lsurf 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lsurf/__init__.py +471 -0
- lsurf/analysis/__init__.py +107 -0
- lsurf/analysis/healpix_utils.py +418 -0
- lsurf/analysis/sphere_viz.py +1280 -0
- lsurf/cli/__init__.py +48 -0
- lsurf/cli/build.py +398 -0
- lsurf/cli/config_schema.py +318 -0
- lsurf/cli/gui_cmd.py +76 -0
- lsurf/cli/interactive.py +850 -0
- lsurf/cli/main.py +81 -0
- lsurf/cli/run.py +806 -0
- lsurf/detectors/__init__.py +266 -0
- lsurf/detectors/analysis.py +289 -0
- lsurf/detectors/base.py +284 -0
- lsurf/detectors/constant_size_rings.py +485 -0
- lsurf/detectors/directional.py +45 -0
- lsurf/detectors/extended/__init__.py +73 -0
- lsurf/detectors/extended/local_sphere.py +353 -0
- lsurf/detectors/extended/recording_sphere.py +368 -0
- lsurf/detectors/planar.py +45 -0
- lsurf/detectors/protocol.py +187 -0
- lsurf/detectors/recording_spheres.py +63 -0
- lsurf/detectors/results.py +1140 -0
- lsurf/detectors/small/__init__.py +79 -0
- lsurf/detectors/small/directional.py +330 -0
- lsurf/detectors/small/planar.py +401 -0
- lsurf/detectors/small/spherical.py +450 -0
- lsurf/detectors/spherical.py +45 -0
- lsurf/geometry/__init__.py +199 -0
- lsurf/geometry/builder.py +478 -0
- lsurf/geometry/cell.py +228 -0
- lsurf/geometry/cell_geometry.py +247 -0
- lsurf/geometry/detector_arrays.py +1785 -0
- lsurf/geometry/geometry.py +222 -0
- lsurf/geometry/surface_analysis.py +375 -0
- lsurf/geometry/validation.py +91 -0
- lsurf/gui/__init__.py +51 -0
- lsurf/gui/app.py +903 -0
- lsurf/gui/core/__init__.py +39 -0
- lsurf/gui/core/scene.py +343 -0
- lsurf/gui/core/simulation.py +264 -0
- lsurf/gui/renderers/__init__.py +40 -0
- lsurf/gui/renderers/ray_renderer.py +353 -0
- lsurf/gui/renderers/source_renderer.py +505 -0
- lsurf/gui/renderers/surface_renderer.py +477 -0
- lsurf/gui/views/__init__.py +48 -0
- lsurf/gui/views/config_editor.py +3199 -0
- lsurf/gui/views/properties.py +257 -0
- lsurf/gui/views/results.py +291 -0
- lsurf/gui/views/scene_tree.py +180 -0
- lsurf/gui/views/viewport_3d.py +555 -0
- lsurf/gui/views/visualizations.py +712 -0
- lsurf/materials/__init__.py +169 -0
- lsurf/materials/base/__init__.py +64 -0
- lsurf/materials/base/full_inhomogeneous.py +208 -0
- lsurf/materials/base/grid_inhomogeneous.py +319 -0
- lsurf/materials/base/homogeneous.py +342 -0
- lsurf/materials/base/material_field.py +527 -0
- lsurf/materials/base/simple_inhomogeneous.py +418 -0
- lsurf/materials/base/spectral_inhomogeneous.py +497 -0
- lsurf/materials/implementations/__init__.py +120 -0
- lsurf/materials/implementations/data/alpha_values_typical_atmosphere_updated.txt +24 -0
- lsurf/materials/implementations/duct_atmosphere.py +390 -0
- lsurf/materials/implementations/exponential_atmosphere.py +435 -0
- lsurf/materials/implementations/gaussian_lens.py +120 -0
- lsurf/materials/implementations/interpolated_data.py +123 -0
- lsurf/materials/implementations/layered_atmosphere.py +134 -0
- lsurf/materials/implementations/linear_gradient.py +109 -0
- lsurf/materials/implementations/linsley_atmosphere.py +764 -0
- lsurf/materials/implementations/standard_materials.py +126 -0
- lsurf/materials/implementations/turbulent_atmosphere.py +135 -0
- lsurf/materials/implementations/us_standard_atmosphere.py +149 -0
- lsurf/materials/utils/__init__.py +77 -0
- lsurf/materials/utils/constants.py +45 -0
- lsurf/materials/utils/device_functions.py +117 -0
- lsurf/materials/utils/dispersion.py +160 -0
- lsurf/materials/utils/factories.py +142 -0
- lsurf/propagation/__init__.py +91 -0
- lsurf/propagation/detector_gpu.py +67 -0
- lsurf/propagation/gpu_device_rays.py +294 -0
- lsurf/propagation/kernels/__init__.py +175 -0
- lsurf/propagation/kernels/absorption/__init__.py +61 -0
- lsurf/propagation/kernels/absorption/grid.py +240 -0
- lsurf/propagation/kernels/absorption/simple.py +232 -0
- lsurf/propagation/kernels/absorption/spectral.py +410 -0
- lsurf/propagation/kernels/detection/__init__.py +64 -0
- lsurf/propagation/kernels/detection/protocol.py +102 -0
- lsurf/propagation/kernels/detection/spherical.py +255 -0
- lsurf/propagation/kernels/device_functions.py +790 -0
- lsurf/propagation/kernels/fresnel/__init__.py +64 -0
- lsurf/propagation/kernels/fresnel/protocol.py +97 -0
- lsurf/propagation/kernels/fresnel/standard.py +258 -0
- lsurf/propagation/kernels/intersection/__init__.py +79 -0
- lsurf/propagation/kernels/intersection/annular_plane.py +207 -0
- lsurf/propagation/kernels/intersection/bounded_plane.py +205 -0
- lsurf/propagation/kernels/intersection/plane.py +166 -0
- lsurf/propagation/kernels/intersection/protocol.py +95 -0
- lsurf/propagation/kernels/intersection/signed_distance.py +742 -0
- lsurf/propagation/kernels/intersection/sphere.py +190 -0
- lsurf/propagation/kernels/propagation/__init__.py +85 -0
- lsurf/propagation/kernels/propagation/grid.py +527 -0
- lsurf/propagation/kernels/propagation/protocol.py +105 -0
- lsurf/propagation/kernels/propagation/simple.py +460 -0
- lsurf/propagation/kernels/propagation/spectral.py +875 -0
- lsurf/propagation/kernels/registry.py +331 -0
- lsurf/propagation/kernels/surface/__init__.py +72 -0
- lsurf/propagation/kernels/surface/bisection.py +232 -0
- lsurf/propagation/kernels/surface/detection.py +402 -0
- lsurf/propagation/kernels/surface/reduction.py +166 -0
- lsurf/propagation/propagator_protocol.py +222 -0
- lsurf/propagation/propagators/__init__.py +101 -0
- lsurf/propagation/propagators/detector_handler.py +354 -0
- lsurf/propagation/propagators/factory.py +200 -0
- lsurf/propagation/propagators/fresnel_handler.py +305 -0
- lsurf/propagation/propagators/gpu_gradient.py +566 -0
- lsurf/propagation/propagators/gpu_surface_propagator.py +707 -0
- lsurf/propagation/propagators/gradient.py +429 -0
- lsurf/propagation/propagators/intersection_handler.py +327 -0
- lsurf/propagation/propagators/material_propagator.py +398 -0
- lsurf/propagation/propagators/signed_distance_handler.py +522 -0
- lsurf/propagation/propagators/spectral_gpu_gradient.py +553 -0
- lsurf/propagation/propagators/surface_interaction.py +616 -0
- lsurf/propagation/propagators/surface_propagator.py +719 -0
- lsurf/py.typed +1 -0
- lsurf/simulation/__init__.py +70 -0
- lsurf/simulation/config.py +164 -0
- lsurf/simulation/orchestrator.py +462 -0
- lsurf/simulation/result.py +299 -0
- lsurf/simulation/simulation.py +262 -0
- lsurf/sources/__init__.py +128 -0
- lsurf/sources/base.py +264 -0
- lsurf/sources/collimated.py +252 -0
- lsurf/sources/custom.py +409 -0
- lsurf/sources/diverging.py +228 -0
- lsurf/sources/gaussian.py +272 -0
- lsurf/sources/parallel_from_positions.py +197 -0
- lsurf/sources/point.py +172 -0
- lsurf/sources/uniform_diverging.py +258 -0
- lsurf/surfaces/__init__.py +184 -0
- lsurf/surfaces/cpu/__init__.py +50 -0
- lsurf/surfaces/cpu/curved_wave.py +463 -0
- lsurf/surfaces/cpu/gerstner_wave.py +381 -0
- lsurf/surfaces/cpu/wave_params.py +118 -0
- lsurf/surfaces/gpu/__init__.py +72 -0
- lsurf/surfaces/gpu/annular_plane.py +453 -0
- lsurf/surfaces/gpu/bounded_plane.py +390 -0
- lsurf/surfaces/gpu/curved_wave.py +483 -0
- lsurf/surfaces/gpu/gerstner_wave.py +377 -0
- lsurf/surfaces/gpu/multi_curved_wave.py +520 -0
- lsurf/surfaces/gpu/plane.py +299 -0
- lsurf/surfaces/gpu/recording_sphere.py +587 -0
- lsurf/surfaces/gpu/sphere.py +311 -0
- lsurf/surfaces/protocol.py +336 -0
- lsurf/surfaces/registry.py +373 -0
- lsurf/utilities/__init__.py +175 -0
- lsurf/utilities/detector_analysis.py +814 -0
- lsurf/utilities/fresnel.py +628 -0
- lsurf/utilities/interactions.py +1215 -0
- lsurf/utilities/propagation.py +602 -0
- lsurf/utilities/ray_data.py +532 -0
- lsurf/utilities/recording_sphere.py +745 -0
- lsurf/utilities/time_spread.py +463 -0
- lsurf/visualization/__init__.py +329 -0
- lsurf/visualization/absorption_plots.py +334 -0
- lsurf/visualization/atmospheric_plots.py +754 -0
- lsurf/visualization/common.py +348 -0
- lsurf/visualization/detector_plots.py +1350 -0
- lsurf/visualization/detector_sphere_plots.py +1173 -0
- lsurf/visualization/fresnel_plots.py +1061 -0
- lsurf/visualization/ocean_simulation_plots.py +999 -0
- lsurf/visualization/polarization_plots.py +916 -0
- lsurf/visualization/raytracing_plots.py +1521 -0
- lsurf/visualization/ring_detector_plots.py +1867 -0
- lsurf/visualization/time_spread_plots.py +531 -0
- lsurf-1.0.0.dist-info/METADATA +381 -0
- lsurf-1.0.0.dist-info/RECORD +180 -0
- lsurf-1.0.0.dist-info/WHEEL +5 -0
- lsurf-1.0.0.dist-info/entry_points.txt +2 -0
- lsurf-1.0.0.dist-info/licenses/LICENSE +32 -0
- lsurf-1.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,402 @@
|
|
|
1
|
+
# The Clear BSD License
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2026 Tobias Heibges
|
|
4
|
+
# All rights reserved.
|
|
5
|
+
#
|
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
|
7
|
+
# modification, are permitted (subject to the limitations in the disclaimer
|
|
8
|
+
# below) provided that the following conditions are met:
|
|
9
|
+
#
|
|
10
|
+
# * Redistributions of source code must retain the above copyright notice,
|
|
11
|
+
# this list of conditions and the following disclaimer.
|
|
12
|
+
#
|
|
13
|
+
# * Redistributions in binary form must reproduce the above copyright
|
|
14
|
+
# notice, this list of conditions and the following disclaimer in the
|
|
15
|
+
# documentation and/or other materials provided with the distribution.
|
|
16
|
+
#
|
|
17
|
+
# * Neither the name of the copyright holder nor the names of its
|
|
18
|
+
# contributors may be used to endorse or promote products derived from this
|
|
19
|
+
# software without specific prior written permission.
|
|
20
|
+
#
|
|
21
|
+
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
|
|
22
|
+
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
23
|
+
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
24
|
+
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
25
|
+
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
26
|
+
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
27
|
+
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
28
|
+
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
29
|
+
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
30
|
+
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
31
|
+
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
32
|
+
# POSSIBILITY OF SUCH DAMAGE.
|
|
33
|
+
|
|
34
|
+
"""
|
|
35
|
+
Surface Crossing Detection Kernels
|
|
36
|
+
|
|
37
|
+
GPU kernels for detecting when rays cross surfaces by monitoring
|
|
38
|
+
sign changes in signed distance values.
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
import math
|
|
42
|
+
|
|
43
|
+
# GPU support is optional
|
|
44
|
+
try:
|
|
45
|
+
from numba import cuda
|
|
46
|
+
|
|
47
|
+
HAS_CUDA = cuda.is_available()
|
|
48
|
+
except ImportError:
|
|
49
|
+
HAS_CUDA = False
|
|
50
|
+
|
|
51
|
+
class _FakeCuda:
|
|
52
|
+
@staticmethod
|
|
53
|
+
def jit(*args, **kwargs):
|
|
54
|
+
def decorator(func):
|
|
55
|
+
return func
|
|
56
|
+
|
|
57
|
+
if args and callable(args[0]):
|
|
58
|
+
return args[0]
|
|
59
|
+
return decorator
|
|
60
|
+
|
|
61
|
+
@staticmethod
|
|
62
|
+
def grid(n):
|
|
63
|
+
return 0
|
|
64
|
+
|
|
65
|
+
cuda = _FakeCuda() # type: ignore[assignment]
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
# Import device functions for signed distance computation
|
|
69
|
+
from ..intersection.signed_distance import (
|
|
70
|
+
_device_plane_sd,
|
|
71
|
+
_device_sphere_sd,
|
|
72
|
+
_device_gerstner_sd,
|
|
73
|
+
_device_curved_wave_sd,
|
|
74
|
+
_device_multi_curved_wave_sd,
|
|
75
|
+
_device_annular_plane_sd,
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
# =============================================================================
|
|
80
|
+
# Device Functions
|
|
81
|
+
# =============================================================================
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
@cuda.jit(device=True)
|
|
85
|
+
def _device_signed_distance(
|
|
86
|
+
x: float, y: float, z: float, geometry_id: int, params, param_offset: int
|
|
87
|
+
) -> float:
|
|
88
|
+
"""
|
|
89
|
+
Compute signed distance for a surface with parameters at given offset.
|
|
90
|
+
|
|
91
|
+
Parameters
|
|
92
|
+
----------
|
|
93
|
+
x, y, z : float
|
|
94
|
+
Point coordinates
|
|
95
|
+
geometry_id : int
|
|
96
|
+
Surface geometry type (1-5)
|
|
97
|
+
params : device array
|
|
98
|
+
All surface parameters concatenated
|
|
99
|
+
param_offset : int
|
|
100
|
+
Offset into params for this surface (surface_idx * MAX_SURFACE_PARAMS)
|
|
101
|
+
|
|
102
|
+
Returns
|
|
103
|
+
-------
|
|
104
|
+
float
|
|
105
|
+
Signed distance to surface
|
|
106
|
+
"""
|
|
107
|
+
# Create a local view of params for this surface
|
|
108
|
+
# Note: We pass the full params array and geometry_id handles the layout
|
|
109
|
+
if geometry_id == 1: # Plane
|
|
110
|
+
return _device_plane_sd(x, y, z, params[param_offset:])
|
|
111
|
+
elif geometry_id == 2: # Sphere
|
|
112
|
+
return _device_sphere_sd(x, y, z, params[param_offset:])
|
|
113
|
+
elif geometry_id == 3: # Gerstner wave
|
|
114
|
+
return _device_gerstner_sd(x, y, z, params[param_offset:])
|
|
115
|
+
elif geometry_id == 4: # Curved wave
|
|
116
|
+
return _device_curved_wave_sd(x, y, z, params[param_offset:])
|
|
117
|
+
elif geometry_id == 5: # Multi-wave curved
|
|
118
|
+
return _device_multi_curved_wave_sd(x, y, z, params[param_offset:])
|
|
119
|
+
elif geometry_id == 6: # Bounded plane (same SD formula as infinite plane)
|
|
120
|
+
return _device_plane_sd(x, y, z, params[param_offset:])
|
|
121
|
+
elif geometry_id == 7: # Annular plane
|
|
122
|
+
return _device_annular_plane_sd(x, y, z, params[param_offset:])
|
|
123
|
+
else:
|
|
124
|
+
return math.inf
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
# =============================================================================
|
|
128
|
+
# Main Kernels
|
|
129
|
+
# =============================================================================
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
@cuda.jit
|
|
133
|
+
def kernel_save_prev_positions(
|
|
134
|
+
positions, # (N, 3) current positions
|
|
135
|
+
prev_positions, # (N, 3) output: saved positions
|
|
136
|
+
active, # (N,) active mask
|
|
137
|
+
):
|
|
138
|
+
"""
|
|
139
|
+
Save current positions before propagation step.
|
|
140
|
+
|
|
141
|
+
Simple copy kernel for bisection - saves positions so we can
|
|
142
|
+
interpolate between prev and current to find exact crossing point.
|
|
143
|
+
|
|
144
|
+
Parameters
|
|
145
|
+
----------
|
|
146
|
+
positions : (N, 3) float32 device array
|
|
147
|
+
Current ray positions
|
|
148
|
+
prev_positions : (N, 3) float32 device array
|
|
149
|
+
Output array to store previous positions
|
|
150
|
+
active : (N,) bool device array
|
|
151
|
+
Active ray mask (only save for active rays)
|
|
152
|
+
"""
|
|
153
|
+
idx = cuda.grid(1)
|
|
154
|
+
if idx >= positions.shape[0] or not active[idx]:
|
|
155
|
+
return
|
|
156
|
+
|
|
157
|
+
prev_positions[idx, 0] = positions[idx, 0]
|
|
158
|
+
prev_positions[idx, 1] = positions[idx, 1]
|
|
159
|
+
prev_positions[idx, 2] = positions[idx, 2]
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
@cuda.jit
|
|
163
|
+
def kernel_detect_crossing(
|
|
164
|
+
positions, # (N, 3) current positions
|
|
165
|
+
prev_sd, # (N, S) previous signed distances
|
|
166
|
+
active, # (N,) active mask
|
|
167
|
+
geometry_ids, # (S,) geometry ID per surface
|
|
168
|
+
surface_params, # (S * MAX_PARAMS,) all surface parameters
|
|
169
|
+
num_surfaces, # int
|
|
170
|
+
max_params, # int: MAX_SURFACE_PARAMS
|
|
171
|
+
crossing_mask, # (N,) output: rays that crossed
|
|
172
|
+
hit_surface_idx, # (N,) output: which surface was hit
|
|
173
|
+
):
|
|
174
|
+
"""
|
|
175
|
+
Check all surfaces for sign changes in signed distance.
|
|
176
|
+
|
|
177
|
+
For each active ray, compute signed distance to all surfaces and
|
|
178
|
+
check for sign changes (crossings) compared to previous step.
|
|
179
|
+
First surface crossed wins (in surface order).
|
|
180
|
+
|
|
181
|
+
Parameters
|
|
182
|
+
----------
|
|
183
|
+
positions : (N, 3) float32 device array
|
|
184
|
+
Current ray positions
|
|
185
|
+
prev_sd : (N, S) float32 device array
|
|
186
|
+
Previous signed distances per surface
|
|
187
|
+
active : (N,) bool device array
|
|
188
|
+
Active ray mask
|
|
189
|
+
geometry_ids : (S,) int32 device array
|
|
190
|
+
Geometry ID for each surface
|
|
191
|
+
surface_params : (S * MAX_PARAMS,) float32 device array
|
|
192
|
+
Concatenated surface parameters
|
|
193
|
+
num_surfaces : int
|
|
194
|
+
Number of surfaces
|
|
195
|
+
max_params : int
|
|
196
|
+
MAX_SURFACE_PARAMS constant
|
|
197
|
+
crossing_mask : (N,) bool device array
|
|
198
|
+
Output: True for rays that crossed any surface
|
|
199
|
+
hit_surface_idx : (N,) int32 device array
|
|
200
|
+
Output: Surface index that was crossed (-1 if none)
|
|
201
|
+
"""
|
|
202
|
+
idx = cuda.grid(1)
|
|
203
|
+
if idx >= positions.shape[0] or not active[idx]:
|
|
204
|
+
return
|
|
205
|
+
|
|
206
|
+
x = positions[idx, 0]
|
|
207
|
+
y = positions[idx, 1]
|
|
208
|
+
z = positions[idx, 2]
|
|
209
|
+
|
|
210
|
+
crossing_mask[idx] = False
|
|
211
|
+
|
|
212
|
+
# Check each surface in order
|
|
213
|
+
for surf in range(num_surfaces):
|
|
214
|
+
geo_id = geometry_ids[surf]
|
|
215
|
+
param_offset = surf * max_params
|
|
216
|
+
|
|
217
|
+
# Compute current signed distance
|
|
218
|
+
curr_sd = _device_signed_distance(x, y, z, geo_id, surface_params, param_offset)
|
|
219
|
+
prev = prev_sd[idx, surf]
|
|
220
|
+
|
|
221
|
+
# Check for sign change (crossing)
|
|
222
|
+
if (prev >= 0 and curr_sd < 0) or (prev < 0 and curr_sd >= 0):
|
|
223
|
+
crossing_mask[idx] = True
|
|
224
|
+
hit_surface_idx[idx] = surf
|
|
225
|
+
return # First surface crossed wins
|
|
226
|
+
|
|
227
|
+
# Save current as prev for next step
|
|
228
|
+
prev_sd[idx, surf] = curr_sd
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
@cuda.jit
|
|
232
|
+
def kernel_init_signed_distances(
|
|
233
|
+
positions, # (N, 3) current positions
|
|
234
|
+
active, # (N,) active mask
|
|
235
|
+
geometry_ids, # (S,) geometry ID per surface
|
|
236
|
+
surface_params, # (S * MAX_PARAMS,) all surface parameters
|
|
237
|
+
num_surfaces, # int
|
|
238
|
+
max_params, # int: MAX_SURFACE_PARAMS
|
|
239
|
+
prev_sd, # (N, S) output: initial signed distances
|
|
240
|
+
):
|
|
241
|
+
"""
|
|
242
|
+
Initialize signed distances for all surfaces.
|
|
243
|
+
|
|
244
|
+
Called once at the start to populate prev_sd before the first
|
|
245
|
+
propagation step.
|
|
246
|
+
|
|
247
|
+
Parameters
|
|
248
|
+
----------
|
|
249
|
+
positions : (N, 3) float32 device array
|
|
250
|
+
Initial ray positions
|
|
251
|
+
active : (N,) bool device array
|
|
252
|
+
Active ray mask
|
|
253
|
+
geometry_ids : (S,) int32 device array
|
|
254
|
+
Geometry ID for each surface
|
|
255
|
+
surface_params : (S * MAX_PARAMS,) float32 device array
|
|
256
|
+
Concatenated surface parameters
|
|
257
|
+
num_surfaces : int
|
|
258
|
+
Number of surfaces
|
|
259
|
+
max_params : int
|
|
260
|
+
MAX_SURFACE_PARAMS constant
|
|
261
|
+
prev_sd : (N, S) float32 device array
|
|
262
|
+
Output: Initial signed distances per surface
|
|
263
|
+
"""
|
|
264
|
+
idx = cuda.grid(1)
|
|
265
|
+
if idx >= positions.shape[0] or not active[idx]:
|
|
266
|
+
return
|
|
267
|
+
|
|
268
|
+
x = positions[idx, 0]
|
|
269
|
+
y = positions[idx, 1]
|
|
270
|
+
z = positions[idx, 2]
|
|
271
|
+
|
|
272
|
+
for surf in range(num_surfaces):
|
|
273
|
+
geo_id = geometry_ids[surf]
|
|
274
|
+
param_offset = surf * max_params
|
|
275
|
+
prev_sd[idx, surf] = _device_signed_distance(
|
|
276
|
+
x, y, z, geo_id, surface_params, param_offset
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
|
|
280
|
+
@cuda.jit
|
|
281
|
+
def kernel_compute_min_surface_distance(
|
|
282
|
+
positions, # (N, 3) current positions
|
|
283
|
+
active, # (N,) active mask
|
|
284
|
+
geometry_ids, # (S,) geometry ID per surface
|
|
285
|
+
surface_params, # (S * MAX_PARAMS,) all surface parameters
|
|
286
|
+
num_surfaces, # int
|
|
287
|
+
max_params, # int: MAX_SURFACE_PARAMS
|
|
288
|
+
min_distances, # (N,) output: minimum distance to any surface
|
|
289
|
+
):
|
|
290
|
+
"""
|
|
291
|
+
Compute minimum absolute distance to any surface for each ray.
|
|
292
|
+
|
|
293
|
+
Used for adaptive step sizing - rays closer to surfaces use smaller steps.
|
|
294
|
+
|
|
295
|
+
Parameters
|
|
296
|
+
----------
|
|
297
|
+
positions : (N, 3) float32 device array
|
|
298
|
+
Current ray positions
|
|
299
|
+
active : (N,) bool device array
|
|
300
|
+
Active ray mask
|
|
301
|
+
geometry_ids : (S,) int32 device array
|
|
302
|
+
Geometry ID for each surface
|
|
303
|
+
surface_params : (S * MAX_PARAMS,) float32 device array
|
|
304
|
+
Concatenated surface parameters
|
|
305
|
+
num_surfaces : int
|
|
306
|
+
Number of surfaces
|
|
307
|
+
max_params : int
|
|
308
|
+
MAX_SURFACE_PARAMS constant
|
|
309
|
+
min_distances : (N,) float32 device array
|
|
310
|
+
Output: Minimum absolute distance to any surface
|
|
311
|
+
"""
|
|
312
|
+
idx = cuda.grid(1)
|
|
313
|
+
if idx >= positions.shape[0]:
|
|
314
|
+
return
|
|
315
|
+
|
|
316
|
+
if not active[idx]:
|
|
317
|
+
min_distances[idx] = math.inf
|
|
318
|
+
return
|
|
319
|
+
|
|
320
|
+
x = positions[idx, 0]
|
|
321
|
+
y = positions[idx, 1]
|
|
322
|
+
z = positions[idx, 2]
|
|
323
|
+
|
|
324
|
+
min_dist = math.inf
|
|
325
|
+
|
|
326
|
+
# Check all surfaces and find minimum absolute distance
|
|
327
|
+
for surf in range(num_surfaces):
|
|
328
|
+
geo_id = geometry_ids[surf]
|
|
329
|
+
param_offset = surf * max_params
|
|
330
|
+
|
|
331
|
+
sd = _device_signed_distance(x, y, z, geo_id, surface_params, param_offset)
|
|
332
|
+
abs_sd = abs(sd)
|
|
333
|
+
|
|
334
|
+
if abs_sd < min_dist:
|
|
335
|
+
min_dist = abs_sd
|
|
336
|
+
|
|
337
|
+
min_distances[idx] = min_dist
|
|
338
|
+
|
|
339
|
+
|
|
340
|
+
@cuda.jit
|
|
341
|
+
def kernel_compute_adaptive_steps(
|
|
342
|
+
min_distances, # (N,) minimum surface distances
|
|
343
|
+
active, # (N,) active mask
|
|
344
|
+
max_step_size, # float: maximum step size
|
|
345
|
+
min_step_size, # float: minimum step size
|
|
346
|
+
proximity_factor, # float: step = distance * factor
|
|
347
|
+
proximity_threshold, # float: threshold for adaptive stepping
|
|
348
|
+
adaptive_steps, # (N,) output: per-ray step sizes
|
|
349
|
+
):
|
|
350
|
+
"""
|
|
351
|
+
Compute adaptive step sizes based on surface proximity.
|
|
352
|
+
|
|
353
|
+
For rays within the proximity threshold, step size is proportional to
|
|
354
|
+
distance from surface. Otherwise, maximum step size is used.
|
|
355
|
+
|
|
356
|
+
Parameters
|
|
357
|
+
----------
|
|
358
|
+
min_distances : (N,) float32 device array
|
|
359
|
+
Minimum distance to any surface per ray
|
|
360
|
+
active : (N,) bool device array
|
|
361
|
+
Active ray mask
|
|
362
|
+
max_step_size : float
|
|
363
|
+
Maximum step size (far from surfaces)
|
|
364
|
+
min_step_size : float
|
|
365
|
+
Minimum step size (very close to surfaces, ~0.3mm for 1ps resolution)
|
|
366
|
+
proximity_factor : float
|
|
367
|
+
Step size = distance * factor when within threshold
|
|
368
|
+
proximity_threshold : float
|
|
369
|
+
Distance within which to start adaptive stepping
|
|
370
|
+
adaptive_steps : (N,) float32 device array
|
|
371
|
+
Output: Per-ray step sizes
|
|
372
|
+
"""
|
|
373
|
+
idx = cuda.grid(1)
|
|
374
|
+
if idx >= min_distances.shape[0]:
|
|
375
|
+
return
|
|
376
|
+
|
|
377
|
+
if not active[idx]:
|
|
378
|
+
adaptive_steps[idx] = max_step_size
|
|
379
|
+
return
|
|
380
|
+
|
|
381
|
+
dist = min_distances[idx]
|
|
382
|
+
|
|
383
|
+
if dist < proximity_threshold:
|
|
384
|
+
# Within threshold: step proportional to distance
|
|
385
|
+
step = dist * proximity_factor
|
|
386
|
+
# Clamp to [min_step_size, max_step_size]
|
|
387
|
+
if step < min_step_size:
|
|
388
|
+
step = min_step_size
|
|
389
|
+
elif step > max_step_size:
|
|
390
|
+
step = max_step_size
|
|
391
|
+
adaptive_steps[idx] = step
|
|
392
|
+
else:
|
|
393
|
+
adaptive_steps[idx] = max_step_size
|
|
394
|
+
|
|
395
|
+
|
|
396
|
+
__all__ = [
|
|
397
|
+
"kernel_save_prev_positions",
|
|
398
|
+
"kernel_detect_crossing",
|
|
399
|
+
"kernel_init_signed_distances",
|
|
400
|
+
"kernel_compute_min_surface_distance",
|
|
401
|
+
"kernel_compute_adaptive_steps",
|
|
402
|
+
]
|
|
@@ -0,0 +1,166 @@
|
|
|
1
|
+
# The Clear BSD License
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2026 Tobias Heibges
|
|
4
|
+
# All rights reserved.
|
|
5
|
+
#
|
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
|
7
|
+
# modification, are permitted (subject to the limitations in the disclaimer
|
|
8
|
+
# below) provided that the following conditions are met:
|
|
9
|
+
#
|
|
10
|
+
# * Redistributions of source code must retain the above copyright notice,
|
|
11
|
+
# this list of conditions and the following disclaimer.
|
|
12
|
+
#
|
|
13
|
+
# * Redistributions in binary form must reproduce the above copyright
|
|
14
|
+
# notice, this list of conditions and the following disclaimer in the
|
|
15
|
+
# documentation and/or other materials provided with the distribution.
|
|
16
|
+
#
|
|
17
|
+
# * Neither the name of the copyright holder nor the names of its
|
|
18
|
+
# contributors may be used to endorse or promote products derived from this
|
|
19
|
+
# software without specific prior written permission.
|
|
20
|
+
#
|
|
21
|
+
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
|
|
22
|
+
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
23
|
+
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
24
|
+
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
25
|
+
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
26
|
+
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
27
|
+
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
28
|
+
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
29
|
+
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
30
|
+
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
31
|
+
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
32
|
+
# POSSIBILITY OF SUCH DAMAGE.
|
|
33
|
+
|
|
34
|
+
"""
|
|
35
|
+
Status Reduction Kernel
|
|
36
|
+
|
|
37
|
+
GPU kernel for counting active rays and detecting crossings.
|
|
38
|
+
Uses parallel reduction to efficiently compute loop termination conditions.
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
# GPU support is optional
|
|
42
|
+
try:
|
|
43
|
+
from numba import cuda
|
|
44
|
+
|
|
45
|
+
HAS_CUDA = cuda.is_available()
|
|
46
|
+
except ImportError:
|
|
47
|
+
HAS_CUDA = False
|
|
48
|
+
|
|
49
|
+
class _FakeCuda:
|
|
50
|
+
@staticmethod
|
|
51
|
+
def jit(*args, **kwargs):
|
|
52
|
+
def decorator(func):
|
|
53
|
+
return func
|
|
54
|
+
|
|
55
|
+
if args and callable(args[0]):
|
|
56
|
+
return args[0]
|
|
57
|
+
return decorator
|
|
58
|
+
|
|
59
|
+
@staticmethod
|
|
60
|
+
def grid(n):
|
|
61
|
+
return 0
|
|
62
|
+
|
|
63
|
+
class shared:
|
|
64
|
+
@staticmethod
|
|
65
|
+
def array(size, dtype):
|
|
66
|
+
return None
|
|
67
|
+
|
|
68
|
+
class atomic:
|
|
69
|
+
@staticmethod
|
|
70
|
+
def add(arr, idx, val):
|
|
71
|
+
pass
|
|
72
|
+
|
|
73
|
+
cuda = _FakeCuda() # type: ignore[assignment]
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
@cuda.jit
|
|
77
|
+
def kernel_reduce_status(
|
|
78
|
+
active, # (N,) active mask
|
|
79
|
+
crossing_mask, # (N,) rays that crossed
|
|
80
|
+
result, # (2,) output: [num_active, num_crossing]
|
|
81
|
+
):
|
|
82
|
+
"""
|
|
83
|
+
Count active rays and check for crossings.
|
|
84
|
+
|
|
85
|
+
Uses atomic operations for simplicity. For large ray counts,
|
|
86
|
+
a proper tree reduction would be more efficient.
|
|
87
|
+
|
|
88
|
+
Parameters
|
|
89
|
+
----------
|
|
90
|
+
active : (N,) bool device array
|
|
91
|
+
Active ray mask
|
|
92
|
+
crossing_mask : (N,) bool device array
|
|
93
|
+
Rays that crossed a surface
|
|
94
|
+
result : (2,) int32 device array
|
|
95
|
+
Output: [num_active, num_crossing]
|
|
96
|
+
Must be initialized to zeros before calling.
|
|
97
|
+
"""
|
|
98
|
+
idx = cuda.grid(1)
|
|
99
|
+
if idx >= active.shape[0]:
|
|
100
|
+
return
|
|
101
|
+
|
|
102
|
+
if active[idx]:
|
|
103
|
+
cuda.atomic.add(result, 0, 1)
|
|
104
|
+
|
|
105
|
+
if crossing_mask[idx]:
|
|
106
|
+
cuda.atomic.add(result, 1, 1)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@cuda.jit
|
|
110
|
+
def kernel_reduce_status_shared(
|
|
111
|
+
active, # (N,) active mask
|
|
112
|
+
crossing_mask, # (N,) rays that crossed
|
|
113
|
+
result, # (2,) output: [num_active, num_crossing]
|
|
114
|
+
block_size, # int: threads per block
|
|
115
|
+
):
|
|
116
|
+
"""
|
|
117
|
+
Count active rays and crossings using shared memory reduction.
|
|
118
|
+
|
|
119
|
+
More efficient than atomic-only version for large ray counts.
|
|
120
|
+
Uses tree reduction within each block, then atomic add for final sum.
|
|
121
|
+
|
|
122
|
+
Parameters
|
|
123
|
+
----------
|
|
124
|
+
active : (N,) bool device array
|
|
125
|
+
Active ray mask
|
|
126
|
+
crossing_mask : (N,) bool device array
|
|
127
|
+
Rays that crossed a surface
|
|
128
|
+
result : (2,) int32 device array
|
|
129
|
+
Output: [num_active, num_crossing]
|
|
130
|
+
Must be initialized to zeros before calling.
|
|
131
|
+
block_size : int
|
|
132
|
+
Number of threads per block (must match launch config)
|
|
133
|
+
"""
|
|
134
|
+
# Shared memory for reduction
|
|
135
|
+
shared_active = cuda.shared.array(256, dtype=cuda.int32)
|
|
136
|
+
shared_crossing = cuda.shared.array(256, dtype=cuda.int32)
|
|
137
|
+
|
|
138
|
+
tid = cuda.threadIdx.x
|
|
139
|
+
idx = cuda.grid(1)
|
|
140
|
+
|
|
141
|
+
# Load data
|
|
142
|
+
if idx < active.shape[0]:
|
|
143
|
+
shared_active[tid] = 1 if active[idx] else 0
|
|
144
|
+
shared_crossing[tid] = 1 if crossing_mask[idx] else 0
|
|
145
|
+
else:
|
|
146
|
+
shared_active[tid] = 0
|
|
147
|
+
shared_crossing[tid] = 0
|
|
148
|
+
|
|
149
|
+
cuda.syncthreads()
|
|
150
|
+
|
|
151
|
+
# Tree reduction
|
|
152
|
+
s = cuda.blockDim.x // 2
|
|
153
|
+
while s > 0:
|
|
154
|
+
if tid < s:
|
|
155
|
+
shared_active[tid] += shared_active[tid + s]
|
|
156
|
+
shared_crossing[tid] += shared_crossing[tid + s]
|
|
157
|
+
cuda.syncthreads()
|
|
158
|
+
s //= 2
|
|
159
|
+
|
|
160
|
+
# First thread in block adds to global result
|
|
161
|
+
if tid == 0:
|
|
162
|
+
cuda.atomic.add(result, 0, shared_active[0])
|
|
163
|
+
cuda.atomic.add(result, 1, shared_crossing[0])
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
__all__ = ["kernel_reduce_status", "kernel_reduce_status_shared"]
|