xinference 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +473 -31
- xinference/client/restful/async_restful_client.py +178 -8
- xinference/client/restful/restful_client.py +151 -3
- xinference/core/supervisor.py +99 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +58 -21
- xinference/model/image/model_spec.json +159 -90
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1299 -174
- xinference/model/llm/mlx/distributed_models/core.py +41 -0
- xinference/model/llm/mlx/distributed_models/qwen2.py +1 -2
- xinference/model/llm/sglang/core.py +44 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +29 -4
- xinference/model/llm/transformers/chatglm.py +3 -0
- xinference/model/llm/transformers/core.py +129 -36
- xinference/model/llm/transformers/multimodal/minicpmv45.py +340 -0
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/transformers/utils.py +23 -0
- xinference/model/llm/utils.py +48 -32
- xinference/model/llm/vllm/core.py +207 -72
- xinference/model/utils.py +74 -31
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +1 -1
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/thirdparty/melo/text/chinese_mix.py +2 -2
- xinference/types.py +9 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.45e78536.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.45e78536.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.45e78536.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ea2a26361204e70cf1018d6990fb6354bed82b3ac69690391e0f100385e7abb7.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/METADATA +24 -6
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/RECORD +296 -77
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,166 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import os
|
|
7
|
+
import random
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
import re
|
|
10
|
+
|
|
11
|
+
import accelerate
|
|
12
|
+
import json5
|
|
13
|
+
import numpy as np
|
|
14
|
+
import torch
|
|
15
|
+
from accelerate.utils import ProjectConfiguration
|
|
16
|
+
from torch.utils.data import DataLoader
|
|
17
|
+
from tqdm import tqdm
|
|
18
|
+
|
|
19
|
+
from models.codec.codec_sampler import build_samplers
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class CodecTrainer:
|
|
23
|
+
def __init__(self):
|
|
24
|
+
super().__init__()
|
|
25
|
+
|
|
26
|
+
def _init_accelerator(self):
|
|
27
|
+
"""Initialize the accelerator components."""
|
|
28
|
+
self.exp_dir = os.path.join(
|
|
29
|
+
os.path.abspath(self.cfg.log_dir), self.args.exp_name
|
|
30
|
+
)
|
|
31
|
+
project_config = ProjectConfiguration(
|
|
32
|
+
project_dir=self.exp_dir, logging_dir=os.path.join(self.exp_dir, "log")
|
|
33
|
+
)
|
|
34
|
+
self.accelerator = accelerate.Accelerator(
|
|
35
|
+
gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step,
|
|
36
|
+
log_with=self.cfg.train.tracker,
|
|
37
|
+
project_config=project_config,
|
|
38
|
+
)
|
|
39
|
+
if self.accelerator.is_main_process:
|
|
40
|
+
os.makedirs(project_config.project_dir, exist_ok=True)
|
|
41
|
+
os.makedirs(project_config.logging_dir, exist_ok=True)
|
|
42
|
+
with self.accelerator.main_process_first():
|
|
43
|
+
self.accelerator.init_trackers(self.args.exp_name)
|
|
44
|
+
|
|
45
|
+
def _build_dataset(self):
|
|
46
|
+
pass
|
|
47
|
+
|
|
48
|
+
def _build_criterion(self):
|
|
49
|
+
pass
|
|
50
|
+
|
|
51
|
+
def _build_model(self):
|
|
52
|
+
pass
|
|
53
|
+
|
|
54
|
+
def _build_dataloader(self):
|
|
55
|
+
"""Build dataloader which merges a series of datasets."""
|
|
56
|
+
# Build dataset instance for each dataset and combine them by ConcatDataset
|
|
57
|
+
Dataset, Collator = self._build_dataset()
|
|
58
|
+
|
|
59
|
+
# Build train set
|
|
60
|
+
train_dataset = Dataset(self.cfg, self.cfg.dataset, is_valid=False)
|
|
61
|
+
train_collate = Collator(self.cfg)
|
|
62
|
+
sampler = torch.utils.data.distributed.DistributedSampler(
|
|
63
|
+
train_dataset,
|
|
64
|
+
num_replicas=self.accelerator.num_processes,
|
|
65
|
+
rank=self.accelerator.local_process_index,
|
|
66
|
+
shuffle=True,
|
|
67
|
+
seed=self.cfg.train.random_seed,
|
|
68
|
+
)
|
|
69
|
+
train_loader = DataLoader(
|
|
70
|
+
train_dataset,
|
|
71
|
+
batch_size=self.cfg.train.batch_size,
|
|
72
|
+
collate_fn=train_collate,
|
|
73
|
+
sampler=sampler,
|
|
74
|
+
num_workers=self.cfg.train.dataloader.num_worker,
|
|
75
|
+
pin_memory=self.cfg.train.dataloader.pin_memory,
|
|
76
|
+
)
|
|
77
|
+
return train_loader, None
|
|
78
|
+
|
|
79
|
+
def _build_optimizer(self):
|
|
80
|
+
pass
|
|
81
|
+
|
|
82
|
+
def _build_scheduler(self):
|
|
83
|
+
pass
|
|
84
|
+
|
|
85
|
+
def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"):
|
|
86
|
+
"""Load model from checkpoint. If a folder is given, it will
|
|
87
|
+
load the latest checkpoint in checkpoint_dir. If a path is given
|
|
88
|
+
it will load the checkpoint specified by checkpoint_path.
|
|
89
|
+
**Only use this method after** ``accelerator.prepare()``.
|
|
90
|
+
"""
|
|
91
|
+
if checkpoint_path is None:
|
|
92
|
+
ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
|
|
93
|
+
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
|
|
94
|
+
checkpoint_path = ls[0]
|
|
95
|
+
if resume_type == "resume":
|
|
96
|
+
self.accelerator.load_state(checkpoint_path)
|
|
97
|
+
elif resume_type == "finetune":
|
|
98
|
+
accelerate.load_checkpoint_and_dispatch(
|
|
99
|
+
self.accelerator.unwrap_model(self.model),
|
|
100
|
+
os.path.join(checkpoint_path, "pytorch_model.bin"),
|
|
101
|
+
)
|
|
102
|
+
self.logger.info("Load model weights for finetune SUCCESS!")
|
|
103
|
+
else:
|
|
104
|
+
raise ValueError("Unsupported resume type: {}".format(resume_type))
|
|
105
|
+
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
|
|
106
|
+
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1
|
|
107
|
+
return checkpoint_path
|
|
108
|
+
|
|
109
|
+
def train_loop(self):
|
|
110
|
+
pass
|
|
111
|
+
|
|
112
|
+
def _train_epoch(self):
|
|
113
|
+
pass
|
|
114
|
+
|
|
115
|
+
def _valid_epoch(self):
|
|
116
|
+
pass
|
|
117
|
+
|
|
118
|
+
def _train_step(self):
|
|
119
|
+
pass
|
|
120
|
+
|
|
121
|
+
def _valid_step(self):
|
|
122
|
+
pass
|
|
123
|
+
|
|
124
|
+
def _inference(self):
|
|
125
|
+
pass
|
|
126
|
+
|
|
127
|
+
def _set_random_seed(self, seed):
|
|
128
|
+
"""Set random seed for all possible random modules."""
|
|
129
|
+
random.seed(seed)
|
|
130
|
+
np.random.seed(seed)
|
|
131
|
+
torch.random.manual_seed(seed)
|
|
132
|
+
|
|
133
|
+
def _check_nan(self, loss):
|
|
134
|
+
if torch.any(torch.isnan(loss)):
|
|
135
|
+
self.logger.fatal("Fatal Error: NaN!")
|
|
136
|
+
self.logger.error("loss = {:.6f}".format(loss.item()), in_order=True)
|
|
137
|
+
|
|
138
|
+
def _check_basic_configs(self):
|
|
139
|
+
if self.cfg.train.gradient_accumulation_step <= 0:
|
|
140
|
+
self.logger.fatal("Invalid gradient_accumulation_step value!")
|
|
141
|
+
self.logger.error(
|
|
142
|
+
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
|
|
143
|
+
)
|
|
144
|
+
self.accelerator.end_training()
|
|
145
|
+
raise ValueError(
|
|
146
|
+
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
def _count_parameters(self):
|
|
150
|
+
pass
|
|
151
|
+
|
|
152
|
+
def _dump_cfg(self, path):
|
|
153
|
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
|
154
|
+
json5.dump(
|
|
155
|
+
self.cfg,
|
|
156
|
+
open(path, "w"),
|
|
157
|
+
indent=4,
|
|
158
|
+
sort_keys=True,
|
|
159
|
+
ensure_ascii=False,
|
|
160
|
+
quote_keys=True,
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
def _is_valid_pattern(self, directory_name):
|
|
164
|
+
directory_name = str(directory_name)
|
|
165
|
+
pattern = r"^epoch-\d{4}_step-\d{7}_loss-\d{1}\.\d{6}"
|
|
166
|
+
return re.match(pattern, directory_name) is not None
|
|
File without changes
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
|
2
|
+
|
|
3
|
+
import torch.nn as nn
|
|
4
|
+
from .resample import UpSample1d, DownSample1d
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class Activation1d(nn.Module):
|
|
8
|
+
def __init__(
|
|
9
|
+
self,
|
|
10
|
+
activation,
|
|
11
|
+
up_ratio: int = 2,
|
|
12
|
+
down_ratio: int = 2,
|
|
13
|
+
up_kernel_size: int = 12,
|
|
14
|
+
down_kernel_size: int = 12,
|
|
15
|
+
):
|
|
16
|
+
super().__init__()
|
|
17
|
+
self.up_ratio = up_ratio
|
|
18
|
+
self.down_ratio = down_ratio
|
|
19
|
+
self.act = activation
|
|
20
|
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
|
21
|
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
|
22
|
+
|
|
23
|
+
# x: [B,C,T]
|
|
24
|
+
def forward(self, x):
|
|
25
|
+
x = self.upsample(x)
|
|
26
|
+
x = self.act(x)
|
|
27
|
+
x = self.downsample(x)
|
|
28
|
+
|
|
29
|
+
return x
|
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import torch.nn as nn
|
|
5
|
+
import torch.nn.functional as F
|
|
6
|
+
import math
|
|
7
|
+
|
|
8
|
+
if "sinc" in dir(torch):
|
|
9
|
+
sinc = torch.sinc
|
|
10
|
+
else:
|
|
11
|
+
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
|
12
|
+
# https://adefossez.github.io/julius/julius/core.html
|
|
13
|
+
def sinc(x: torch.Tensor):
|
|
14
|
+
"""
|
|
15
|
+
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
|
16
|
+
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
|
17
|
+
"""
|
|
18
|
+
return torch.where(
|
|
19
|
+
x == 0,
|
|
20
|
+
torch.tensor(1.0, device=x.device, dtype=x.dtype),
|
|
21
|
+
torch.sin(math.pi * x) / math.pi / x,
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
|
26
|
+
# https://adefossez.github.io/julius/julius/lowpass.html
|
|
27
|
+
def kaiser_sinc_filter1d(
|
|
28
|
+
cutoff, half_width, kernel_size
|
|
29
|
+
): # return filter [1,1,kernel_size]
|
|
30
|
+
even = kernel_size % 2 == 0
|
|
31
|
+
half_size = kernel_size // 2
|
|
32
|
+
|
|
33
|
+
# For kaiser window
|
|
34
|
+
delta_f = 4 * half_width
|
|
35
|
+
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
|
36
|
+
if A > 50.0:
|
|
37
|
+
beta = 0.1102 * (A - 8.7)
|
|
38
|
+
elif A >= 21.0:
|
|
39
|
+
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
|
|
40
|
+
else:
|
|
41
|
+
beta = 0.0
|
|
42
|
+
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
|
43
|
+
|
|
44
|
+
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
|
45
|
+
if even:
|
|
46
|
+
time = torch.arange(-half_size, half_size) + 0.5
|
|
47
|
+
else:
|
|
48
|
+
time = torch.arange(kernel_size) - half_size
|
|
49
|
+
if cutoff == 0:
|
|
50
|
+
filter_ = torch.zeros_like(time)
|
|
51
|
+
else:
|
|
52
|
+
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
|
53
|
+
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
|
54
|
+
# of the constant component in the input signal.
|
|
55
|
+
filter_ /= filter_.sum()
|
|
56
|
+
filter = filter_.view(1, 1, kernel_size)
|
|
57
|
+
|
|
58
|
+
return filter
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
class LowPassFilter1d(nn.Module):
|
|
62
|
+
def __init__(
|
|
63
|
+
self,
|
|
64
|
+
cutoff=0.5,
|
|
65
|
+
half_width=0.6,
|
|
66
|
+
stride: int = 1,
|
|
67
|
+
padding: bool = True,
|
|
68
|
+
padding_mode: str = "replicate",
|
|
69
|
+
kernel_size: int = 12,
|
|
70
|
+
):
|
|
71
|
+
# kernel_size should be even number for stylegan3 setup,
|
|
72
|
+
# in this implementation, odd number is also possible.
|
|
73
|
+
super().__init__()
|
|
74
|
+
if cutoff < -0.0:
|
|
75
|
+
raise ValueError("Minimum cutoff must be larger than zero.")
|
|
76
|
+
if cutoff > 0.5:
|
|
77
|
+
raise ValueError("A cutoff above 0.5 does not make sense.")
|
|
78
|
+
self.kernel_size = kernel_size
|
|
79
|
+
self.even = kernel_size % 2 == 0
|
|
80
|
+
self.pad_left = kernel_size // 2 - int(self.even)
|
|
81
|
+
self.pad_right = kernel_size // 2
|
|
82
|
+
self.stride = stride
|
|
83
|
+
self.padding = padding
|
|
84
|
+
self.padding_mode = padding_mode
|
|
85
|
+
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
|
86
|
+
self.register_buffer("filter", filter)
|
|
87
|
+
|
|
88
|
+
# input [B, C, T]
|
|
89
|
+
def forward(self, x):
|
|
90
|
+
_, C, _ = x.shape
|
|
91
|
+
|
|
92
|
+
if self.padding:
|
|
93
|
+
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
|
94
|
+
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
|
95
|
+
|
|
96
|
+
return out
|
xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
|
2
|
+
|
|
3
|
+
import torch.nn as nn
|
|
4
|
+
from torch.nn import functional as F
|
|
5
|
+
from .filter import LowPassFilter1d
|
|
6
|
+
from .filter import kaiser_sinc_filter1d
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class UpSample1d(nn.Module):
|
|
10
|
+
def __init__(self, ratio=2, kernel_size=None):
|
|
11
|
+
super().__init__()
|
|
12
|
+
self.ratio = ratio
|
|
13
|
+
self.kernel_size = (
|
|
14
|
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
|
15
|
+
)
|
|
16
|
+
self.stride = ratio
|
|
17
|
+
self.pad = self.kernel_size // ratio - 1
|
|
18
|
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
|
19
|
+
self.pad_right = (
|
|
20
|
+
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
|
21
|
+
)
|
|
22
|
+
filter = kaiser_sinc_filter1d(
|
|
23
|
+
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
|
|
24
|
+
)
|
|
25
|
+
self.register_buffer("filter", filter)
|
|
26
|
+
|
|
27
|
+
# x: [B, C, T]
|
|
28
|
+
def forward(self, x):
|
|
29
|
+
_, C, _ = x.shape
|
|
30
|
+
|
|
31
|
+
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
|
32
|
+
x = self.ratio * F.conv_transpose1d(
|
|
33
|
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
|
34
|
+
)
|
|
35
|
+
x = x[..., self.pad_left : -self.pad_right]
|
|
36
|
+
|
|
37
|
+
return x
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class DownSample1d(nn.Module):
|
|
41
|
+
def __init__(self, ratio=2, kernel_size=None):
|
|
42
|
+
super().__init__()
|
|
43
|
+
self.ratio = ratio
|
|
44
|
+
self.kernel_size = (
|
|
45
|
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
|
46
|
+
)
|
|
47
|
+
self.lowpass = LowPassFilter1d(
|
|
48
|
+
cutoff=0.5 / ratio,
|
|
49
|
+
half_width=0.6 / ratio,
|
|
50
|
+
stride=ratio,
|
|
51
|
+
kernel_size=self.kernel_size,
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
def forward(self, x):
|
|
55
|
+
xx = self.lowpass(x)
|
|
56
|
+
|
|
57
|
+
return xx
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
import random
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
|
|
11
|
+
import torchaudio
|
|
12
|
+
import librosa
|
|
13
|
+
from torch.nn import functional as F
|
|
14
|
+
|
|
15
|
+
from torch.nn.utils.rnn import pad_sequence
|
|
16
|
+
from utils.data_utils import *
|
|
17
|
+
from models.codec.codec_dataset import CodecDataset
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class FAcodecDataset(torch.utils.data.Dataset):
|
|
21
|
+
def __init__(self, cfg, dataset, is_valid=False):
|
|
22
|
+
"""
|
|
23
|
+
Args:
|
|
24
|
+
cfg: config
|
|
25
|
+
dataset: dataset name
|
|
26
|
+
is_valid: whether to use train or valid dataset
|
|
27
|
+
"""
|
|
28
|
+
self.data_root_dir = cfg.dataset
|
|
29
|
+
self.data_list = []
|
|
30
|
+
# walk through the dataset directory recursively, save all files ends with .wav/.mp3/.opus/.flac/.m4a
|
|
31
|
+
for root, _, files in os.walk(self.data_root_dir):
|
|
32
|
+
for file in files:
|
|
33
|
+
if file.endswith((".wav", ".mp3", ".opus", ".flac", ".m4a")):
|
|
34
|
+
self.data_list.append(os.path.join(root, file))
|
|
35
|
+
self.sr = cfg.preprocess_params.sr
|
|
36
|
+
self.duration_range = cfg.preprocess_params.duration_range
|
|
37
|
+
self.to_mel = torchaudio.transforms.MelSpectrogram(
|
|
38
|
+
n_mels=cfg.preprocess_params.spect_params.n_mels,
|
|
39
|
+
n_fft=cfg.preprocess_params.spect_params.n_fft,
|
|
40
|
+
win_length=cfg.preprocess_params.spect_params.win_length,
|
|
41
|
+
hop_length=cfg.preprocess_params.spect_params.hop_length,
|
|
42
|
+
)
|
|
43
|
+
self.mean, self.std = -4, 4
|
|
44
|
+
|
|
45
|
+
def preprocess(self, wave):
|
|
46
|
+
wave_tensor = (
|
|
47
|
+
torch.from_numpy(wave).float() if isinstance(wave, np.ndarray) else wave
|
|
48
|
+
)
|
|
49
|
+
mel_tensor = self.to_mel(wave_tensor)
|
|
50
|
+
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - self.mean) / self.std
|
|
51
|
+
return mel_tensor
|
|
52
|
+
|
|
53
|
+
def __len__(self):
|
|
54
|
+
# return len(self.data_list)
|
|
55
|
+
return len(self.data_list) # return a fixed number for testing
|
|
56
|
+
|
|
57
|
+
def __getitem__(self, index):
|
|
58
|
+
wave, _ = librosa.load(self.data_list[index], sr=self.sr)
|
|
59
|
+
wave = np.random.randn(self.sr * random.randint(*self.duration_range))
|
|
60
|
+
wave = wave / np.max(np.abs(wave))
|
|
61
|
+
mel = self.preprocess(wave).squeeze(0)
|
|
62
|
+
wave = torch.from_numpy(wave).float()
|
|
63
|
+
return wave, mel
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
class FAcodecCollator(object):
|
|
67
|
+
"""Zero-pads model inputs and targets based on number of frames per step"""
|
|
68
|
+
|
|
69
|
+
def __init__(self, cfg):
|
|
70
|
+
self.cfg = cfg
|
|
71
|
+
|
|
72
|
+
def __call__(self, batch):
|
|
73
|
+
# batch[0] = wave, mel, text, f0, speakerid
|
|
74
|
+
batch_size = len(batch)
|
|
75
|
+
|
|
76
|
+
# sort by mel length
|
|
77
|
+
lengths = [b[1].shape[1] for b in batch]
|
|
78
|
+
batch_indexes = np.argsort(lengths)[::-1]
|
|
79
|
+
batch = [batch[bid] for bid in batch_indexes]
|
|
80
|
+
|
|
81
|
+
nmels = batch[0][1].size(0)
|
|
82
|
+
max_mel_length = max([b[1].shape[1] for b in batch])
|
|
83
|
+
max_wave_length = max([b[0].size(0) for b in batch])
|
|
84
|
+
|
|
85
|
+
mels = torch.zeros((batch_size, nmels, max_mel_length)).float() - 10
|
|
86
|
+
waves = torch.zeros((batch_size, max_wave_length)).float()
|
|
87
|
+
|
|
88
|
+
mel_lengths = torch.zeros(batch_size).long()
|
|
89
|
+
wave_lengths = torch.zeros(batch_size).long()
|
|
90
|
+
|
|
91
|
+
for bid, (wave, mel) in enumerate(batch):
|
|
92
|
+
mel_size = mel.size(1)
|
|
93
|
+
mels[bid, :, :mel_size] = mel
|
|
94
|
+
waves[bid, : wave.size(0)] = wave
|
|
95
|
+
mel_lengths[bid] = mel_size
|
|
96
|
+
wave_lengths[bid] = wave.size(0)
|
|
97
|
+
|
|
98
|
+
return waves, mels, wave_lengths, mel_lengths
|
|
@@ -0,0 +1,137 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import shutil
|
|
7
|
+
import warnings
|
|
8
|
+
import argparse
|
|
9
|
+
import torch
|
|
10
|
+
import os
|
|
11
|
+
import yaml
|
|
12
|
+
|
|
13
|
+
warnings.simplefilter("ignore")
|
|
14
|
+
|
|
15
|
+
from .modules.commons import *
|
|
16
|
+
import time
|
|
17
|
+
|
|
18
|
+
import torchaudio
|
|
19
|
+
import librosa
|
|
20
|
+
from collections import OrderedDict
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class FAcodecInference(object):
|
|
24
|
+
def __init__(self, args=None, cfg=None):
|
|
25
|
+
self.args = args
|
|
26
|
+
self.cfg = cfg
|
|
27
|
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
28
|
+
self.model = self._build_model()
|
|
29
|
+
self._load_checkpoint()
|
|
30
|
+
|
|
31
|
+
def _build_model(self):
|
|
32
|
+
model = build_model(self.cfg.model_params)
|
|
33
|
+
_ = [model[key].to(self.device) for key in model]
|
|
34
|
+
return model
|
|
35
|
+
|
|
36
|
+
def _load_checkpoint(self):
|
|
37
|
+
sd = torch.load(self.args.checkpoint_path, map_location="cpu")
|
|
38
|
+
sd = sd["net"] if "net" in sd else sd
|
|
39
|
+
new_params = dict()
|
|
40
|
+
for key, state_dict in sd.items():
|
|
41
|
+
new_state_dict = OrderedDict()
|
|
42
|
+
for k, v in state_dict.items():
|
|
43
|
+
if k.startswith("module."):
|
|
44
|
+
k = k[7:]
|
|
45
|
+
new_state_dict[k] = v
|
|
46
|
+
new_params[key] = new_state_dict
|
|
47
|
+
for key in new_params:
|
|
48
|
+
if key in self.model:
|
|
49
|
+
self.model[key].load_state_dict(new_params[key])
|
|
50
|
+
_ = [self.model[key].eval() for key in self.model]
|
|
51
|
+
|
|
52
|
+
@torch.no_grad()
|
|
53
|
+
def inference(self, source, output_dir):
|
|
54
|
+
source_audio = librosa.load(source, sr=self.cfg.preprocess_params.sr)[0]
|
|
55
|
+
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(self.device)
|
|
56
|
+
|
|
57
|
+
z = self.model.encoder(source_audio[None, ...].to(self.device).float())
|
|
58
|
+
(
|
|
59
|
+
z,
|
|
60
|
+
quantized,
|
|
61
|
+
commitment_loss,
|
|
62
|
+
codebook_loss,
|
|
63
|
+
timbre,
|
|
64
|
+
codes,
|
|
65
|
+
) = self.model.quantizer(
|
|
66
|
+
z,
|
|
67
|
+
source_audio[None, ...].to(self.device).float(),
|
|
68
|
+
n_c=self.cfg.model_params.n_c_codebooks,
|
|
69
|
+
return_codes=True,
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
full_pred_wave = self.model.decoder(z)
|
|
73
|
+
|
|
74
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
75
|
+
source_name = source.split("/")[-1].split(".")[0]
|
|
76
|
+
torchaudio.save(
|
|
77
|
+
f"{output_dir}/reconstructed_{source_name}.wav",
|
|
78
|
+
full_pred_wave[0].cpu(),
|
|
79
|
+
self.cfg.preprocess_params.sr,
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
print(
|
|
83
|
+
"Reconstructed audio saved as: ",
|
|
84
|
+
f"{output_dir}/reconstructed_{source_name}.wav",
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
return quantized, codes
|
|
88
|
+
|
|
89
|
+
@torch.no_grad()
|
|
90
|
+
def voice_conversion(self, source, reference, output_dir):
|
|
91
|
+
source_audio = librosa.load(source, sr=self.cfg.preprocess_params.sr)[0]
|
|
92
|
+
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(self.device)
|
|
93
|
+
|
|
94
|
+
reference_audio = librosa.load(reference, sr=self.cfg.preprocess_params.sr)[0]
|
|
95
|
+
reference_audio = (
|
|
96
|
+
torch.tensor(reference_audio).unsqueeze(0).float().to(self.device)
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
z = self.model.encoder(source_audio[None, ...].to(self.device).float())
|
|
100
|
+
z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer(
|
|
101
|
+
z,
|
|
102
|
+
source_audio[None, ...].to(self.device).float(),
|
|
103
|
+
n_c=self.cfg.model_params.n_c_codebooks,
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
z_ref = self.model.encoder(reference_audio[None, ...].to(self.device).float())
|
|
107
|
+
(
|
|
108
|
+
z_ref,
|
|
109
|
+
quantized_ref,
|
|
110
|
+
commitment_loss_ref,
|
|
111
|
+
codebook_loss_ref,
|
|
112
|
+
timbre_ref,
|
|
113
|
+
) = self.model.quantizer(
|
|
114
|
+
z_ref,
|
|
115
|
+
reference_audio[None, ...].to(self.device).float(),
|
|
116
|
+
n_c=self.cfg.model_params.n_c_codebooks,
|
|
117
|
+
)
|
|
118
|
+
|
|
119
|
+
z_conv = self.model.quantizer.voice_conversion(
|
|
120
|
+
quantized[0] + quantized[1],
|
|
121
|
+
reference_audio[None, ...].to(self.device).float(),
|
|
122
|
+
)
|
|
123
|
+
full_pred_wave = self.model.decoder(z_conv)
|
|
124
|
+
|
|
125
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
126
|
+
source_name = source.split("/")[-1].split(".")[0]
|
|
127
|
+
reference_name = reference.split("/")[-1].split(".")[0]
|
|
128
|
+
torchaudio.save(
|
|
129
|
+
f"{output_dir}/converted_{source_name}_to_{reference_name}.wav",
|
|
130
|
+
full_pred_wave[0].cpu(),
|
|
131
|
+
self.cfg.preprocess_params.sr,
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
print(
|
|
135
|
+
"Voice conversion results saved as: ",
|
|
136
|
+
f"{output_dir}/converted_{source_name}_to_{reference_name}.wav",
|
|
137
|
+
)
|