endoreg-db 0.3.6__py3-none-any.whl → 0.3.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (347) hide show
  1. endoreg_db/admin.py +3 -3
  2. endoreg_db/apps.py +6 -6
  3. endoreg_db/data/__init__.py +67 -64
  4. endoreg_db/data/active_model/data.yaml +2 -2
  5. endoreg_db/data/case_template/rule/00_patient_lab_sample_add_default_value.yaml +167 -167
  6. endoreg_db/data/case_template/rule/01_patient-set-age.yaml +7 -7
  7. endoreg_db/data/case_template/rule/01_patient-set-gender.yaml +8 -8
  8. endoreg_db/data/case_template/rule/11_create_patient_lab_sample.yaml +22 -22
  9. endoreg_db/data/case_template/rule/12_create-patient_medication-anticoagulation.yaml +18 -18
  10. endoreg_db/data/case_template/rule/13_create-patient_medication_schedule-anticoagulation.yaml +18 -18
  11. endoreg_db/data/case_template/rule/19_create_patient.yaml +16 -16
  12. endoreg_db/data/case_template/rule_type/base_types.yaml +35 -35
  13. endoreg_db/data/case_template/rule_value_type/base_types.yaml +58 -58
  14. endoreg_db/data/case_template/template/base.yaml +7 -7
  15. endoreg_db/data/case_template/template_type/pre_endoscopy.yaml +2 -2
  16. endoreg_db/data/case_template/tmp/_rule_value +13 -13
  17. endoreg_db/data/case_template/tmp/rule/01_atrial_fibrillation.yaml +21 -21
  18. endoreg_db/data/case_template/tmp/rule/02_create_object.yaml +9 -9
  19. endoreg_db/data/case_template/tmp/template/atrial_fibrillation_low_risk.yaml +6 -6
  20. endoreg_db/data/center/data.yaml +59 -59
  21. endoreg_db/data/center_resource/green_endoscopy_dashboard_CenterResource.yaml +144 -144
  22. endoreg_db/data/center_waste/green_endoscopy_dashboard_CenterWaste.yaml +48 -48
  23. endoreg_db/data/disease/cardiovascular.yaml +37 -37
  24. endoreg_db/data/disease/hepatology.yaml +4 -4
  25. endoreg_db/data/disease/misc.yaml +5 -5
  26. endoreg_db/data/disease/renal.yaml +4 -4
  27. endoreg_db/data/disease_classification/chronic_kidney_disease.yaml +5 -5
  28. endoreg_db/data/disease_classification/coronary_vessel_disease.yaml +5 -5
  29. endoreg_db/data/disease_classification_choice/chronic_kidney_disease.yaml +40 -40
  30. endoreg_db/data/disease_classification_choice/coronary_vessel_disease.yaml +19 -19
  31. endoreg_db/data/distribution/date/patient.yaml +6 -6
  32. endoreg_db/data/distribution/single_categorical/patient.yaml +6 -6
  33. endoreg_db/data/emission_factor/green_endoscopy_dashboard_EmissionFactor.yaml +132 -132
  34. endoreg_db/data/endoscope_type/data.yaml +10 -10
  35. endoreg_db/data/endoscopy_processor/data.yaml +45 -45
  36. endoreg_db/data/event/cardiology.yaml +27 -27
  37. endoreg_db/data/event/neurology.yaml +13 -13
  38. endoreg_db/data/event/surgery.yaml +12 -12
  39. endoreg_db/data/event/thrombembolism.yaml +19 -19
  40. endoreg_db/data/examination/examinations/data.yaml +65 -65
  41. endoreg_db/data/examination/time/data.yaml +47 -47
  42. endoreg_db/data/examination/time-type/data.yaml +7 -7
  43. endoreg_db/data/examination/type/data.yaml +5 -5
  44. endoreg_db/data/gender/data.yaml +18 -18
  45. endoreg_db/data/information_source/data.yaml +30 -30
  46. endoreg_db/data/information_source/medication.yaml +5 -5
  47. endoreg_db/data/lab_value/cardiac_enzymes.yaml +30 -30
  48. endoreg_db/data/lab_value/coagulation.yaml +48 -48
  49. endoreg_db/data/lab_value/electrolytes.yaml +189 -189
  50. endoreg_db/data/lab_value/gastrointestinal_function.yaml +121 -121
  51. endoreg_db/data/lab_value/hematology.yaml +169 -169
  52. endoreg_db/data/lab_value/hormones.yaml +53 -53
  53. endoreg_db/data/lab_value/lipids.yaml +44 -44
  54. endoreg_db/data/lab_value/misc.yaml +30 -30
  55. endoreg_db/data/lab_value/renal_function.yaml +10 -10
  56. endoreg_db/data/label/label/data.yaml +62 -62
  57. endoreg_db/data/label/label-set/data.yaml +17 -17
  58. endoreg_db/data/label/label-type/data.yaml +6 -6
  59. endoreg_db/data/medication/anticoagulation.yaml +64 -64
  60. endoreg_db/data/medication/tah.yaml +69 -69
  61. endoreg_db/data/medication_indication/anticoagulation.yaml +120 -120
  62. endoreg_db/data/medication_indication_type/data.yaml +10 -10
  63. endoreg_db/data/medication_indication_type/thrombembolism.yaml +40 -40
  64. endoreg_db/data/medication_intake_time/base.yaml +30 -30
  65. endoreg_db/data/medication_schedule/apixaban.yaml +94 -94
  66. endoreg_db/data/medication_schedule/ass.yaml +12 -12
  67. endoreg_db/data/medication_schedule/enoxaparin.yaml +26 -26
  68. endoreg_db/data/model_type/data.yaml +6 -6
  69. endoreg_db/data/network_device/data.yaml +17 -0
  70. endoreg_db/data/network_device_type/data.yaml +8 -0
  71. endoreg_db/data/patient_lab_sample_type/generic.yaml +5 -5
  72. endoreg_db/data/pdf_type/data.yaml +28 -28
  73. endoreg_db/data/product/green_endoscopy_dashboard_Product.yaml +66 -66
  74. endoreg_db/data/product_group/green_endoscopy_dashboard_ProductGroup.yaml +33 -33
  75. endoreg_db/data/product_material/green_endoscopy_dashboard_ProductMaterial.yaml +308 -308
  76. endoreg_db/data/product_weight/green_endoscopy_dashboard_ProductWeight.yaml +88 -88
  77. endoreg_db/data/profession/data.yaml +70 -70
  78. endoreg_db/data/reference_product/green_endoscopy_dashboard_ReferenceProduct.yaml +55 -55
  79. endoreg_db/data/report_reader_flag/ukw-examination-generic.yaml +26 -26
  80. endoreg_db/data/report_reader_flag/ukw-histology-generic.yaml +19 -19
  81. endoreg_db/data/resource/green_endoscopy_dashboard_Resource.yaml +15 -15
  82. endoreg_db/data/transport_route/green_endoscopy_dashboard_TransportRoute.yaml +12 -12
  83. endoreg_db/data/unit/concentration.yaml +92 -92
  84. endoreg_db/data/unit/data.yaml +17 -17
  85. endoreg_db/data/unit/length.yaml +30 -30
  86. endoreg_db/data/unit/misc.yaml +19 -19
  87. endoreg_db/data/unit/rate.yaml +5 -5
  88. endoreg_db/data/unit/time.yaml +12 -12
  89. endoreg_db/data/unit/volume.yaml +35 -35
  90. endoreg_db/data/unit/weight.yaml +37 -37
  91. endoreg_db/data/waste/data.yaml +11 -11
  92. endoreg_db/forms/__init__.py +2 -2
  93. endoreg_db/forms/questionnaires/tto_questionnaire.py +23 -23
  94. endoreg_db/forms/settings/__init__.py +8 -8
  95. endoreg_db/forms/unit.py +5 -5
  96. endoreg_db/management/commands/_load_model_template.py +40 -40
  97. endoreg_db/management/commands/delete_all.py +18 -18
  98. endoreg_db/management/commands/delete_legacy_images.py +19 -19
  99. endoreg_db/management/commands/delete_legacy_videos.py +16 -16
  100. endoreg_db/management/commands/extract_legacy_video_frames.py +18 -18
  101. endoreg_db/management/commands/fetch_legacy_image_dataset.py +32 -32
  102. endoreg_db/management/commands/fix_auth_permission.py +20 -20
  103. endoreg_db/management/commands/import_legacy_images.py +94 -94
  104. endoreg_db/management/commands/import_legacy_videos.py +76 -76
  105. endoreg_db/management/commands/load_active_model_data.py +44 -44
  106. endoreg_db/management/commands/load_ai_model_data.py +44 -44
  107. endoreg_db/management/commands/load_base_db_data.py +132 -128
  108. endoreg_db/management/commands/load_center_data.py +42 -42
  109. endoreg_db/management/commands/load_disease_classification_choices_data.py +40 -40
  110. endoreg_db/management/commands/load_disease_classification_data.py +40 -40
  111. endoreg_db/management/commands/load_disease_data.py +39 -39
  112. endoreg_db/management/commands/load_distribution_data.py +65 -65
  113. endoreg_db/management/commands/load_endoscope_type_data.py +44 -44
  114. endoreg_db/management/commands/load_endoscopy_processor_data.py +44 -44
  115. endoreg_db/management/commands/load_event_data.py +40 -40
  116. endoreg_db/management/commands/load_examination_data.py +74 -74
  117. endoreg_db/management/commands/load_g_play_data.py +112 -112
  118. endoreg_db/management/commands/load_gender_data.py +43 -43
  119. endoreg_db/management/commands/load_green_endoscopy_wuerzburg_data.py +132 -132
  120. endoreg_db/management/commands/load_information_source.py +44 -44
  121. endoreg_db/management/commands/load_lab_value_data.py +49 -49
  122. endoreg_db/management/commands/load_label_data.py +66 -66
  123. endoreg_db/management/commands/load_medication_data.py +40 -40
  124. endoreg_db/management/commands/load_medication_indication_data.py +62 -62
  125. endoreg_db/management/commands/load_medication_indication_type_data.py +40 -40
  126. endoreg_db/management/commands/load_medication_intake_time_data.py +40 -40
  127. endoreg_db/management/commands/load_medication_schedule_data.py +54 -54
  128. endoreg_db/management/commands/load_network_data.py +49 -0
  129. endoreg_db/management/commands/load_pdf_type_data.py +60 -60
  130. endoreg_db/management/commands/load_profession_data.py +43 -43
  131. endoreg_db/management/commands/load_report_reader_flag.py +45 -45
  132. endoreg_db/management/commands/load_unit_data.py +45 -45
  133. endoreg_db/management/commands/load_user_groups.py +28 -28
  134. endoreg_db/management/commands/register_ai_model.py +65 -65
  135. endoreg_db/management/commands/reset_celery_schedule.py +9 -9
  136. endoreg_db/migrations/0001_initial.py +582 -582
  137. endoreg_db/migrations/0002_rawvideofile.py +26 -26
  138. endoreg_db/migrations/0003_rawvideofile_frames_required.py +18 -18
  139. endoreg_db/migrations/0004_rename_hash_rawvideofile_video_hash.py +18 -18
  140. endoreg_db/migrations/0005_ffmpegmeta_remove_videoimportmeta_center_and_more.py +56 -56
  141. endoreg_db/migrations/0006_rawvideofile_center_alter_videometa_processor.py +25 -25
  142. endoreg_db/migrations/0007_rawvideofile_processor.py +19 -19
  143. endoreg_db/migrations/0008_rename_frames_required_rawvideofile_state_frames_required.py +18 -18
  144. endoreg_db/migrations/0009_sensitivemeta_rawvideofile_sensitive_meta.py +31 -31
  145. endoreg_db/migrations/0010_rename_endoscope_serial_number_sensitivemeta_endoscope_sn.py +18 -18
  146. endoreg_db/migrations/0011_rawvideofile_state_sensitive_data_retrieved.py +18 -18
  147. endoreg_db/migrations/0012_rawvideofile_prediction_dir_and_more.py +109 -109
  148. endoreg_db/migrations/0013_rawpdffile.py +31 -31
  149. endoreg_db/migrations/0014_pdftype_alter_rawpdffile_file_pdfmeta.py +38 -38
  150. endoreg_db/migrations/0015_rename_report_processed_rawpdffile_state_report_processed_and_more.py +31 -31
  151. endoreg_db/migrations/0016_rawpdffile_state_report_processing_required.py +18 -18
  152. endoreg_db/migrations/0017_firstname_lastname_center_first_names_and_more.py +37 -37
  153. endoreg_db/migrations/0018_reportreaderflag_reportreaderconfig.py +37 -37
  154. endoreg_db/migrations/0019_pdftype_cut_off_above_lines_and_more.py +42 -42
  155. endoreg_db/migrations/0020_rename_endoscopy_info_line_pdftype_endoscope_info_line.py +18 -18
  156. endoreg_db/migrations/0021_alter_pdftype_endoscope_info_line.py +19 -19
  157. endoreg_db/migrations/0022_alter_pdftype_endoscope_info_line.py +19 -19
  158. endoreg_db/migrations/0023_ttoquestionnaire_alter_pdftype_endoscope_info_line.py +59 -59
  159. endoreg_db/migrations/0024_remove_ttoquestionnaire_infections_and_more.py +27 -27
  160. endoreg_db/migrations/0025_event_alter_rawpdffile_file_patientevent.py +42 -42
  161. endoreg_db/migrations/0026_disease_diseaseclassification_and_more.py +166 -166
  162. endoreg_db/migrations/0027_labvalue_abbreviation_labvalue_default_normal_range_and_more.py +38 -38
  163. endoreg_db/migrations/0028_alter_unit_abbreviation.py +18 -18
  164. endoreg_db/migrations/0029_medicationintaketime_and_more.py +75 -75
  165. endoreg_db/migrations/0030_medicationindicationtype_and_more.py +101 -101
  166. endoreg_db/migrations/0031_rename_adapt_to_liver_function_medication_adapt_to_age_and_more.py +38 -38
  167. endoreg_db/migrations/0032_alter_medicationschedule_therapy_duration_d.py +18 -18
  168. endoreg_db/migrations/0033_medicationindication_sources.py +18 -18
  169. endoreg_db/migrations/0034_alter_rawpdffile_file.py +20 -20
  170. endoreg_db/migrations/0035_alter_medicationindication_sources.py +18 -18
  171. endoreg_db/migrations/0036_alter_rawpdffile_file.py +20 -20
  172. endoreg_db/migrations/0037_alter_medicationindication_sources.py +18 -18
  173. endoreg_db/migrations/0038_emissionfactor_material_product_productgroup_and_more.py +164 -164
  174. endoreg_db/migrations/0039_referenceproduct_name.py +19 -19
  175. endoreg_db/migrations/0040_quizanswertype_quizquestiontype_quizquestion_and_more.py +50 -50
  176. endoreg_db/migrations/0041_gender_patientmedication_medication_indication_and_more.py +40 -40
  177. endoreg_db/migrations/0042_casetemplateruletype_casetemplaterulevalue_and_more.py +74 -74
  178. endoreg_db/migrations/0043_casetemplatetype_name_de_casetemplatetype_name_en.py +23 -23
  179. endoreg_db/migrations/0044_casetemplateruletype_name_de_and_more.py +23 -23
  180. endoreg_db/migrations/0045_casetemplaterulevalue_value_type.py +19 -19
  181. endoreg_db/migrations/0046_casetemplaterulevalue_target_field.py +18 -18
  182. endoreg_db/migrations/0047_casetemplaterule_target_model.py +18 -18
  183. endoreg_db/migrations/0048_remove_casetemplaterule_chained_rules_and_more.py +22 -22
  184. endoreg_db/migrations/0049_remove_casetemplaterule_rule_values.py +17 -17
  185. endoreg_db/migrations/0050_casetemplaterule_rule_values.py +18 -18
  186. endoreg_db/migrations/0051_remove_casetemplaterule_calling_rules_and_more.py +27 -27
  187. endoreg_db/migrations/0052_rename_case_template_type_casetemplate_template_type.py +18 -18
  188. endoreg_db/migrations/0053_patientlabsampletype_patientlabsample_and_more.py +38 -38
  189. endoreg_db/migrations/0054_multiplecategoricalvaluedistribution_and_more.py +69 -69
  190. endoreg_db/migrations/0055_remove_casetemplaterule_rule_values_and_more.py +59 -59
  191. endoreg_db/migrations/0056_datevaluedistribution_and_more.py +32 -32
  192. endoreg_db/migrations/0057_remove_datevaluedistribution_max_date_and_more.py +72 -72
  193. endoreg_db/migrations/0058_datevaluedistribution_description_and_more.py +28 -28
  194. endoreg_db/migrations/0059_casetemplaterule_rule_values.py +18 -18
  195. endoreg_db/migrations/0060_labvalue__default_date_value_distribution_and_more.py +44 -44
  196. endoreg_db/migrations/0061_remove_patientlabvalue_date_patientlabvalue_datetime.py +24 -24
  197. endoreg_db/migrations/0062_labvalue_numeric_precision.py +18 -18
  198. endoreg_db/migrations/0063_alter_labvalue_numeric_precision.py +18 -18
  199. endoreg_db/migrations/0064_casetemplaterule_extra_parameters_and_more.py +23 -23
  200. endoreg_db/migrations/0065_rename__date_value_distribution_casetemplaterule_date_value_distribution_and_more.py +58 -58
  201. endoreg_db/migrations/0066_alter_patientlabvalue_patient_and_more.py +29 -29
  202. endoreg_db/migrations/0067_alter_medicationindication_indication_type.py +19 -19
  203. endoreg_db/models/__init__.py +75 -74
  204. endoreg_db/models/ai_model/__init__.py +3 -3
  205. endoreg_db/models/ai_model/active_model.py +9 -9
  206. endoreg_db/models/ai_model/model_meta.py +24 -24
  207. endoreg_db/models/ai_model/model_type.py +25 -25
  208. endoreg_db/models/ai_model/utils.py +8 -8
  209. endoreg_db/models/annotation/__init__.py +1 -1
  210. endoreg_db/models/annotation/binary_classification_annotation_task.py +80 -80
  211. endoreg_db/models/annotation/image_classification.py +26 -26
  212. endoreg_db/models/case_template/__init__.py +5 -5
  213. endoreg_db/models/case_template/case_template.py +81 -81
  214. endoreg_db/models/case_template/case_template_rule.py +276 -276
  215. endoreg_db/models/case_template/case_template_rule_value.py +73 -73
  216. endoreg_db/models/case_template/case_template_type.py +27 -27
  217. endoreg_db/models/center/__init__.py +4 -4
  218. endoreg_db/models/center/center.py +24 -24
  219. endoreg_db/models/center/center_product.py +33 -33
  220. endoreg_db/models/center/center_resource.py +18 -18
  221. endoreg_db/models/center/center_waste.py +10 -10
  222. endoreg_db/models/data_file/__init__.py +5 -5
  223. endoreg_db/models/data_file/base_classes/__init__.py +2 -2
  224. endoreg_db/models/data_file/base_classes/abstract_frame.py +50 -50
  225. endoreg_db/models/data_file/base_classes/abstract_video.py +200 -200
  226. endoreg_db/models/data_file/frame.py +45 -45
  227. endoreg_db/models/data_file/import_classes/__init__.py +31 -31
  228. endoreg_db/models/data_file/import_classes/processing_functions/__init__.py +34 -34
  229. endoreg_db/models/data_file/import_classes/processing_functions/pdf.py +28 -28
  230. endoreg_db/models/data_file/import_classes/processing_functions/video.py +260 -260
  231. endoreg_db/models/data_file/import_classes/raw_pdf.py +188 -188
  232. endoreg_db/models/data_file/import_classes/raw_video.py +343 -343
  233. endoreg_db/models/data_file/metadata/__init__.py +3 -3
  234. endoreg_db/models/data_file/metadata/pdf_meta.py +70 -70
  235. endoreg_db/models/data_file/metadata/sensitive_meta.py +31 -31
  236. endoreg_db/models/data_file/metadata/video_meta.py +132 -132
  237. endoreg_db/models/data_file/report_file.py +89 -89
  238. endoreg_db/models/data_file/video/__init__.py +6 -6
  239. endoreg_db/models/data_file/video/import_meta.py +25 -25
  240. endoreg_db/models/data_file/video/video.py +25 -25
  241. endoreg_db/models/data_file/video_segment.py +107 -107
  242. endoreg_db/models/disease.py +55 -55
  243. endoreg_db/models/emission/emission_factor.py +19 -19
  244. endoreg_db/models/event.py +21 -21
  245. endoreg_db/models/examination/__init__.py +3 -3
  246. endoreg_db/models/examination/examination.py +26 -26
  247. endoreg_db/models/examination/examination_time.py +27 -27
  248. endoreg_db/models/examination/examination_time_type.py +24 -24
  249. endoreg_db/models/examination/examination_type.py +18 -18
  250. endoreg_db/models/hardware/__init__.py +1 -1
  251. endoreg_db/models/hardware/endoscope.py +44 -44
  252. endoreg_db/models/hardware/endoscopy_processor.py +143 -143
  253. endoreg_db/models/information_source.py +29 -29
  254. endoreg_db/models/label/label.py +84 -84
  255. endoreg_db/models/laboratory/lab_value.py +102 -102
  256. endoreg_db/models/legacy_data/__init__.py +3 -3
  257. endoreg_db/models/legacy_data/image.py +34 -34
  258. endoreg_db/models/medication/medication.py +148 -148
  259. endoreg_db/models/network/__init__.py +2 -0
  260. endoreg_db/models/network/network_device.py +27 -0
  261. endoreg_db/models/network/network_device_type.py +23 -0
  262. endoreg_db/models/other/__init__.py +4 -4
  263. endoreg_db/models/other/distribution.py +215 -215
  264. endoreg_db/models/other/material.py +16 -16
  265. endoreg_db/models/other/resource.py +17 -17
  266. endoreg_db/models/other/transport_route.py +20 -20
  267. endoreg_db/models/other/waste.py +20 -20
  268. endoreg_db/models/patient_examination/__init__.py +35 -35
  269. endoreg_db/models/permissions/__init__.py +44 -44
  270. endoreg_db/models/persons/__init__.py +6 -6
  271. endoreg_db/models/persons/examiner/__init__.py +1 -1
  272. endoreg_db/models/persons/examiner/examiner.py +15 -15
  273. endoreg_db/models/persons/examiner/examiner_type.py +1 -1
  274. endoreg_db/models/persons/first_name.py +17 -17
  275. endoreg_db/models/persons/gender.py +22 -22
  276. endoreg_db/models/persons/last_name.py +19 -19
  277. endoreg_db/models/persons/patient/__init__.py +7 -7
  278. endoreg_db/models/persons/patient/case/case.py +30 -30
  279. endoreg_db/models/persons/patient/patient.py +216 -216
  280. endoreg_db/models/persons/patient/patient_disease.py +16 -16
  281. endoreg_db/models/persons/patient/patient_event.py +22 -22
  282. endoreg_db/models/persons/patient/patient_lab_sample.py +106 -106
  283. endoreg_db/models/persons/patient/patient_lab_value.py +176 -176
  284. endoreg_db/models/persons/patient/patient_medication.py +43 -43
  285. endoreg_db/models/persons/patient/patient_medication_schedule.py +27 -27
  286. endoreg_db/models/persons/person.py +31 -31
  287. endoreg_db/models/persons/portal_user_information.py +27 -27
  288. endoreg_db/models/prediction/__init__.py +1 -1
  289. endoreg_db/models/prediction/image_classification.py +37 -37
  290. endoreg_db/models/prediction/video_prediction_meta.py +244 -244
  291. endoreg_db/models/product/__init__.py +4 -4
  292. endoreg_db/models/product/product.py +97 -97
  293. endoreg_db/models/product/product_group.py +19 -19
  294. endoreg_db/models/product/product_material.py +24 -24
  295. endoreg_db/models/product/product_weight.py +26 -26
  296. endoreg_db/models/product/reference_product.py +99 -99
  297. endoreg_db/models/questionnaires/__init__.py +114 -114
  298. endoreg_db/models/quiz/__init__.py +1 -1
  299. endoreg_db/models/quiz/quiz_answer.py +41 -41
  300. endoreg_db/models/quiz/quiz_question.py +54 -54
  301. endoreg_db/models/report_reader/__init__.py +1 -1
  302. endoreg_db/models/report_reader/report_reader_config.py +53 -53
  303. endoreg_db/models/report_reader/report_reader_flag.py +19 -19
  304. endoreg_db/models/rules/__init__.py +4 -4
  305. endoreg_db/models/rules/rule.py +23 -23
  306. endoreg_db/models/rules/rule_applicator.py +224 -224
  307. endoreg_db/models/rules/rule_attribute_dtype.py +18 -18
  308. endoreg_db/models/rules/rule_type.py +21 -21
  309. endoreg_db/models/rules/ruleset.py +19 -19
  310. endoreg_db/models/unit.py +21 -21
  311. endoreg_db/queries/__init__.py +4 -4
  312. endoreg_db/queries/annotations/__init__.py +2 -2
  313. endoreg_db/queries/annotations/legacy.py +159 -159
  314. endoreg_db/queries/get/__init__.py +5 -5
  315. endoreg_db/queries/get/center.py +42 -42
  316. endoreg_db/queries/get/model.py +13 -13
  317. endoreg_db/queries/get/patient.py +14 -14
  318. endoreg_db/queries/get/patient_examination.py +20 -20
  319. endoreg_db/queries/get/report_file.py +33 -33
  320. endoreg_db/queries/get/video.py +31 -31
  321. endoreg_db/serializers/__init__.py +9 -9
  322. endoreg_db/serializers/ai_model.py +18 -18
  323. endoreg_db/serializers/annotation.py +17 -17
  324. endoreg_db/serializers/center.py +11 -11
  325. endoreg_db/serializers/examination.py +32 -32
  326. endoreg_db/serializers/frame.py +13 -13
  327. endoreg_db/serializers/hardware.py +20 -20
  328. endoreg_db/serializers/label.py +22 -22
  329. endoreg_db/serializers/patient.py +10 -10
  330. endoreg_db/serializers/prediction.py +15 -15
  331. endoreg_db/serializers/report_file.py +7 -7
  332. endoreg_db/serializers/video.py +27 -27
  333. endoreg_db/tests.py +3 -3
  334. endoreg_db/utils/cropping.py +28 -28
  335. endoreg_db/utils/dataloader.py +92 -92
  336. endoreg_db/utils/file_operations.py +30 -30
  337. endoreg_db/utils/hashs.py +33 -33
  338. endoreg_db/utils/legacy_ocr.py +201 -201
  339. endoreg_db/utils/ocr.py +197 -197
  340. endoreg_db/utils/uuid.py +4 -4
  341. endoreg_db/utils/video_metadata.py +87 -87
  342. endoreg_db/views.py +3 -3
  343. {endoreg_db-0.3.6.dist-info → endoreg_db-0.3.7.dist-info}/LICENSE +674 -674
  344. {endoreg_db-0.3.6.dist-info → endoreg_db-0.3.7.dist-info}/METADATA +2 -2
  345. endoreg_db-0.3.7.dist-info/RECORD +363 -0
  346. {endoreg_db-0.3.6.dist-info → endoreg_db-0.3.7.dist-info}/WHEEL +1 -1
  347. endoreg_db-0.3.6.dist-info/RECORD +0 -357
@@ -1,244 +1,244 @@
1
- from django.db import models
2
-
3
- from endoreg_db.models.label.label import LabelSet
4
- from ..data_file.video import LegacyVideo, Video
5
- from ..data_file.frame import LegacyFrame, Frame
6
- from .image_classification import ImageClassificationPrediction
7
- from ..data_file.video_segment import LegacyLabelVideoSegment, LabelVideoSegment, find_segments_in_prediction_array
8
- from ..information_source import get_prediction_information_source
9
- import numpy as np
10
- import pickle
11
-
12
- DEFAULT_WINDOW_SIZE_IN_SECONDS_FOR_RUNNING_MEAN = 1.5
13
- DEFAULT_VIDEO_SEGMENT_LENGTH_THRESHOLD_IN_S = 1.0
14
-
15
- class AbstractVideoPredictionMeta(models.Model):
16
- model_meta = models.ForeignKey("ModelMeta", on_delete=models.CASCADE)
17
- date_created = models.DateTimeField(auto_now_add=True)
18
- date_modified = models.DateTimeField(auto_now=True)
19
- video = None # Placeholder for the video field, to be defined in derived classes
20
- prediction_array = models.BinaryField(blank=True, null=True)
21
-
22
- class Meta:
23
- abstract = True
24
- unique_together = ('model_meta', 'video')
25
-
26
- def __str__(self):
27
- return f"Video {self.video.id} - {self.model_meta.name}"
28
-
29
- def get_labelset(self):
30
- """
31
- Get the labelset of the predictions.
32
- """
33
- return self.model_meta.labelset
34
-
35
- def get_video_model(self):
36
- assert 1 == 2, "This method should be overridden in derived classes"
37
-
38
- def get_frame_model(self):
39
- assert 1 == 2, "This method should be overridden in derived classes"
40
-
41
- def get_label_list(self):
42
- """
43
- Get the label list of the predictions.
44
- """
45
- labelset:LabelSet = self.get_labelset()
46
- label_list = labelset.get_labels_in_order()
47
- return label_list
48
-
49
- def get_video_segment_model(self):
50
- assert 1 == 2, "This method should be overridden in derived classes"
51
-
52
- def save_prediction_array(self, prediction_array:np.array):
53
- """
54
- Save the prediction array to the database.
55
- """
56
- self.prediction_array = pickle.dumps(prediction_array)
57
- self.save()
58
-
59
- def get_prediction_array(self):
60
- """
61
- Get the prediction array from the database.
62
- """
63
- if self.prediction_array is None:
64
- return None
65
- else:
66
- return pickle.loads(self.prediction_array)
67
-
68
- def calculate_prediction_array(self):
69
- assert 1 == 2, "This method should be overridden in derived classes"
70
-
71
- def apply_running_mean(self, confidence_array, window_size_in_seconds: int = None):
72
- """
73
- Apply a running mean filter to the confidence array for smoothing, assuming a padding
74
- of 0.5 for the edges.
75
-
76
- Args:
77
- self: Object that has video and fps attributes, and to which this function belongs.
78
- confidence_array: A 2D numpy array with dimensions (num_frames),
79
- containing confidence scores for each label at each frame.
80
- window_size_in_seconds: The window size for the running mean in seconds.
81
-
82
- Returns:
83
- running_mean_array: A 2D numpy array with the same dimensions as confidence_array,
84
- containing the smoothed confidence scores.
85
- """
86
- video = self.video
87
- fps = video.fps
88
-
89
- if not window_size_in_seconds:
90
- window_size_in_seconds = DEFAULT_WINDOW_SIZE_IN_SECONDS_FOR_RUNNING_MEAN
91
-
92
- # Calculate window size in frames, ensuring at least one frame
93
- window_size_in_frames = int(window_size_in_seconds * fps)
94
- window_size_in_frames = max(window_size_in_frames, 1)
95
-
96
- # Define the window for the running mean
97
- window = np.ones(window_size_in_frames) / window_size_in_frames
98
-
99
- # Create running mean array with the same shape as the confidence array
100
- running_mean_array = np.zeros(confidence_array.shape)
101
-
102
- # Calculate the padding size
103
- pad_size = window_size_in_frames // 2
104
-
105
- # Pad the array with 0.5 on both sides
106
- padded_confidences = np.pad(confidence_array, (pad_size, pad_size), 'constant', constant_values=(0.5, 0.5))
107
-
108
- # Apply the running mean filter on the padded array
109
- running_mean = np.convolve(padded_confidences, window, mode='same')
110
-
111
- # Remove the padding from the result to match the original shape
112
- running_mean = running_mean[pad_size:-pad_size]
113
-
114
- return running_mean
115
-
116
-
117
- def create_video_segments_for_label(self, segments, label):
118
- """
119
- Creates video segments for the given label and segments.
120
- Segments is a list of tuples (start_frame_number, end_frame_number).
121
- Labels is a Label object.
122
- """
123
- video = self.video
124
- video_segment_model = self.get_video_segment_model()
125
- information_source = get_prediction_information_source()
126
-
127
- for segment in segments:
128
- start_frame_number, end_frame_number = segment
129
-
130
- video_segment = video_segment_model(
131
- video=video,
132
- prediction_meta=self,
133
- start_frame_number=start_frame_number,
134
- end_frame_number=end_frame_number,
135
- source=information_source,
136
- label=label,
137
- )
138
- video_segment.save()
139
-
140
- def create_video_segments(self, segment_length_threshold_in_s:float=None):
141
- if not segment_length_threshold_in_s:
142
- segment_length_threshold_in_s = DEFAULT_VIDEO_SEGMENT_LENGTH_THRESHOLD_IN_S
143
-
144
- video = self.video
145
- fps = video.fps
146
- min_frame_length = int(segment_length_threshold_in_s * fps)
147
-
148
- label_list = self.get_label_list()
149
-
150
- # if prediction array doesnt exist, create it
151
- if self.prediction_array is None:
152
- self.calculate_prediction_array()
153
-
154
- prediction_array = self.get_prediction_array()
155
-
156
- for i, label in enumerate(label_list):
157
- # get predictions for this label
158
- predictions = prediction_array[:, i]
159
- # find segments of predictions that are longer than the threshold
160
- # segments is a list of tuples (start_frame_number, end_frame_number)
161
- segments = find_segments_in_prediction_array(predictions, min_frame_length)
162
-
163
- # create video segments
164
- self.create_video_segments_for_label(segments, label)
165
-
166
- import numpy as np
167
- class VideoPredictionMeta(AbstractVideoPredictionMeta):
168
- video = models.OneToOneField("Video", on_delete=models.CASCADE, related_name="video_prediction_meta")
169
-
170
- def get_video_model(self):
171
- return Video
172
-
173
- def get_frame_model(self):
174
- return Frame
175
-
176
- def get_video_segment_model(self):
177
- return LabelVideoSegment
178
-
179
- def calculate_prediction_array(self, window_size_in_seconds:int=None):
180
- """
181
- Fetches all predictions for this video, labelset, and model meta.
182
- """
183
- video:Video = self.video
184
-
185
- model_meta = self.model_meta
186
- label_list = self.get_label_list()
187
-
188
- prediction_array = np.zeros((video.get_frame_number, len(label_list)))
189
- for i, label in enumerate(label_list):
190
- # fetch all predictions for this label, video, and model meta ordered by ImageClassificationPrediction.frame.frame_number
191
- predictions = ImageClassificationPrediction.objects.filter(label=label, frame__video=video, model_meta=model_meta).order_by('frame__frame_number')
192
- confidences = np.array([prediction.confidence for prediction in predictions])
193
- smooth_confidences = self.apply_running_mean(confidences, window_size_in_seconds)
194
- # calculate binary predictions
195
- binary_predictions = smooth_confidences > 0.5
196
- # add to prediction array
197
- prediction_array[:, i] = binary_predictions
198
-
199
- # save prediction array
200
- self.save_prediction_array(prediction_array)
201
-
202
-
203
- class LegacyVideoPredictionMeta(AbstractVideoPredictionMeta):
204
- video = models.OneToOneField("LegacyVideo", on_delete=models.CASCADE, related_name="video_prediction_meta")
205
-
206
- def get_video_model(self):
207
- return LegacyVideo
208
-
209
- def get_frame_model(self):
210
- return LegacyFrame
211
-
212
- def get_video_segment_model(self):
213
- return LegacyLabelVideoSegment
214
-
215
- def calculate_prediction_array(self, window_size_in_seconds:int=None):
216
- """
217
- Fetches all predictions for this video, labelset, and model meta.
218
- """
219
- video:LegacyVideo = self.video
220
-
221
- model_meta = self.model_meta
222
- label_list = self.get_label_list()
223
-
224
- prediction_array = np.zeros((video.get_frame_number, len(label_list)))
225
- for i, label in enumerate(label_list):
226
- # fetch all predictions for this label, video, and model meta ordered by ImageClassificationPrediction.frame.frame_number
227
- predictions = ImageClassificationPrediction.objects.filter(label=label, legacy_frame__video=video, model_meta=model_meta).order_by('legacy_frame__frame_number')
228
- confidences = np.array([prediction.confidence for prediction in predictions])
229
- smooth_confidences = self.apply_running_mean(confidences, window_size_in_seconds)
230
- # calculate binary predictions
231
- binary_predictions = smooth_confidences > 0.5
232
- # add to prediction array
233
- prediction_array[:, i] = binary_predictions
234
-
235
- # save prediction array
236
- self.save_prediction_array(prediction_array)
237
-
238
-
239
-
240
-
241
-
242
-
243
-
244
-
1
+ from django.db import models
2
+
3
+ from endoreg_db.models.label.label import LabelSet
4
+ from ..data_file.video import LegacyVideo, Video
5
+ from ..data_file.frame import LegacyFrame, Frame
6
+ from .image_classification import ImageClassificationPrediction
7
+ from ..data_file.video_segment import LegacyLabelVideoSegment, LabelVideoSegment, find_segments_in_prediction_array
8
+ from ..information_source import get_prediction_information_source
9
+ import numpy as np
10
+ import pickle
11
+
12
+ DEFAULT_WINDOW_SIZE_IN_SECONDS_FOR_RUNNING_MEAN = 1.5
13
+ DEFAULT_VIDEO_SEGMENT_LENGTH_THRESHOLD_IN_S = 1.0
14
+
15
+ class AbstractVideoPredictionMeta(models.Model):
16
+ model_meta = models.ForeignKey("ModelMeta", on_delete=models.CASCADE)
17
+ date_created = models.DateTimeField(auto_now_add=True)
18
+ date_modified = models.DateTimeField(auto_now=True)
19
+ video = None # Placeholder for the video field, to be defined in derived classes
20
+ prediction_array = models.BinaryField(blank=True, null=True)
21
+
22
+ class Meta:
23
+ abstract = True
24
+ unique_together = ('model_meta', 'video')
25
+
26
+ def __str__(self):
27
+ return f"Video {self.video.id} - {self.model_meta.name}"
28
+
29
+ def get_labelset(self):
30
+ """
31
+ Get the labelset of the predictions.
32
+ """
33
+ return self.model_meta.labelset
34
+
35
+ def get_video_model(self):
36
+ assert 1 == 2, "This method should be overridden in derived classes"
37
+
38
+ def get_frame_model(self):
39
+ assert 1 == 2, "This method should be overridden in derived classes"
40
+
41
+ def get_label_list(self):
42
+ """
43
+ Get the label list of the predictions.
44
+ """
45
+ labelset:LabelSet = self.get_labelset()
46
+ label_list = labelset.get_labels_in_order()
47
+ return label_list
48
+
49
+ def get_video_segment_model(self):
50
+ assert 1 == 2, "This method should be overridden in derived classes"
51
+
52
+ def save_prediction_array(self, prediction_array:np.array):
53
+ """
54
+ Save the prediction array to the database.
55
+ """
56
+ self.prediction_array = pickle.dumps(prediction_array)
57
+ self.save()
58
+
59
+ def get_prediction_array(self):
60
+ """
61
+ Get the prediction array from the database.
62
+ """
63
+ if self.prediction_array is None:
64
+ return None
65
+ else:
66
+ return pickle.loads(self.prediction_array)
67
+
68
+ def calculate_prediction_array(self):
69
+ assert 1 == 2, "This method should be overridden in derived classes"
70
+
71
+ def apply_running_mean(self, confidence_array, window_size_in_seconds: int = None):
72
+ """
73
+ Apply a running mean filter to the confidence array for smoothing, assuming a padding
74
+ of 0.5 for the edges.
75
+
76
+ Args:
77
+ self: Object that has video and fps attributes, and to which this function belongs.
78
+ confidence_array: A 2D numpy array with dimensions (num_frames),
79
+ containing confidence scores for each label at each frame.
80
+ window_size_in_seconds: The window size for the running mean in seconds.
81
+
82
+ Returns:
83
+ running_mean_array: A 2D numpy array with the same dimensions as confidence_array,
84
+ containing the smoothed confidence scores.
85
+ """
86
+ video = self.video
87
+ fps = video.fps
88
+
89
+ if not window_size_in_seconds:
90
+ window_size_in_seconds = DEFAULT_WINDOW_SIZE_IN_SECONDS_FOR_RUNNING_MEAN
91
+
92
+ # Calculate window size in frames, ensuring at least one frame
93
+ window_size_in_frames = int(window_size_in_seconds * fps)
94
+ window_size_in_frames = max(window_size_in_frames, 1)
95
+
96
+ # Define the window for the running mean
97
+ window = np.ones(window_size_in_frames) / window_size_in_frames
98
+
99
+ # Create running mean array with the same shape as the confidence array
100
+ running_mean_array = np.zeros(confidence_array.shape)
101
+
102
+ # Calculate the padding size
103
+ pad_size = window_size_in_frames // 2
104
+
105
+ # Pad the array with 0.5 on both sides
106
+ padded_confidences = np.pad(confidence_array, (pad_size, pad_size), 'constant', constant_values=(0.5, 0.5))
107
+
108
+ # Apply the running mean filter on the padded array
109
+ running_mean = np.convolve(padded_confidences, window, mode='same')
110
+
111
+ # Remove the padding from the result to match the original shape
112
+ running_mean = running_mean[pad_size:-pad_size]
113
+
114
+ return running_mean
115
+
116
+
117
+ def create_video_segments_for_label(self, segments, label):
118
+ """
119
+ Creates video segments for the given label and segments.
120
+ Segments is a list of tuples (start_frame_number, end_frame_number).
121
+ Labels is a Label object.
122
+ """
123
+ video = self.video
124
+ video_segment_model = self.get_video_segment_model()
125
+ information_source = get_prediction_information_source()
126
+
127
+ for segment in segments:
128
+ start_frame_number, end_frame_number = segment
129
+
130
+ video_segment = video_segment_model(
131
+ video=video,
132
+ prediction_meta=self,
133
+ start_frame_number=start_frame_number,
134
+ end_frame_number=end_frame_number,
135
+ source=information_source,
136
+ label=label,
137
+ )
138
+ video_segment.save()
139
+
140
+ def create_video_segments(self, segment_length_threshold_in_s:float=None):
141
+ if not segment_length_threshold_in_s:
142
+ segment_length_threshold_in_s = DEFAULT_VIDEO_SEGMENT_LENGTH_THRESHOLD_IN_S
143
+
144
+ video = self.video
145
+ fps = video.fps
146
+ min_frame_length = int(segment_length_threshold_in_s * fps)
147
+
148
+ label_list = self.get_label_list()
149
+
150
+ # if prediction array doesnt exist, create it
151
+ if self.prediction_array is None:
152
+ self.calculate_prediction_array()
153
+
154
+ prediction_array = self.get_prediction_array()
155
+
156
+ for i, label in enumerate(label_list):
157
+ # get predictions for this label
158
+ predictions = prediction_array[:, i]
159
+ # find segments of predictions that are longer than the threshold
160
+ # segments is a list of tuples (start_frame_number, end_frame_number)
161
+ segments = find_segments_in_prediction_array(predictions, min_frame_length)
162
+
163
+ # create video segments
164
+ self.create_video_segments_for_label(segments, label)
165
+
166
+ import numpy as np
167
+ class VideoPredictionMeta(AbstractVideoPredictionMeta):
168
+ video = models.OneToOneField("Video", on_delete=models.CASCADE, related_name="video_prediction_meta")
169
+
170
+ def get_video_model(self):
171
+ return Video
172
+
173
+ def get_frame_model(self):
174
+ return Frame
175
+
176
+ def get_video_segment_model(self):
177
+ return LabelVideoSegment
178
+
179
+ def calculate_prediction_array(self, window_size_in_seconds:int=None):
180
+ """
181
+ Fetches all predictions for this video, labelset, and model meta.
182
+ """
183
+ video:Video = self.video
184
+
185
+ model_meta = self.model_meta
186
+ label_list = self.get_label_list()
187
+
188
+ prediction_array = np.zeros((video.get_frame_number, len(label_list)))
189
+ for i, label in enumerate(label_list):
190
+ # fetch all predictions for this label, video, and model meta ordered by ImageClassificationPrediction.frame.frame_number
191
+ predictions = ImageClassificationPrediction.objects.filter(label=label, frame__video=video, model_meta=model_meta).order_by('frame__frame_number')
192
+ confidences = np.array([prediction.confidence for prediction in predictions])
193
+ smooth_confidences = self.apply_running_mean(confidences, window_size_in_seconds)
194
+ # calculate binary predictions
195
+ binary_predictions = smooth_confidences > 0.5
196
+ # add to prediction array
197
+ prediction_array[:, i] = binary_predictions
198
+
199
+ # save prediction array
200
+ self.save_prediction_array(prediction_array)
201
+
202
+
203
+ class LegacyVideoPredictionMeta(AbstractVideoPredictionMeta):
204
+ video = models.OneToOneField("LegacyVideo", on_delete=models.CASCADE, related_name="video_prediction_meta")
205
+
206
+ def get_video_model(self):
207
+ return LegacyVideo
208
+
209
+ def get_frame_model(self):
210
+ return LegacyFrame
211
+
212
+ def get_video_segment_model(self):
213
+ return LegacyLabelVideoSegment
214
+
215
+ def calculate_prediction_array(self, window_size_in_seconds:int=None):
216
+ """
217
+ Fetches all predictions for this video, labelset, and model meta.
218
+ """
219
+ video:LegacyVideo = self.video
220
+
221
+ model_meta = self.model_meta
222
+ label_list = self.get_label_list()
223
+
224
+ prediction_array = np.zeros((video.get_frame_number, len(label_list)))
225
+ for i, label in enumerate(label_list):
226
+ # fetch all predictions for this label, video, and model meta ordered by ImageClassificationPrediction.frame.frame_number
227
+ predictions = ImageClassificationPrediction.objects.filter(label=label, legacy_frame__video=video, model_meta=model_meta).order_by('legacy_frame__frame_number')
228
+ confidences = np.array([prediction.confidence for prediction in predictions])
229
+ smooth_confidences = self.apply_running_mean(confidences, window_size_in_seconds)
230
+ # calculate binary predictions
231
+ binary_predictions = smooth_confidences > 0.5
232
+ # add to prediction array
233
+ prediction_array[:, i] = binary_predictions
234
+
235
+ # save prediction array
236
+ self.save_prediction_array(prediction_array)
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
@@ -1,5 +1,5 @@
1
- from .product import Product
2
- from .product_material import ProductMaterial
3
- from .product_group import ProductGroup
4
- from .reference_product import ReferenceProduct
1
+ from .product import Product
2
+ from .product_material import ProductMaterial
3
+ from .product_group import ProductGroup
4
+ from .reference_product import ReferenceProduct
5
5
  from .product_weight import ProductWeight