xinference 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +473 -31
- xinference/client/restful/async_restful_client.py +178 -8
- xinference/client/restful/restful_client.py +151 -3
- xinference/core/supervisor.py +99 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +58 -21
- xinference/model/image/model_spec.json +159 -90
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1299 -174
- xinference/model/llm/mlx/distributed_models/core.py +41 -0
- xinference/model/llm/mlx/distributed_models/qwen2.py +1 -2
- xinference/model/llm/sglang/core.py +44 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +29 -4
- xinference/model/llm/transformers/chatglm.py +3 -0
- xinference/model/llm/transformers/core.py +129 -36
- xinference/model/llm/transformers/multimodal/minicpmv45.py +340 -0
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/transformers/utils.py +23 -0
- xinference/model/llm/utils.py +48 -32
- xinference/model/llm/vllm/core.py +207 -72
- xinference/model/utils.py +74 -31
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +1 -1
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/thirdparty/melo/text/chinese_mix.py +2 -2
- xinference/types.py +9 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.45e78536.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.45e78536.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.45e78536.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ea2a26361204e70cf1018d6990fb6354bed82b3ac69690391e0f100385e7abb7.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/METADATA +24 -6
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/RECORD +296 -77
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1222 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import torch
|
|
8
|
+
from torch import nn, sin, pow
|
|
9
|
+
from torch.nn import Parameter
|
|
10
|
+
import torch.nn.functional as F
|
|
11
|
+
from torch.nn.utils import weight_norm
|
|
12
|
+
from .alias_free_torch import *
|
|
13
|
+
from .quantize import *
|
|
14
|
+
from einops import rearrange
|
|
15
|
+
from einops.layers.torch import Rearrange
|
|
16
|
+
from .transformer import TransformerEncoder
|
|
17
|
+
from .gradient_reversal import GradientReversal
|
|
18
|
+
from .melspec import MelSpectrogram
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def init_weights(m):
|
|
22
|
+
if isinstance(m, nn.Conv1d):
|
|
23
|
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
24
|
+
nn.init.constant_(m.bias, 0)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def WNConv1d(*args, **kwargs):
|
|
28
|
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def WNConvTranspose1d(*args, **kwargs):
|
|
32
|
+
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class CNNLSTM(nn.Module):
|
|
36
|
+
def __init__(self, indim, outdim, head, global_pred=False):
|
|
37
|
+
super().__init__()
|
|
38
|
+
self.global_pred = global_pred
|
|
39
|
+
self.model = nn.Sequential(
|
|
40
|
+
ResidualUnit(indim, dilation=1),
|
|
41
|
+
ResidualUnit(indim, dilation=2),
|
|
42
|
+
ResidualUnit(indim, dilation=3),
|
|
43
|
+
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
|
|
44
|
+
Rearrange("b c t -> b t c"),
|
|
45
|
+
)
|
|
46
|
+
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
|
|
47
|
+
|
|
48
|
+
def forward(self, x):
|
|
49
|
+
# x: [B, C, T]
|
|
50
|
+
x = self.model(x)
|
|
51
|
+
if self.global_pred:
|
|
52
|
+
x = torch.mean(x, dim=1, keepdim=False)
|
|
53
|
+
outs = [head(x) for head in self.heads]
|
|
54
|
+
return outs
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
class SnakeBeta(nn.Module):
|
|
58
|
+
"""
|
|
59
|
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
|
60
|
+
Shape:
|
|
61
|
+
- Input: (B, C, T)
|
|
62
|
+
- Output: (B, C, T), same shape as the input
|
|
63
|
+
Parameters:
|
|
64
|
+
- alpha - trainable parameter that controls frequency
|
|
65
|
+
- beta - trainable parameter that controls magnitude
|
|
66
|
+
References:
|
|
67
|
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
|
68
|
+
https://arxiv.org/abs/2006.08195
|
|
69
|
+
Examples:
|
|
70
|
+
>>> a1 = snakebeta(256)
|
|
71
|
+
>>> x = torch.randn(256)
|
|
72
|
+
>>> x = a1(x)
|
|
73
|
+
"""
|
|
74
|
+
|
|
75
|
+
def __init__(
|
|
76
|
+
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
|
|
77
|
+
):
|
|
78
|
+
"""
|
|
79
|
+
Initialization.
|
|
80
|
+
INPUT:
|
|
81
|
+
- in_features: shape of the input
|
|
82
|
+
- alpha - trainable parameter that controls frequency
|
|
83
|
+
- beta - trainable parameter that controls magnitude
|
|
84
|
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
|
85
|
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
|
86
|
+
alpha will be trained along with the rest of your model.
|
|
87
|
+
"""
|
|
88
|
+
super(SnakeBeta, self).__init__()
|
|
89
|
+
self.in_features = in_features
|
|
90
|
+
|
|
91
|
+
# initialize alpha
|
|
92
|
+
self.alpha_logscale = alpha_logscale
|
|
93
|
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
|
94
|
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
|
95
|
+
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
|
96
|
+
else: # linear scale alphas initialized to ones
|
|
97
|
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
|
98
|
+
self.beta = Parameter(torch.ones(in_features) * alpha)
|
|
99
|
+
|
|
100
|
+
self.alpha.requires_grad = alpha_trainable
|
|
101
|
+
self.beta.requires_grad = alpha_trainable
|
|
102
|
+
|
|
103
|
+
self.no_div_by_zero = 0.000000001
|
|
104
|
+
|
|
105
|
+
def forward(self, x):
|
|
106
|
+
"""
|
|
107
|
+
Forward pass of the function.
|
|
108
|
+
Applies the function to the input elementwise.
|
|
109
|
+
SnakeBeta := x + 1/b * sin^2 (xa)
|
|
110
|
+
"""
|
|
111
|
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
|
112
|
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
|
113
|
+
if self.alpha_logscale:
|
|
114
|
+
alpha = torch.exp(alpha)
|
|
115
|
+
beta = torch.exp(beta)
|
|
116
|
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
|
117
|
+
|
|
118
|
+
return x
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
class ResidualUnit(nn.Module):
|
|
122
|
+
def __init__(self, dim: int = 16, dilation: int = 1):
|
|
123
|
+
super().__init__()
|
|
124
|
+
pad = ((7 - 1) * dilation) // 2
|
|
125
|
+
self.block = nn.Sequential(
|
|
126
|
+
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
|
|
127
|
+
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
|
|
128
|
+
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
|
|
129
|
+
WNConv1d(dim, dim, kernel_size=1),
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
def forward(self, x):
|
|
133
|
+
return x + self.block(x)
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
class EncoderBlock(nn.Module):
|
|
137
|
+
def __init__(self, dim: int = 16, stride: int = 1):
|
|
138
|
+
super().__init__()
|
|
139
|
+
self.block = nn.Sequential(
|
|
140
|
+
ResidualUnit(dim // 2, dilation=1),
|
|
141
|
+
ResidualUnit(dim // 2, dilation=3),
|
|
142
|
+
ResidualUnit(dim // 2, dilation=9),
|
|
143
|
+
Activation1d(activation=SnakeBeta(dim // 2, alpha_logscale=True)),
|
|
144
|
+
WNConv1d(
|
|
145
|
+
dim // 2,
|
|
146
|
+
dim,
|
|
147
|
+
kernel_size=2 * stride,
|
|
148
|
+
stride=stride,
|
|
149
|
+
padding=stride // 2 + stride % 2,
|
|
150
|
+
),
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
def forward(self, x):
|
|
154
|
+
return self.block(x)
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
class FACodecEncoder(nn.Module):
|
|
158
|
+
def __init__(
|
|
159
|
+
self,
|
|
160
|
+
ngf=32,
|
|
161
|
+
up_ratios=(2, 4, 5, 5),
|
|
162
|
+
out_channels=1024,
|
|
163
|
+
):
|
|
164
|
+
super().__init__()
|
|
165
|
+
self.hop_length = np.prod(up_ratios)
|
|
166
|
+
self.up_ratios = up_ratios
|
|
167
|
+
|
|
168
|
+
# Create first convolution
|
|
169
|
+
d_model = ngf
|
|
170
|
+
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
|
|
171
|
+
|
|
172
|
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
|
173
|
+
for stride in up_ratios:
|
|
174
|
+
d_model *= 2
|
|
175
|
+
self.block += [EncoderBlock(d_model, stride=stride)]
|
|
176
|
+
|
|
177
|
+
# Create last convolution
|
|
178
|
+
self.block += [
|
|
179
|
+
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
|
|
180
|
+
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
|
|
181
|
+
]
|
|
182
|
+
|
|
183
|
+
# Wrap black into nn.Sequential
|
|
184
|
+
self.block = nn.Sequential(*self.block)
|
|
185
|
+
self.enc_dim = d_model
|
|
186
|
+
|
|
187
|
+
self.reset_parameters()
|
|
188
|
+
|
|
189
|
+
def forward(self, x):
|
|
190
|
+
out = self.block(x)
|
|
191
|
+
return out
|
|
192
|
+
|
|
193
|
+
def inference(self, x):
|
|
194
|
+
return self.block(x)
|
|
195
|
+
|
|
196
|
+
def remove_weight_norm(self):
|
|
197
|
+
"""Remove weight normalization module from all of the layers."""
|
|
198
|
+
|
|
199
|
+
def _remove_weight_norm(m):
|
|
200
|
+
try:
|
|
201
|
+
torch.nn.utils.remove_weight_norm(m)
|
|
202
|
+
except ValueError: # this module didn't have weight norm
|
|
203
|
+
return
|
|
204
|
+
|
|
205
|
+
self.apply(_remove_weight_norm)
|
|
206
|
+
|
|
207
|
+
def apply_weight_norm(self):
|
|
208
|
+
"""Apply weight normalization module from all of the layers."""
|
|
209
|
+
|
|
210
|
+
def _apply_weight_norm(m):
|
|
211
|
+
if isinstance(m, nn.Conv1d):
|
|
212
|
+
torch.nn.utils.weight_norm(m)
|
|
213
|
+
|
|
214
|
+
self.apply(_apply_weight_norm)
|
|
215
|
+
|
|
216
|
+
def reset_parameters(self):
|
|
217
|
+
self.apply(init_weights)
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
class DecoderBlock(nn.Module):
|
|
221
|
+
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1):
|
|
222
|
+
super().__init__()
|
|
223
|
+
self.block = nn.Sequential(
|
|
224
|
+
Activation1d(activation=SnakeBeta(input_dim, alpha_logscale=True)),
|
|
225
|
+
WNConvTranspose1d(
|
|
226
|
+
input_dim,
|
|
227
|
+
output_dim,
|
|
228
|
+
kernel_size=2 * stride,
|
|
229
|
+
stride=stride,
|
|
230
|
+
padding=stride // 2 + stride % 2,
|
|
231
|
+
output_padding=stride % 2,
|
|
232
|
+
),
|
|
233
|
+
ResidualUnit(output_dim, dilation=1),
|
|
234
|
+
ResidualUnit(output_dim, dilation=3),
|
|
235
|
+
ResidualUnit(output_dim, dilation=9),
|
|
236
|
+
)
|
|
237
|
+
|
|
238
|
+
def forward(self, x):
|
|
239
|
+
return self.block(x)
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
class FACodecDecoder(nn.Module):
|
|
243
|
+
def __init__(
|
|
244
|
+
self,
|
|
245
|
+
in_channels=256,
|
|
246
|
+
upsample_initial_channel=1536,
|
|
247
|
+
ngf=32,
|
|
248
|
+
up_ratios=(5, 5, 4, 2),
|
|
249
|
+
vq_num_q_c=2,
|
|
250
|
+
vq_num_q_p=1,
|
|
251
|
+
vq_num_q_r=3,
|
|
252
|
+
vq_dim=1024,
|
|
253
|
+
vq_commit_weight=0.005,
|
|
254
|
+
vq_weight_init=False,
|
|
255
|
+
vq_full_commit_loss=False,
|
|
256
|
+
codebook_dim=8,
|
|
257
|
+
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
|
|
258
|
+
codebook_size_content=10,
|
|
259
|
+
codebook_size_residual=10,
|
|
260
|
+
quantizer_dropout=0.0,
|
|
261
|
+
dropout_type="linear",
|
|
262
|
+
use_gr_content_f0=False,
|
|
263
|
+
use_gr_prosody_phone=False,
|
|
264
|
+
use_gr_residual_f0=False,
|
|
265
|
+
use_gr_residual_phone=False,
|
|
266
|
+
use_gr_x_timbre=False,
|
|
267
|
+
use_random_mask_residual=True,
|
|
268
|
+
prob_random_mask_residual=0.75,
|
|
269
|
+
):
|
|
270
|
+
super().__init__()
|
|
271
|
+
self.hop_length = np.prod(up_ratios)
|
|
272
|
+
self.ngf = ngf
|
|
273
|
+
self.up_ratios = up_ratios
|
|
274
|
+
|
|
275
|
+
self.use_random_mask_residual = use_random_mask_residual
|
|
276
|
+
self.prob_random_mask_residual = prob_random_mask_residual
|
|
277
|
+
|
|
278
|
+
self.vq_num_q_p = vq_num_q_p
|
|
279
|
+
self.vq_num_q_c = vq_num_q_c
|
|
280
|
+
self.vq_num_q_r = vq_num_q_r
|
|
281
|
+
|
|
282
|
+
self.codebook_size_prosody = codebook_size_prosody
|
|
283
|
+
self.codebook_size_content = codebook_size_content
|
|
284
|
+
self.codebook_size_residual = codebook_size_residual
|
|
285
|
+
|
|
286
|
+
quantizer_class = ResidualVQ
|
|
287
|
+
|
|
288
|
+
self.quantizer = nn.ModuleList()
|
|
289
|
+
|
|
290
|
+
# prosody
|
|
291
|
+
quantizer = quantizer_class(
|
|
292
|
+
num_quantizers=vq_num_q_p,
|
|
293
|
+
dim=vq_dim,
|
|
294
|
+
codebook_size=codebook_size_prosody,
|
|
295
|
+
codebook_dim=codebook_dim,
|
|
296
|
+
threshold_ema_dead_code=2,
|
|
297
|
+
commitment=vq_commit_weight,
|
|
298
|
+
weight_init=vq_weight_init,
|
|
299
|
+
full_commit_loss=vq_full_commit_loss,
|
|
300
|
+
quantizer_dropout=quantizer_dropout,
|
|
301
|
+
dropout_type=dropout_type,
|
|
302
|
+
)
|
|
303
|
+
self.quantizer.append(quantizer)
|
|
304
|
+
|
|
305
|
+
# phone
|
|
306
|
+
quantizer = quantizer_class(
|
|
307
|
+
num_quantizers=vq_num_q_c,
|
|
308
|
+
dim=vq_dim,
|
|
309
|
+
codebook_size=codebook_size_content,
|
|
310
|
+
codebook_dim=codebook_dim,
|
|
311
|
+
threshold_ema_dead_code=2,
|
|
312
|
+
commitment=vq_commit_weight,
|
|
313
|
+
weight_init=vq_weight_init,
|
|
314
|
+
full_commit_loss=vq_full_commit_loss,
|
|
315
|
+
quantizer_dropout=quantizer_dropout,
|
|
316
|
+
dropout_type=dropout_type,
|
|
317
|
+
)
|
|
318
|
+
self.quantizer.append(quantizer)
|
|
319
|
+
|
|
320
|
+
# residual
|
|
321
|
+
if self.vq_num_q_r > 0:
|
|
322
|
+
quantizer = quantizer_class(
|
|
323
|
+
num_quantizers=vq_num_q_r,
|
|
324
|
+
dim=vq_dim,
|
|
325
|
+
codebook_size=codebook_size_residual,
|
|
326
|
+
codebook_dim=codebook_dim,
|
|
327
|
+
threshold_ema_dead_code=2,
|
|
328
|
+
commitment=vq_commit_weight,
|
|
329
|
+
weight_init=vq_weight_init,
|
|
330
|
+
full_commit_loss=vq_full_commit_loss,
|
|
331
|
+
quantizer_dropout=quantizer_dropout,
|
|
332
|
+
dropout_type=dropout_type,
|
|
333
|
+
)
|
|
334
|
+
self.quantizer.append(quantizer)
|
|
335
|
+
|
|
336
|
+
# Add first conv layer
|
|
337
|
+
channels = upsample_initial_channel
|
|
338
|
+
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
|
|
339
|
+
|
|
340
|
+
# Add upsampling + MRF blocks
|
|
341
|
+
for i, stride in enumerate(up_ratios):
|
|
342
|
+
input_dim = channels // 2**i
|
|
343
|
+
output_dim = channels // 2 ** (i + 1)
|
|
344
|
+
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
|
345
|
+
|
|
346
|
+
# Add final conv layer
|
|
347
|
+
layers += [
|
|
348
|
+
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
|
|
349
|
+
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
|
|
350
|
+
nn.Tanh(),
|
|
351
|
+
]
|
|
352
|
+
|
|
353
|
+
self.model = nn.Sequential(*layers)
|
|
354
|
+
|
|
355
|
+
self.timbre_encoder = TransformerEncoder(
|
|
356
|
+
enc_emb_tokens=None,
|
|
357
|
+
encoder_layer=4,
|
|
358
|
+
encoder_hidden=256,
|
|
359
|
+
encoder_head=4,
|
|
360
|
+
conv_filter_size=1024,
|
|
361
|
+
conv_kernel_size=5,
|
|
362
|
+
encoder_dropout=0.1,
|
|
363
|
+
use_cln=False,
|
|
364
|
+
)
|
|
365
|
+
|
|
366
|
+
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
|
|
367
|
+
self.timbre_linear.bias.data[:in_channels] = 1
|
|
368
|
+
self.timbre_linear.bias.data[in_channels:] = 0
|
|
369
|
+
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
|
|
370
|
+
|
|
371
|
+
self.f0_predictor = CNNLSTM(in_channels, 1, 2)
|
|
372
|
+
self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
|
|
373
|
+
|
|
374
|
+
self.use_gr_content_f0 = use_gr_content_f0
|
|
375
|
+
self.use_gr_prosody_phone = use_gr_prosody_phone
|
|
376
|
+
self.use_gr_residual_f0 = use_gr_residual_f0
|
|
377
|
+
self.use_gr_residual_phone = use_gr_residual_phone
|
|
378
|
+
self.use_gr_x_timbre = use_gr_x_timbre
|
|
379
|
+
|
|
380
|
+
if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
|
|
381
|
+
self.res_f0_predictor = nn.Sequential(
|
|
382
|
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
|
383
|
+
)
|
|
384
|
+
|
|
385
|
+
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
|
|
386
|
+
self.res_phone_predictor = nn.Sequential(
|
|
387
|
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
|
388
|
+
)
|
|
389
|
+
|
|
390
|
+
if self.use_gr_content_f0:
|
|
391
|
+
self.content_f0_predictor = nn.Sequential(
|
|
392
|
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
if self.use_gr_prosody_phone:
|
|
396
|
+
self.prosody_phone_predictor = nn.Sequential(
|
|
397
|
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
|
398
|
+
)
|
|
399
|
+
|
|
400
|
+
if self.use_gr_x_timbre:
|
|
401
|
+
self.x_timbre_predictor = nn.Sequential(
|
|
402
|
+
GradientReversal(alpha=1),
|
|
403
|
+
CNNLSTM(in_channels, 245200, 1, global_pred=True),
|
|
404
|
+
)
|
|
405
|
+
|
|
406
|
+
self.reset_parameters()
|
|
407
|
+
|
|
408
|
+
def quantize(self, x, n_quantizers=None):
|
|
409
|
+
outs, qs, commit_loss, quantized_buf = 0, [], [], []
|
|
410
|
+
|
|
411
|
+
# prosody
|
|
412
|
+
f0_input = x # (B, d, T)
|
|
413
|
+
f0_quantizer = self.quantizer[0]
|
|
414
|
+
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
|
|
415
|
+
outs += out
|
|
416
|
+
qs.append(q)
|
|
417
|
+
quantized_buf.append(quantized.sum(0))
|
|
418
|
+
commit_loss.append(commit)
|
|
419
|
+
|
|
420
|
+
# phone
|
|
421
|
+
phone_input = x
|
|
422
|
+
phone_quantizer = self.quantizer[1]
|
|
423
|
+
out, q, commit, quantized = phone_quantizer(
|
|
424
|
+
phone_input, n_quantizers=n_quantizers
|
|
425
|
+
)
|
|
426
|
+
outs += out
|
|
427
|
+
qs.append(q)
|
|
428
|
+
quantized_buf.append(quantized.sum(0))
|
|
429
|
+
commit_loss.append(commit)
|
|
430
|
+
|
|
431
|
+
# residual
|
|
432
|
+
if self.vq_num_q_r > 0:
|
|
433
|
+
residual_quantizer = self.quantizer[2]
|
|
434
|
+
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
|
|
435
|
+
out, q, commit, quantized = residual_quantizer(
|
|
436
|
+
residual_input, n_quantizers=n_quantizers
|
|
437
|
+
)
|
|
438
|
+
outs += out
|
|
439
|
+
qs.append(q)
|
|
440
|
+
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
|
|
441
|
+
commit_loss.append(commit)
|
|
442
|
+
|
|
443
|
+
qs = torch.cat(qs, dim=0)
|
|
444
|
+
commit_loss = torch.cat(commit_loss, dim=0)
|
|
445
|
+
return outs, qs, commit_loss, quantized_buf
|
|
446
|
+
|
|
447
|
+
def forward(
|
|
448
|
+
self,
|
|
449
|
+
x,
|
|
450
|
+
vq=True,
|
|
451
|
+
get_vq=False,
|
|
452
|
+
eval_vq=True,
|
|
453
|
+
speaker_embedding=None,
|
|
454
|
+
n_quantizers=None,
|
|
455
|
+
quantized=None,
|
|
456
|
+
):
|
|
457
|
+
if get_vq:
|
|
458
|
+
return self.quantizer.get_emb()
|
|
459
|
+
if vq is True:
|
|
460
|
+
if eval_vq:
|
|
461
|
+
self.quantizer.eval()
|
|
462
|
+
x_timbre = x
|
|
463
|
+
outs, qs, commit_loss, quantized_buf = self.quantize(
|
|
464
|
+
x, n_quantizers=n_quantizers
|
|
465
|
+
)
|
|
466
|
+
|
|
467
|
+
x_timbre = x_timbre.transpose(1, 2)
|
|
468
|
+
x_timbre = self.timbre_encoder(x_timbre, None, None)
|
|
469
|
+
x_timbre = x_timbre.transpose(1, 2)
|
|
470
|
+
spk_embs = torch.mean(x_timbre, dim=2)
|
|
471
|
+
return outs, qs, commit_loss, quantized_buf, spk_embs
|
|
472
|
+
|
|
473
|
+
out = {}
|
|
474
|
+
|
|
475
|
+
layer_0 = quantized[0]
|
|
476
|
+
f0, uv = self.f0_predictor(layer_0)
|
|
477
|
+
f0 = rearrange(f0, "... 1 -> ...")
|
|
478
|
+
uv = rearrange(uv, "... 1 -> ...")
|
|
479
|
+
|
|
480
|
+
layer_1 = quantized[1]
|
|
481
|
+
(phone,) = self.phone_predictor(layer_1)
|
|
482
|
+
|
|
483
|
+
out = {"f0": f0, "uv": uv, "phone": phone}
|
|
484
|
+
|
|
485
|
+
if self.use_gr_prosody_phone:
|
|
486
|
+
(prosody_phone,) = self.prosody_phone_predictor(layer_0)
|
|
487
|
+
out["prosody_phone"] = prosody_phone
|
|
488
|
+
|
|
489
|
+
if self.use_gr_content_f0:
|
|
490
|
+
content_f0, content_uv = self.content_f0_predictor(layer_1)
|
|
491
|
+
content_f0 = rearrange(content_f0, "... 1 -> ...")
|
|
492
|
+
content_uv = rearrange(content_uv, "... 1 -> ...")
|
|
493
|
+
out["content_f0"] = content_f0
|
|
494
|
+
out["content_uv"] = content_uv
|
|
495
|
+
|
|
496
|
+
if self.vq_num_q_r > 0:
|
|
497
|
+
layer_2 = quantized[2]
|
|
498
|
+
|
|
499
|
+
if self.use_gr_residual_f0:
|
|
500
|
+
res_f0, res_uv = self.res_f0_predictor(layer_2)
|
|
501
|
+
res_f0 = rearrange(res_f0, "... 1 -> ...")
|
|
502
|
+
res_uv = rearrange(res_uv, "... 1 -> ...")
|
|
503
|
+
out["res_f0"] = res_f0
|
|
504
|
+
out["res_uv"] = res_uv
|
|
505
|
+
|
|
506
|
+
if self.use_gr_residual_phone:
|
|
507
|
+
(res_phone,) = self.res_phone_predictor(layer_2)
|
|
508
|
+
out["res_phone"] = res_phone
|
|
509
|
+
|
|
510
|
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
511
|
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
512
|
+
if self.vq_num_q_r > 0:
|
|
513
|
+
if self.use_random_mask_residual:
|
|
514
|
+
bsz = quantized[2].shape[0]
|
|
515
|
+
res_mask = np.random.choice(
|
|
516
|
+
[0, 1],
|
|
517
|
+
size=bsz,
|
|
518
|
+
p=[
|
|
519
|
+
self.prob_random_mask_residual,
|
|
520
|
+
1 - self.prob_random_mask_residual,
|
|
521
|
+
],
|
|
522
|
+
)
|
|
523
|
+
res_mask = (
|
|
524
|
+
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
|
|
525
|
+
) # (B, 1, 1)
|
|
526
|
+
res_mask = res_mask.to(
|
|
527
|
+
device=quantized[2].device, dtype=quantized[2].dtype
|
|
528
|
+
)
|
|
529
|
+
x = (
|
|
530
|
+
quantized[0].detach()
|
|
531
|
+
+ quantized[1].detach()
|
|
532
|
+
+ quantized[2] * res_mask
|
|
533
|
+
)
|
|
534
|
+
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
|
|
535
|
+
else:
|
|
536
|
+
x = quantized[0].detach() + quantized[1].detach() + quantized[2]
|
|
537
|
+
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
|
|
538
|
+
else:
|
|
539
|
+
x = quantized[0].detach() + quantized[1].detach()
|
|
540
|
+
# x = quantized_perturbe[0].detach() + quantized[1].detach()
|
|
541
|
+
|
|
542
|
+
if self.use_gr_x_timbre:
|
|
543
|
+
(x_timbre,) = self.x_timbre_predictor(x)
|
|
544
|
+
out["x_timbre"] = x_timbre
|
|
545
|
+
|
|
546
|
+
x = x.transpose(1, 2)
|
|
547
|
+
x = self.timbre_norm(x)
|
|
548
|
+
x = x.transpose(1, 2)
|
|
549
|
+
x = x * gamma + beta
|
|
550
|
+
|
|
551
|
+
x = self.model(x)
|
|
552
|
+
out["audio"] = x
|
|
553
|
+
|
|
554
|
+
return out
|
|
555
|
+
|
|
556
|
+
def vq2emb(self, vq, use_residual_code=True):
|
|
557
|
+
# vq: [num_quantizer, B, T]
|
|
558
|
+
self.quantizer = self.quantizer.eval()
|
|
559
|
+
out = 0
|
|
560
|
+
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
|
|
561
|
+
out += self.quantizer[1].vq2emb(
|
|
562
|
+
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
|
|
563
|
+
)
|
|
564
|
+
if self.vq_num_q_r > 0 and use_residual_code:
|
|
565
|
+
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
|
|
566
|
+
return out
|
|
567
|
+
|
|
568
|
+
def inference(self, x, speaker_embedding):
|
|
569
|
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
570
|
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
571
|
+
x = x.transpose(1, 2)
|
|
572
|
+
x = self.timbre_norm(x)
|
|
573
|
+
x = x.transpose(1, 2)
|
|
574
|
+
x = x * gamma + beta
|
|
575
|
+
x = self.model(x)
|
|
576
|
+
return x
|
|
577
|
+
|
|
578
|
+
def remove_weight_norm(self):
|
|
579
|
+
"""Remove weight normalization module from all of the layers."""
|
|
580
|
+
|
|
581
|
+
def _remove_weight_norm(m):
|
|
582
|
+
try:
|
|
583
|
+
torch.nn.utils.remove_weight_norm(m)
|
|
584
|
+
except ValueError: # this module didn't have weight norm
|
|
585
|
+
return
|
|
586
|
+
|
|
587
|
+
self.apply(_remove_weight_norm)
|
|
588
|
+
|
|
589
|
+
def apply_weight_norm(self):
|
|
590
|
+
"""Apply weight normalization module from all of the layers."""
|
|
591
|
+
|
|
592
|
+
def _apply_weight_norm(m):
|
|
593
|
+
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
|
|
594
|
+
torch.nn.utils.weight_norm(m)
|
|
595
|
+
|
|
596
|
+
self.apply(_apply_weight_norm)
|
|
597
|
+
|
|
598
|
+
def reset_parameters(self):
|
|
599
|
+
self.apply(init_weights)
|
|
600
|
+
|
|
601
|
+
|
|
602
|
+
class FACodecRedecoder(nn.Module):
|
|
603
|
+
def __init__(
|
|
604
|
+
self,
|
|
605
|
+
in_channels=256,
|
|
606
|
+
upsample_initial_channel=1280,
|
|
607
|
+
up_ratios=(5, 5, 4, 2),
|
|
608
|
+
vq_num_q_c=2,
|
|
609
|
+
vq_num_q_p=1,
|
|
610
|
+
vq_num_q_r=3,
|
|
611
|
+
vq_dim=256,
|
|
612
|
+
codebook_size_prosody=10,
|
|
613
|
+
codebook_size_content=10,
|
|
614
|
+
codebook_size_residual=10,
|
|
615
|
+
):
|
|
616
|
+
super().__init__()
|
|
617
|
+
self.hop_length = np.prod(up_ratios)
|
|
618
|
+
self.up_ratios = up_ratios
|
|
619
|
+
|
|
620
|
+
self.vq_num_q_p = vq_num_q_p
|
|
621
|
+
self.vq_num_q_c = vq_num_q_c
|
|
622
|
+
self.vq_num_q_r = vq_num_q_r
|
|
623
|
+
|
|
624
|
+
self.vq_dim = vq_dim
|
|
625
|
+
|
|
626
|
+
self.codebook_size_prosody = codebook_size_prosody
|
|
627
|
+
self.codebook_size_content = codebook_size_content
|
|
628
|
+
self.codebook_size_residual = codebook_size_residual
|
|
629
|
+
|
|
630
|
+
self.prosody_embs = nn.ModuleList()
|
|
631
|
+
for i in range(self.vq_num_q_p):
|
|
632
|
+
emb_tokens = nn.Embedding(
|
|
633
|
+
num_embeddings=2**self.codebook_size_prosody,
|
|
634
|
+
embedding_dim=self.vq_dim,
|
|
635
|
+
)
|
|
636
|
+
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
|
|
637
|
+
self.prosody_embs.append(emb_tokens)
|
|
638
|
+
self.content_embs = nn.ModuleList()
|
|
639
|
+
for i in range(self.vq_num_q_c):
|
|
640
|
+
emb_tokens = nn.Embedding(
|
|
641
|
+
num_embeddings=2**self.codebook_size_content,
|
|
642
|
+
embedding_dim=self.vq_dim,
|
|
643
|
+
)
|
|
644
|
+
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
|
|
645
|
+
self.content_embs.append(emb_tokens)
|
|
646
|
+
self.residual_embs = nn.ModuleList()
|
|
647
|
+
for i in range(self.vq_num_q_r):
|
|
648
|
+
emb_tokens = nn.Embedding(
|
|
649
|
+
num_embeddings=2**self.codebook_size_residual,
|
|
650
|
+
embedding_dim=self.vq_dim,
|
|
651
|
+
)
|
|
652
|
+
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
|
|
653
|
+
self.residual_embs.append(emb_tokens)
|
|
654
|
+
|
|
655
|
+
# Add first conv layer
|
|
656
|
+
channels = upsample_initial_channel
|
|
657
|
+
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
|
|
658
|
+
|
|
659
|
+
# Add upsampling + MRF blocks
|
|
660
|
+
for i, stride in enumerate(up_ratios):
|
|
661
|
+
input_dim = channels // 2**i
|
|
662
|
+
output_dim = channels // 2 ** (i + 1)
|
|
663
|
+
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
|
664
|
+
|
|
665
|
+
# Add final conv layer
|
|
666
|
+
layers += [
|
|
667
|
+
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
|
|
668
|
+
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
|
|
669
|
+
nn.Tanh(),
|
|
670
|
+
]
|
|
671
|
+
|
|
672
|
+
self.model = nn.Sequential(*layers)
|
|
673
|
+
|
|
674
|
+
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
|
|
675
|
+
self.timbre_linear.bias.data[:in_channels] = 1
|
|
676
|
+
self.timbre_linear.bias.data[in_channels:] = 0
|
|
677
|
+
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
|
|
678
|
+
|
|
679
|
+
self.timbre_cond_prosody_enc = TransformerEncoder(
|
|
680
|
+
enc_emb_tokens=None,
|
|
681
|
+
encoder_layer=4,
|
|
682
|
+
encoder_hidden=256,
|
|
683
|
+
encoder_head=4,
|
|
684
|
+
conv_filter_size=1024,
|
|
685
|
+
conv_kernel_size=5,
|
|
686
|
+
encoder_dropout=0.1,
|
|
687
|
+
use_cln=True,
|
|
688
|
+
cfg=None,
|
|
689
|
+
)
|
|
690
|
+
|
|
691
|
+
def forward(
|
|
692
|
+
self,
|
|
693
|
+
vq,
|
|
694
|
+
speaker_embedding,
|
|
695
|
+
use_residual_code=False,
|
|
696
|
+
):
|
|
697
|
+
|
|
698
|
+
x = 0
|
|
699
|
+
|
|
700
|
+
x_p = 0
|
|
701
|
+
for i in range(self.vq_num_q_p):
|
|
702
|
+
x_p = x_p + self.prosody_embs[i](vq[i]) # (B, T, d)
|
|
703
|
+
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_p.shape[1], -1)
|
|
704
|
+
x_p = self.timbre_cond_prosody_enc(
|
|
705
|
+
x_p, key_padding_mask=None, condition=spk_cond
|
|
706
|
+
)
|
|
707
|
+
x = x + x_p
|
|
708
|
+
|
|
709
|
+
x_c = 0
|
|
710
|
+
for i in range(self.vq_num_q_c):
|
|
711
|
+
x_c = x_c + self.content_embs[i](vq[self.vq_num_q_p + i])
|
|
712
|
+
|
|
713
|
+
x = x + x_c
|
|
714
|
+
|
|
715
|
+
if use_residual_code:
|
|
716
|
+
|
|
717
|
+
x_r = 0
|
|
718
|
+
for i in range(self.vq_num_q_r):
|
|
719
|
+
x_r = x_r + self.residual_embs[i](
|
|
720
|
+
vq[self.vq_num_q_p + self.vq_num_q_c + i]
|
|
721
|
+
)
|
|
722
|
+
x = x + x_r
|
|
723
|
+
|
|
724
|
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
725
|
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
726
|
+
x = x.transpose(1, 2)
|
|
727
|
+
x = self.timbre_norm(x)
|
|
728
|
+
x = x.transpose(1, 2)
|
|
729
|
+
x = x * gamma + beta
|
|
730
|
+
x = self.model(x)
|
|
731
|
+
|
|
732
|
+
return x
|
|
733
|
+
|
|
734
|
+
def vq2emb(self, vq, speaker_embedding, use_residual=True):
|
|
735
|
+
|
|
736
|
+
out = 0
|
|
737
|
+
|
|
738
|
+
x_t = 0
|
|
739
|
+
for i in range(self.vq_num_q_p):
|
|
740
|
+
x_t += self.prosody_embs[i](vq[i]) # (B, T, d)
|
|
741
|
+
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_t.shape[1], -1)
|
|
742
|
+
x_t = self.timbre_cond_prosody_enc(
|
|
743
|
+
x_t, key_padding_mask=None, condition=spk_cond
|
|
744
|
+
)
|
|
745
|
+
|
|
746
|
+
# prosody
|
|
747
|
+
out += x_t
|
|
748
|
+
|
|
749
|
+
# content
|
|
750
|
+
for i in range(self.vq_num_q_c):
|
|
751
|
+
out += self.content_embs[i](vq[self.vq_num_q_p + i])
|
|
752
|
+
|
|
753
|
+
# residual
|
|
754
|
+
if use_residual:
|
|
755
|
+
for i in range(self.vq_num_q_r):
|
|
756
|
+
out += self.residual_embs[i](vq[self.vq_num_q_p + self.vq_num_q_c + i])
|
|
757
|
+
|
|
758
|
+
out = out.transpose(1, 2) # (B, T, d) -> (B, d, T)
|
|
759
|
+
return out
|
|
760
|
+
|
|
761
|
+
def inference(self, x, speaker_embedding):
|
|
762
|
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
763
|
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
764
|
+
x = x.transpose(1, 2)
|
|
765
|
+
x = self.timbre_norm(x)
|
|
766
|
+
x = x.transpose(1, 2)
|
|
767
|
+
x = x * gamma + beta
|
|
768
|
+
x = self.model(x)
|
|
769
|
+
return x
|
|
770
|
+
|
|
771
|
+
|
|
772
|
+
class FACodecEncoderV2(nn.Module):
|
|
773
|
+
def __init__(
|
|
774
|
+
self,
|
|
775
|
+
ngf=32,
|
|
776
|
+
up_ratios=(2, 4, 5, 5),
|
|
777
|
+
out_channels=1024,
|
|
778
|
+
):
|
|
779
|
+
super().__init__()
|
|
780
|
+
self.hop_length = np.prod(up_ratios)
|
|
781
|
+
self.up_ratios = up_ratios
|
|
782
|
+
|
|
783
|
+
# Create first convolution
|
|
784
|
+
d_model = ngf
|
|
785
|
+
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
|
|
786
|
+
|
|
787
|
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
|
788
|
+
for stride in up_ratios:
|
|
789
|
+
d_model *= 2
|
|
790
|
+
self.block += [EncoderBlock(d_model, stride=stride)]
|
|
791
|
+
|
|
792
|
+
# Create last convolution
|
|
793
|
+
self.block += [
|
|
794
|
+
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
|
|
795
|
+
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
|
|
796
|
+
]
|
|
797
|
+
|
|
798
|
+
# Wrap black into nn.Sequential
|
|
799
|
+
self.block = nn.Sequential(*self.block)
|
|
800
|
+
self.enc_dim = d_model
|
|
801
|
+
|
|
802
|
+
self.mel_transform = MelSpectrogram(
|
|
803
|
+
n_fft=1024,
|
|
804
|
+
num_mels=80,
|
|
805
|
+
sampling_rate=16000,
|
|
806
|
+
hop_size=200,
|
|
807
|
+
win_size=800,
|
|
808
|
+
fmin=0,
|
|
809
|
+
fmax=8000,
|
|
810
|
+
)
|
|
811
|
+
|
|
812
|
+
self.reset_parameters()
|
|
813
|
+
|
|
814
|
+
def forward(self, x):
|
|
815
|
+
out = self.block(x)
|
|
816
|
+
return out
|
|
817
|
+
|
|
818
|
+
def inference(self, x):
|
|
819
|
+
return self.block(x)
|
|
820
|
+
|
|
821
|
+
def get_prosody_feature(self, x):
|
|
822
|
+
return self.mel_transform(x.squeeze(1))[:, :20, :]
|
|
823
|
+
|
|
824
|
+
def remove_weight_norm(self):
|
|
825
|
+
"""Remove weight normalization module from all of the layers."""
|
|
826
|
+
|
|
827
|
+
def _remove_weight_norm(m):
|
|
828
|
+
try:
|
|
829
|
+
torch.nn.utils.remove_weight_norm(m)
|
|
830
|
+
except ValueError: # this module didn't have weight norm
|
|
831
|
+
return
|
|
832
|
+
|
|
833
|
+
self.apply(_remove_weight_norm)
|
|
834
|
+
|
|
835
|
+
def apply_weight_norm(self):
|
|
836
|
+
"""Apply weight normalization module from all of the layers."""
|
|
837
|
+
|
|
838
|
+
def _apply_weight_norm(m):
|
|
839
|
+
if isinstance(m, nn.Conv1d):
|
|
840
|
+
torch.nn.utils.weight_norm(m)
|
|
841
|
+
|
|
842
|
+
self.apply(_apply_weight_norm)
|
|
843
|
+
|
|
844
|
+
def reset_parameters(self):
|
|
845
|
+
self.apply(init_weights)
|
|
846
|
+
|
|
847
|
+
|
|
848
|
+
class FACodecDecoderV2(nn.Module):
|
|
849
|
+
def __init__(
|
|
850
|
+
self,
|
|
851
|
+
in_channels=256,
|
|
852
|
+
upsample_initial_channel=1536,
|
|
853
|
+
ngf=32,
|
|
854
|
+
up_ratios=(5, 5, 4, 2),
|
|
855
|
+
vq_num_q_c=2,
|
|
856
|
+
vq_num_q_p=1,
|
|
857
|
+
vq_num_q_r=3,
|
|
858
|
+
vq_dim=1024,
|
|
859
|
+
vq_commit_weight=0.005,
|
|
860
|
+
vq_weight_init=False,
|
|
861
|
+
vq_full_commit_loss=False,
|
|
862
|
+
codebook_dim=8,
|
|
863
|
+
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
|
|
864
|
+
codebook_size_content=10,
|
|
865
|
+
codebook_size_residual=10,
|
|
866
|
+
quantizer_dropout=0.0,
|
|
867
|
+
dropout_type="linear",
|
|
868
|
+
use_gr_content_f0=False,
|
|
869
|
+
use_gr_prosody_phone=False,
|
|
870
|
+
use_gr_residual_f0=False,
|
|
871
|
+
use_gr_residual_phone=False,
|
|
872
|
+
use_gr_x_timbre=False,
|
|
873
|
+
use_random_mask_residual=True,
|
|
874
|
+
prob_random_mask_residual=0.75,
|
|
875
|
+
):
|
|
876
|
+
super().__init__()
|
|
877
|
+
self.hop_length = np.prod(up_ratios)
|
|
878
|
+
self.ngf = ngf
|
|
879
|
+
self.up_ratios = up_ratios
|
|
880
|
+
|
|
881
|
+
self.use_random_mask_residual = use_random_mask_residual
|
|
882
|
+
self.prob_random_mask_residual = prob_random_mask_residual
|
|
883
|
+
|
|
884
|
+
self.vq_num_q_p = vq_num_q_p
|
|
885
|
+
self.vq_num_q_c = vq_num_q_c
|
|
886
|
+
self.vq_num_q_r = vq_num_q_r
|
|
887
|
+
|
|
888
|
+
self.codebook_size_prosody = codebook_size_prosody
|
|
889
|
+
self.codebook_size_content = codebook_size_content
|
|
890
|
+
self.codebook_size_residual = codebook_size_residual
|
|
891
|
+
|
|
892
|
+
quantizer_class = ResidualVQ
|
|
893
|
+
|
|
894
|
+
self.quantizer = nn.ModuleList()
|
|
895
|
+
|
|
896
|
+
# prosody
|
|
897
|
+
quantizer = quantizer_class(
|
|
898
|
+
num_quantizers=vq_num_q_p,
|
|
899
|
+
dim=vq_dim,
|
|
900
|
+
codebook_size=codebook_size_prosody,
|
|
901
|
+
codebook_dim=codebook_dim,
|
|
902
|
+
threshold_ema_dead_code=2,
|
|
903
|
+
commitment=vq_commit_weight,
|
|
904
|
+
weight_init=vq_weight_init,
|
|
905
|
+
full_commit_loss=vq_full_commit_loss,
|
|
906
|
+
quantizer_dropout=quantizer_dropout,
|
|
907
|
+
dropout_type=dropout_type,
|
|
908
|
+
)
|
|
909
|
+
self.quantizer.append(quantizer)
|
|
910
|
+
|
|
911
|
+
# phone
|
|
912
|
+
quantizer = quantizer_class(
|
|
913
|
+
num_quantizers=vq_num_q_c,
|
|
914
|
+
dim=vq_dim,
|
|
915
|
+
codebook_size=codebook_size_content,
|
|
916
|
+
codebook_dim=codebook_dim,
|
|
917
|
+
threshold_ema_dead_code=2,
|
|
918
|
+
commitment=vq_commit_weight,
|
|
919
|
+
weight_init=vq_weight_init,
|
|
920
|
+
full_commit_loss=vq_full_commit_loss,
|
|
921
|
+
quantizer_dropout=quantizer_dropout,
|
|
922
|
+
dropout_type=dropout_type,
|
|
923
|
+
)
|
|
924
|
+
self.quantizer.append(quantizer)
|
|
925
|
+
|
|
926
|
+
# residual
|
|
927
|
+
if self.vq_num_q_r > 0:
|
|
928
|
+
quantizer = quantizer_class(
|
|
929
|
+
num_quantizers=vq_num_q_r,
|
|
930
|
+
dim=vq_dim,
|
|
931
|
+
codebook_size=codebook_size_residual,
|
|
932
|
+
codebook_dim=codebook_dim,
|
|
933
|
+
threshold_ema_dead_code=2,
|
|
934
|
+
commitment=vq_commit_weight,
|
|
935
|
+
weight_init=vq_weight_init,
|
|
936
|
+
full_commit_loss=vq_full_commit_loss,
|
|
937
|
+
quantizer_dropout=quantizer_dropout,
|
|
938
|
+
dropout_type=dropout_type,
|
|
939
|
+
)
|
|
940
|
+
self.quantizer.append(quantizer)
|
|
941
|
+
|
|
942
|
+
# Add first conv layer
|
|
943
|
+
channels = upsample_initial_channel
|
|
944
|
+
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
|
|
945
|
+
|
|
946
|
+
# Add upsampling + MRF blocks
|
|
947
|
+
for i, stride in enumerate(up_ratios):
|
|
948
|
+
input_dim = channels // 2**i
|
|
949
|
+
output_dim = channels // 2 ** (i + 1)
|
|
950
|
+
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
|
951
|
+
|
|
952
|
+
# Add final conv layer
|
|
953
|
+
layers += [
|
|
954
|
+
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
|
|
955
|
+
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
|
|
956
|
+
nn.Tanh(),
|
|
957
|
+
]
|
|
958
|
+
|
|
959
|
+
self.model = nn.Sequential(*layers)
|
|
960
|
+
|
|
961
|
+
self.timbre_encoder = TransformerEncoder(
|
|
962
|
+
enc_emb_tokens=None,
|
|
963
|
+
encoder_layer=4,
|
|
964
|
+
encoder_hidden=256,
|
|
965
|
+
encoder_head=4,
|
|
966
|
+
conv_filter_size=1024,
|
|
967
|
+
conv_kernel_size=5,
|
|
968
|
+
encoder_dropout=0.1,
|
|
969
|
+
use_cln=False,
|
|
970
|
+
)
|
|
971
|
+
|
|
972
|
+
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
|
|
973
|
+
self.timbre_linear.bias.data[:in_channels] = 1
|
|
974
|
+
self.timbre_linear.bias.data[in_channels:] = 0
|
|
975
|
+
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
|
|
976
|
+
|
|
977
|
+
self.f0_predictor = CNNLSTM(in_channels, 1, 2)
|
|
978
|
+
self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
|
|
979
|
+
|
|
980
|
+
self.use_gr_content_f0 = use_gr_content_f0
|
|
981
|
+
self.use_gr_prosody_phone = use_gr_prosody_phone
|
|
982
|
+
self.use_gr_residual_f0 = use_gr_residual_f0
|
|
983
|
+
self.use_gr_residual_phone = use_gr_residual_phone
|
|
984
|
+
self.use_gr_x_timbre = use_gr_x_timbre
|
|
985
|
+
|
|
986
|
+
if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
|
|
987
|
+
self.res_f0_predictor = nn.Sequential(
|
|
988
|
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
|
989
|
+
)
|
|
990
|
+
|
|
991
|
+
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
|
|
992
|
+
self.res_phone_predictor = nn.Sequential(
|
|
993
|
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
|
994
|
+
)
|
|
995
|
+
|
|
996
|
+
if self.use_gr_content_f0:
|
|
997
|
+
self.content_f0_predictor = nn.Sequential(
|
|
998
|
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
|
999
|
+
)
|
|
1000
|
+
|
|
1001
|
+
if self.use_gr_prosody_phone:
|
|
1002
|
+
self.prosody_phone_predictor = nn.Sequential(
|
|
1003
|
+
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
|
1004
|
+
)
|
|
1005
|
+
|
|
1006
|
+
if self.use_gr_x_timbre:
|
|
1007
|
+
self.x_timbre_predictor = nn.Sequential(
|
|
1008
|
+
GradientReversal(alpha=1),
|
|
1009
|
+
CNNLSTM(in_channels, 245200, 1, global_pred=True),
|
|
1010
|
+
)
|
|
1011
|
+
|
|
1012
|
+
self.melspec_linear = nn.Linear(20, 256)
|
|
1013
|
+
self.melspec_encoder = TransformerEncoder(
|
|
1014
|
+
enc_emb_tokens=None,
|
|
1015
|
+
encoder_layer=4,
|
|
1016
|
+
encoder_hidden=256,
|
|
1017
|
+
encoder_head=4,
|
|
1018
|
+
conv_filter_size=1024,
|
|
1019
|
+
conv_kernel_size=5,
|
|
1020
|
+
encoder_dropout=0.1,
|
|
1021
|
+
use_cln=False,
|
|
1022
|
+
cfg=None,
|
|
1023
|
+
)
|
|
1024
|
+
|
|
1025
|
+
self.reset_parameters()
|
|
1026
|
+
|
|
1027
|
+
def quantize(self, x, prosody_feature, n_quantizers=None):
|
|
1028
|
+
outs, qs, commit_loss, quantized_buf = 0, [], [], []
|
|
1029
|
+
|
|
1030
|
+
# prosody
|
|
1031
|
+
f0_input = prosody_feature.transpose(1, 2) # (B, T, 20)
|
|
1032
|
+
f0_input = self.melspec_linear(f0_input)
|
|
1033
|
+
f0_input = self.melspec_encoder(f0_input, None, None)
|
|
1034
|
+
f0_input = f0_input.transpose(1, 2)
|
|
1035
|
+
f0_quantizer = self.quantizer[0]
|
|
1036
|
+
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
|
|
1037
|
+
outs += out
|
|
1038
|
+
qs.append(q)
|
|
1039
|
+
quantized_buf.append(quantized.sum(0))
|
|
1040
|
+
commit_loss.append(commit)
|
|
1041
|
+
|
|
1042
|
+
# phone
|
|
1043
|
+
phone_input = x
|
|
1044
|
+
phone_quantizer = self.quantizer[1]
|
|
1045
|
+
out, q, commit, quantized = phone_quantizer(
|
|
1046
|
+
phone_input, n_quantizers=n_quantizers
|
|
1047
|
+
)
|
|
1048
|
+
outs += out
|
|
1049
|
+
qs.append(q)
|
|
1050
|
+
quantized_buf.append(quantized.sum(0))
|
|
1051
|
+
commit_loss.append(commit)
|
|
1052
|
+
|
|
1053
|
+
# residual
|
|
1054
|
+
if self.vq_num_q_r > 0:
|
|
1055
|
+
residual_quantizer = self.quantizer[2]
|
|
1056
|
+
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
|
|
1057
|
+
out, q, commit, quantized = residual_quantizer(
|
|
1058
|
+
residual_input, n_quantizers=n_quantizers
|
|
1059
|
+
)
|
|
1060
|
+
outs += out
|
|
1061
|
+
qs.append(q)
|
|
1062
|
+
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
|
|
1063
|
+
commit_loss.append(commit)
|
|
1064
|
+
|
|
1065
|
+
qs = torch.cat(qs, dim=0)
|
|
1066
|
+
commit_loss = torch.cat(commit_loss, dim=0)
|
|
1067
|
+
return outs, qs, commit_loss, quantized_buf
|
|
1068
|
+
|
|
1069
|
+
def forward(
|
|
1070
|
+
self,
|
|
1071
|
+
x,
|
|
1072
|
+
prosody_feature,
|
|
1073
|
+
vq=True,
|
|
1074
|
+
get_vq=False,
|
|
1075
|
+
eval_vq=True,
|
|
1076
|
+
speaker_embedding=None,
|
|
1077
|
+
n_quantizers=None,
|
|
1078
|
+
quantized=None,
|
|
1079
|
+
):
|
|
1080
|
+
if get_vq:
|
|
1081
|
+
return self.quantizer.get_emb()
|
|
1082
|
+
if vq is True:
|
|
1083
|
+
if eval_vq:
|
|
1084
|
+
self.quantizer.eval()
|
|
1085
|
+
x_timbre = x
|
|
1086
|
+
outs, qs, commit_loss, quantized_buf = self.quantize(
|
|
1087
|
+
x, prosody_feature, n_quantizers=n_quantizers
|
|
1088
|
+
)
|
|
1089
|
+
|
|
1090
|
+
x_timbre = x_timbre.transpose(1, 2)
|
|
1091
|
+
x_timbre = self.timbre_encoder(x_timbre, None, None)
|
|
1092
|
+
x_timbre = x_timbre.transpose(1, 2)
|
|
1093
|
+
spk_embs = torch.mean(x_timbre, dim=2)
|
|
1094
|
+
return outs, qs, commit_loss, quantized_buf, spk_embs
|
|
1095
|
+
|
|
1096
|
+
out = {}
|
|
1097
|
+
|
|
1098
|
+
layer_0 = quantized[0]
|
|
1099
|
+
f0, uv = self.f0_predictor(layer_0)
|
|
1100
|
+
f0 = rearrange(f0, "... 1 -> ...")
|
|
1101
|
+
uv = rearrange(uv, "... 1 -> ...")
|
|
1102
|
+
|
|
1103
|
+
layer_1 = quantized[1]
|
|
1104
|
+
(phone,) = self.phone_predictor(layer_1)
|
|
1105
|
+
|
|
1106
|
+
out = {"f0": f0, "uv": uv, "phone": phone}
|
|
1107
|
+
|
|
1108
|
+
if self.use_gr_prosody_phone:
|
|
1109
|
+
(prosody_phone,) = self.prosody_phone_predictor(layer_0)
|
|
1110
|
+
out["prosody_phone"] = prosody_phone
|
|
1111
|
+
|
|
1112
|
+
if self.use_gr_content_f0:
|
|
1113
|
+
content_f0, content_uv = self.content_f0_predictor(layer_1)
|
|
1114
|
+
content_f0 = rearrange(content_f0, "... 1 -> ...")
|
|
1115
|
+
content_uv = rearrange(content_uv, "... 1 -> ...")
|
|
1116
|
+
out["content_f0"] = content_f0
|
|
1117
|
+
out["content_uv"] = content_uv
|
|
1118
|
+
|
|
1119
|
+
if self.vq_num_q_r > 0:
|
|
1120
|
+
layer_2 = quantized[2]
|
|
1121
|
+
|
|
1122
|
+
if self.use_gr_residual_f0:
|
|
1123
|
+
res_f0, res_uv = self.res_f0_predictor(layer_2)
|
|
1124
|
+
res_f0 = rearrange(res_f0, "... 1 -> ...")
|
|
1125
|
+
res_uv = rearrange(res_uv, "... 1 -> ...")
|
|
1126
|
+
out["res_f0"] = res_f0
|
|
1127
|
+
out["res_uv"] = res_uv
|
|
1128
|
+
|
|
1129
|
+
if self.use_gr_residual_phone:
|
|
1130
|
+
(res_phone,) = self.res_phone_predictor(layer_2)
|
|
1131
|
+
out["res_phone"] = res_phone
|
|
1132
|
+
|
|
1133
|
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
1134
|
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
1135
|
+
if self.vq_num_q_r > 0:
|
|
1136
|
+
if self.use_random_mask_residual:
|
|
1137
|
+
bsz = quantized[2].shape[0]
|
|
1138
|
+
res_mask = np.random.choice(
|
|
1139
|
+
[0, 1],
|
|
1140
|
+
size=bsz,
|
|
1141
|
+
p=[
|
|
1142
|
+
self.prob_random_mask_residual,
|
|
1143
|
+
1 - self.prob_random_mask_residual,
|
|
1144
|
+
],
|
|
1145
|
+
)
|
|
1146
|
+
res_mask = (
|
|
1147
|
+
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
|
|
1148
|
+
) # (B, 1, 1)
|
|
1149
|
+
res_mask = res_mask.to(
|
|
1150
|
+
device=quantized[2].device, dtype=quantized[2].dtype
|
|
1151
|
+
)
|
|
1152
|
+
x = (
|
|
1153
|
+
quantized[0].detach()
|
|
1154
|
+
+ quantized[1].detach()
|
|
1155
|
+
+ quantized[2] * res_mask
|
|
1156
|
+
)
|
|
1157
|
+
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
|
|
1158
|
+
else:
|
|
1159
|
+
x = quantized[0].detach() + quantized[1].detach() + quantized[2]
|
|
1160
|
+
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
|
|
1161
|
+
else:
|
|
1162
|
+
x = quantized[0].detach() + quantized[1].detach()
|
|
1163
|
+
# x = quantized_perturbe[0].detach() + quantized[1].detach()
|
|
1164
|
+
|
|
1165
|
+
if self.use_gr_x_timbre:
|
|
1166
|
+
(x_timbre,) = self.x_timbre_predictor(x)
|
|
1167
|
+
out["x_timbre"] = x_timbre
|
|
1168
|
+
|
|
1169
|
+
x = x.transpose(1, 2)
|
|
1170
|
+
x = self.timbre_norm(x)
|
|
1171
|
+
x = x.transpose(1, 2)
|
|
1172
|
+
x = x * gamma + beta
|
|
1173
|
+
|
|
1174
|
+
x = self.model(x)
|
|
1175
|
+
out["audio"] = x
|
|
1176
|
+
|
|
1177
|
+
return out
|
|
1178
|
+
|
|
1179
|
+
def vq2emb(self, vq, use_residual=True):
|
|
1180
|
+
# vq: [num_quantizer, B, T]
|
|
1181
|
+
self.quantizer = self.quantizer.eval()
|
|
1182
|
+
out = 0
|
|
1183
|
+
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
|
|
1184
|
+
out += self.quantizer[1].vq2emb(
|
|
1185
|
+
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
|
|
1186
|
+
)
|
|
1187
|
+
if self.vq_num_q_r > 0 and use_residual:
|
|
1188
|
+
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
|
|
1189
|
+
return out
|
|
1190
|
+
|
|
1191
|
+
def inference(self, x, speaker_embedding):
|
|
1192
|
+
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
1193
|
+
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
1194
|
+
x = x.transpose(1, 2)
|
|
1195
|
+
x = self.timbre_norm(x)
|
|
1196
|
+
x = x.transpose(1, 2)
|
|
1197
|
+
x = x * gamma + beta
|
|
1198
|
+
x = self.model(x)
|
|
1199
|
+
return x
|
|
1200
|
+
|
|
1201
|
+
def remove_weight_norm(self):
|
|
1202
|
+
"""Remove weight normalization module from all of the layers."""
|
|
1203
|
+
|
|
1204
|
+
def _remove_weight_norm(m):
|
|
1205
|
+
try:
|
|
1206
|
+
torch.nn.utils.remove_weight_norm(m)
|
|
1207
|
+
except ValueError: # this module didn't have weight norm
|
|
1208
|
+
return
|
|
1209
|
+
|
|
1210
|
+
self.apply(_remove_weight_norm)
|
|
1211
|
+
|
|
1212
|
+
def apply_weight_norm(self):
|
|
1213
|
+
"""Apply weight normalization module from all of the layers."""
|
|
1214
|
+
|
|
1215
|
+
def _apply_weight_norm(m):
|
|
1216
|
+
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
|
|
1217
|
+
torch.nn.utils.weight_norm(m)
|
|
1218
|
+
|
|
1219
|
+
self.apply(_apply_weight_norm)
|
|
1220
|
+
|
|
1221
|
+
def reset_parameters(self):
|
|
1222
|
+
self.apply(init_weights)
|