meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- meta_ae/action_items.py +10 -2
- meta_ae/baker_recipes.py +1 -2
- meta_ae/tests/tests/test_actions.py +1 -2
- meta_analytics/README.rst +1 -2
- meta_analytics/notebooks/anu.ipynb +95 -0
- meta_analytics/notebooks/appointment_planning.ipynb +329 -0
- meta_analytics/notebooks/arvs.ipynb +103 -0
- meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
- meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
- meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
- meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
- meta_analytics/notebooks/followup_examination.ipynb +141 -0
- meta_analytics/notebooks/hba1c.ipynb +136 -0
- meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
- meta_analytics/notebooks/incidence.ipynb +232 -0
- meta_analytics/notebooks/liver.ipynb +389 -0
- meta_analytics/notebooks/magreth.ipynb +645 -0
- meta_analytics/notebooks/monitoring_report.ipynb +721 -448
- meta_analytics/notebooks/pharmacy.ipynb +405 -306
- meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
- meta_analytics/notebooks/steering.ipynb +61 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
- meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
- meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
- meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
- meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
- meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
- meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
- meta_analytics/notebooks/ven.ipynb +191 -0
- meta_analytics/notebooks/vitals.ipynb +263 -0
- meta_edc/settings/debug.py +3 -2
- meta_edc/urls.py +1 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
- meta_labs/reportables.py +14 -11
- meta_labs/tests/test_reportables.py +33 -12
- meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
- meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
- meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
- meta_prn/form_validators/end_of_study.py +2 -2
- meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
- meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
- meta_prn/models/end_of_study.py +2 -0
- meta_prn/models/off_study_medication.py +2 -0
- meta_reports/admin/last_imp_refill_admin.py +3 -2
- meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
- meta_screening/form_validators/screening_part_three.py +6 -1
- meta_screening/tests/meta_test_case_mixin.py +3 -0
- meta_screening/tests/tests/test_forms.py +9 -2
- meta_screening/tests/tests/test_screening_part_three.py +11 -14
- meta_subject/action_items.py +2 -3
- meta_subject/choices.py +2 -1
- meta_subject/form_validators/delivery_form_validator.py +1 -0
- meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
- meta_subject/forms/delivery_form.py +2 -0
- meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
- meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
- meta_subject/tests/tests/test_egfr.py +5 -5
- meta_analytics/dataframes/enrolled/__init__.py +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
- {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1176 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"%%capture\n",
|
11
|
+
"# output is suppressed but normally would spew out all the edc loading messages\n",
|
12
|
+
"\n",
|
13
|
+
"import os\n",
|
14
|
+
"from pathlib import Path\n",
|
15
|
+
"from datetime import datetime\n",
|
16
|
+
"import pandas as pd\n",
|
17
|
+
"import numpy as np\n",
|
18
|
+
"import math\n",
|
19
|
+
"# import matplotlxib.pyplot as plt\n",
|
20
|
+
"# import seaborn as sns\n",
|
21
|
+
"import scipy.stats as stats\n",
|
22
|
+
"\n",
|
23
|
+
"from dj_notebook import activate\n",
|
24
|
+
"\n",
|
25
|
+
"env_file = os.environ[\"META_ENV\"]\n",
|
26
|
+
"documents_folder = os.environ[\"META_DOCUMENTS_FOLDER\"]\n",
|
27
|
+
"report_folder = Path(documents_folder)\n",
|
28
|
+
"\n",
|
29
|
+
"plus = activate(dotenv_file=env_file)\n"
|
30
|
+
]
|
31
|
+
},
|
32
|
+
{
|
33
|
+
"cell_type": "code",
|
34
|
+
"execution_count": null,
|
35
|
+
"id": "1",
|
36
|
+
"metadata": {},
|
37
|
+
"outputs": [],
|
38
|
+
"source": [
|
39
|
+
"from meta_screening.models import SubjectScreening\n",
|
40
|
+
"from django_pandas.io import read_frame\n"
|
41
|
+
]
|
42
|
+
},
|
43
|
+
{
|
44
|
+
"cell_type": "code",
|
45
|
+
"execution_count": null,
|
46
|
+
"id": "2",
|
47
|
+
"metadata": {},
|
48
|
+
"outputs": [],
|
49
|
+
"source": [
|
50
|
+
"cols = [\n",
|
51
|
+
" f.name\n",
|
52
|
+
" for f in SubjectScreening._meta.get_fields()\n",
|
53
|
+
" if f.name\n",
|
54
|
+
" not in [\n",
|
55
|
+
" \"contact_number\",\n",
|
56
|
+
" \"initials\",\n",
|
57
|
+
" \"hospital_identifier\",\n",
|
58
|
+
" \"modified\",\n",
|
59
|
+
" \"user_created\",\n",
|
60
|
+
" \"user_modified\",\n",
|
61
|
+
" \"hostname_created\",\n",
|
62
|
+
" \"hostname_modified\",\n",
|
63
|
+
" \"device_created\",\n",
|
64
|
+
" \"device_modified\",\n",
|
65
|
+
" \"locale_created\",\n",
|
66
|
+
" \"locale_modified\",\n",
|
67
|
+
" \"slug\",\n",
|
68
|
+
" ]\n",
|
69
|
+
"]\n",
|
70
|
+
"qs_screening = SubjectScreening.objects.values(*cols).all()\n",
|
71
|
+
"df = read_frame(qs_screening)"
|
72
|
+
]
|
73
|
+
},
|
74
|
+
{
|
75
|
+
"cell_type": "code",
|
76
|
+
"execution_count": null,
|
77
|
+
"id": "3",
|
78
|
+
"metadata": {},
|
79
|
+
"outputs": [],
|
80
|
+
"source": [
|
81
|
+
"df.count()\n"
|
82
|
+
]
|
83
|
+
},
|
84
|
+
{
|
85
|
+
"cell_type": "code",
|
86
|
+
"execution_count": null,
|
87
|
+
"id": "4",
|
88
|
+
"metadata": {},
|
89
|
+
"outputs": [],
|
90
|
+
"source": [
|
91
|
+
"from edc_constants.constants import NO, YES\n",
|
92
|
+
"df.count()\n",
|
93
|
+
"df.hiv_pos.value_counts()"
|
94
|
+
]
|
95
|
+
},
|
96
|
+
{
|
97
|
+
"cell_type": "code",
|
98
|
+
"execution_count": null,
|
99
|
+
"id": "5",
|
100
|
+
"metadata": {},
|
101
|
+
"outputs": [],
|
102
|
+
"source": [
|
103
|
+
"df = df.drop(df[df[\"hiv_pos\"] == \"No\"].index)\n",
|
104
|
+
"# df = df.drop(df[df.art_six_months==NO].index)\n",
|
105
|
+
"# df = df.drop(df[df.on_rx_stable==NO].index)\n",
|
106
|
+
"df.count()"
|
107
|
+
]
|
108
|
+
},
|
109
|
+
{
|
110
|
+
"cell_type": "code",
|
111
|
+
"execution_count": null,
|
112
|
+
"id": "6",
|
113
|
+
"metadata": {},
|
114
|
+
"outputs": [],
|
115
|
+
"source": [
|
116
|
+
"# check for duplicate subjects / there are none\n",
|
117
|
+
"# df[df.duplicated([\"hospital_identifier\"], keep=False)]\n",
|
118
|
+
"# len(df)"
|
119
|
+
]
|
120
|
+
},
|
121
|
+
{
|
122
|
+
"cell_type": "code",
|
123
|
+
"execution_count": null,
|
124
|
+
"id": "7",
|
125
|
+
"metadata": {},
|
126
|
+
"outputs": [],
|
127
|
+
"source": []
|
128
|
+
},
|
129
|
+
{
|
130
|
+
"cell_type": "code",
|
131
|
+
"execution_count": null,
|
132
|
+
"id": "8",
|
133
|
+
"metadata": {},
|
134
|
+
"outputs": [],
|
135
|
+
"source": [
|
136
|
+
"len(df)"
|
137
|
+
]
|
138
|
+
},
|
139
|
+
{
|
140
|
+
"cell_type": "code",
|
141
|
+
"execution_count": null,
|
142
|
+
"id": "9",
|
143
|
+
"metadata": {},
|
144
|
+
"outputs": [],
|
145
|
+
"source": [
|
146
|
+
"df_tmp = df.gender.value_counts().to_frame().reset_index()\n",
|
147
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
148
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
149
|
+
"df_tmp"
|
150
|
+
]
|
151
|
+
},
|
152
|
+
{
|
153
|
+
"cell_type": "code",
|
154
|
+
"execution_count": null,
|
155
|
+
"id": "10",
|
156
|
+
"metadata": {},
|
157
|
+
"outputs": [],
|
158
|
+
"source": [
|
159
|
+
"df_tmp = df.has_dm.value_counts(dropna=False).to_frame().reset_index()\n",
|
160
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
161
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
162
|
+
"df_tmp"
|
163
|
+
]
|
164
|
+
},
|
165
|
+
{
|
166
|
+
"cell_type": "code",
|
167
|
+
"execution_count": null,
|
168
|
+
"id": "11",
|
169
|
+
"metadata": {},
|
170
|
+
"outputs": [],
|
171
|
+
"source": [
|
172
|
+
"df_tmp = df[df.has_dm.isna()].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
173
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
174
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
175
|
+
"df_tmp"
|
176
|
+
]
|
177
|
+
},
|
178
|
+
{
|
179
|
+
"cell_type": "code",
|
180
|
+
"execution_count": null,
|
181
|
+
"id": "12",
|
182
|
+
"metadata": {},
|
183
|
+
"outputs": [],
|
184
|
+
"source": [
|
185
|
+
"cond1 = (df.has_dm==NO) & (df.on_dm_medication==NO)\n",
|
186
|
+
"df_tmp = df[cond1].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
187
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
188
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
189
|
+
"df_tmp"
|
190
|
+
]
|
191
|
+
},
|
192
|
+
{
|
193
|
+
"cell_type": "code",
|
194
|
+
"execution_count": null,
|
195
|
+
"id": "13",
|
196
|
+
"metadata": {},
|
197
|
+
"outputs": [],
|
198
|
+
"source": [
|
199
|
+
"cond2 = (cond1 & (df.on_rx_stable==YES) & (df.art_six_months==YES) & (df.vl_undetectable==YES))\n",
|
200
|
+
"df_tmp = df[cond2].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
201
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
202
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
203
|
+
"df_tmp"
|
204
|
+
]
|
205
|
+
},
|
206
|
+
{
|
207
|
+
"cell_type": "code",
|
208
|
+
"execution_count": null,
|
209
|
+
"id": "14",
|
210
|
+
"metadata": {},
|
211
|
+
"outputs": [],
|
212
|
+
"source": [
|
213
|
+
"cond3 = (cond2 & (df.staying_nearby_12==YES) & (df.lives_nearby==YES))\n",
|
214
|
+
"df_tmp = df[cond3].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
215
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
216
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
217
|
+
"df_tmp"
|
218
|
+
]
|
219
|
+
},
|
220
|
+
{
|
221
|
+
"cell_type": "code",
|
222
|
+
"execution_count": null,
|
223
|
+
"id": "15",
|
224
|
+
"metadata": {},
|
225
|
+
"outputs": [],
|
226
|
+
"source": [
|
227
|
+
"cond4 = (cond3 & ~(df.pregnant==YES))\n",
|
228
|
+
"df_tmp = df[cond4].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
229
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
230
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
231
|
+
"df_tmp"
|
232
|
+
]
|
233
|
+
},
|
234
|
+
{
|
235
|
+
"cell_type": "code",
|
236
|
+
"execution_count": null,
|
237
|
+
"id": "16",
|
238
|
+
"metadata": {},
|
239
|
+
"outputs": [],
|
240
|
+
"source": [
|
241
|
+
"cond5 = (cond4 & (df.congestive_heart_failure==NO) & (df.liver_disease==NO) & (df.alcoholism==NO) & (df.acute_metabolic_acidosis==NO) & (df.renal_function_condition==NO) & (df.tissue_hypoxia_condition==NO) & (df.acute_condition==NO) & (df.metformin_sensitivity==NO))\n",
|
242
|
+
"\n",
|
243
|
+
"df_tmp = df[cond5].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
244
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
245
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
246
|
+
"df_tmp"
|
247
|
+
]
|
248
|
+
},
|
249
|
+
{
|
250
|
+
"cell_type": "code",
|
251
|
+
"execution_count": null,
|
252
|
+
"id": "17",
|
253
|
+
"metadata": {},
|
254
|
+
"outputs": [],
|
255
|
+
"source": [
|
256
|
+
"df[cond5].eligible_part_one.value_counts()"
|
257
|
+
]
|
258
|
+
},
|
259
|
+
{
|
260
|
+
"cell_type": "code",
|
261
|
+
"execution_count": null,
|
262
|
+
"id": "18",
|
263
|
+
"metadata": {},
|
264
|
+
"outputs": [],
|
265
|
+
"source": [
|
266
|
+
"df[cond5].eligible_part_two.value_counts()\n"
|
267
|
+
]
|
268
|
+
},
|
269
|
+
{
|
270
|
+
"cell_type": "code",
|
271
|
+
"execution_count": null,
|
272
|
+
"id": "19",
|
273
|
+
"metadata": {},
|
274
|
+
"outputs": [],
|
275
|
+
"source": [
|
276
|
+
"cond6 = (cond5 & (df.meta_phase_two==NO))\n",
|
277
|
+
"df_tmp = df[cond6].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
278
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
279
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
280
|
+
"df_tmp"
|
281
|
+
]
|
282
|
+
},
|
283
|
+
{
|
284
|
+
"cell_type": "code",
|
285
|
+
"execution_count": null,
|
286
|
+
"id": "20",
|
287
|
+
"metadata": {},
|
288
|
+
"outputs": [],
|
289
|
+
"source": [
|
290
|
+
"cond7 = (cond6 & (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\") & (df.agree_to_p3==YES))\n",
|
291
|
+
"df_tmp = df[cond7].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
292
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
293
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
294
|
+
"df_tmp"
|
295
|
+
]
|
296
|
+
},
|
297
|
+
{
|
298
|
+
"cell_type": "code",
|
299
|
+
"execution_count": null,
|
300
|
+
"id": "21",
|
301
|
+
"metadata": {},
|
302
|
+
"outputs": [],
|
303
|
+
"source": []
|
304
|
+
},
|
305
|
+
{
|
306
|
+
"cell_type": "code",
|
307
|
+
"execution_count": null,
|
308
|
+
"id": "22",
|
309
|
+
"metadata": {},
|
310
|
+
"outputs": [],
|
311
|
+
"source": [
|
312
|
+
"cond8 = (cond7 & (df.already_fasted==YES))\n",
|
313
|
+
"df_tmp = df[cond8].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
314
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
315
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
316
|
+
"df_tmp"
|
317
|
+
]
|
318
|
+
},
|
319
|
+
{
|
320
|
+
"cell_type": "code",
|
321
|
+
"execution_count": null,
|
322
|
+
"id": "23",
|
323
|
+
"metadata": {},
|
324
|
+
"outputs": [],
|
325
|
+
"source": [
|
326
|
+
"cond9 = (cond7 & (df.already_fasted==NO))\n",
|
327
|
+
"df_tmp = df[cond9].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
328
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
329
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
330
|
+
"df_tmp"
|
331
|
+
]
|
332
|
+
},
|
333
|
+
{
|
334
|
+
"cell_type": "code",
|
335
|
+
"execution_count": null,
|
336
|
+
"id": "24",
|
337
|
+
"metadata": {},
|
338
|
+
"outputs": [],
|
339
|
+
"source": [
|
340
|
+
"from edc_model.utils import duration_hm_to_timedelta\n",
|
341
|
+
"\n",
|
342
|
+
"# gen fasted variable\n",
|
343
|
+
"def get_duration_dh_to_timedelta(s):\n",
|
344
|
+
" if not pd.isna(s[\"fasting_duration_str\"]):\n",
|
345
|
+
" return duration_hm_to_timedelta(s[\"fasting_duration_str\"])\n",
|
346
|
+
" return s[\"fasting_duration_str\"]\n",
|
347
|
+
"\n",
|
348
|
+
"def get_fasted(s):\n",
|
349
|
+
" if pd.isna(s[\"fasted_duration_delta\"]) and not has_glucose_value(s):\n",
|
350
|
+
" return None\n",
|
351
|
+
" elif pd.isna(s[\"fasted_duration_delta\"]) and has_glucose_value(s):\n",
|
352
|
+
" return has_glucose_value(s)\n",
|
353
|
+
" if s[\"fasted_duration_delta\"] <= pd.Timedelta(hours=8):\n",
|
354
|
+
" return NO\n",
|
355
|
+
" return YES\n",
|
356
|
+
"\n",
|
357
|
+
"def has_glucose_value(s):\n",
|
358
|
+
" if not pd.isna(s[\"fbg_value\"]):\n",
|
359
|
+
" return \"FBG only\"\n",
|
360
|
+
" if not pd.isna(s[\"ogtt_value\"]) and not pd.isna(s[\"fbg_value\"]):\n",
|
361
|
+
" return \"FBG-OGTT\"\n",
|
362
|
+
" elif pd.isna(s[\"ogtt_value\"]) and pd.isna(s[\"ogtt2_value\"]) and pd.isna(s[\"fbg_value\"]) and pd.isna(s[\"fbg2_value\"]):\n",
|
363
|
+
" return False\n",
|
364
|
+
" return True\n",
|
365
|
+
"\n",
|
366
|
+
"df[\"fasted_duration_delta\"] = df.apply(get_duration_dh_to_timedelta, axis=1)\n",
|
367
|
+
"df[\"fasted\"] = df.apply(get_fasted, axis=1)\n"
|
368
|
+
]
|
369
|
+
},
|
370
|
+
{
|
371
|
+
"cell_type": "code",
|
372
|
+
"execution_count": null,
|
373
|
+
"id": "25",
|
374
|
+
"metadata": {},
|
375
|
+
"outputs": [],
|
376
|
+
"source": [
|
377
|
+
"df[(df.subject_identifier.notna()) & (df.subject_identifier.str.len() < 20)].eligible.value_counts()"
|
378
|
+
]
|
379
|
+
},
|
380
|
+
{
|
381
|
+
"cell_type": "code",
|
382
|
+
"execution_count": null,
|
383
|
+
"id": "26",
|
384
|
+
"metadata": {},
|
385
|
+
"outputs": [],
|
386
|
+
"source": [
|
387
|
+
"df_tmp = df[cond9 & (df.fasted==YES)].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
388
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
389
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
390
|
+
"df_tmp"
|
391
|
+
]
|
392
|
+
},
|
393
|
+
{
|
394
|
+
"cell_type": "code",
|
395
|
+
"execution_count": null,
|
396
|
+
"id": "27",
|
397
|
+
"metadata": {},
|
398
|
+
"outputs": [],
|
399
|
+
"source": [
|
400
|
+
"df_tmp = df[cond9 & ~(df.fasted==YES)].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
401
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
402
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
403
|
+
"df_tmp"
|
404
|
+
]
|
405
|
+
},
|
406
|
+
{
|
407
|
+
"cell_type": "code",
|
408
|
+
"execution_count": null,
|
409
|
+
"id": "28",
|
410
|
+
"metadata": {},
|
411
|
+
"outputs": [],
|
412
|
+
"source": [
|
413
|
+
"df[cond9 & ~(df.fasted==YES) & (df.subject_identifier.str.len() < 20)][[\"screening_identifier\", \"subject_identifier\"]]"
|
414
|
+
]
|
415
|
+
},
|
416
|
+
{
|
417
|
+
"cell_type": "code",
|
418
|
+
"execution_count": null,
|
419
|
+
"id": "29",
|
420
|
+
"metadata": {},
|
421
|
+
"outputs": [],
|
422
|
+
"source": [
|
423
|
+
"# never returned or not evaluated\n",
|
424
|
+
"# note some have part three started and 1 even has a fasting duration\n",
|
425
|
+
"cond10 = (cond9 & (df.eligible_part_three==\"To be determined\"))\n",
|
426
|
+
"# df[(df.fasted==YES) & cond_eligible].eligible_part_one.value_counts(dropna=False)\n",
|
427
|
+
"df_tmp = df[cond10].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
428
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
429
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
430
|
+
"df_tmp"
|
431
|
+
]
|
432
|
+
},
|
433
|
+
{
|
434
|
+
"cell_type": "code",
|
435
|
+
"execution_count": null,
|
436
|
+
"id": "30",
|
437
|
+
"metadata": {},
|
438
|
+
"outputs": [],
|
439
|
+
"source": [
|
440
|
+
"cond11 = (cond7 & (df.fasted==YES))\n",
|
441
|
+
"df_tmp = df[cond11].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
442
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
443
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
444
|
+
"df_tmp"
|
445
|
+
]
|
446
|
+
},
|
447
|
+
{
|
448
|
+
"cell_type": "code",
|
449
|
+
"execution_count": null,
|
450
|
+
"id": "31",
|
451
|
+
"metadata": {},
|
452
|
+
"outputs": [],
|
453
|
+
"source": [
|
454
|
+
"cond11 = (cond9 & ~(df.eligible_part_three==\"To be determined\") & (df.fasted==NO))\n",
|
455
|
+
"df_tmp = df[cond11].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
456
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
457
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
458
|
+
"df_tmp"
|
459
|
+
]
|
460
|
+
},
|
461
|
+
{
|
462
|
+
"cell_type": "code",
|
463
|
+
"execution_count": null,
|
464
|
+
"id": "32",
|
465
|
+
"metadata": {},
|
466
|
+
"outputs": [],
|
467
|
+
"source": [
|
468
|
+
"cond11 = (cond9 & ~(df.eligible_part_three==\"To be determined\") & ~(df.fbg_value.isna()))\n",
|
469
|
+
"df_tmp = df[cond11].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
470
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
471
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
472
|
+
"df_tmp"
|
473
|
+
]
|
474
|
+
},
|
475
|
+
{
|
476
|
+
"cell_type": "code",
|
477
|
+
"execution_count": null,
|
478
|
+
"id": "33",
|
479
|
+
"metadata": {},
|
480
|
+
"outputs": [],
|
481
|
+
"source": [
|
482
|
+
"df_tmp = df.eligible_part_three.value_counts(dropna=False).to_frame().reset_index()\n",
|
483
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
484
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
485
|
+
"df_tmp"
|
486
|
+
]
|
487
|
+
},
|
488
|
+
{
|
489
|
+
"cell_type": "code",
|
490
|
+
"execution_count": null,
|
491
|
+
"id": "34",
|
492
|
+
"metadata": {},
|
493
|
+
"outputs": [],
|
494
|
+
"source": [
|
495
|
+
"df_tmp = df[all_conds & (df.agree_to_p3==YES) & (df.already_fasted==NO) & ~(df.fasted==YES) & cond_eligible].gender.value_counts(dropna=False).to_frame().reset_index()\n",
|
496
|
+
"df_tmp[\"total\"] = df_tmp[\"count\"].sum()\n",
|
497
|
+
"df_tmp[\"prop\"] = df_tmp[\"count\"] / df_tmp[\"total\"]\n",
|
498
|
+
"df_tmp\n"
|
499
|
+
]
|
500
|
+
},
|
501
|
+
{
|
502
|
+
"cell_type": "code",
|
503
|
+
"execution_count": null,
|
504
|
+
"id": "35",
|
505
|
+
"metadata": {},
|
506
|
+
"outputs": [],
|
507
|
+
"source": []
|
508
|
+
},
|
509
|
+
{
|
510
|
+
"cell_type": "code",
|
511
|
+
"execution_count": null,
|
512
|
+
"id": "36",
|
513
|
+
"metadata": {},
|
514
|
+
"outputs": [],
|
515
|
+
"source": []
|
516
|
+
},
|
517
|
+
{
|
518
|
+
"cell_type": "code",
|
519
|
+
"execution_count": null,
|
520
|
+
"id": "37",
|
521
|
+
"metadata": {},
|
522
|
+
"outputs": [],
|
523
|
+
"source": [
|
524
|
+
"all_conds = (all_conds & (df.agree_to_p3==YES) & (df.already_fasted==NO))\n",
|
525
|
+
"cond_eligible = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
526
|
+
"df[all_conds & cond_eligible & (df.eligible_part_three.isin([YES, NO]))].gender.value_counts(dropna=False)\n"
|
527
|
+
]
|
528
|
+
},
|
529
|
+
{
|
530
|
+
"cell_type": "code",
|
531
|
+
"execution_count": null,
|
532
|
+
"id": "38",
|
533
|
+
"metadata": {},
|
534
|
+
"outputs": [],
|
535
|
+
"source": []
|
536
|
+
},
|
537
|
+
{
|
538
|
+
"cell_type": "code",
|
539
|
+
"execution_count": null,
|
540
|
+
"id": "39",
|
541
|
+
"metadata": {},
|
542
|
+
"outputs": [],
|
543
|
+
"source": [
|
544
|
+
"print(len(df[(df[\"ogtt_base_datetime\"].notna()) | (df[\"ogtt2_base_datetime\"].notna())]))\n",
|
545
|
+
"print(len(df[(df[\"ogtt_datetime\"].notna()) | (df[\"ogtt2_datetime\"].notna())]))\n",
|
546
|
+
"print(len(df[(df[\"ogtt_value\"].notna()) | (df[\"ogtt2_value\"].notna())]))\n",
|
547
|
+
"# len(df[(df[\"fbg_value\"].notna()) | (df[\"fbg2_value\"].notna())])\n",
|
548
|
+
"df[((df[\"ogtt_value\"].notna()) | (df[\"ogtt2_value\"].notna()) | (df[\"fbg_value\"].notna()) | (df[\"fbg2_value\"].notna())) & (df[\"has_dm\"]==\"No\")]\n",
|
549
|
+
" "
|
550
|
+
]
|
551
|
+
},
|
552
|
+
{
|
553
|
+
"cell_type": "code",
|
554
|
+
"execution_count": null,
|
555
|
+
"id": "40",
|
556
|
+
"metadata": {},
|
557
|
+
"outputs": [],
|
558
|
+
"source": [
|
559
|
+
"# counts by site - row, column\n",
|
560
|
+
"gender_by_site = pd.crosstab(df['site'], df['gender'], margins=True)\n",
|
561
|
+
"gender_by_site.columns = [\"F (%)\", \"M (%)\", \"(%)\"]\n",
|
562
|
+
"gender_by_site.index = [\"amana\", \"hindu-mandal\", \"mnazi-moja\", \"mwananyamala\", \"temeke\", \"total (%)\"]\n",
|
563
|
+
"gender_by_site"
|
564
|
+
]
|
565
|
+
},
|
566
|
+
{
|
567
|
+
"cell_type": "code",
|
568
|
+
"execution_count": null,
|
569
|
+
"id": "41",
|
570
|
+
"metadata": {},
|
571
|
+
"outputs": [],
|
572
|
+
"source": [
|
573
|
+
"round(gender_by_site/len(df) , 3) * 100\n"
|
574
|
+
]
|
575
|
+
},
|
576
|
+
{
|
577
|
+
"cell_type": "code",
|
578
|
+
"execution_count": null,
|
579
|
+
"id": "42",
|
580
|
+
"metadata": {},
|
581
|
+
"outputs": [],
|
582
|
+
"source": [
|
583
|
+
"\n",
|
584
|
+
"round(gender_by_site.div(gender_by_site[\"(%)\"], axis=0) , 3) * 100\n"
|
585
|
+
]
|
586
|
+
},
|
587
|
+
{
|
588
|
+
"cell_type": "code",
|
589
|
+
"execution_count": null,
|
590
|
+
"id": "43",
|
591
|
+
"metadata": {},
|
592
|
+
"outputs": [],
|
593
|
+
"source": [
|
594
|
+
"# has_dm fillna with unk\n",
|
595
|
+
"df[\"has_dm\"] = df[\"has_dm\"].apply(lambda x: \"unk\" if not x else x)\n",
|
596
|
+
"\n",
|
597
|
+
"# in_catchment =\n",
|
598
|
+
"df[\"in_catchment\"] = (df[\"lives_nearby\"] == \"Yes\") & (df[\"staying_nearby_12\"] == \"Yes\")\n",
|
599
|
+
"\n"
|
600
|
+
]
|
601
|
+
},
|
602
|
+
{
|
603
|
+
"cell_type": "code",
|
604
|
+
"execution_count": null,
|
605
|
+
"id": "44",
|
606
|
+
"metadata": {},
|
607
|
+
"outputs": [],
|
608
|
+
"source": [
|
609
|
+
"# run crosstabs"
|
610
|
+
]
|
611
|
+
},
|
612
|
+
{
|
613
|
+
"cell_type": "code",
|
614
|
+
"execution_count": null,
|
615
|
+
"id": "45",
|
616
|
+
"metadata": {},
|
617
|
+
"outputs": [],
|
618
|
+
"source": [
|
619
|
+
"# crosstab by has_dm, gender\n",
|
620
|
+
"df_crosstab = pd.crosstab(df['has_dm'], df['gender'], margins=True, dropna=False)\n",
|
621
|
+
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
622
|
+
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
623
|
+
"df_crosstab"
|
624
|
+
]
|
625
|
+
},
|
626
|
+
{
|
627
|
+
"cell_type": "code",
|
628
|
+
"execution_count": null,
|
629
|
+
"id": "46",
|
630
|
+
"metadata": {},
|
631
|
+
"outputs": [],
|
632
|
+
"source": [
|
633
|
+
"# crosstab by has_dm == Yes by on_dm_medication, gender\n",
|
634
|
+
"cond = (df[\"has_dm\"]==\"Yes\")\n",
|
635
|
+
"df_crosstab = pd.crosstab(df[cond]['on_dm_medication'], df[cond]['gender'], margins=True, dropna=False)\n",
|
636
|
+
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
637
|
+
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
638
|
+
"df_crosstab"
|
639
|
+
]
|
640
|
+
},
|
641
|
+
{
|
642
|
+
"cell_type": "code",
|
643
|
+
"execution_count": null,
|
644
|
+
"id": "47",
|
645
|
+
"metadata": {},
|
646
|
+
"outputs": [],
|
647
|
+
"source": [
|
648
|
+
"# crosstab by has_dm == No by on_dm_medication, gender\n",
|
649
|
+
"cond = (df[\"has_dm\"]==\"No\")\n",
|
650
|
+
"df_crosstab = pd.crosstab(df[cond]['on_dm_medication'], df[cond]['gender'], margins=True, dropna=False)\n",
|
651
|
+
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
652
|
+
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
653
|
+
"df_crosstab"
|
654
|
+
]
|
655
|
+
},
|
656
|
+
{
|
657
|
+
"cell_type": "code",
|
658
|
+
"execution_count": null,
|
659
|
+
"id": "48",
|
660
|
+
"metadata": {},
|
661
|
+
"outputs": [],
|
662
|
+
"source": [
|
663
|
+
"# crosstab by has_dm == No & on_dm_medication==No by stable on ART for 6m, gender\n",
|
664
|
+
"cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\")\n",
|
665
|
+
"neg_cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & ((df['on_rx_stable']!=\"Yes\") | (df['vl_undetectable']!=\"Yes\") | (df['art_six_months']!=\"Yes\"))\n",
|
666
|
+
"df_crosstab = pd.crosstab(df[neg_cond]['art_six_months'], df[neg_cond]['gender'], margins=True, dropna=False)\n",
|
667
|
+
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
668
|
+
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
669
|
+
"df_crosstab"
|
670
|
+
]
|
671
|
+
},
|
672
|
+
{
|
673
|
+
"cell_type": "code",
|
674
|
+
"execution_count": null,
|
675
|
+
"id": "49",
|
676
|
+
"metadata": {},
|
677
|
+
"outputs": [],
|
678
|
+
"source": [
|
679
|
+
"# \"lives_nearby\",\n",
|
680
|
+
"# \"staying_nearby_12\",\n",
|
681
|
+
"# crosstab by has_dm == No & on_dm_medication==No by stable on ART for 6m, gender\n",
|
682
|
+
"cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\")\n",
|
683
|
+
"\n",
|
684
|
+
"df_crosstab = pd.crosstab(df[cond]['in_catchment'], df[cond]['gender'], margins=True, dropna=False)\n",
|
685
|
+
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
686
|
+
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
687
|
+
"df_crosstab"
|
688
|
+
]
|
689
|
+
},
|
690
|
+
{
|
691
|
+
"cell_type": "code",
|
692
|
+
"execution_count": null,
|
693
|
+
"id": "50",
|
694
|
+
"metadata": {},
|
695
|
+
"outputs": [],
|
696
|
+
"source": [
|
697
|
+
"# crosstab pregnant, gender\n",
|
698
|
+
"cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") & (df['in_catchment']==True) & (df[\"in_catchment\"]==True)\n",
|
699
|
+
"df_crosstab = pd.crosstab(df[cond]['pregnant'], df[cond]['gender'], margins=True, dropna=False)\n",
|
700
|
+
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
701
|
+
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
702
|
+
"df_crosstab\n"
|
703
|
+
]
|
704
|
+
},
|
705
|
+
{
|
706
|
+
"cell_type": "code",
|
707
|
+
"execution_count": null,
|
708
|
+
"id": "51",
|
709
|
+
"metadata": {},
|
710
|
+
"outputs": [],
|
711
|
+
"source": [
|
712
|
+
"# crosstab on conditions (part two)\n",
|
713
|
+
"# \"congestive_heart_failure\",\n",
|
714
|
+
"# \"liver_disease\",\n",
|
715
|
+
"# \"alcoholism\",\n",
|
716
|
+
"# \"acute_metabolic_acidosis\",\n",
|
717
|
+
"# \"renal_function_condition\",\n",
|
718
|
+
"# \"tissue_hypoxia_condition\",\n",
|
719
|
+
"# \"acute_condition\",\n",
|
720
|
+
"# \"metformin_sensitivity\","
|
721
|
+
]
|
722
|
+
},
|
723
|
+
{
|
724
|
+
"cell_type": "code",
|
725
|
+
"execution_count": null,
|
726
|
+
"id": "52",
|
727
|
+
"metadata": {},
|
728
|
+
"outputs": [],
|
729
|
+
"source": [
|
730
|
+
"# crosstab (use for any single condition)\n",
|
731
|
+
"cond = (df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\") & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") & (df['in_catchment']==True) & (df[\"in_catchment\"]==True) & (df[\"pregnant\"]!=\"Yes\")\n",
|
732
|
+
"df_crosstab = pd.crosstab(df[cond]['metformin_sensitivity'], df[cond]['gender'], margins=True, dropna=False)\n",
|
733
|
+
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
734
|
+
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
735
|
+
"df_crosstab\n"
|
736
|
+
]
|
737
|
+
},
|
738
|
+
{
|
739
|
+
"cell_type": "code",
|
740
|
+
"execution_count": null,
|
741
|
+
"id": "53",
|
742
|
+
"metadata": {},
|
743
|
+
"outputs": [],
|
744
|
+
"source": [
|
745
|
+
"# crosstab meta_phase_two\n",
|
746
|
+
"cond = ((df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\")\n",
|
747
|
+
" & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") \n",
|
748
|
+
" & (df['in_catchment']==True) \n",
|
749
|
+
" & (df[\"pregnant\"]!=\"Yes\")\n",
|
750
|
+
" & (df[\"congestive_heart_failure\"]!=\"Yes\")\n",
|
751
|
+
" & (df[\"liver_disease\"]!=\"Yes\")\n",
|
752
|
+
" & (df[\"alcoholism\"]!=\"Yes\")\n",
|
753
|
+
" & (df[\"acute_metabolic_acidosis\"]!=\"Yes\")\n",
|
754
|
+
" & (df[\"renal_function_condition\"]!=\"Yes\")\n",
|
755
|
+
" & (df[\"tissue_hypoxia_condition\"]!=\"Yes\")\n",
|
756
|
+
" & (df[\"acute_condition\"]!=\"Yes\")\n",
|
757
|
+
" & (df[\"metformin_sensitivity\"]!=\"Yes\")\n",
|
758
|
+
" )\n",
|
759
|
+
"df_crosstab = pd.crosstab(df[cond]['meta_phase_two'], df[cond]['gender'], margins=True, dropna=False)\n",
|
760
|
+
"# has_dm_by_gender.columns = [\"female\", \"male\", \"rowtotal\"]\n",
|
761
|
+
"# has_dm_by_gender.index = [\"no\", \"yes\", \"unknown\", \"coltotal\"]\n",
|
762
|
+
"df_crosstab\n"
|
763
|
+
]
|
764
|
+
},
|
765
|
+
{
|
766
|
+
"cell_type": "code",
|
767
|
+
"execution_count": null,
|
768
|
+
"id": "54",
|
769
|
+
"metadata": {},
|
770
|
+
"outputs": [],
|
771
|
+
"source": [
|
772
|
+
"# crosstab (use for any single condition)\n",
|
773
|
+
"cond = ((df[\"has_dm\"]==\"No\") & (df['on_dm_medication']==\"No\")\n",
|
774
|
+
" & (df['on_rx_stable']==\"Yes\") & (df['vl_undetectable']==\"Yes\") & (df['art_six_months']==\"Yes\") \n",
|
775
|
+
" & (df['in_catchment']==True) \n",
|
776
|
+
" & (df[\"pregnant\"]!=\"Yes\")\n",
|
777
|
+
" & (df[\"congestive_heart_failure\"]!=\"Yes\")\n",
|
778
|
+
" & (df[\"liver_disease\"]!=\"Yes\")\n",
|
779
|
+
" & (df[\"alcoholism\"]!=\"Yes\")\n",
|
780
|
+
" & (df[\"acute_metabolic_acidosis\"]!=\"Yes\")\n",
|
781
|
+
" & (df[\"renal_function_condition\"]!=\"Yes\")\n",
|
782
|
+
" & (df[\"tissue_hypoxia_condition\"]!=\"Yes\")\n",
|
783
|
+
" & (df[\"acute_condition\"]!=\"Yes\")\n",
|
784
|
+
" & (df[\"metformin_sensitivity\"]!=\"Yes\")\n",
|
785
|
+
" & (df[\"meta_phase_two\"]!=\"Yes\")\n",
|
786
|
+
" )\n",
|
787
|
+
"len(df[cond])"
|
788
|
+
]
|
789
|
+
},
|
790
|
+
{
|
791
|
+
"cell_type": "code",
|
792
|
+
"execution_count": null,
|
793
|
+
"id": "55",
|
794
|
+
"metadata": {},
|
795
|
+
"outputs": [],
|
796
|
+
"source": [
|
797
|
+
"# check against eligible_part_one and two\n",
|
798
|
+
"\n",
|
799
|
+
"cond_eligible = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
800
|
+
"print([len(df[cond_eligible]), len(df[cond])])\n"
|
801
|
+
]
|
802
|
+
},
|
803
|
+
{
|
804
|
+
"cell_type": "code",
|
805
|
+
"execution_count": null,
|
806
|
+
"id": "56",
|
807
|
+
"metadata": {},
|
808
|
+
"outputs": [],
|
809
|
+
"source": [
|
810
|
+
"cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
811
|
+
"df_crosstab = pd.crosstab(df[cond]['agree_to_p3'], df[cond]['gender'], margins=True, dropna=False)\n",
|
812
|
+
"df_crosstab\n",
|
813
|
+
"\n"
|
814
|
+
]
|
815
|
+
},
|
816
|
+
{
|
817
|
+
"cell_type": "code",
|
818
|
+
"execution_count": null,
|
819
|
+
"id": "57",
|
820
|
+
"metadata": {},
|
821
|
+
"outputs": [],
|
822
|
+
"source": [
|
823
|
+
"cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
824
|
+
"df_crosstab = pd.crosstab(df[cond]['already_fasted'], df[cond]['gender'], margins=True, dropna=False)\n",
|
825
|
+
"df_crosstab\n"
|
826
|
+
]
|
827
|
+
},
|
828
|
+
{
|
829
|
+
"cell_type": "code",
|
830
|
+
"execution_count": null,
|
831
|
+
"id": "58",
|
832
|
+
"metadata": {},
|
833
|
+
"outputs": [],
|
834
|
+
"source": [
|
835
|
+
"# who returned and had an FBG performed\n",
|
836
|
+
"cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
837
|
+
"df_crosstab = pd.crosstab(df[cond]['fbg_value'].notna(), df[cond]['gender'], margins=True, dropna=False)\n",
|
838
|
+
"df_crosstab\n"
|
839
|
+
]
|
840
|
+
},
|
841
|
+
{
|
842
|
+
"cell_type": "code",
|
843
|
+
"execution_count": null,
|
844
|
+
"id": "59",
|
845
|
+
"metadata": {},
|
846
|
+
"outputs": [],
|
847
|
+
"source": [
|
848
|
+
"# df_crosstab / len(df[cond & cond2])"
|
849
|
+
]
|
850
|
+
},
|
851
|
+
{
|
852
|
+
"cell_type": "code",
|
853
|
+
"execution_count": null,
|
854
|
+
"id": "60",
|
855
|
+
"metadata": {},
|
856
|
+
"outputs": [],
|
857
|
+
"source": [
|
858
|
+
"# of 5616 look at FBG and OGTT counts. Run lines for \n",
|
859
|
+
"# glucose: fbg_value,fbg2_value,ogtt_value,ogtt2_value,\n",
|
860
|
+
"# BP: sys_blood_pressure_one, sys_blood_pressure_two,dia_blood_pressure_one, dia_blood_pressure_two \n",
|
861
|
+
"cond = (df[\"eligible_part_one\"]==\"Yes\") & (df[\"eligible_part_two\"]==\"Yes\") & (df[\"fbg_value\"].notna())\n",
|
862
|
+
"\n",
|
863
|
+
"df_crosstab = pd.crosstab(df[cond]['hba1c_value'].notna(), df[cond]['gender'], margins=True, dropna=False)\n",
|
864
|
+
"df_crosstab\n"
|
865
|
+
]
|
866
|
+
},
|
867
|
+
{
|
868
|
+
"cell_type": "code",
|
869
|
+
"execution_count": null,
|
870
|
+
"id": "61",
|
871
|
+
"metadata": {},
|
872
|
+
"outputs": [],
|
873
|
+
"source": []
|
874
|
+
},
|
875
|
+
{
|
876
|
+
"cell_type": "code",
|
877
|
+
"execution_count": null,
|
878
|
+
"id": "62",
|
879
|
+
"metadata": {},
|
880
|
+
"outputs": [],
|
881
|
+
"source": [
|
882
|
+
"# let's look at screening glucose and BP measurements"
|
883
|
+
]
|
884
|
+
},
|
885
|
+
{
|
886
|
+
"cell_type": "code",
|
887
|
+
"execution_count": null,
|
888
|
+
"id": "63",
|
889
|
+
"metadata": {},
|
890
|
+
"outputs": [],
|
891
|
+
"source": [
|
892
|
+
"cond = ((df[\"eligible_part_one\"]==\"Yes\") \n",
|
893
|
+
" & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
894
|
+
" & (df[\"fasted\"]==\"Yes\")\n",
|
895
|
+
" & ((df['fbg_value'].notna()) | (df['ogtt_value'].notna()) | (df['fbg2_value'].notna()) | (df['ogtt2_value'].notna()))\n",
|
896
|
+
" )\n"
|
897
|
+
]
|
898
|
+
},
|
899
|
+
{
|
900
|
+
"cell_type": "code",
|
901
|
+
"execution_count": null,
|
902
|
+
"id": "64",
|
903
|
+
"metadata": {},
|
904
|
+
"outputs": [],
|
905
|
+
"source": [
|
906
|
+
"cond = ((df[\"eligible_part_one\"]==\"Yes\") \n",
|
907
|
+
" & (df[\"eligible_part_two\"]==\"Yes\")\n",
|
908
|
+
" & (df[\"fasted\"]==\"Yes\")\n",
|
909
|
+
" & (df['fbg_value'].notna())\n",
|
910
|
+
" )\n"
|
911
|
+
]
|
912
|
+
},
|
913
|
+
{
|
914
|
+
"cell_type": "code",
|
915
|
+
"execution_count": null,
|
916
|
+
"id": "65",
|
917
|
+
"metadata": {},
|
918
|
+
"outputs": [],
|
919
|
+
"source": [
|
920
|
+
"len(df[cond])"
|
921
|
+
]
|
922
|
+
},
|
923
|
+
{
|
924
|
+
"cell_type": "code",
|
925
|
+
"execution_count": null,
|
926
|
+
"id": "66",
|
927
|
+
"metadata": {},
|
928
|
+
"outputs": [],
|
929
|
+
"source": [
|
930
|
+
"cond = cond & (df[\"ogtt_value\"].notna())\n",
|
931
|
+
"df_crosstab = pd.crosstab(df[cond]['fbg_value'].notna(), df[cond]['gender'], margins=True, dropna=False)\n",
|
932
|
+
"df_crosstab\n"
|
933
|
+
]
|
934
|
+
},
|
935
|
+
{
|
936
|
+
"cell_type": "code",
|
937
|
+
"execution_count": null,
|
938
|
+
"id": "67",
|
939
|
+
"metadata": {},
|
940
|
+
"outputs": [],
|
941
|
+
"source": [
|
942
|
+
"df2 = df[cond]\n",
|
943
|
+
"df2[\"fbg\"] = df2[\"fbg_value\"]\n",
|
944
|
+
"df2.loc[df[\"fbg_value\"].notna() & df2[\"fbg2_value\"].notna(), \"fbg\"] = df2[\"fbg2_value\"]\n",
|
945
|
+
"df2[\"fbg\"] = pd.to_numeric(df2[\"fbg\"])"
|
946
|
+
]
|
947
|
+
},
|
948
|
+
{
|
949
|
+
"cell_type": "code",
|
950
|
+
"execution_count": null,
|
951
|
+
"id": "68",
|
952
|
+
"metadata": {},
|
953
|
+
"outputs": [],
|
954
|
+
"source": [
|
955
|
+
"df2[df2[\"fbg2_value\"].notna()][[\"fbg\", \"fbg_value\",\"fbg2_value\"]]"
|
956
|
+
]
|
957
|
+
},
|
958
|
+
{
|
959
|
+
"cell_type": "code",
|
960
|
+
"execution_count": null,
|
961
|
+
"id": "69",
|
962
|
+
"metadata": {},
|
963
|
+
"outputs": [],
|
964
|
+
"source": [
|
965
|
+
"df2['fbg'].describe()"
|
966
|
+
]
|
967
|
+
},
|
968
|
+
{
|
969
|
+
"cell_type": "code",
|
970
|
+
"execution_count": null,
|
971
|
+
"id": "70",
|
972
|
+
"metadata": {},
|
973
|
+
"outputs": [],
|
974
|
+
"source": []
|
975
|
+
},
|
976
|
+
{
|
977
|
+
"cell_type": "code",
|
978
|
+
"execution_count": null,
|
979
|
+
"id": "71",
|
980
|
+
"metadata": {},
|
981
|
+
"outputs": [],
|
982
|
+
"source": []
|
983
|
+
},
|
984
|
+
{
|
985
|
+
"cell_type": "code",
|
986
|
+
"execution_count": null,
|
987
|
+
"id": "72",
|
988
|
+
"metadata": {},
|
989
|
+
"outputs": [],
|
990
|
+
"source": [
|
991
|
+
"# PART TWO\n",
|
992
|
+
"# \"congestive_heart_failure\",\n",
|
993
|
+
"# \"liver_disease\",\n",
|
994
|
+
"# \"alcoholism\",\n",
|
995
|
+
"# \"acute_metabolic_acidosis\",\n",
|
996
|
+
"# \"renal_function_condition\",\n",
|
997
|
+
"# \"tissue_hypoxia_condition\",\n",
|
998
|
+
"# \"acute_condition\",\n",
|
999
|
+
"# \"metformin_sensitivity\","
|
1000
|
+
]
|
1001
|
+
},
|
1002
|
+
{
|
1003
|
+
"cell_type": "code",
|
1004
|
+
"execution_count": null,
|
1005
|
+
"id": "73",
|
1006
|
+
"metadata": {},
|
1007
|
+
"outputs": [],
|
1008
|
+
"source": [
|
1009
|
+
"# part one variables\n",
|
1010
|
+
"\n",
|
1011
|
+
"# \"meta_phase_two\",\n",
|
1012
|
+
"# \"hiv_pos\",\n",
|
1013
|
+
"# \"art_six_months\",\n",
|
1014
|
+
"# \"on_rx_stable\",\n",
|
1015
|
+
"# \"vl_undetectable\",\n",
|
1016
|
+
"# \"lives_nearby\",\n",
|
1017
|
+
"# \"staying_nearby_12\",\n",
|
1018
|
+
"# \"pregnant\",\n"
|
1019
|
+
]
|
1020
|
+
},
|
1021
|
+
{
|
1022
|
+
"cell_type": "code",
|
1023
|
+
"execution_count": null,
|
1024
|
+
"id": "74",
|
1025
|
+
"metadata": {},
|
1026
|
+
"outputs": [],
|
1027
|
+
"source": []
|
1028
|
+
},
|
1029
|
+
{
|
1030
|
+
"cell_type": "code",
|
1031
|
+
"execution_count": null,
|
1032
|
+
"id": "75",
|
1033
|
+
"metadata": {},
|
1034
|
+
"outputs": [],
|
1035
|
+
"source": [
|
1036
|
+
"# only fasted for 7h\n",
|
1037
|
+
"df[df.subject_identifier==\"105-30-0164-8\"].to_dict()"
|
1038
|
+
]
|
1039
|
+
},
|
1040
|
+
{
|
1041
|
+
"cell_type": "code",
|
1042
|
+
"execution_count": null,
|
1043
|
+
"id": "76",
|
1044
|
+
"metadata": {},
|
1045
|
+
"outputs": [],
|
1046
|
+
"source": [
|
1047
|
+
"df[~(df.subject_identifier.isna())][[\"fasted\", \"fasted_duration_delta\"]]\n"
|
1048
|
+
]
|
1049
|
+
},
|
1050
|
+
{
|
1051
|
+
"cell_type": "code",
|
1052
|
+
"execution_count": null,
|
1053
|
+
"id": "77",
|
1054
|
+
"metadata": {},
|
1055
|
+
"outputs": [],
|
1056
|
+
"source": []
|
1057
|
+
},
|
1058
|
+
{
|
1059
|
+
"cell_type": "code",
|
1060
|
+
"execution_count": null,
|
1061
|
+
"id": "78",
|
1062
|
+
"metadata": {},
|
1063
|
+
"outputs": [],
|
1064
|
+
"source": []
|
1065
|
+
},
|
1066
|
+
{
|
1067
|
+
"cell_type": "code",
|
1068
|
+
"execution_count": null,
|
1069
|
+
"id": "79",
|
1070
|
+
"metadata": {},
|
1071
|
+
"outputs": [],
|
1072
|
+
"source": [
|
1073
|
+
"from meta_prn.models import OnSchedule, OffSchedule, OnScheduleDmReferral, OffScheduleDmReferral\n",
|
1074
|
+
"df_on_meta = read_frame(OnSchedule.objects.values(\"subject_identifier\", \"onschedule_datetime\").all())\n",
|
1075
|
+
"df_off_meta = read_frame(OffSchedule.objects.values(\"subject_identifier\", \"offschedule_datetime\").all())\n",
|
1076
|
+
"df_on = read_frame(OnScheduleDmReferral.objects.values(\"subject_identifier\", \"onschedule_datetime\").all())\n",
|
1077
|
+
"df_off = read_frame(OffScheduleDmReferral.objects.values(\"subject_identifier\", \"offschedule_datetime\").all())\n"
|
1078
|
+
]
|
1079
|
+
},
|
1080
|
+
{
|
1081
|
+
"cell_type": "markdown",
|
1082
|
+
"id": "80",
|
1083
|
+
"metadata": {},
|
1084
|
+
"source": []
|
1085
|
+
},
|
1086
|
+
{
|
1087
|
+
"cell_type": "code",
|
1088
|
+
"execution_count": null,
|
1089
|
+
"id": "81",
|
1090
|
+
"metadata": {},
|
1091
|
+
"outputs": [],
|
1092
|
+
"source": [
|
1093
|
+
"def get_meta_duration(s):\n",
|
1094
|
+
" meta_off = get_utcnow() if pd.isna(s[\"meta_offschedule_datetime\"]) else s[\"meta_offschedule_datetime\"]\n",
|
1095
|
+
" return meta_off - s[\"meta_onschedule_datetime\"] \n",
|
1096
|
+
"\n",
|
1097
|
+
"def get_dm_duration(s):\n",
|
1098
|
+
" dm_off = get_utcnow() if pd.isna(s[\"dm_offschedule_datetime\"]) else s[\"dm_offschedule_datetime\"]\n",
|
1099
|
+
" return dm_off - s[\"dm_onschedule_datetime\"] \n",
|
1100
|
+
"\n",
|
1101
|
+
"df_status = pd.merge(df_on_meta, df_off_meta, on=\"subject_identifier\", how=\"left\") \n",
|
1102
|
+
"df_status.columns = [\"subject_identifier\", \"meta_onschedule_datetime\", \"meta_offschedule_datetime\"]\n",
|
1103
|
+
"df_status = df_status.merge(df_on, on=\"subject_identifier\", how=\"left\")\n",
|
1104
|
+
"df_status = df_status.merge(df_off, on=\"subject_identifier\", how=\"left\")\n",
|
1105
|
+
"df_status.columns = [\"subject_identifier\", \"meta_onschedule_datetime\", \"meta_offschedule_datetime\", \"dm_onschedule_datetime\", \"dm_offschedule_datetime\"]\n",
|
1106
|
+
"df_status[\"meta_duration\"] = df_status.apply(get_meta_duration, axis=1)\n",
|
1107
|
+
"df_status[\"meta_duration_days\"] = df_status[\"meta_duration\"].dt.days\n",
|
1108
|
+
"df_status[\"dm_duration\"] = df_status.apply(get_dm_duration, axis=1)\n",
|
1109
|
+
"df_status[\"dm_duration_days\"] = df_status[\"dm_duration\"].dt.days\n",
|
1110
|
+
"df_status.to_csv(report_folder / \"meta_schedule_status.csv\", index=False)"
|
1111
|
+
]
|
1112
|
+
},
|
1113
|
+
{
|
1114
|
+
"cell_type": "code",
|
1115
|
+
"execution_count": null,
|
1116
|
+
"id": "82",
|
1117
|
+
"metadata": {},
|
1118
|
+
"outputs": [],
|
1119
|
+
"source": [
|
1120
|
+
"df_on = df_on.merge(df_off, on=\"subject_identifier\", how=\"left\")\n"
|
1121
|
+
]
|
1122
|
+
},
|
1123
|
+
{
|
1124
|
+
"cell_type": "code",
|
1125
|
+
"execution_count": null,
|
1126
|
+
"id": "83",
|
1127
|
+
"metadata": {},
|
1128
|
+
"outputs": [],
|
1129
|
+
"source": [
|
1130
|
+
"from edc_utils import get_utcnow\n",
|
1131
|
+
"\n",
|
1132
|
+
"now = get_utcnow()\n",
|
1133
|
+
"df_on[\"duration\"] = now - df_on[\"onschedule_datetime\"] "
|
1134
|
+
]
|
1135
|
+
},
|
1136
|
+
{
|
1137
|
+
"cell_type": "code",
|
1138
|
+
"execution_count": null,
|
1139
|
+
"id": "84",
|
1140
|
+
"metadata": {},
|
1141
|
+
"outputs": [],
|
1142
|
+
"source": [
|
1143
|
+
"df_on[df_on.duration >= pd.Timedelta(days=182)].to_stata\n"
|
1144
|
+
]
|
1145
|
+
},
|
1146
|
+
{
|
1147
|
+
"cell_type": "code",
|
1148
|
+
"execution_count": null,
|
1149
|
+
"id": "85",
|
1150
|
+
"metadata": {},
|
1151
|
+
"outputs": [],
|
1152
|
+
"source": []
|
1153
|
+
}
|
1154
|
+
],
|
1155
|
+
"metadata": {
|
1156
|
+
"kernelspec": {
|
1157
|
+
"display_name": "Python 3 (ipykernel)",
|
1158
|
+
"language": "python",
|
1159
|
+
"name": "python3"
|
1160
|
+
},
|
1161
|
+
"language_info": {
|
1162
|
+
"codemirror_mode": {
|
1163
|
+
"name": "ipython",
|
1164
|
+
"version": 3
|
1165
|
+
},
|
1166
|
+
"file_extension": ".py",
|
1167
|
+
"mimetype": "text/x-python",
|
1168
|
+
"name": "python",
|
1169
|
+
"nbconvert_exporter": "python",
|
1170
|
+
"pygments_lexer": "ipython3",
|
1171
|
+
"version": "3.12.4"
|
1172
|
+
}
|
1173
|
+
},
|
1174
|
+
"nbformat": 4,
|
1175
|
+
"nbformat_minor": 5
|
1176
|
+
}
|