lsurf 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- lsurf/__init__.py +471 -0
- lsurf/analysis/__init__.py +107 -0
- lsurf/analysis/healpix_utils.py +418 -0
- lsurf/analysis/sphere_viz.py +1280 -0
- lsurf/cli/__init__.py +48 -0
- lsurf/cli/build.py +398 -0
- lsurf/cli/config_schema.py +318 -0
- lsurf/cli/gui_cmd.py +76 -0
- lsurf/cli/interactive.py +850 -0
- lsurf/cli/main.py +81 -0
- lsurf/cli/run.py +806 -0
- lsurf/detectors/__init__.py +266 -0
- lsurf/detectors/analysis.py +289 -0
- lsurf/detectors/base.py +284 -0
- lsurf/detectors/constant_size_rings.py +485 -0
- lsurf/detectors/directional.py +45 -0
- lsurf/detectors/extended/__init__.py +73 -0
- lsurf/detectors/extended/local_sphere.py +353 -0
- lsurf/detectors/extended/recording_sphere.py +368 -0
- lsurf/detectors/planar.py +45 -0
- lsurf/detectors/protocol.py +187 -0
- lsurf/detectors/recording_spheres.py +63 -0
- lsurf/detectors/results.py +1140 -0
- lsurf/detectors/small/__init__.py +79 -0
- lsurf/detectors/small/directional.py +330 -0
- lsurf/detectors/small/planar.py +401 -0
- lsurf/detectors/small/spherical.py +450 -0
- lsurf/detectors/spherical.py +45 -0
- lsurf/geometry/__init__.py +199 -0
- lsurf/geometry/builder.py +478 -0
- lsurf/geometry/cell.py +228 -0
- lsurf/geometry/cell_geometry.py +247 -0
- lsurf/geometry/detector_arrays.py +1785 -0
- lsurf/geometry/geometry.py +222 -0
- lsurf/geometry/surface_analysis.py +375 -0
- lsurf/geometry/validation.py +91 -0
- lsurf/gui/__init__.py +51 -0
- lsurf/gui/app.py +903 -0
- lsurf/gui/core/__init__.py +39 -0
- lsurf/gui/core/scene.py +343 -0
- lsurf/gui/core/simulation.py +264 -0
- lsurf/gui/renderers/__init__.py +40 -0
- lsurf/gui/renderers/ray_renderer.py +353 -0
- lsurf/gui/renderers/source_renderer.py +505 -0
- lsurf/gui/renderers/surface_renderer.py +477 -0
- lsurf/gui/views/__init__.py +48 -0
- lsurf/gui/views/config_editor.py +3199 -0
- lsurf/gui/views/properties.py +257 -0
- lsurf/gui/views/results.py +291 -0
- lsurf/gui/views/scene_tree.py +180 -0
- lsurf/gui/views/viewport_3d.py +555 -0
- lsurf/gui/views/visualizations.py +712 -0
- lsurf/materials/__init__.py +169 -0
- lsurf/materials/base/__init__.py +64 -0
- lsurf/materials/base/full_inhomogeneous.py +208 -0
- lsurf/materials/base/grid_inhomogeneous.py +319 -0
- lsurf/materials/base/homogeneous.py +342 -0
- lsurf/materials/base/material_field.py +527 -0
- lsurf/materials/base/simple_inhomogeneous.py +418 -0
- lsurf/materials/base/spectral_inhomogeneous.py +497 -0
- lsurf/materials/implementations/__init__.py +120 -0
- lsurf/materials/implementations/data/alpha_values_typical_atmosphere_updated.txt +24 -0
- lsurf/materials/implementations/duct_atmosphere.py +390 -0
- lsurf/materials/implementations/exponential_atmosphere.py +435 -0
- lsurf/materials/implementations/gaussian_lens.py +120 -0
- lsurf/materials/implementations/interpolated_data.py +123 -0
- lsurf/materials/implementations/layered_atmosphere.py +134 -0
- lsurf/materials/implementations/linear_gradient.py +109 -0
- lsurf/materials/implementations/linsley_atmosphere.py +764 -0
- lsurf/materials/implementations/standard_materials.py +126 -0
- lsurf/materials/implementations/turbulent_atmosphere.py +135 -0
- lsurf/materials/implementations/us_standard_atmosphere.py +149 -0
- lsurf/materials/utils/__init__.py +77 -0
- lsurf/materials/utils/constants.py +45 -0
- lsurf/materials/utils/device_functions.py +117 -0
- lsurf/materials/utils/dispersion.py +160 -0
- lsurf/materials/utils/factories.py +142 -0
- lsurf/propagation/__init__.py +91 -0
- lsurf/propagation/detector_gpu.py +67 -0
- lsurf/propagation/gpu_device_rays.py +294 -0
- lsurf/propagation/kernels/__init__.py +175 -0
- lsurf/propagation/kernels/absorption/__init__.py +61 -0
- lsurf/propagation/kernels/absorption/grid.py +240 -0
- lsurf/propagation/kernels/absorption/simple.py +232 -0
- lsurf/propagation/kernels/absorption/spectral.py +410 -0
- lsurf/propagation/kernels/detection/__init__.py +64 -0
- lsurf/propagation/kernels/detection/protocol.py +102 -0
- lsurf/propagation/kernels/detection/spherical.py +255 -0
- lsurf/propagation/kernels/device_functions.py +790 -0
- lsurf/propagation/kernels/fresnel/__init__.py +64 -0
- lsurf/propagation/kernels/fresnel/protocol.py +97 -0
- lsurf/propagation/kernels/fresnel/standard.py +258 -0
- lsurf/propagation/kernels/intersection/__init__.py +79 -0
- lsurf/propagation/kernels/intersection/annular_plane.py +207 -0
- lsurf/propagation/kernels/intersection/bounded_plane.py +205 -0
- lsurf/propagation/kernels/intersection/plane.py +166 -0
- lsurf/propagation/kernels/intersection/protocol.py +95 -0
- lsurf/propagation/kernels/intersection/signed_distance.py +742 -0
- lsurf/propagation/kernels/intersection/sphere.py +190 -0
- lsurf/propagation/kernels/propagation/__init__.py +85 -0
- lsurf/propagation/kernels/propagation/grid.py +527 -0
- lsurf/propagation/kernels/propagation/protocol.py +105 -0
- lsurf/propagation/kernels/propagation/simple.py +460 -0
- lsurf/propagation/kernels/propagation/spectral.py +875 -0
- lsurf/propagation/kernels/registry.py +331 -0
- lsurf/propagation/kernels/surface/__init__.py +72 -0
- lsurf/propagation/kernels/surface/bisection.py +232 -0
- lsurf/propagation/kernels/surface/detection.py +402 -0
- lsurf/propagation/kernels/surface/reduction.py +166 -0
- lsurf/propagation/propagator_protocol.py +222 -0
- lsurf/propagation/propagators/__init__.py +101 -0
- lsurf/propagation/propagators/detector_handler.py +354 -0
- lsurf/propagation/propagators/factory.py +200 -0
- lsurf/propagation/propagators/fresnel_handler.py +305 -0
- lsurf/propagation/propagators/gpu_gradient.py +566 -0
- lsurf/propagation/propagators/gpu_surface_propagator.py +707 -0
- lsurf/propagation/propagators/gradient.py +429 -0
- lsurf/propagation/propagators/intersection_handler.py +327 -0
- lsurf/propagation/propagators/material_propagator.py +398 -0
- lsurf/propagation/propagators/signed_distance_handler.py +522 -0
- lsurf/propagation/propagators/spectral_gpu_gradient.py +553 -0
- lsurf/propagation/propagators/surface_interaction.py +616 -0
- lsurf/propagation/propagators/surface_propagator.py +719 -0
- lsurf/py.typed +1 -0
- lsurf/simulation/__init__.py +70 -0
- lsurf/simulation/config.py +164 -0
- lsurf/simulation/orchestrator.py +462 -0
- lsurf/simulation/result.py +299 -0
- lsurf/simulation/simulation.py +262 -0
- lsurf/sources/__init__.py +128 -0
- lsurf/sources/base.py +264 -0
- lsurf/sources/collimated.py +252 -0
- lsurf/sources/custom.py +409 -0
- lsurf/sources/diverging.py +228 -0
- lsurf/sources/gaussian.py +272 -0
- lsurf/sources/parallel_from_positions.py +197 -0
- lsurf/sources/point.py +172 -0
- lsurf/sources/uniform_diverging.py +258 -0
- lsurf/surfaces/__init__.py +184 -0
- lsurf/surfaces/cpu/__init__.py +50 -0
- lsurf/surfaces/cpu/curved_wave.py +463 -0
- lsurf/surfaces/cpu/gerstner_wave.py +381 -0
- lsurf/surfaces/cpu/wave_params.py +118 -0
- lsurf/surfaces/gpu/__init__.py +72 -0
- lsurf/surfaces/gpu/annular_plane.py +453 -0
- lsurf/surfaces/gpu/bounded_plane.py +390 -0
- lsurf/surfaces/gpu/curved_wave.py +483 -0
- lsurf/surfaces/gpu/gerstner_wave.py +377 -0
- lsurf/surfaces/gpu/multi_curved_wave.py +520 -0
- lsurf/surfaces/gpu/plane.py +299 -0
- lsurf/surfaces/gpu/recording_sphere.py +587 -0
- lsurf/surfaces/gpu/sphere.py +311 -0
- lsurf/surfaces/protocol.py +336 -0
- lsurf/surfaces/registry.py +373 -0
- lsurf/utilities/__init__.py +175 -0
- lsurf/utilities/detector_analysis.py +814 -0
- lsurf/utilities/fresnel.py +628 -0
- lsurf/utilities/interactions.py +1215 -0
- lsurf/utilities/propagation.py +602 -0
- lsurf/utilities/ray_data.py +532 -0
- lsurf/utilities/recording_sphere.py +745 -0
- lsurf/utilities/time_spread.py +463 -0
- lsurf/visualization/__init__.py +329 -0
- lsurf/visualization/absorption_plots.py +334 -0
- lsurf/visualization/atmospheric_plots.py +754 -0
- lsurf/visualization/common.py +348 -0
- lsurf/visualization/detector_plots.py +1350 -0
- lsurf/visualization/detector_sphere_plots.py +1173 -0
- lsurf/visualization/fresnel_plots.py +1061 -0
- lsurf/visualization/ocean_simulation_plots.py +999 -0
- lsurf/visualization/polarization_plots.py +916 -0
- lsurf/visualization/raytracing_plots.py +1521 -0
- lsurf/visualization/ring_detector_plots.py +1867 -0
- lsurf/visualization/time_spread_plots.py +531 -0
- lsurf-1.0.0.dist-info/METADATA +381 -0
- lsurf-1.0.0.dist-info/RECORD +180 -0
- lsurf-1.0.0.dist-info/WHEEL +5 -0
- lsurf-1.0.0.dist-info/entry_points.txt +2 -0
- lsurf-1.0.0.dist-info/licenses/LICENSE +32 -0
- lsurf-1.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,875 @@
|
|
|
1
|
+
# The Clear BSD License
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2026 Tobias Heibges
|
|
4
|
+
# All rights reserved.
|
|
5
|
+
#
|
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
|
7
|
+
# modification, are permitted (subject to the limitations in the disclaimer
|
|
8
|
+
# below) provided that the following conditions are met:
|
|
9
|
+
#
|
|
10
|
+
# * Redistributions of source code must retain the above copyright notice,
|
|
11
|
+
# this list of conditions and the following disclaimer.
|
|
12
|
+
#
|
|
13
|
+
# * Redistributions in binary form must reproduce the above copyright
|
|
14
|
+
# notice, this list of conditions and the following disclaimer in the
|
|
15
|
+
# documentation and/or other materials provided with the distribution.
|
|
16
|
+
#
|
|
17
|
+
# * Neither the name of the copyright holder nor the names of its
|
|
18
|
+
# contributors may be used to endorse or promote products derived from this
|
|
19
|
+
# software without specific prior written permission.
|
|
20
|
+
#
|
|
21
|
+
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
|
|
22
|
+
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
23
|
+
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
24
|
+
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
25
|
+
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
26
|
+
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
27
|
+
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
28
|
+
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
29
|
+
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
30
|
+
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
31
|
+
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
32
|
+
# POSSIBILITY OF SUCH DAMAGE.
|
|
33
|
+
|
|
34
|
+
"""
|
|
35
|
+
GPU Kernels for SpectralInhomogeneousModel
|
|
36
|
+
|
|
37
|
+
CUDA kernels for GPU-accelerated ray propagation through
|
|
38
|
+
radially-symmetric materials with wavelength-dependent refractive index,
|
|
39
|
+
using 2D lookup table interpolation (altitude × wavelength).
|
|
40
|
+
"""
|
|
41
|
+
|
|
42
|
+
import math
|
|
43
|
+
|
|
44
|
+
# GPU support is optional
|
|
45
|
+
try:
|
|
46
|
+
from numba import cuda
|
|
47
|
+
|
|
48
|
+
HAS_CUDA = True
|
|
49
|
+
except ImportError:
|
|
50
|
+
|
|
51
|
+
class _FakeCuda:
|
|
52
|
+
"""Fake cuda module for when numba is not installed."""
|
|
53
|
+
|
|
54
|
+
class devicearray:
|
|
55
|
+
"""Fake devicearray submodule."""
|
|
56
|
+
|
|
57
|
+
DeviceNDArray = object
|
|
58
|
+
|
|
59
|
+
@staticmethod
|
|
60
|
+
def jit(*args, **kwargs):
|
|
61
|
+
"""Return a no-op decorator."""
|
|
62
|
+
|
|
63
|
+
def decorator(func):
|
|
64
|
+
return func
|
|
65
|
+
|
|
66
|
+
if args and callable(args[0]):
|
|
67
|
+
return args[0]
|
|
68
|
+
return decorator
|
|
69
|
+
|
|
70
|
+
@staticmethod
|
|
71
|
+
def is_available():
|
|
72
|
+
return False
|
|
73
|
+
|
|
74
|
+
@staticmethod
|
|
75
|
+
def grid(n):
|
|
76
|
+
return 0
|
|
77
|
+
|
|
78
|
+
@staticmethod
|
|
79
|
+
def synchronize():
|
|
80
|
+
pass
|
|
81
|
+
|
|
82
|
+
cuda = _FakeCuda() # type: ignore[assignment]
|
|
83
|
+
HAS_CUDA = False
|
|
84
|
+
|
|
85
|
+
from ..device_functions import device_euler_step
|
|
86
|
+
from ..registry import PropagationKernelID, register_kernel
|
|
87
|
+
|
|
88
|
+
SPEED_OF_LIGHT = 299792458.0
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
@cuda.jit(device=True)
|
|
92
|
+
def _device_bilinear_interpolate(
|
|
93
|
+
val1: float,
|
|
94
|
+
val2: float,
|
|
95
|
+
lut: cuda.devicearray.DeviceNDArray,
|
|
96
|
+
min1: float,
|
|
97
|
+
delta1: float,
|
|
98
|
+
n1: int,
|
|
99
|
+
min2: float,
|
|
100
|
+
delta2: float,
|
|
101
|
+
n2: int,
|
|
102
|
+
) -> float:
|
|
103
|
+
"""
|
|
104
|
+
Generic bilinear interpolation in 2D LUT.
|
|
105
|
+
|
|
106
|
+
Parameters
|
|
107
|
+
----------
|
|
108
|
+
val1 : float
|
|
109
|
+
Value in first dimension (e.g., altitude)
|
|
110
|
+
val2 : float
|
|
111
|
+
Value in second dimension (e.g., wavelength)
|
|
112
|
+
lut : device array
|
|
113
|
+
2D lookup table [dim1, dim2]
|
|
114
|
+
min1 : float
|
|
115
|
+
Minimum value in first dimension
|
|
116
|
+
delta1 : float
|
|
117
|
+
Spacing in first dimension
|
|
118
|
+
n1 : int
|
|
119
|
+
Number of entries in first dimension
|
|
120
|
+
min2 : float
|
|
121
|
+
Minimum value in second dimension
|
|
122
|
+
delta2 : float
|
|
123
|
+
Spacing in second dimension
|
|
124
|
+
n2 : int
|
|
125
|
+
Number of entries in second dimension
|
|
126
|
+
|
|
127
|
+
Returns
|
|
128
|
+
-------
|
|
129
|
+
float
|
|
130
|
+
Interpolated value
|
|
131
|
+
"""
|
|
132
|
+
# Normalize coordinates to fractional indices
|
|
133
|
+
idx1 = (val1 - min1) / delta1
|
|
134
|
+
idx2 = (val2 - min2) / delta2
|
|
135
|
+
|
|
136
|
+
# Clamp to valid bounds
|
|
137
|
+
if idx1 < 0.0:
|
|
138
|
+
idx1 = 0.0
|
|
139
|
+
if idx1 > n1 - 1.001:
|
|
140
|
+
idx1 = n1 - 1.001
|
|
141
|
+
if idx2 < 0.0:
|
|
142
|
+
idx2 = 0.0
|
|
143
|
+
if idx2 > n2 - 1.001:
|
|
144
|
+
idx2 = n2 - 1.001
|
|
145
|
+
|
|
146
|
+
# Get integer indices
|
|
147
|
+
i0 = int(idx1)
|
|
148
|
+
j0 = int(idx2)
|
|
149
|
+
i1 = i0 + 1
|
|
150
|
+
j1 = j0 + 1
|
|
151
|
+
|
|
152
|
+
# Clamp upper indices
|
|
153
|
+
if i1 > n1 - 1:
|
|
154
|
+
i1 = n1 - 1
|
|
155
|
+
if j1 > n2 - 1:
|
|
156
|
+
j1 = n2 - 1
|
|
157
|
+
|
|
158
|
+
# Fractional parts
|
|
159
|
+
fi = idx1 - i0
|
|
160
|
+
fj = idx2 - j0
|
|
161
|
+
|
|
162
|
+
# Bilinear interpolation
|
|
163
|
+
c00 = lut[i0, j0]
|
|
164
|
+
c01 = lut[i0, j1]
|
|
165
|
+
c10 = lut[i1, j0]
|
|
166
|
+
c11 = lut[i1, j1]
|
|
167
|
+
|
|
168
|
+
# Interpolate along second dimension first
|
|
169
|
+
c0 = c00 * (1.0 - fj) + c01 * fj
|
|
170
|
+
c1 = c10 * (1.0 - fj) + c11 * fj
|
|
171
|
+
|
|
172
|
+
# Then interpolate along first dimension
|
|
173
|
+
return c0 * (1.0 - fi) + c1 * fi
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
@cuda.jit(device=True)
|
|
177
|
+
def _device_spectral_n_and_gradient(
|
|
178
|
+
x: float,
|
|
179
|
+
y: float,
|
|
180
|
+
z: float,
|
|
181
|
+
wavelength: float,
|
|
182
|
+
center_x: float,
|
|
183
|
+
center_y: float,
|
|
184
|
+
center_z: float,
|
|
185
|
+
ref_radius: float,
|
|
186
|
+
alt_min: float,
|
|
187
|
+
alt_delta: float,
|
|
188
|
+
n_alt: int,
|
|
189
|
+
wl_min: float,
|
|
190
|
+
wl_delta: float,
|
|
191
|
+
n_wl: int,
|
|
192
|
+
lut_n: cuda.devicearray.DeviceNDArray,
|
|
193
|
+
lut_dn_dh: cuda.devicearray.DeviceNDArray,
|
|
194
|
+
) -> tuple[float, float, float, float]:
|
|
195
|
+
"""
|
|
196
|
+
Compute n and gradient for any SpectralInhomogeneousModel.
|
|
197
|
+
|
|
198
|
+
Parameters
|
|
199
|
+
----------
|
|
200
|
+
x, y, z : float
|
|
201
|
+
Position in Cartesian coordinates
|
|
202
|
+
wavelength : float
|
|
203
|
+
Wavelength in meters
|
|
204
|
+
center_x, center_y, center_z : float
|
|
205
|
+
Center of spherical symmetry
|
|
206
|
+
ref_radius : float
|
|
207
|
+
Reference radius (e.g., Earth radius)
|
|
208
|
+
alt_min : float
|
|
209
|
+
Minimum altitude in LUT
|
|
210
|
+
alt_delta : float
|
|
211
|
+
Altitude spacing in LUT
|
|
212
|
+
n_alt : int
|
|
213
|
+
Number of altitude samples in LUT
|
|
214
|
+
wl_min : float
|
|
215
|
+
Minimum wavelength in LUT
|
|
216
|
+
wl_delta : float
|
|
217
|
+
Wavelength spacing in LUT
|
|
218
|
+
n_wl : int
|
|
219
|
+
Number of wavelength samples in LUT
|
|
220
|
+
lut_n : device array
|
|
221
|
+
2D lookup table for n [altitude, wavelength]
|
|
222
|
+
lut_dn_dh : device array
|
|
223
|
+
2D lookup table for dn/dh [altitude, wavelength]
|
|
224
|
+
|
|
225
|
+
Returns
|
|
226
|
+
-------
|
|
227
|
+
tuple
|
|
228
|
+
(n, grad_x, grad_y, grad_z)
|
|
229
|
+
"""
|
|
230
|
+
# Compute distance from center
|
|
231
|
+
dx = x - center_x
|
|
232
|
+
dy = y - center_y
|
|
233
|
+
dz = z - center_z
|
|
234
|
+
r = math.sqrt(dx * dx + dy * dy + dz * dz)
|
|
235
|
+
|
|
236
|
+
# Compute altitude
|
|
237
|
+
altitude = r - ref_radius
|
|
238
|
+
if altitude < 0.0:
|
|
239
|
+
altitude = 0.0
|
|
240
|
+
|
|
241
|
+
# 2D interpolation for n and dn/dh
|
|
242
|
+
n = _device_bilinear_interpolate(
|
|
243
|
+
altitude, wavelength, lut_n, alt_min, alt_delta, n_alt, wl_min, wl_delta, n_wl
|
|
244
|
+
)
|
|
245
|
+
dn_dh = _device_bilinear_interpolate(
|
|
246
|
+
altitude,
|
|
247
|
+
wavelength,
|
|
248
|
+
lut_dn_dh,
|
|
249
|
+
alt_min,
|
|
250
|
+
alt_delta,
|
|
251
|
+
n_alt,
|
|
252
|
+
wl_min,
|
|
253
|
+
wl_delta,
|
|
254
|
+
n_wl,
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
# Compute radial unit vector (gradient direction)
|
|
258
|
+
if r < 1e-10:
|
|
259
|
+
r_hat_x, r_hat_y, r_hat_z = 0.0, 0.0, 1.0
|
|
260
|
+
else:
|
|
261
|
+
r_inv = 1.0 / r
|
|
262
|
+
r_hat_x = dx * r_inv
|
|
263
|
+
r_hat_y = dy * r_inv
|
|
264
|
+
r_hat_z = dz * r_inv
|
|
265
|
+
|
|
266
|
+
# Gradient = dn/dh * r_hat
|
|
267
|
+
grad_x = dn_dh * r_hat_x
|
|
268
|
+
grad_y = dn_dh * r_hat_y
|
|
269
|
+
grad_z = dn_dh * r_hat_z
|
|
270
|
+
|
|
271
|
+
return n, grad_x, grad_y, grad_z
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
@cuda.jit(device=True)
|
|
275
|
+
def _device_spectral_euler_step(
|
|
276
|
+
x: float,
|
|
277
|
+
y: float,
|
|
278
|
+
z: float,
|
|
279
|
+
dir_x: float,
|
|
280
|
+
dir_y: float,
|
|
281
|
+
dir_z: float,
|
|
282
|
+
step_size: float,
|
|
283
|
+
wavelength: float,
|
|
284
|
+
center_x: float,
|
|
285
|
+
center_y: float,
|
|
286
|
+
center_z: float,
|
|
287
|
+
ref_radius: float,
|
|
288
|
+
alt_min: float,
|
|
289
|
+
alt_delta: float,
|
|
290
|
+
n_alt: int,
|
|
291
|
+
wl_min: float,
|
|
292
|
+
wl_delta: float,
|
|
293
|
+
n_wl: int,
|
|
294
|
+
lut_n: cuda.devicearray.DeviceNDArray,
|
|
295
|
+
lut_dn_dh: cuda.devicearray.DeviceNDArray,
|
|
296
|
+
) -> tuple[float, float, float, float, float, float, float]:
|
|
297
|
+
"""Euler step for SpectralInhomogeneousModel."""
|
|
298
|
+
n, grad_x, grad_y, grad_z = _device_spectral_n_and_gradient(
|
|
299
|
+
x,
|
|
300
|
+
y,
|
|
301
|
+
z,
|
|
302
|
+
wavelength,
|
|
303
|
+
center_x,
|
|
304
|
+
center_y,
|
|
305
|
+
center_z,
|
|
306
|
+
ref_radius,
|
|
307
|
+
alt_min,
|
|
308
|
+
alt_delta,
|
|
309
|
+
n_alt,
|
|
310
|
+
wl_min,
|
|
311
|
+
wl_delta,
|
|
312
|
+
n_wl,
|
|
313
|
+
lut_n,
|
|
314
|
+
lut_dn_dh,
|
|
315
|
+
)
|
|
316
|
+
|
|
317
|
+
new_x, new_y, new_z, new_dx, new_dy, new_dz = device_euler_step(
|
|
318
|
+
x, y, z, dir_x, dir_y, dir_z, n, grad_x, grad_y, grad_z, step_size
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
return new_x, new_y, new_z, new_dx, new_dy, new_dz, n
|
|
322
|
+
|
|
323
|
+
|
|
324
|
+
@cuda.jit(device=True)
|
|
325
|
+
def _device_spectral_rk4_step(
|
|
326
|
+
x: float,
|
|
327
|
+
y: float,
|
|
328
|
+
z: float,
|
|
329
|
+
dir_x: float,
|
|
330
|
+
dir_y: float,
|
|
331
|
+
dir_z: float,
|
|
332
|
+
step_size: float,
|
|
333
|
+
wavelength: float,
|
|
334
|
+
center_x: float,
|
|
335
|
+
center_y: float,
|
|
336
|
+
center_z: float,
|
|
337
|
+
ref_radius: float,
|
|
338
|
+
alt_min: float,
|
|
339
|
+
alt_delta: float,
|
|
340
|
+
n_alt: int,
|
|
341
|
+
wl_min: float,
|
|
342
|
+
wl_delta: float,
|
|
343
|
+
n_wl: int,
|
|
344
|
+
lut_n: cuda.devicearray.DeviceNDArray,
|
|
345
|
+
lut_dn_dh: cuda.devicearray.DeviceNDArray,
|
|
346
|
+
) -> tuple[float, float, float, float, float, float, float]:
|
|
347
|
+
"""RK4 step for SpectralInhomogeneousModel."""
|
|
348
|
+
h = step_size
|
|
349
|
+
h2 = h / 2.0
|
|
350
|
+
|
|
351
|
+
def get_n_and_kappa(px, py, pz, dx, dy, dz):
|
|
352
|
+
n, gx, gy, gz = _device_spectral_n_and_gradient(
|
|
353
|
+
px,
|
|
354
|
+
py,
|
|
355
|
+
pz,
|
|
356
|
+
wavelength,
|
|
357
|
+
center_x,
|
|
358
|
+
center_y,
|
|
359
|
+
center_z,
|
|
360
|
+
ref_radius,
|
|
361
|
+
alt_min,
|
|
362
|
+
alt_delta,
|
|
363
|
+
n_alt,
|
|
364
|
+
wl_min,
|
|
365
|
+
wl_delta,
|
|
366
|
+
n_wl,
|
|
367
|
+
lut_n,
|
|
368
|
+
lut_dn_dh,
|
|
369
|
+
)
|
|
370
|
+
dot = dx * gx + dy * gy + dz * gz
|
|
371
|
+
kx = (gx - dot * dx) / n
|
|
372
|
+
ky = (gy - dot * dy) / n
|
|
373
|
+
kz = (gz - dot * dz) / n
|
|
374
|
+
return n, kx, ky, kz
|
|
375
|
+
|
|
376
|
+
def normalize(dx, dy, dz):
|
|
377
|
+
norm = math.sqrt(dx * dx + dy * dy + dz * dz)
|
|
378
|
+
if norm < 1e-12:
|
|
379
|
+
norm = 1.0
|
|
380
|
+
return dx / norm, dy / norm, dz / norm
|
|
381
|
+
|
|
382
|
+
# k1
|
|
383
|
+
n0, kx1, ky1, kz1 = get_n_and_kappa(x, y, z, dir_x, dir_y, dir_z)
|
|
384
|
+
k1_rx, k1_ry, k1_rz = dir_x, dir_y, dir_z
|
|
385
|
+
k1_dx, k1_dy, k1_dz = kx1, ky1, kz1
|
|
386
|
+
|
|
387
|
+
# k2
|
|
388
|
+
px = x + h2 * k1_rx
|
|
389
|
+
py = y + h2 * k1_ry
|
|
390
|
+
pz = z + h2 * k1_rz
|
|
391
|
+
dx, dy, dz = normalize(dir_x + h2 * k1_dx, dir_y + h2 * k1_dy, dir_z + h2 * k1_dz)
|
|
392
|
+
n1, kx2, ky2, kz2 = get_n_and_kappa(px, py, pz, dx, dy, dz)
|
|
393
|
+
k2_rx, k2_ry, k2_rz = dx, dy, dz
|
|
394
|
+
k2_dx, k2_dy, k2_dz = kx2, ky2, kz2
|
|
395
|
+
|
|
396
|
+
# k3
|
|
397
|
+
px = x + h2 * k2_rx
|
|
398
|
+
py = y + h2 * k2_ry
|
|
399
|
+
pz = z + h2 * k2_rz
|
|
400
|
+
dx, dy, dz = normalize(dir_x + h2 * k2_dx, dir_y + h2 * k2_dy, dir_z + h2 * k2_dz)
|
|
401
|
+
n2, kx3, ky3, kz3 = get_n_and_kappa(px, py, pz, dx, dy, dz)
|
|
402
|
+
k3_rx, k3_ry, k3_rz = dx, dy, dz
|
|
403
|
+
k3_dx, k3_dy, k3_dz = kx3, ky3, kz3
|
|
404
|
+
|
|
405
|
+
# k4
|
|
406
|
+
px = x + h * k3_rx
|
|
407
|
+
py = y + h * k3_ry
|
|
408
|
+
pz = z + h * k3_rz
|
|
409
|
+
dx, dy, dz = normalize(dir_x + h * k3_dx, dir_y + h * k3_dy, dir_z + h * k3_dz)
|
|
410
|
+
n3, kx4, ky4, kz4 = get_n_and_kappa(px, py, pz, dx, dy, dz)
|
|
411
|
+
|
|
412
|
+
# Final RK4 combination
|
|
413
|
+
new_x = x + (h / 6.0) * (k1_rx + 2 * k2_rx + 2 * k3_rx + dx)
|
|
414
|
+
new_y = y + (h / 6.0) * (k1_ry + 2 * k2_ry + 2 * k3_ry + dy)
|
|
415
|
+
new_z = z + (h / 6.0) * (k1_rz + 2 * k2_rz + 2 * k3_rz + dz)
|
|
416
|
+
|
|
417
|
+
new_dx = dir_x + (h / 6.0) * (k1_dx + 2 * k2_dx + 2 * k3_dx + kx4)
|
|
418
|
+
new_dy = dir_y + (h / 6.0) * (k1_dy + 2 * k2_dy + 2 * k3_dy + ky4)
|
|
419
|
+
new_dz = dir_z + (h / 6.0) * (k1_dz + 2 * k2_dz + 2 * k3_dz + kz4)
|
|
420
|
+
|
|
421
|
+
new_dx, new_dy, new_dz = normalize(new_dx, new_dy, new_dz)
|
|
422
|
+
|
|
423
|
+
# Simpson's rule for average n
|
|
424
|
+
n_avg = (n0 + 4 * n1 + n2) / 6.0
|
|
425
|
+
|
|
426
|
+
return new_x, new_y, new_z, new_dx, new_dy, new_dz, n_avg
|
|
427
|
+
|
|
428
|
+
|
|
429
|
+
@register_kernel(PropagationKernelID.SPECTRAL_EULER)
|
|
430
|
+
@cuda.jit
|
|
431
|
+
def _kernel_spectral_inhomogeneous_euler(
|
|
432
|
+
positions,
|
|
433
|
+
directions,
|
|
434
|
+
active,
|
|
435
|
+
geo_path,
|
|
436
|
+
opt_path,
|
|
437
|
+
acc_time,
|
|
438
|
+
step_size: float,
|
|
439
|
+
num_steps: int,
|
|
440
|
+
center_x: float,
|
|
441
|
+
center_y: float,
|
|
442
|
+
center_z: float,
|
|
443
|
+
ref_radius: float,
|
|
444
|
+
alt_min: float,
|
|
445
|
+
alt_delta: float,
|
|
446
|
+
n_alt: int,
|
|
447
|
+
wl_min: float,
|
|
448
|
+
wl_delta: float,
|
|
449
|
+
n_wl: int,
|
|
450
|
+
lut_n,
|
|
451
|
+
lut_dn_dh,
|
|
452
|
+
wavelength: float,
|
|
453
|
+
):
|
|
454
|
+
"""
|
|
455
|
+
GPU kernel for SpectralInhomogeneousModel using Euler integration.
|
|
456
|
+
|
|
457
|
+
Parameters
|
|
458
|
+
----------
|
|
459
|
+
positions : device array, shape (N, 3)
|
|
460
|
+
Ray positions
|
|
461
|
+
directions : device array, shape (N, 3)
|
|
462
|
+
Ray directions (unit vectors)
|
|
463
|
+
active : device array, shape (N,)
|
|
464
|
+
Boolean mask for active rays
|
|
465
|
+
geo_path : device array, shape (N,)
|
|
466
|
+
Accumulated geometric path length
|
|
467
|
+
opt_path : device array, shape (N,)
|
|
468
|
+
Accumulated optical path length
|
|
469
|
+
acc_time : device array, shape (N,)
|
|
470
|
+
Accumulated travel time
|
|
471
|
+
step_size : float
|
|
472
|
+
Integration step size in meters
|
|
473
|
+
num_steps : int
|
|
474
|
+
Number of steps to take
|
|
475
|
+
center_x, center_y, center_z : float
|
|
476
|
+
Center of spherical symmetry
|
|
477
|
+
ref_radius : float
|
|
478
|
+
Reference radius
|
|
479
|
+
alt_min : float
|
|
480
|
+
Minimum altitude in LUT
|
|
481
|
+
alt_delta : float
|
|
482
|
+
Altitude spacing in LUT
|
|
483
|
+
n_alt : int
|
|
484
|
+
Number of altitude samples
|
|
485
|
+
wl_min : float
|
|
486
|
+
Minimum wavelength in LUT
|
|
487
|
+
wl_delta : float
|
|
488
|
+
Wavelength spacing in LUT
|
|
489
|
+
n_wl : int
|
|
490
|
+
Number of wavelength samples
|
|
491
|
+
lut_n : device array, shape (n_alt, n_wl)
|
|
492
|
+
2D lookup table for n
|
|
493
|
+
lut_dn_dh : device array, shape (n_alt, n_wl)
|
|
494
|
+
2D lookup table for dn/dh
|
|
495
|
+
wavelength : float
|
|
496
|
+
Wavelength in meters (same for all rays in this kernel call)
|
|
497
|
+
"""
|
|
498
|
+
c = SPEED_OF_LIGHT
|
|
499
|
+
|
|
500
|
+
idx = cuda.grid(1)
|
|
501
|
+
if idx >= positions.shape[0]:
|
|
502
|
+
return
|
|
503
|
+
if not active[idx]:
|
|
504
|
+
return
|
|
505
|
+
|
|
506
|
+
# Load ray state
|
|
507
|
+
x = positions[idx, 0]
|
|
508
|
+
y = positions[idx, 1]
|
|
509
|
+
z = positions[idx, 2]
|
|
510
|
+
dx = directions[idx, 0]
|
|
511
|
+
dy = directions[idx, 1]
|
|
512
|
+
dz = directions[idx, 2]
|
|
513
|
+
gp = geo_path[idx]
|
|
514
|
+
op = opt_path[idx]
|
|
515
|
+
at = acc_time[idx]
|
|
516
|
+
|
|
517
|
+
for _ in range(num_steps):
|
|
518
|
+
x, y, z, dx, dy, dz, n = _device_spectral_euler_step(
|
|
519
|
+
x,
|
|
520
|
+
y,
|
|
521
|
+
z,
|
|
522
|
+
dx,
|
|
523
|
+
dy,
|
|
524
|
+
dz,
|
|
525
|
+
step_size,
|
|
526
|
+
wavelength,
|
|
527
|
+
center_x,
|
|
528
|
+
center_y,
|
|
529
|
+
center_z,
|
|
530
|
+
ref_radius,
|
|
531
|
+
alt_min,
|
|
532
|
+
alt_delta,
|
|
533
|
+
n_alt,
|
|
534
|
+
wl_min,
|
|
535
|
+
wl_delta,
|
|
536
|
+
n_wl,
|
|
537
|
+
lut_n,
|
|
538
|
+
lut_dn_dh,
|
|
539
|
+
)
|
|
540
|
+
gp += step_size
|
|
541
|
+
op += n * step_size
|
|
542
|
+
at += n * step_size / c
|
|
543
|
+
|
|
544
|
+
# Store updated state
|
|
545
|
+
positions[idx, 0] = x
|
|
546
|
+
positions[idx, 1] = y
|
|
547
|
+
positions[idx, 2] = z
|
|
548
|
+
directions[idx, 0] = dx
|
|
549
|
+
directions[idx, 1] = dy
|
|
550
|
+
directions[idx, 2] = dz
|
|
551
|
+
geo_path[idx] = gp
|
|
552
|
+
opt_path[idx] = op
|
|
553
|
+
acc_time[idx] = at
|
|
554
|
+
|
|
555
|
+
|
|
556
|
+
@register_kernel(PropagationKernelID.SPECTRAL_RK4)
|
|
557
|
+
@cuda.jit
|
|
558
|
+
def _kernel_spectral_inhomogeneous_rk4(
|
|
559
|
+
positions,
|
|
560
|
+
directions,
|
|
561
|
+
active,
|
|
562
|
+
geo_path,
|
|
563
|
+
opt_path,
|
|
564
|
+
acc_time,
|
|
565
|
+
step_size: float,
|
|
566
|
+
num_steps: int,
|
|
567
|
+
center_x: float,
|
|
568
|
+
center_y: float,
|
|
569
|
+
center_z: float,
|
|
570
|
+
ref_radius: float,
|
|
571
|
+
alt_min: float,
|
|
572
|
+
alt_delta: float,
|
|
573
|
+
n_alt: int,
|
|
574
|
+
wl_min: float,
|
|
575
|
+
wl_delta: float,
|
|
576
|
+
n_wl: int,
|
|
577
|
+
lut_n,
|
|
578
|
+
lut_dn_dh,
|
|
579
|
+
wavelength: float,
|
|
580
|
+
):
|
|
581
|
+
"""
|
|
582
|
+
GPU kernel for SpectralInhomogeneousModel using RK4 integration.
|
|
583
|
+
|
|
584
|
+
Parameters
|
|
585
|
+
----------
|
|
586
|
+
Same as _kernel_spectral_inhomogeneous_euler
|
|
587
|
+
"""
|
|
588
|
+
c = SPEED_OF_LIGHT
|
|
589
|
+
|
|
590
|
+
idx = cuda.grid(1)
|
|
591
|
+
if idx >= positions.shape[0]:
|
|
592
|
+
return
|
|
593
|
+
if not active[idx]:
|
|
594
|
+
return
|
|
595
|
+
|
|
596
|
+
# Load ray state
|
|
597
|
+
x = positions[idx, 0]
|
|
598
|
+
y = positions[idx, 1]
|
|
599
|
+
z = positions[idx, 2]
|
|
600
|
+
dx = directions[idx, 0]
|
|
601
|
+
dy = directions[idx, 1]
|
|
602
|
+
dz = directions[idx, 2]
|
|
603
|
+
gp = geo_path[idx]
|
|
604
|
+
op = opt_path[idx]
|
|
605
|
+
at = acc_time[idx]
|
|
606
|
+
|
|
607
|
+
for _ in range(num_steps):
|
|
608
|
+
x, y, z, dx, dy, dz, n_avg = _device_spectral_rk4_step(
|
|
609
|
+
x,
|
|
610
|
+
y,
|
|
611
|
+
z,
|
|
612
|
+
dx,
|
|
613
|
+
dy,
|
|
614
|
+
dz,
|
|
615
|
+
step_size,
|
|
616
|
+
wavelength,
|
|
617
|
+
center_x,
|
|
618
|
+
center_y,
|
|
619
|
+
center_z,
|
|
620
|
+
ref_radius,
|
|
621
|
+
alt_min,
|
|
622
|
+
alt_delta,
|
|
623
|
+
n_alt,
|
|
624
|
+
wl_min,
|
|
625
|
+
wl_delta,
|
|
626
|
+
n_wl,
|
|
627
|
+
lut_n,
|
|
628
|
+
lut_dn_dh,
|
|
629
|
+
)
|
|
630
|
+
gp += step_size
|
|
631
|
+
op += n_avg * step_size
|
|
632
|
+
at += n_avg * step_size / c
|
|
633
|
+
|
|
634
|
+
# Store updated state
|
|
635
|
+
positions[idx, 0] = x
|
|
636
|
+
positions[idx, 1] = y
|
|
637
|
+
positions[idx, 2] = z
|
|
638
|
+
directions[idx, 0] = dx
|
|
639
|
+
directions[idx, 1] = dy
|
|
640
|
+
directions[idx, 2] = dz
|
|
641
|
+
geo_path[idx] = gp
|
|
642
|
+
opt_path[idx] = op
|
|
643
|
+
acc_time[idx] = at
|
|
644
|
+
|
|
645
|
+
|
|
646
|
+
# =============================================================================
|
|
647
|
+
# PER-RAY WAVELENGTH KERNELS
|
|
648
|
+
# =============================================================================
|
|
649
|
+
# These variants take wavelength as a per-ray array instead of a scalar.
|
|
650
|
+
# Use with SpectralGPUGradientPropagator for chromatic dispersion simulation.
|
|
651
|
+
|
|
652
|
+
|
|
653
|
+
@register_kernel(PropagationKernelID.SPECTRAL_EULER_PERRAY)
|
|
654
|
+
@cuda.jit
|
|
655
|
+
def _kernel_spectral_inhomogeneous_euler_perray(
|
|
656
|
+
positions,
|
|
657
|
+
directions,
|
|
658
|
+
wavelengths, # Per-ray wavelength array, shape (N,)
|
|
659
|
+
active,
|
|
660
|
+
geo_path,
|
|
661
|
+
opt_path,
|
|
662
|
+
acc_time,
|
|
663
|
+
step_size: float,
|
|
664
|
+
num_steps: int,
|
|
665
|
+
center_x: float,
|
|
666
|
+
center_y: float,
|
|
667
|
+
center_z: float,
|
|
668
|
+
ref_radius: float,
|
|
669
|
+
alt_min: float,
|
|
670
|
+
alt_delta: float,
|
|
671
|
+
n_alt: int,
|
|
672
|
+
wl_min: float,
|
|
673
|
+
wl_delta: float,
|
|
674
|
+
n_wl: int,
|
|
675
|
+
lut_n,
|
|
676
|
+
lut_dn_dh,
|
|
677
|
+
):
|
|
678
|
+
"""
|
|
679
|
+
GPU kernel for SpectralInhomogeneousModel with per-ray wavelengths.
|
|
680
|
+
|
|
681
|
+
Uses Euler integration. Each ray has its own wavelength value,
|
|
682
|
+
allowing simulation of chromatic dispersion.
|
|
683
|
+
|
|
684
|
+
Parameters
|
|
685
|
+
----------
|
|
686
|
+
positions : device array, shape (N, 3)
|
|
687
|
+
Ray positions
|
|
688
|
+
directions : device array, shape (N, 3)
|
|
689
|
+
Ray directions (unit vectors)
|
|
690
|
+
wavelengths : device array, shape (N,)
|
|
691
|
+
Per-ray wavelengths in meters
|
|
692
|
+
active : device array, shape (N,)
|
|
693
|
+
Boolean mask for active rays
|
|
694
|
+
geo_path : device array, shape (N,)
|
|
695
|
+
Accumulated geometric path length
|
|
696
|
+
opt_path : device array, shape (N,)
|
|
697
|
+
Accumulated optical path length
|
|
698
|
+
acc_time : device array, shape (N,)
|
|
699
|
+
Accumulated travel time
|
|
700
|
+
step_size : float
|
|
701
|
+
Integration step size in meters
|
|
702
|
+
num_steps : int
|
|
703
|
+
Number of steps to take
|
|
704
|
+
center_x, center_y, center_z : float
|
|
705
|
+
Center of spherical symmetry
|
|
706
|
+
ref_radius : float
|
|
707
|
+
Reference radius
|
|
708
|
+
alt_min : float
|
|
709
|
+
Minimum altitude in LUT
|
|
710
|
+
alt_delta : float
|
|
711
|
+
Altitude spacing in LUT
|
|
712
|
+
n_alt : int
|
|
713
|
+
Number of altitude samples
|
|
714
|
+
wl_min : float
|
|
715
|
+
Minimum wavelength in LUT
|
|
716
|
+
wl_delta : float
|
|
717
|
+
Wavelength spacing in LUT
|
|
718
|
+
n_wl : int
|
|
719
|
+
Number of wavelength samples
|
|
720
|
+
lut_n : device array, shape (n_alt, n_wl)
|
|
721
|
+
2D lookup table for n
|
|
722
|
+
lut_dn_dh : device array, shape (n_alt, n_wl)
|
|
723
|
+
2D lookup table for dn/dh
|
|
724
|
+
"""
|
|
725
|
+
c = SPEED_OF_LIGHT
|
|
726
|
+
|
|
727
|
+
idx = cuda.grid(1)
|
|
728
|
+
if idx >= positions.shape[0]:
|
|
729
|
+
return
|
|
730
|
+
if not active[idx]:
|
|
731
|
+
return
|
|
732
|
+
|
|
733
|
+
# Load ray state including per-ray wavelength
|
|
734
|
+
x = positions[idx, 0]
|
|
735
|
+
y = positions[idx, 1]
|
|
736
|
+
z = positions[idx, 2]
|
|
737
|
+
dx = directions[idx, 0]
|
|
738
|
+
dy = directions[idx, 1]
|
|
739
|
+
dz = directions[idx, 2]
|
|
740
|
+
wavelength = wavelengths[idx] # Per-ray wavelength
|
|
741
|
+
gp = geo_path[idx]
|
|
742
|
+
op = opt_path[idx]
|
|
743
|
+
at = acc_time[idx]
|
|
744
|
+
|
|
745
|
+
for _ in range(num_steps):
|
|
746
|
+
x, y, z, dx, dy, dz, n = _device_spectral_euler_step(
|
|
747
|
+
x,
|
|
748
|
+
y,
|
|
749
|
+
z,
|
|
750
|
+
dx,
|
|
751
|
+
dy,
|
|
752
|
+
dz,
|
|
753
|
+
step_size,
|
|
754
|
+
wavelength,
|
|
755
|
+
center_x,
|
|
756
|
+
center_y,
|
|
757
|
+
center_z,
|
|
758
|
+
ref_radius,
|
|
759
|
+
alt_min,
|
|
760
|
+
alt_delta,
|
|
761
|
+
n_alt,
|
|
762
|
+
wl_min,
|
|
763
|
+
wl_delta,
|
|
764
|
+
n_wl,
|
|
765
|
+
lut_n,
|
|
766
|
+
lut_dn_dh,
|
|
767
|
+
)
|
|
768
|
+
gp += step_size
|
|
769
|
+
op += n * step_size
|
|
770
|
+
at += n * step_size / c
|
|
771
|
+
|
|
772
|
+
# Store updated state
|
|
773
|
+
positions[idx, 0] = x
|
|
774
|
+
positions[idx, 1] = y
|
|
775
|
+
positions[idx, 2] = z
|
|
776
|
+
directions[idx, 0] = dx
|
|
777
|
+
directions[idx, 1] = dy
|
|
778
|
+
directions[idx, 2] = dz
|
|
779
|
+
geo_path[idx] = gp
|
|
780
|
+
opt_path[idx] = op
|
|
781
|
+
acc_time[idx] = at
|
|
782
|
+
|
|
783
|
+
|
|
784
|
+
@register_kernel(PropagationKernelID.SPECTRAL_RK4_PERRAY)
|
|
785
|
+
@cuda.jit
|
|
786
|
+
def _kernel_spectral_inhomogeneous_rk4_perray(
|
|
787
|
+
positions,
|
|
788
|
+
directions,
|
|
789
|
+
wavelengths, # Per-ray wavelength array, shape (N,)
|
|
790
|
+
active,
|
|
791
|
+
geo_path,
|
|
792
|
+
opt_path,
|
|
793
|
+
acc_time,
|
|
794
|
+
step_size: float,
|
|
795
|
+
num_steps: int,
|
|
796
|
+
center_x: float,
|
|
797
|
+
center_y: float,
|
|
798
|
+
center_z: float,
|
|
799
|
+
ref_radius: float,
|
|
800
|
+
alt_min: float,
|
|
801
|
+
alt_delta: float,
|
|
802
|
+
n_alt: int,
|
|
803
|
+
wl_min: float,
|
|
804
|
+
wl_delta: float,
|
|
805
|
+
n_wl: int,
|
|
806
|
+
lut_n,
|
|
807
|
+
lut_dn_dh,
|
|
808
|
+
):
|
|
809
|
+
"""
|
|
810
|
+
GPU kernel for SpectralInhomogeneousModel with per-ray wavelengths.
|
|
811
|
+
|
|
812
|
+
Uses RK4 integration. Each ray has its own wavelength value,
|
|
813
|
+
allowing simulation of chromatic dispersion.
|
|
814
|
+
|
|
815
|
+
Parameters
|
|
816
|
+
----------
|
|
817
|
+
Same as _kernel_spectral_inhomogeneous_euler_perray
|
|
818
|
+
"""
|
|
819
|
+
c = SPEED_OF_LIGHT
|
|
820
|
+
|
|
821
|
+
idx = cuda.grid(1)
|
|
822
|
+
if idx >= positions.shape[0]:
|
|
823
|
+
return
|
|
824
|
+
if not active[idx]:
|
|
825
|
+
return
|
|
826
|
+
|
|
827
|
+
# Load ray state including per-ray wavelength
|
|
828
|
+
x = positions[idx, 0]
|
|
829
|
+
y = positions[idx, 1]
|
|
830
|
+
z = positions[idx, 2]
|
|
831
|
+
dx = directions[idx, 0]
|
|
832
|
+
dy = directions[idx, 1]
|
|
833
|
+
dz = directions[idx, 2]
|
|
834
|
+
wavelength = wavelengths[idx] # Per-ray wavelength
|
|
835
|
+
gp = geo_path[idx]
|
|
836
|
+
op = opt_path[idx]
|
|
837
|
+
at = acc_time[idx]
|
|
838
|
+
|
|
839
|
+
for _ in range(num_steps):
|
|
840
|
+
x, y, z, dx, dy, dz, n_avg = _device_spectral_rk4_step(
|
|
841
|
+
x,
|
|
842
|
+
y,
|
|
843
|
+
z,
|
|
844
|
+
dx,
|
|
845
|
+
dy,
|
|
846
|
+
dz,
|
|
847
|
+
step_size,
|
|
848
|
+
wavelength,
|
|
849
|
+
center_x,
|
|
850
|
+
center_y,
|
|
851
|
+
center_z,
|
|
852
|
+
ref_radius,
|
|
853
|
+
alt_min,
|
|
854
|
+
alt_delta,
|
|
855
|
+
n_alt,
|
|
856
|
+
wl_min,
|
|
857
|
+
wl_delta,
|
|
858
|
+
n_wl,
|
|
859
|
+
lut_n,
|
|
860
|
+
lut_dn_dh,
|
|
861
|
+
)
|
|
862
|
+
gp += step_size
|
|
863
|
+
op += n_avg * step_size
|
|
864
|
+
at += n_avg * step_size / c
|
|
865
|
+
|
|
866
|
+
# Store updated state
|
|
867
|
+
positions[idx, 0] = x
|
|
868
|
+
positions[idx, 1] = y
|
|
869
|
+
positions[idx, 2] = z
|
|
870
|
+
directions[idx, 0] = dx
|
|
871
|
+
directions[idx, 1] = dy
|
|
872
|
+
directions[idx, 2] = dz
|
|
873
|
+
geo_path[idx] = gp
|
|
874
|
+
opt_path[idx] = op
|
|
875
|
+
acc_time[idx] = at
|