xinference 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +473 -31
- xinference/client/restful/async_restful_client.py +178 -8
- xinference/client/restful/restful_client.py +151 -3
- xinference/core/supervisor.py +99 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +58 -21
- xinference/model/image/model_spec.json +159 -90
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1299 -174
- xinference/model/llm/mlx/distributed_models/core.py +41 -0
- xinference/model/llm/mlx/distributed_models/qwen2.py +1 -2
- xinference/model/llm/sglang/core.py +44 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +29 -4
- xinference/model/llm/transformers/chatglm.py +3 -0
- xinference/model/llm/transformers/core.py +129 -36
- xinference/model/llm/transformers/multimodal/minicpmv45.py +340 -0
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/transformers/utils.py +23 -0
- xinference/model/llm/utils.py +48 -32
- xinference/model/llm/vllm/core.py +207 -72
- xinference/model/utils.py +74 -31
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +1 -1
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/thirdparty/melo/text/chinese_mix.py +2 -2
- xinference/types.py +9 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.45e78536.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.45e78536.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.45e78536.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ea2a26361204e70cf1018d6990fb6354bed82b3ac69690391e0f100385e7abb7.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/METADATA +24 -6
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/RECORD +296 -77
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,360 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
|
|
4
|
+
# This source code is licensed under the license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
from dataclasses import dataclass
|
|
7
|
+
from typing import Optional
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn as nn
|
|
11
|
+
from torch import Tensor
|
|
12
|
+
from torch.nn import functional as F
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def find_multiple(n: int, k: int) -> int:
|
|
16
|
+
if n % k == 0:
|
|
17
|
+
return n
|
|
18
|
+
return n + k - (n % k)
|
|
19
|
+
|
|
20
|
+
class AdaptiveLayerNorm(nn.Module):
|
|
21
|
+
r"""Adaptive Layer Normalization"""
|
|
22
|
+
|
|
23
|
+
def __init__(self, d_model, norm) -> None:
|
|
24
|
+
super(AdaptiveLayerNorm, self).__init__()
|
|
25
|
+
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
|
26
|
+
self.norm = norm
|
|
27
|
+
self.d_model = d_model
|
|
28
|
+
self.eps = self.norm.eps
|
|
29
|
+
|
|
30
|
+
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
|
31
|
+
if embedding is None:
|
|
32
|
+
return self.norm(input)
|
|
33
|
+
weight, bias = torch.split(
|
|
34
|
+
self.project_layer(embedding),
|
|
35
|
+
split_size_or_sections=self.d_model,
|
|
36
|
+
dim=-1,
|
|
37
|
+
)
|
|
38
|
+
return weight * self.norm(input) + bias
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
@dataclass
|
|
42
|
+
class ModelArgs:
|
|
43
|
+
block_size: int = 2048
|
|
44
|
+
vocab_size: int = 32000
|
|
45
|
+
n_layer: int = 32
|
|
46
|
+
n_head: int = 32
|
|
47
|
+
dim: int = 4096
|
|
48
|
+
intermediate_size: int = None
|
|
49
|
+
n_local_heads: int = -1
|
|
50
|
+
head_dim: int = 64
|
|
51
|
+
rope_base: float = 10000
|
|
52
|
+
norm_eps: float = 1e-5
|
|
53
|
+
has_cross_attention: bool = False
|
|
54
|
+
context_dim: int = 0
|
|
55
|
+
uvit_skip_connection: bool = False
|
|
56
|
+
time_as_token: bool = False
|
|
57
|
+
|
|
58
|
+
def __post_init__(self):
|
|
59
|
+
if self.n_local_heads == -1:
|
|
60
|
+
self.n_local_heads = self.n_head
|
|
61
|
+
if self.intermediate_size is None:
|
|
62
|
+
hidden_dim = 4 * self.dim
|
|
63
|
+
n_hidden = int(2 * hidden_dim / 3)
|
|
64
|
+
self.intermediate_size = find_multiple(n_hidden, 256)
|
|
65
|
+
# self.head_dim = self.dim // self.n_head
|
|
66
|
+
|
|
67
|
+
@classmethod
|
|
68
|
+
def from_name(cls, name: str):
|
|
69
|
+
if name in transformer_configs:
|
|
70
|
+
return cls(**transformer_configs[name])
|
|
71
|
+
# fuzzy search
|
|
72
|
+
config = [config for config in transformer_configs if config.lower() in str(name).lower()]
|
|
73
|
+
|
|
74
|
+
# We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match,
|
|
75
|
+
# take longer name (as it have more symbols matched)
|
|
76
|
+
if len(config) > 1:
|
|
77
|
+
config.sort(key=len, reverse=True)
|
|
78
|
+
assert len(config[0]) != len(config[1]), name # make sure only one 'best' match
|
|
79
|
+
|
|
80
|
+
return cls(**transformer_configs[config[0]])
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
transformer_configs = {
|
|
84
|
+
"CodeLlama-7b-Python-hf": dict(block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000),
|
|
85
|
+
"7B": dict(n_layer=32, n_head=32, dim=4096),
|
|
86
|
+
"13B": dict(n_layer=40, n_head=40, dim=5120),
|
|
87
|
+
"30B": dict(n_layer=60, n_head=52, dim=6656),
|
|
88
|
+
"34B": dict(n_layer=48, n_head=64, dim=8192, vocab_size=32000, n_local_heads=8, intermediate_size=22016,
|
|
89
|
+
rope_base=1000000), # CodeLlama-34B-Python-hf
|
|
90
|
+
"70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672),
|
|
91
|
+
"Mistral-7B": dict(n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=32000),
|
|
92
|
+
"stories15M": dict(n_layer=6, n_head=6, dim=288),
|
|
93
|
+
"stories110M": dict(n_layer=12, n_head=12, dim=768),
|
|
94
|
+
|
|
95
|
+
"llama-3-8b": dict(block_size=8192, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336,
|
|
96
|
+
vocab_size=128256, rope_base=500000),
|
|
97
|
+
"llama-3-70b": dict(block_size=8192, n_layer=80, n_head=64, n_local_heads=8, dim=8192, intermediate_size=28672,
|
|
98
|
+
vocab_size=128256, rope_base=500000),
|
|
99
|
+
}
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
class KVCache(nn.Module):
|
|
103
|
+
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16):
|
|
104
|
+
super().__init__()
|
|
105
|
+
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
|
|
106
|
+
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
|
|
107
|
+
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
|
|
108
|
+
|
|
109
|
+
def update(self, input_pos, k_val, v_val):
|
|
110
|
+
# input_pos: [S], k_val: [B, H, S, D]
|
|
111
|
+
assert input_pos.shape[0] == k_val.shape[2]
|
|
112
|
+
|
|
113
|
+
k_out = self.k_cache
|
|
114
|
+
v_out = self.v_cache
|
|
115
|
+
k_out[:, :, input_pos] = k_val
|
|
116
|
+
v_out[:, :, input_pos] = v_val
|
|
117
|
+
|
|
118
|
+
return k_out, v_out
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
class Transformer(nn.Module):
|
|
122
|
+
def __init__(self, config: ModelArgs) -> None:
|
|
123
|
+
super().__init__()
|
|
124
|
+
self.config = config
|
|
125
|
+
|
|
126
|
+
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
|
|
127
|
+
self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
128
|
+
|
|
129
|
+
self.freqs_cis: Optional[Tensor] = None
|
|
130
|
+
self.mask_cache: Optional[Tensor] = None
|
|
131
|
+
self.max_batch_size = -1
|
|
132
|
+
self.max_seq_length = -1
|
|
133
|
+
|
|
134
|
+
def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=True):
|
|
135
|
+
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
|
|
136
|
+
return
|
|
137
|
+
head_dim = self.config.dim // self.config.n_head
|
|
138
|
+
max_seq_length = find_multiple(max_seq_length, 8)
|
|
139
|
+
self.max_seq_length = max_seq_length
|
|
140
|
+
self.max_batch_size = max_batch_size
|
|
141
|
+
dtype = self.norm.project_layer.weight.dtype
|
|
142
|
+
device = self.norm.project_layer.weight.device
|
|
143
|
+
|
|
144
|
+
if not self.training and use_kv_cache:
|
|
145
|
+
for b in self.layers:
|
|
146
|
+
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype).to(device)
|
|
147
|
+
|
|
148
|
+
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim,
|
|
149
|
+
self.config.rope_base, dtype).to(device)
|
|
150
|
+
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device)
|
|
151
|
+
self.use_kv_cache = use_kv_cache
|
|
152
|
+
self.uvit_skip_connection = self.config.uvit_skip_connection
|
|
153
|
+
if self.uvit_skip_connection:
|
|
154
|
+
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2]
|
|
155
|
+
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2]
|
|
156
|
+
else:
|
|
157
|
+
self.layers_emit_skip = []
|
|
158
|
+
self.layers_receive_skip = []
|
|
159
|
+
|
|
160
|
+
def forward(self,
|
|
161
|
+
x: Tensor,
|
|
162
|
+
c: Tensor,
|
|
163
|
+
input_pos: Optional[Tensor] = None,
|
|
164
|
+
mask: Optional[Tensor] = None,
|
|
165
|
+
context: Optional[Tensor] = None,
|
|
166
|
+
context_input_pos: Optional[Tensor] = None,
|
|
167
|
+
cross_attention_mask: Optional[Tensor] = None,
|
|
168
|
+
) -> Tensor:
|
|
169
|
+
assert self.freqs_cis is not None, "Caches must be initialized first"
|
|
170
|
+
if mask is None: # in case of non-causal model
|
|
171
|
+
if not self.training and self.use_kv_cache:
|
|
172
|
+
mask = self.causal_mask[None, None, input_pos]
|
|
173
|
+
else:
|
|
174
|
+
mask = self.causal_mask[None, None, input_pos]
|
|
175
|
+
mask = mask[..., input_pos]
|
|
176
|
+
freqs_cis = self.freqs_cis[input_pos]
|
|
177
|
+
if context is not None:
|
|
178
|
+
context_freqs_cis = self.freqs_cis[context_input_pos]
|
|
179
|
+
else:
|
|
180
|
+
context_freqs_cis = None
|
|
181
|
+
skip_in_x_list = []
|
|
182
|
+
for i, layer in enumerate(self.layers):
|
|
183
|
+
if self.uvit_skip_connection and i in self.layers_receive_skip:
|
|
184
|
+
skip_in_x = skip_in_x_list.pop(-1)
|
|
185
|
+
else:
|
|
186
|
+
skip_in_x = None
|
|
187
|
+
x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x)
|
|
188
|
+
if self.uvit_skip_connection and i in self.layers_emit_skip:
|
|
189
|
+
skip_in_x_list.append(x)
|
|
190
|
+
x = self.norm(x, c)
|
|
191
|
+
return x
|
|
192
|
+
|
|
193
|
+
@classmethod
|
|
194
|
+
def from_name(cls, name: str):
|
|
195
|
+
return cls(ModelArgs.from_name(name))
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
class TransformerBlock(nn.Module):
|
|
199
|
+
def __init__(self, config: ModelArgs) -> None:
|
|
200
|
+
super().__init__()
|
|
201
|
+
self.attention = Attention(config)
|
|
202
|
+
self.feed_forward = FeedForward(config)
|
|
203
|
+
self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
204
|
+
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
205
|
+
|
|
206
|
+
if config.has_cross_attention:
|
|
207
|
+
self.has_cross_attention = True
|
|
208
|
+
self.cross_attention = Attention(config, is_cross_attention=True)
|
|
209
|
+
self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
|
|
210
|
+
else:
|
|
211
|
+
self.has_cross_attention = False
|
|
212
|
+
|
|
213
|
+
if config.uvit_skip_connection:
|
|
214
|
+
self.skip_in_linear = nn.Linear(config.dim * 2, config.dim)
|
|
215
|
+
self.uvit_skip_connection = True
|
|
216
|
+
else:
|
|
217
|
+
self.uvit_skip_connection = False
|
|
218
|
+
|
|
219
|
+
self.time_as_token = config.time_as_token
|
|
220
|
+
|
|
221
|
+
def forward(self,
|
|
222
|
+
x: Tensor,
|
|
223
|
+
c: Tensor,
|
|
224
|
+
input_pos: Tensor,
|
|
225
|
+
freqs_cis: Tensor,
|
|
226
|
+
mask: Tensor,
|
|
227
|
+
context: Optional[Tensor] = None,
|
|
228
|
+
context_freqs_cis: Optional[Tensor] = None,
|
|
229
|
+
cross_attention_mask: Optional[Tensor] = None,
|
|
230
|
+
skip_in_x: Optional[Tensor] = None,
|
|
231
|
+
) -> Tensor:
|
|
232
|
+
c = None if self.time_as_token else c
|
|
233
|
+
if self.uvit_skip_connection and skip_in_x is not None:
|
|
234
|
+
x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1))
|
|
235
|
+
h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos)
|
|
236
|
+
if self.has_cross_attention:
|
|
237
|
+
h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis)
|
|
238
|
+
out = h + self.feed_forward(self.ffn_norm(h, c))
|
|
239
|
+
return out
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
class Attention(nn.Module):
|
|
243
|
+
def __init__(self, config: ModelArgs, is_cross_attention: bool = False):
|
|
244
|
+
super().__init__()
|
|
245
|
+
assert config.dim % config.n_head == 0
|
|
246
|
+
|
|
247
|
+
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
|
|
248
|
+
# key, query, value projections for all heads, but in a batch
|
|
249
|
+
if is_cross_attention:
|
|
250
|
+
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False)
|
|
251
|
+
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False)
|
|
252
|
+
else:
|
|
253
|
+
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
|
|
254
|
+
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False)
|
|
255
|
+
self.kv_cache = None
|
|
256
|
+
|
|
257
|
+
self.n_head = config.n_head
|
|
258
|
+
self.head_dim = config.head_dim
|
|
259
|
+
self.n_local_heads = config.n_local_heads
|
|
260
|
+
self.dim = config.dim
|
|
261
|
+
# self._register_load_state_dict_pre_hook(self.load_hook)
|
|
262
|
+
|
|
263
|
+
# def load_hook(self, state_dict, prefix, *args):
|
|
264
|
+
# if prefix + "wq.weight" in state_dict:
|
|
265
|
+
# wq = state_dict.pop(prefix + "wq.weight")
|
|
266
|
+
# wk = state_dict.pop(prefix + "wk.weight")
|
|
267
|
+
# wv = state_dict.pop(prefix + "wv.weight")
|
|
268
|
+
# state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
|
|
269
|
+
|
|
270
|
+
def forward(self,
|
|
271
|
+
x: Tensor,
|
|
272
|
+
freqs_cis: Tensor,
|
|
273
|
+
mask: Tensor,
|
|
274
|
+
input_pos: Optional[Tensor] = None,
|
|
275
|
+
context: Optional[Tensor] = None,
|
|
276
|
+
context_freqs_cis: Optional[Tensor] = None,
|
|
277
|
+
) -> Tensor:
|
|
278
|
+
bsz, seqlen, _ = x.shape
|
|
279
|
+
|
|
280
|
+
kv_size = self.n_local_heads * self.head_dim
|
|
281
|
+
if context is None:
|
|
282
|
+
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1)
|
|
283
|
+
context_seqlen = seqlen
|
|
284
|
+
else:
|
|
285
|
+
q = self.wq(x)
|
|
286
|
+
k, v = self.wkv(context).split([kv_size, kv_size], dim=-1)
|
|
287
|
+
context_seqlen = context.shape[1]
|
|
288
|
+
|
|
289
|
+
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
|
|
290
|
+
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
|
|
291
|
+
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
|
|
292
|
+
|
|
293
|
+
q = apply_rotary_emb(q, freqs_cis)
|
|
294
|
+
k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis)
|
|
295
|
+
|
|
296
|
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
|
297
|
+
|
|
298
|
+
if self.kv_cache is not None:
|
|
299
|
+
k, v = self.kv_cache.update(input_pos, k, v)
|
|
300
|
+
|
|
301
|
+
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
|
302
|
+
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
|
303
|
+
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
|
|
304
|
+
|
|
305
|
+
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head)
|
|
306
|
+
|
|
307
|
+
y = self.wo(y)
|
|
308
|
+
return y
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
class FeedForward(nn.Module):
|
|
312
|
+
def __init__(self, config: ModelArgs) -> None:
|
|
313
|
+
super().__init__()
|
|
314
|
+
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
|
315
|
+
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
|
316
|
+
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
|
|
317
|
+
|
|
318
|
+
def forward(self, x: Tensor) -> Tensor:
|
|
319
|
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
class RMSNorm(nn.Module):
|
|
323
|
+
def __init__(self, dim: int, eps: float = 1e-5):
|
|
324
|
+
super().__init__()
|
|
325
|
+
self.eps = eps
|
|
326
|
+
self.weight = nn.Parameter(torch.ones(dim))
|
|
327
|
+
|
|
328
|
+
def _norm(self, x):
|
|
329
|
+
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
|
330
|
+
|
|
331
|
+
def forward(self, x: Tensor) -> Tensor:
|
|
332
|
+
output = self._norm(x.float()).type_as(x)
|
|
333
|
+
return output * self.weight
|
|
334
|
+
|
|
335
|
+
|
|
336
|
+
def precompute_freqs_cis(
|
|
337
|
+
seq_len: int, n_elem: int, base: int = 10000,
|
|
338
|
+
dtype: torch.dtype = torch.bfloat16
|
|
339
|
+
) -> Tensor:
|
|
340
|
+
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
|
|
341
|
+
t = torch.arange(seq_len, device=freqs.device)
|
|
342
|
+
freqs = torch.outer(t, freqs)
|
|
343
|
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
|
344
|
+
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
|
345
|
+
return cache.to(dtype=dtype)
|
|
346
|
+
|
|
347
|
+
|
|
348
|
+
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
|
|
349
|
+
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
|
|
350
|
+
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
|
|
351
|
+
x_out2 = torch.stack(
|
|
352
|
+
[
|
|
353
|
+
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
|
354
|
+
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
|
355
|
+
],
|
|
356
|
+
-1,
|
|
357
|
+
)
|
|
358
|
+
|
|
359
|
+
x_out2 = x_out2.flatten(3)
|
|
360
|
+
return x_out2.type_as(x)
|