\",\n",
|
542
|
+
"# self.f.num, self.f.perc, self.f.q25, self.f.q50, self.f.q75,\n",
|
543
|
+
"# self.m.num, self.m.perc, self.m.q25, self.m.q50, self.m.q75,\n",
|
544
|
+
"# self.q25, self.q50, self.q75, \n",
|
545
|
+
"# self.total]\n",
|
546
|
+
"# return [\n",
|
547
|
+
"# self.label, self.statistic, \"\", \"\", \"\", \n",
|
548
|
+
"# self.f.num, self.f.perc, self.f.q25, self.f.q50, self.f.q75, \n",
|
549
|
+
"# self.m.num, self.m.perc,self.m.q25, self.m.q50, self.m.q75, \n",
|
550
|
+
"# self.q25, self.q50, self.q75, \n",
|
551
|
+
"# self.subtotal]\n",
|
552
|
+
"\n",
|
553
|
+
"# class Table:\n",
|
554
|
+
"\n",
|
555
|
+
"# statistic_col = \"Statistics\"\n",
|
556
|
+
"# female_col = \"F\"\n",
|
557
|
+
"# male_col = \"M\"\n",
|
558
|
+
"# all_col = \"All\"\n",
|
559
|
+
"# n_sublabel = \"n\"\n",
|
560
|
+
"# grand_total_col = \"tot\"\n",
|
561
|
+
" \n",
|
562
|
+
"# def __init__(self, main_df, label=None, columns=None):\n",
|
563
|
+
"# self.main_df = main_df\n",
|
564
|
+
"# self.table_df = pd.DataFrame(columns=columns)\n",
|
565
|
+
"# self.row_zero = Row(main_df, main_df, label=label, statistic=self.n_sublabel, columns=columns)\n",
|
566
|
+
"\n",
|
567
|
+
"# self.build_table_df()\n",
|
568
|
+
" \n",
|
569
|
+
"# # format string cols\n",
|
570
|
+
"# self.table_df[self.female_col] = self.table_df.apply(lambda x: self.format_f_col(x), axis=1)\n",
|
571
|
+
"# self.table_df[self.male_col] = self.table_df.apply(lambda x: self.format_m_col(x), axis=1)\n",
|
572
|
+
"# self.table_df[self.all_col] = self.table_df.apply(lambda x: self.format_all_col(x), axis=1)\n",
|
573
|
+
"\n",
|
574
|
+
"# def build_table_df(self):\n",
|
575
|
+
"# self.table_df.loc[0] = self.row_zero.values()\n",
|
576
|
+
"\n",
|
577
|
+
"# @property\n",
|
578
|
+
"# def formatted_df(self):\n",
|
579
|
+
"# return self.table_df[['Characteristics', 'Statistics', \"F\", \"M\", 'All']]\n",
|
580
|
+
"\n",
|
581
|
+
"# def format_f_col(self, x):\n",
|
582
|
+
"# if x[self.statistic_col] == self.n_sublabel:\n",
|
583
|
+
"# return f\"{x.fnum}\"\n",
|
584
|
+
"# elif pd.notna(x.q25):\n",
|
585
|
+
"# return f\"{x.fq50} ({x.fq25},{x.fq75})\"\n",
|
586
|
+
"# return f\"{x.fnum} ({round(x.fnum/self.row_zero.f.total *100, 1)}%)\" \n",
|
587
|
+
"\n",
|
588
|
+
"# def format_m_col(self, x):\n",
|
589
|
+
"# if x[self.statistic_col] == self.n_sublabel:\n",
|
590
|
+
"# return f\"{x.mnum}\"\n",
|
591
|
+
"# elif pd.notna(x.q25):\n",
|
592
|
+
"# return f\"{x.mq50} ({x.mq25},{x.mq75})\"\n",
|
593
|
+
"# return f\"{x.mnum} ({round(x.mnum/self.row_zero.m.total *100, 1)}%)\" \n",
|
594
|
+
"\n",
|
595
|
+
"# def format_all_col(self, x):\n",
|
596
|
+
"# if x[self.statistic_col] == self.n_sublabel:\n",
|
597
|
+
"# return f\"{x.tot}\"\n",
|
598
|
+
"# elif pd.notna(x.q25):\n",
|
599
|
+
"# return f\"{x.q50} ({x.q25},{x.q75})\"\n",
|
600
|
+
"# return f\"{x.tot} ({round(x.tot/self.table_df.loc[0][self.grand_total_col] *100, 1)}%)\" \n",
|
601
|
+
"\n",
|
602
|
+
"# class BpTable(Table):\n",
|
603
|
+
"\n",
|
604
|
+
"# sys_col = \"sys_blood_pressure_avg\"\n",
|
605
|
+
"# dia_col = \"dia_blood_pressure_avg\"\n",
|
606
|
+
"\n",
|
607
|
+
"# def build_table_df(self):\n",
|
608
|
+
"# self.table_df.loc[0] = self.row_zero.values()\n",
|
609
|
+
"# i = 1\n",
|
610
|
+
"# for key, dfx in self.get_dfs(self.main_df).items():\n",
|
611
|
+
"# self.table_df.loc[i] = Row(dfx, self.main_df, label=\"\", statistic=key, columns=columns).values()\n",
|
612
|
+
"# i += 1\n",
|
613
|
+
"# self.table_df.loc[i+1] = Row(self.main_df, self.main_df, label=\"\", statistic=\"Systolic - median (IQR)\", iqr_col=\"sys_blood_pressure_avg\", columns=columns).values()\n",
|
614
|
+
"# self.table_df.loc[i+2] = Row(self.main_df, self.main_df, label=\"\", statistic=\"Diastolic - median (IQR)\", iqr_col=\"dia_blood_pressure_avg\", columns=columns).values() \n",
|
615
|
+
" \n",
|
616
|
+
"# def get_dfs(self, main_df):\n",
|
617
|
+
"# dfs = {}\n",
|
618
|
+
"# df_tmp = main_df.copy()\n",
|
619
|
+
"# tot = len(df_tmp)\n",
|
620
|
+
"# severe_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=180) | (df_tmp[\"dia_blood_pressure_avg\"]>=110)\n",
|
621
|
+
"# severe_htn_df = df_tmp[severe_htn_cond]\n",
|
622
|
+
"# dfs.update({\"Severe hypertension (>=180/110)\": severe_htn_df})\n",
|
623
|
+
"# df_tmp.drop(severe_htn_df.index, inplace=True)\n",
|
624
|
+
" \n",
|
625
|
+
"# htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=140) | (df_tmp[\"dia_blood_pressure_avg\"]>=90)\n",
|
626
|
+
"# htn_df = df_tmp[htn_cond]\n",
|
627
|
+
"# dfs.update({\"Hypertension (>=140/90)\": htn_df})\n",
|
628
|
+
"# df_tmp.drop(htn_df.index, inplace=True)\n",
|
629
|
+
" \n",
|
630
|
+
"# pre_htn_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=120) | (df_tmp[\"dia_blood_pressure_avg\"]>=80)\n",
|
631
|
+
"# pre_htn_df = df_tmp[pre_htn_cond]\n",
|
632
|
+
"# dfs.update({\"Pre-hypertension (<140/90)\": pre_htn_df})\n",
|
633
|
+
"# df_tmp.drop(pre_htn_df.index, inplace=True)\n",
|
634
|
+
" \n",
|
635
|
+
"# normal_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=90) | (df_tmp[\"dia_blood_pressure_avg\"]>=60)\n",
|
636
|
+
"# normal_df = df_tmp[normal_cond]\n",
|
637
|
+
"# dfs.update({\"Normal (<120/80)\": normal_df})\n",
|
638
|
+
"# df_tmp.drop(normal_df.index, inplace=True)\n",
|
639
|
+
" \n",
|
640
|
+
"# low_cond = (df_tmp[\"sys_blood_pressure_avg\"]>=0) | (df_tmp[\"dia_blood_pressure_avg\"]>=0)\n",
|
641
|
+
"# low_df = df_tmp[low_cond]\n",
|
642
|
+
"# dfs.update({\"Low (<90/60)\": low_df})\n",
|
643
|
+
"# df_tmp.drop(low_df.index, inplace=True)\n",
|
644
|
+
"# dfs = dict(reversed(list(dfs.items())))\n",
|
645
|
+
"# return dfs\n",
|
646
|
+
"\n",
|
647
|
+
" \n",
|
648
|
+
"\n",
|
649
|
+
"tbl = BpTable(df, label=\"Blood pressure at baseline (mmHg)\", columns=columns)\n",
|
650
|
+
"tbl.formatted_df\n",
|
651
|
+
" "
|
652
|
+
]
|
653
|
+
},
|
654
|
+
{
|
655
|
+
"cell_type": "code",
|
656
|
+
"execution_count": null,
|
657
|
+
"id": "26",
|
658
|
+
"metadata": {},
|
659
|
+
"outputs": [],
|
660
|
+
"source": [
|
661
|
+
"tbl.table_df"
|
662
|
+
]
|
663
|
+
},
|
664
|
+
{
|
665
|
+
"cell_type": "code",
|
666
|
+
"execution_count": null,
|
667
|
+
"id": "27",
|
668
|
+
"metadata": {},
|
669
|
+
"outputs": [],
|
670
|
+
"source": [
|
671
|
+
"df_bp2"
|
672
|
+
]
|
673
|
+
},
|
674
|
+
{
|
675
|
+
"cell_type": "code",
|
676
|
+
"execution_count": null,
|
677
|
+
"id": "28",
|
678
|
+
"metadata": {},
|
679
|
+
"outputs": [],
|
680
|
+
"source": [
|
681
|
+
"# fbg\n",
|
682
|
+
"\n",
|
683
|
+
"def cell(measure, gender, all=None):\n",
|
684
|
+
" if measure == \"<6.1\":\n",
|
685
|
+
" cond = (df[\"fbg\"]<6.1)\n",
|
686
|
+
" elif measure == \"6.1-6.9\":\n",
|
687
|
+
" cond = (df[\"fbg\"]>=6.1) & (df[\"fbg\"]<7.0)\n",
|
688
|
+
" elif measure == \">=7.0\":\n",
|
689
|
+
" cond = (df[\"fbg\"]>=7.0)\n",
|
690
|
+
" else:\n",
|
691
|
+
" cond = (df[\"fbg\"].notna())\n",
|
692
|
+
" cnt = df.loc[gender & cond][\"gender\"].count()\n",
|
693
|
+
" if not all:\n",
|
694
|
+
" tot = df.loc[gender][\"gender\"].count()\n",
|
695
|
+
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
|
696
|
+
" tot = df[\"gender\"].count()\n",
|
697
|
+
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
698
|
+
"\n",
|
699
|
+
"df_fbg = pd.DataFrame(columns=title_row)\n",
|
700
|
+
"df_fbg.loc[0] = [\"FBG (mmol/L) categories\", \"n\", cell(\"n\", female), cell(\"n\", male), cell(\"n\", (male | female), all=True)]\n",
|
701
|
+
"df_fbg.loc[1] = [\"\", \"<6.1\", cell(\"<6.1\", female), cell(\"<6.1\", male), cell(\"<6.1\", (male | female), all=True)]\n",
|
702
|
+
"df_fbg.loc[2] = [\"\", \"6.1-6.9\", cell(\"6.1-6.9\", female), cell(\"6.1-6.9\", male), cell(\"6.1-6.9\", (male | female), all=True)]\n",
|
703
|
+
"df_fbg.loc[3] = [\"\", \"7.0 and above\", cell(\">=7.0\", female), cell(\">=7.0\", male), cell(\">=7.0\", (male | female), all=True)]\n",
|
704
|
+
"\n"
|
705
|
+
]
|
706
|
+
},
|
707
|
+
{
|
708
|
+
"cell_type": "code",
|
709
|
+
"execution_count": null,
|
710
|
+
"id": "29",
|
711
|
+
"metadata": {},
|
712
|
+
"outputs": [],
|
713
|
+
"source": [
|
714
|
+
"# ogtt\n",
|
715
|
+
"\n",
|
716
|
+
"def cell(measure, gender, all=None):\n",
|
717
|
+
" if measure == \"<7.7\":\n",
|
718
|
+
" cond = (df[\"ogtt\"]<7.8)\n",
|
719
|
+
" elif measure == \"7.8-11.1\":\n",
|
720
|
+
" cond = (df[\"ogtt\"]>=7.8) & (df[\"ogtt\"]<11.1)\n",
|
721
|
+
" elif measure == \">=11.1\":\n",
|
722
|
+
" cond = (df[\"ogtt\"]>=11.1)\n",
|
723
|
+
" elif measure == \"missing\":\n",
|
724
|
+
" cond = (df[\"ogtt\"].isna())\n",
|
725
|
+
" else:\n",
|
726
|
+
" cond = (df[\"ogtt\"].notna() | df[\"ogtt\"].isna())\n",
|
727
|
+
" cnt = df.loc[gender & cond][\"gender\"].count()\n",
|
728
|
+
" if not all:\n",
|
729
|
+
" tot = df.loc[gender][\"gender\"].count()\n",
|
730
|
+
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
|
731
|
+
" tot = df[\"gender\"].count()\n",
|
732
|
+
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
733
|
+
"\n",
|
734
|
+
"df_ogtt = pd.DataFrame(columns=title_row)\n",
|
735
|
+
"df_ogtt.loc[0] = [\"OGTT (mmol/L) categories\", \"n\", cell(\"n\", female), cell(\"n\", male), cell(\"n\", (male | female), all=True)]\n",
|
736
|
+
"df_ogtt.loc[1] = [\"\", \"<7.7\", cell(\"<7.7\", female), cell(\"<7.7\", male), cell(\"<7.7\", (male | female), all=True)]\n",
|
737
|
+
"df_ogtt.loc[2] = [\"\", \"7.8-11.1\", cell(\"7.8-11.1\", female), cell(\"7.8-11.1\", male), cell(\"7.8-11.1\", (male | female), all=True)]\n",
|
738
|
+
"df_ogtt.loc[3] = [\"\", \"11.1 and above\", cell(\">=11.1\", female), cell(\">=11.1\", male), cell(\">=11.1\", (male | female), all=True)]\n",
|
739
|
+
"df_ogtt.loc[4] = [\"\", \"not done\", cell(\"missing\", female), cell(\"missing\", male), cell(\"missing\", (male | female), all=True)]\n"
|
740
|
+
]
|
741
|
+
},
|
742
|
+
{
|
743
|
+
"cell_type": "code",
|
744
|
+
"execution_count": null,
|
745
|
+
"id": "30",
|
746
|
+
"metadata": {},
|
747
|
+
"outputs": [],
|
748
|
+
"source": [
|
749
|
+
"# fbg and ogtt\n",
|
750
|
+
"\n",
|
751
|
+
"def cell(measure, gender, all=None):\n",
|
752
|
+
" if measure == \"dm1\":\n",
|
753
|
+
" cond = (df[\"ogtt\"]>=11.1) | (df[\"fbg\"]>=7.0) & (df[\"ogtt\"].notna())\n",
|
754
|
+
" elif measure == \"other\":\n",
|
755
|
+
" cond = ~((df[\"ogtt\"]>=11.1) | (df[\"fbg\"]>=7.0)) & (df[\"ogtt\"].notna())\n",
|
756
|
+
" elif measure == \"ogtt\":\n",
|
757
|
+
" cond = (df[\"fbg\"].notna()) & (df[\"ogtt\"].isna())\n",
|
758
|
+
" else:\n",
|
759
|
+
" cond = (df[\"fbg\"].notna())\n",
|
760
|
+
" cnt = df.loc[gender & cond][\"gender\"].count()\n",
|
761
|
+
" if not all:\n",
|
762
|
+
" tot = df.loc[gender][\"gender\"].count()\n",
|
763
|
+
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\" \n",
|
764
|
+
" tot = df[\"gender\"].count()\n",
|
765
|
+
" return f\"{cnt}\" if measure==\"n\" else f\"{cnt} ({round(cnt/tot *100, 1)}%)\"\n",
|
766
|
+
"\n",
|
767
|
+
"df_fbg_ogtt = pd.DataFrame(columns=title_row)\n",
|
768
|
+
"df_fbg_ogtt.loc[0] = [\"OGTT & FBG (mmol/L) categories\", \"n\", cell(\"n\", female), cell(\"n\", male), cell(\"n\", (male | female), all=True)]\n",
|
769
|
+
"df_fbg_ogtt.loc[1] = [\"\", \"OGTT>=11.1 or FBG>=7.0\", cell(\"dm1\", female), cell(\"dm1\", male), cell(\"dm1\", (male | female), all=True)]\n",
|
770
|
+
"df_fbg_ogtt.loc[2] = [\"\", \"other\", cell(\"other\", female), cell(\"other\", male), cell(\"other\", (male | female), all=True)]\n",
|
771
|
+
"df_fbg_ogtt.loc[3] = [\"\", \"OGTT not done\", cell(\"ogtt\", female), cell(\"ogtt\", male), cell(\"ogtt\", (male | female), all=True)]\n"
|
772
|
+
]
|
773
|
+
},
|
774
|
+
{
|
775
|
+
"cell_type": "code",
|
776
|
+
"execution_count": null,
|
777
|
+
"id": "31",
|
778
|
+
"metadata": {},
|
779
|
+
"outputs": [],
|
780
|
+
"source": [
|
781
|
+
"df_table2 = pd.concat([df_gender, df_age, df_waist, df_art, df_bp, df_fbg, df_ogtt, df_fbg_ogtt], ignore_index=True)\n",
|
782
|
+
"df_table2"
|
783
|
+
]
|
784
|
+
},
|
785
|
+
{
|
786
|
+
"cell_type": "code",
|
787
|
+
"execution_count": null,
|
788
|
+
"id": "32",
|
789
|
+
"metadata": {},
|
790
|
+
"outputs": [],
|
791
|
+
"source": [
|
792
|
+
"# blood pressure\n",
|
793
|
+
"# Blood pressure interested in IQR25, IQR50(median), IQR75\n",
|
794
|
+
"df[[\"sys_blood_pressure_avg\", \"dia_blood_pressure_avg\"]].describe()"
|
795
|
+
]
|
796
|
+
},
|
797
|
+
{
|
798
|
+
"cell_type": "code",
|
799
|
+
"execution_count": null,
|
800
|
+
"id": "33",
|
801
|
+
"metadata": {},
|
802
|
+
"outputs": [],
|
803
|
+
"source": [
|
804
|
+
"df_table"
|
805
|
+
]
|
806
|
+
},
|
807
|
+
{
|
808
|
+
"cell_type": "code",
|
809
|
+
"execution_count": null,
|
810
|
+
"id": "34",
|
811
|
+
"metadata": {},
|
812
|
+
"outputs": [],
|
813
|
+
"source": [
|
814
|
+
"# blood pressure\n"
|
815
|
+
]
|
816
|
+
},
|
817
|
+
{
|
818
|
+
"cell_type": "code",
|
819
|
+
"execution_count": null,
|
820
|
+
"id": "35",
|
821
|
+
"metadata": {},
|
822
|
+
"outputs": [],
|
823
|
+
"source": []
|
824
|
+
},
|
825
|
+
{
|
826
|
+
"cell_type": "code",
|
827
|
+
"execution_count": null,
|
828
|
+
"id": "36",
|
829
|
+
"metadata": {},
|
830
|
+
"outputs": [],
|
831
|
+
"source": []
|
832
|
+
},
|
833
|
+
{
|
834
|
+
"cell_type": "code",
|
835
|
+
"execution_count": null,
|
836
|
+
"id": "37",
|
837
|
+
"metadata": {},
|
838
|
+
"outputs": [],
|
839
|
+
"source": []
|
840
|
+
},
|
841
|
+
{
|
842
|
+
"cell_type": "code",
|
843
|
+
"execution_count": null,
|
844
|
+
"id": "38",
|
845
|
+
"metadata": {},
|
846
|
+
"outputs": [],
|
847
|
+
"source": []
|
848
|
+
},
|
849
|
+
{
|
850
|
+
"cell_type": "code",
|
851
|
+
"execution_count": null,
|
852
|
+
"id": "39",
|
853
|
+
"metadata": {},
|
854
|
+
"outputs": [],
|
855
|
+
"source": []
|
856
|
+
},
|
857
|
+
{
|
858
|
+
"cell_type": "code",
|
859
|
+
"execution_count": null,
|
860
|
+
"id": "40",
|
861
|
+
"metadata": {},
|
862
|
+
"outputs": [],
|
863
|
+
"source": [
|
864
|
+
"import matplotlib.pyplot as plt\n",
|
865
|
+
"import numpy as np\n",
|
866
|
+
"import scipy.stats as stats\n",
|
867
|
+
"import math\n",
|
868
|
+
"import seaborn as sns\n"
|
869
|
+
]
|
870
|
+
},
|
871
|
+
{
|
872
|
+
"cell_type": "code",
|
873
|
+
"execution_count": null,
|
874
|
+
"id": "41",
|
875
|
+
"metadata": {},
|
876
|
+
"outputs": [],
|
877
|
+
"source": [
|
878
|
+
"sns.boxplot(x=\"age_in_years\",y=\"gender\", data=df)"
|
879
|
+
]
|
880
|
+
},
|
881
|
+
{
|
882
|
+
"cell_type": "code",
|
883
|
+
"execution_count": null,
|
884
|
+
"id": "42",
|
885
|
+
"metadata": {},
|
886
|
+
"outputs": [],
|
887
|
+
"source": [
|
888
|
+
"sns.boxplot(x=\"fbg\",y=\"gender\", data=df)\n"
|
889
|
+
]
|
890
|
+
},
|
891
|
+
{
|
892
|
+
"cell_type": "code",
|
893
|
+
"execution_count": null,
|
894
|
+
"id": "43",
|
895
|
+
"metadata": {},
|
896
|
+
"outputs": [],
|
897
|
+
"source": [
|
898
|
+
"sns.boxplot(x=\"ogtt\",y=\"gender\", data=df)\n"
|
899
|
+
]
|
900
|
+
},
|
901
|
+
{
|
902
|
+
"cell_type": "code",
|
903
|
+
"execution_count": null,
|
904
|
+
"id": "44",
|
905
|
+
"metadata": {},
|
906
|
+
"outputs": [],
|
907
|
+
"source": [
|
908
|
+
"df[[\"age_in_years\", \"fbg\", \"ogtt\"]].hist()"
|
909
|
+
]
|
910
|
+
},
|
911
|
+
{
|
912
|
+
"cell_type": "code",
|
913
|
+
"execution_count": null,
|
914
|
+
"id": "45",
|
915
|
+
"metadata": {},
|
916
|
+
"outputs": [],
|
917
|
+
"source": [
|
918
|
+
"sns.pairplot(df[[\"calculated_bmi_value\", \"fbg\"]])"
|
919
|
+
]
|
920
|
+
},
|
921
|
+
{
|
922
|
+
"cell_type": "code",
|
923
|
+
"execution_count": null,
|
924
|
+
"id": "46",
|
925
|
+
"metadata": {},
|
926
|
+
"outputs": [],
|
927
|
+
"source": [
|
928
|
+
"cond = (df[\"fbg\"]>=7.0) & (df[\"fbg\"]<=10.0)\n",
|
929
|
+
"sns.displot(df[cond], x=\"fbg\", hue=\"gender\")"
|
930
|
+
]
|
931
|
+
},
|
932
|
+
{
|
933
|
+
"cell_type": "code",
|
934
|
+
"execution_count": null,
|
935
|
+
"id": "47",
|
936
|
+
"metadata": {},
|
937
|
+
"outputs": [],
|
938
|
+
"source": [
|
939
|
+
"sns.displot(df, x=\"sys_\", hue=\"gender\")"
|
940
|
+
]
|
941
|
+
}
|
942
|
+
],
|
943
|
+
"metadata": {
|
944
|
+
"kernelspec": {
|
945
|
+
"display_name": "Python 3 (ipykernel)",
|
946
|
+
"language": "python",
|
947
|
+
"name": "python3"
|
948
|
+
},
|
949
|
+
"language_info": {
|
950
|
+
"codemirror_mode": {
|
951
|
+
"name": "ipython",
|
952
|
+
"version": 3
|
953
|
+
},
|
954
|
+
"file_extension": ".py",
|
955
|
+
"mimetype": "text/x-python",
|
956
|
+
"name": "python",
|
957
|
+
"nbconvert_exporter": "python",
|
958
|
+
"pygments_lexer": "ipython3",
|
959
|
+
"version": "3.12.4"
|
960
|
+
}
|
961
|
+
},
|
962
|
+
"nbformat": 4,
|
963
|
+
"nbformat_minor": 5
|
964
|
+
}
|