meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. meta_ae/action_items.py +10 -2
  2. meta_ae/baker_recipes.py +1 -2
  3. meta_ae/tests/tests/test_actions.py +1 -2
  4. meta_analytics/README.rst +1 -2
  5. meta_analytics/notebooks/anu.ipynb +95 -0
  6. meta_analytics/notebooks/appointment_planning.ipynb +329 -0
  7. meta_analytics/notebooks/arvs.ipynb +103 -0
  8. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
  9. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
  10. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
  11. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
  12. meta_analytics/notebooks/followup_examination.ipynb +141 -0
  13. meta_analytics/notebooks/hba1c.ipynb +136 -0
  14. meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
  15. meta_analytics/notebooks/incidence.ipynb +232 -0
  16. meta_analytics/notebooks/liver.ipynb +389 -0
  17. meta_analytics/notebooks/magreth.ipynb +645 -0
  18. meta_analytics/notebooks/monitoring_report.ipynb +721 -448
  19. meta_analytics/notebooks/pharmacy.ipynb +405 -306
  20. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
  21. meta_analytics/notebooks/steering.ipynb +61 -0
  22. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
  23. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
  24. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
  25. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
  26. meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
  27. meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
  28. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
  29. meta_analytics/notebooks/ven.ipynb +191 -0
  30. meta_analytics/notebooks/vitals.ipynb +263 -0
  31. meta_edc/settings/debug.py +3 -2
  32. meta_edc/urls.py +1 -0
  33. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
  34. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
  35. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
  36. meta_labs/reportables.py +14 -11
  37. meta_labs/tests/test_reportables.py +33 -12
  38. meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
  39. meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
  40. meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
  41. meta_prn/form_validators/end_of_study.py +2 -2
  42. meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
  43. meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
  44. meta_prn/models/end_of_study.py +2 -0
  45. meta_prn/models/off_study_medication.py +2 -0
  46. meta_reports/admin/last_imp_refill_admin.py +3 -2
  47. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
  48. meta_screening/form_validators/screening_part_three.py +6 -1
  49. meta_screening/tests/meta_test_case_mixin.py +3 -0
  50. meta_screening/tests/tests/test_forms.py +9 -2
  51. meta_screening/tests/tests/test_screening_part_three.py +11 -14
  52. meta_subject/action_items.py +2 -3
  53. meta_subject/choices.py +2 -1
  54. meta_subject/form_validators/delivery_form_validator.py +1 -0
  55. meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
  56. meta_subject/forms/delivery_form.py +2 -0
  57. meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
  58. meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
  59. meta_subject/tests/tests/test_egfr.py +5 -5
  60. meta_analytics/dataframes/enrolled/__init__.py +0 -0
  61. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
  62. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
  63. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,435 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "%%capture\n",
11
+ "import os\n",
12
+ "from pathlib import Path\n",
13
+ "import pandas as pd\n",
14
+ "from dj_notebook import activate\n",
15
+ "import numpy as np\n",
16
+ "from django_pandas.io import read_frame\n",
17
+ "\n",
18
+ "env_file = os.environ[\"META_ENV\"]\n",
19
+ "reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
20
+ "analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
21
+ "pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
22
+ "plus = activate(dotenv_file=env_file)"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "id": "1",
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "from meta_rando.models import RandomizationList"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": null,
38
+ "id": "2",
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "df_rando = read_frame(RandomizationList.objects.filter(subject_identifier__isnull=False))"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "id": "3",
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "df_all_sae = pd.read_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_all_sae.csv\", index_col=False)"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "id": "4",
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "df_all_sae = df_all_sae[['subject_identifier',\n",
63
+ " 'age_in_years',\n",
64
+ " 'gender',\n",
65
+ " 'event_term1',\n",
66
+ " 'event_term2',\n",
67
+ " 'event',\n",
68
+ " 'grade',\n",
69
+ " 'outcome']].copy()\n",
70
+ "\n",
71
+ "df_all_sae.reset_index(drop=True, inplace=True)\n",
72
+ "df_all_sae"
73
+ ]
74
+ },
75
+ {
76
+ "cell_type": "code",
77
+ "execution_count": null,
78
+ "id": "5",
79
+ "metadata": {},
80
+ "outputs": [],
81
+ "source": [
82
+ "df_all_sae[\"grade\"] = df_all_sae[\"grade\"].apply(lambda x: 3 if x == \"Grade 3\" else x)\n",
83
+ "df_all_sae[\"grade\"] = df_all_sae[\"grade\"].apply(lambda x: 4 if x == \"Grade 4\" else x)\n",
84
+ "df_all_sae[\"grade\"] = df_all_sae[\"grade\"].apply(lambda x: 5 if x == \"Grade 5\" else x)"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": null,
90
+ "id": "6",
91
+ "metadata": {},
92
+ "outputs": [],
93
+ "source": [
94
+ "df_all_sae.loc[df_all_sae[\"subject_identifier\"]==\"105-20-0075-5\", \"subject_identifier\"] = \"105-20-0075-7\"\n",
95
+ "df_all_sae = df_all_sae.merge(df_rando[[\"subject_identifier\", \"assignment\"]], on=\"subject_identifier\", how=\"left\")\n",
96
+ "df_all_sae.reset_index(drop=True, inplace=True)"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": null,
102
+ "id": "7",
103
+ "metadata": {},
104
+ "outputs": [],
105
+ "source": [
106
+ "df_all_sae[df_all_sae.assignment.isna()]"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": null,
112
+ "id": "8",
113
+ "metadata": {},
114
+ "outputs": [],
115
+ "source": [
116
+ "list(df_all_sae.columns)"
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "execution_count": null,
122
+ "id": "9",
123
+ "metadata": {},
124
+ "outputs": [],
125
+ "source": [
126
+ "df_all_sae.to_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_all_sae_by_arm.csv\", index=False)\n",
127
+ "df_all_sae.rename(columns={\"gender\": \"sex\"}, inplace=True)\n",
128
+ "df_all_sae[['subject_identifier',\n",
129
+ " 'age_in_years',\n",
130
+ " 'gender',\n",
131
+ " 'event_term1',\n",
132
+ " 'event_term2',\n",
133
+ " 'event',\n",
134
+ " 'grade',\n",
135
+ " 'outcome',\n",
136
+ "]].to_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_all_sae_ew.csv\", index=False)"
137
+ ]
138
+ },
139
+ {
140
+ "cell_type": "code",
141
+ "execution_count": null,
142
+ "id": "10",
143
+ "metadata": {},
144
+ "outputs": [],
145
+ "source": [
146
+ "df_all_sae.groupby(by=[\"assignment\", \"grade\"]).size()"
147
+ ]
148
+ },
149
+ {
150
+ "cell_type": "code",
151
+ "execution_count": null,
152
+ "id": "11",
153
+ "metadata": {},
154
+ "outputs": [],
155
+ "source": [
156
+ "df_deaths = pd.read_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_deaths.csv\")"
157
+ ]
158
+ },
159
+ {
160
+ "cell_type": "code",
161
+ "execution_count": null,
162
+ "id": "12",
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "df_deaths = df_deaths[['subject_identifier',\n",
167
+ " 'age_in_years',\n",
168
+ " 'sex',\n",
169
+ " 'event_term1',\n",
170
+ " 'event_term2',\n",
171
+ " 'Seriousness',\n",
172
+ " 'grade',\n",
173
+ " 'outcome']].copy()"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": null,
179
+ "id": "13",
180
+ "metadata": {},
181
+ "outputs": [],
182
+ "source": [
183
+ "df_deaths[\"grade\"] = df_deaths[\"grade\"].apply(lambda x: 3 if x == \"Grade 3\" else x)\n",
184
+ "df_deaths[\"grade\"] = df_deaths[\"grade\"].apply(lambda x: 4 if x == \"Grade 4\" else x)\n",
185
+ "df_deaths[\"grade\"] = df_deaths[\"grade\"].apply(lambda x: 5 if x == \"Grade 5\" else x)\n",
186
+ "df_deaths = df_deaths.merge(df_rando[[\"subject_identifier\", \"assignment\"]], on=\"subject_identifier\", how=\"left\")\n",
187
+ "df_deaths.reset_index(drop=True, inplace=True)"
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": null,
193
+ "id": "14",
194
+ "metadata": {},
195
+ "outputs": [],
196
+ "source": [
197
+ "df_deaths[df_deaths.assignment.isna()]"
198
+ ]
199
+ },
200
+ {
201
+ "cell_type": "code",
202
+ "execution_count": null,
203
+ "id": "15",
204
+ "metadata": {},
205
+ "outputs": [],
206
+ "source": [
207
+ "list(df_deaths.columns)"
208
+ ]
209
+ },
210
+ {
211
+ "cell_type": "code",
212
+ "execution_count": null,
213
+ "id": "16",
214
+ "metadata": {},
215
+ "outputs": [],
216
+ "source": [
217
+ "df_deaths"
218
+ ]
219
+ },
220
+ {
221
+ "cell_type": "code",
222
+ "execution_count": null,
223
+ "id": "17",
224
+ "metadata": {},
225
+ "outputs": [],
226
+ "source": [
227
+ "df_deaths.to_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_deaths_by_arm.csv\", index=False)\n",
228
+ "df_deaths[['subject_identifier',\n",
229
+ " 'age_in_years',\n",
230
+ " 'sex',\n",
231
+ " 'event_term1',\n",
232
+ " 'event_term2',\n",
233
+ " 'Seriousness',\n",
234
+ " 'grade',\n",
235
+ " 'outcome',\n",
236
+ "]].to_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_deaths_ew.csv\", index=False)"
237
+ ]
238
+ },
239
+ {
240
+ "cell_type": "code",
241
+ "execution_count": null,
242
+ "id": "18",
243
+ "metadata": {},
244
+ "outputs": [],
245
+ "source": [
246
+ "df_renal_dys = pd.read_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_renal_dysfunction_sae.csv\")"
247
+ ]
248
+ },
249
+ {
250
+ "cell_type": "code",
251
+ "execution_count": null,
252
+ "id": "19",
253
+ "metadata": {},
254
+ "outputs": [],
255
+ "source": [
256
+ "df_renal_dys"
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "code",
261
+ "execution_count": null,
262
+ "id": "20",
263
+ "metadata": {},
264
+ "outputs": [],
265
+ "source": [
266
+ "df_renal_dys[\"grade\"] = df_renal_dys[\"grade\"].apply(lambda x: 3 if x == \"Grade 3\" else x)\n",
267
+ "df_renal_dys[\"grade\"] = df_renal_dys[\"grade\"].apply(lambda x: 4 if x == \"Grade 4\" else x)\n",
268
+ "df_renal_dys[\"grade\"] = df_renal_dys[\"grade\"].apply(lambda x: 5 if x == \"Grade 5\" else x)\n",
269
+ "df_renal_dys = df_renal_dys.merge(df_rando[[\"subject_identifier\", \"assignment\"]], on=\"subject_identifier\", how=\"left\")\n",
270
+ "df_renal_dys.reset_index(drop=True, inplace=True)"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "code",
275
+ "execution_count": null,
276
+ "id": "21",
277
+ "metadata": {},
278
+ "outputs": [],
279
+ "source": [
280
+ "df_renal_dys[df_renal_dys.assignment.isna()]"
281
+ ]
282
+ },
283
+ {
284
+ "cell_type": "code",
285
+ "execution_count": null,
286
+ "id": "22",
287
+ "metadata": {},
288
+ "outputs": [],
289
+ "source": [
290
+ "list(df_renal_dys.columns)"
291
+ ]
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": null,
296
+ "id": "23",
297
+ "metadata": {},
298
+ "outputs": [],
299
+ "source": [
300
+ "df_renal_dys = df_renal_dys[['subject_identifier',\n",
301
+ " 'age_in_years',\n",
302
+ " 'sex',\n",
303
+ " 'event_term1',\n",
304
+ " 'event_term2',\n",
305
+ " 'event',\n",
306
+ " 'grade',\n",
307
+ " 'outcome',\n",
308
+ " 'assignment']].copy()"
309
+ ]
310
+ },
311
+ {
312
+ "cell_type": "code",
313
+ "execution_count": null,
314
+ "id": "24",
315
+ "metadata": {},
316
+ "outputs": [],
317
+ "source": [
318
+ "df_renal_dys"
319
+ ]
320
+ },
321
+ {
322
+ "cell_type": "code",
323
+ "execution_count": null,
324
+ "id": "25",
325
+ "metadata": {},
326
+ "outputs": [],
327
+ "source": [
328
+ "df_renal_dys.to_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_renal_dysfunction_sae_by_arm.csv\", index=False)\n",
329
+ "df_renal_dys[['subject_identifier',\n",
330
+ " 'age_in_years',\n",
331
+ " 'sex',\n",
332
+ " 'event_term1',\n",
333
+ " 'event_term2',\n",
334
+ " 'event',\n",
335
+ " 'grade',\n",
336
+ " 'outcome',\n",
337
+ "]].to_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_renal_dysfunction_sae_ew.csv\", index=False)"
338
+ ]
339
+ },
340
+ {
341
+ "cell_type": "code",
342
+ "execution_count": null,
343
+ "id": "26",
344
+ "metadata": {},
345
+ "outputs": [],
346
+ "source": [
347
+ "df_renal_dys_results = pd.read_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_renal_dysfunction_test_results.csv\")\n",
348
+ "df_renal_dys_results[\"grade\"] = df_renal_dys_results[\"grade\"].apply(lambda x: 3 if x == \"Grade 3\" else x)\n",
349
+ "df_renal_dys_results[\"grade\"] = df_renal_dys_results[\"grade\"].apply(lambda x: 4 if x == \"Grade 4\" else x)\n",
350
+ "df_renal_dys_results[\"grade\"] = df_renal_dys_results[\"grade\"].apply(lambda x: 5 if x == \"Grade 5\" else x)\n",
351
+ "df_renal_dys_results = df_renal_dys_results.merge(df_rando[[\"subject_identifier\", \"assignment\"]], on=\"subject_identifier\", how=\"left\")\n",
352
+ "df_renal_dys_results.reset_index(drop=True, inplace=True)\n"
353
+ ]
354
+ },
355
+ {
356
+ "cell_type": "code",
357
+ "execution_count": null,
358
+ "id": "27",
359
+ "metadata": {},
360
+ "outputs": [],
361
+ "source": [
362
+ "df_renal_dys_results[df_renal_dys_results.assignment.isna()]\n"
363
+ ]
364
+ },
365
+ {
366
+ "cell_type": "code",
367
+ "execution_count": null,
368
+ "id": "28",
369
+ "metadata": {},
370
+ "outputs": [],
371
+ "source": [
372
+ "list(df_renal_dys_results.columns)"
373
+ ]
374
+ },
375
+ {
376
+ "cell_type": "code",
377
+ "execution_count": null,
378
+ "id": "29",
379
+ "metadata": {},
380
+ "outputs": [],
381
+ "source": [
382
+ "df_renal_dys_results"
383
+ ]
384
+ },
385
+ {
386
+ "cell_type": "code",
387
+ "execution_count": null,
388
+ "id": "30",
389
+ "metadata": {},
390
+ "outputs": [],
391
+ "source": [
392
+ "df_renal_dys_results.to_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_renal_dysfunction_test_results_by_arm.csv\", index=False)\n",
393
+ "df_renal_dys_results[['subject_identifier',\n",
394
+ " 'age_in_years',\n",
395
+ " 'sex',\n",
396
+ " 'event_term',\n",
397
+ " 'grade',\n",
398
+ " 'outcome',\n",
399
+ " 'report_datetime',\n",
400
+ " 'assay_datetime',\n",
401
+ " 'urea_value',\n",
402
+ " 'creatinine_value',\n",
403
+ " 'uric_acid_value',\n",
404
+ " 'egfr_value',\n",
405
+ " 'creatinine_grade',\n",
406
+ " 'egfr_grade',\n",
407
+ " 'egfr_drop_units',\n",
408
+ " 'egfr_drop_value',\n",
409
+ " 'old_egfr_value',\n",
410
+ "]].to_csv(analysis_folder / \"05032025-dsmc\" / \"meta3_renal_dysfunction_test_results_ew.csv\", index=False)\n"
411
+ ]
412
+ }
413
+ ],
414
+ "metadata": {
415
+ "kernelspec": {
416
+ "display_name": "Python 3",
417
+ "language": "python",
418
+ "name": "python3"
419
+ },
420
+ "language_info": {
421
+ "codemirror_mode": {
422
+ "name": "ipython",
423
+ "version": 2
424
+ },
425
+ "file_extension": ".py",
426
+ "mimetype": "text/x-python",
427
+ "name": "python",
428
+ "nbconvert_exporter": "python",
429
+ "pygments_lexer": "ipython2",
430
+ "version": "2.7.6"
431
+ }
432
+ },
433
+ "nbformat": 4,
434
+ "nbformat_minor": 5
435
+ }