xinference 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +473 -31
- xinference/client/restful/async_restful_client.py +178 -8
- xinference/client/restful/restful_client.py +151 -3
- xinference/core/supervisor.py +99 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +58 -21
- xinference/model/image/model_spec.json +159 -90
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1299 -174
- xinference/model/llm/mlx/distributed_models/core.py +41 -0
- xinference/model/llm/mlx/distributed_models/qwen2.py +1 -2
- xinference/model/llm/sglang/core.py +44 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +29 -4
- xinference/model/llm/transformers/chatglm.py +3 -0
- xinference/model/llm/transformers/core.py +129 -36
- xinference/model/llm/transformers/multimodal/minicpmv45.py +340 -0
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/transformers/utils.py +23 -0
- xinference/model/llm/utils.py +48 -32
- xinference/model/llm/vllm/core.py +207 -72
- xinference/model/utils.py +74 -31
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +1 -1
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/thirdparty/melo/text/chinese_mix.py +2 -2
- xinference/types.py +9 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.45e78536.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.45e78536.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.45e78536.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ea2a26361204e70cf1018d6990fb6354bed82b3ac69690391e0f100385e7abb7.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/METADATA +24 -6
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/RECORD +296 -77
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,131 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import nn
|
|
3
|
+
|
|
4
|
+
from .. import AudioSignal
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class L1Loss(nn.L1Loss):
|
|
8
|
+
"""L1 Loss between AudioSignals. Defaults
|
|
9
|
+
to comparing ``audio_data``, but any
|
|
10
|
+
attribute of an AudioSignal can be used.
|
|
11
|
+
|
|
12
|
+
Parameters
|
|
13
|
+
----------
|
|
14
|
+
attribute : str, optional
|
|
15
|
+
Attribute of signal to compare, defaults to ``audio_data``.
|
|
16
|
+
weight : float, optional
|
|
17
|
+
Weight of this loss, defaults to 1.0.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
|
|
21
|
+
self.attribute = attribute
|
|
22
|
+
self.weight = weight
|
|
23
|
+
super().__init__(**kwargs)
|
|
24
|
+
|
|
25
|
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
26
|
+
"""
|
|
27
|
+
Parameters
|
|
28
|
+
----------
|
|
29
|
+
x : AudioSignal
|
|
30
|
+
Estimate AudioSignal
|
|
31
|
+
y : AudioSignal
|
|
32
|
+
Reference AudioSignal
|
|
33
|
+
|
|
34
|
+
Returns
|
|
35
|
+
-------
|
|
36
|
+
torch.Tensor
|
|
37
|
+
L1 loss between AudioSignal attributes.
|
|
38
|
+
"""
|
|
39
|
+
if isinstance(x, AudioSignal):
|
|
40
|
+
x = getattr(x, self.attribute)
|
|
41
|
+
y = getattr(y, self.attribute)
|
|
42
|
+
return super().forward(x, y)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class SISDRLoss(nn.Module):
|
|
46
|
+
"""
|
|
47
|
+
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
|
|
48
|
+
of estimated and reference audio signals or aligned features.
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
scaling : int, optional
|
|
53
|
+
Whether to use scale-invariant (True) or
|
|
54
|
+
signal-to-noise ratio (False), by default True
|
|
55
|
+
reduction : str, optional
|
|
56
|
+
How to reduce across the batch (either 'mean',
|
|
57
|
+
'sum', or none).], by default ' mean'
|
|
58
|
+
zero_mean : int, optional
|
|
59
|
+
Zero mean the references and estimates before
|
|
60
|
+
computing the loss, by default True
|
|
61
|
+
clip_min : int, optional
|
|
62
|
+
The minimum possible loss value. Helps network
|
|
63
|
+
to not focus on making already good examples better, by default None
|
|
64
|
+
weight : float, optional
|
|
65
|
+
Weight of this loss, defaults to 1.0.
|
|
66
|
+
"""
|
|
67
|
+
|
|
68
|
+
def __init__(
|
|
69
|
+
self,
|
|
70
|
+
scaling: int = True,
|
|
71
|
+
reduction: str = "mean",
|
|
72
|
+
zero_mean: int = True,
|
|
73
|
+
clip_min: int = None,
|
|
74
|
+
weight: float = 1.0,
|
|
75
|
+
):
|
|
76
|
+
self.scaling = scaling
|
|
77
|
+
self.reduction = reduction
|
|
78
|
+
self.zero_mean = zero_mean
|
|
79
|
+
self.clip_min = clip_min
|
|
80
|
+
self.weight = weight
|
|
81
|
+
super().__init__()
|
|
82
|
+
|
|
83
|
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
84
|
+
eps = 1e-8
|
|
85
|
+
# nb, nc, nt
|
|
86
|
+
if isinstance(x, AudioSignal):
|
|
87
|
+
references = x.audio_data
|
|
88
|
+
estimates = y.audio_data
|
|
89
|
+
else:
|
|
90
|
+
references = x
|
|
91
|
+
estimates = y
|
|
92
|
+
|
|
93
|
+
nb = references.shape[0]
|
|
94
|
+
references = references.reshape(nb, 1, -1).permute(0, 2, 1)
|
|
95
|
+
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
|
|
96
|
+
|
|
97
|
+
# samples now on axis 1
|
|
98
|
+
if self.zero_mean:
|
|
99
|
+
mean_reference = references.mean(dim=1, keepdim=True)
|
|
100
|
+
mean_estimate = estimates.mean(dim=1, keepdim=True)
|
|
101
|
+
else:
|
|
102
|
+
mean_reference = 0
|
|
103
|
+
mean_estimate = 0
|
|
104
|
+
|
|
105
|
+
_references = references - mean_reference
|
|
106
|
+
_estimates = estimates - mean_estimate
|
|
107
|
+
|
|
108
|
+
references_projection = (_references**2).sum(dim=-2) + eps
|
|
109
|
+
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
|
|
110
|
+
|
|
111
|
+
scale = (
|
|
112
|
+
(references_on_estimates / references_projection).unsqueeze(1)
|
|
113
|
+
if self.scaling
|
|
114
|
+
else 1
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
e_true = scale * _references
|
|
118
|
+
e_res = _estimates - e_true
|
|
119
|
+
|
|
120
|
+
signal = (e_true**2).sum(dim=1)
|
|
121
|
+
noise = (e_res**2).sum(dim=1)
|
|
122
|
+
sdr = -10 * torch.log10(signal / noise + eps)
|
|
123
|
+
|
|
124
|
+
if self.clip_min is not None:
|
|
125
|
+
sdr = torch.clamp(sdr, min=self.clip_min)
|
|
126
|
+
|
|
127
|
+
if self.reduction == "mean":
|
|
128
|
+
sdr = sdr.mean()
|
|
129
|
+
elif self.reduction == "sum":
|
|
130
|
+
sdr = sdr.sum()
|
|
131
|
+
return sdr
|
|
@@ -0,0 +1,159 @@
|
|
|
1
|
+
import os
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
from .. import AudioSignal
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def stoi(
|
|
10
|
+
estimates: AudioSignal,
|
|
11
|
+
references: AudioSignal,
|
|
12
|
+
extended: int = False,
|
|
13
|
+
):
|
|
14
|
+
"""Short term objective intelligibility
|
|
15
|
+
Computes the STOI (See [1][2]) of a denoised signal compared to a clean
|
|
16
|
+
signal, The output is expected to have a monotonic relation with the
|
|
17
|
+
subjective speech-intelligibility, where a higher score denotes better
|
|
18
|
+
speech intelligibility. Uses pystoi under the hood.
|
|
19
|
+
|
|
20
|
+
Parameters
|
|
21
|
+
----------
|
|
22
|
+
estimates : AudioSignal
|
|
23
|
+
Denoised speech
|
|
24
|
+
references : AudioSignal
|
|
25
|
+
Clean original speech
|
|
26
|
+
extended : int, optional
|
|
27
|
+
Boolean, whether to use the extended STOI described in [3], by default False
|
|
28
|
+
|
|
29
|
+
Returns
|
|
30
|
+
-------
|
|
31
|
+
Tensor[float]
|
|
32
|
+
Short time objective intelligibility measure between clean and
|
|
33
|
+
denoised speech
|
|
34
|
+
|
|
35
|
+
References
|
|
36
|
+
----------
|
|
37
|
+
1. C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen 'A Short-Time
|
|
38
|
+
Objective Intelligibility Measure for Time-Frequency Weighted Noisy
|
|
39
|
+
Speech', ICASSP 2010, Texas, Dallas.
|
|
40
|
+
2. C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen 'An Algorithm for
|
|
41
|
+
Intelligibility Prediction of Time-Frequency Weighted Noisy Speech',
|
|
42
|
+
IEEE Transactions on Audio, Speech, and Language Processing, 2011.
|
|
43
|
+
3. Jesper Jensen and Cees H. Taal, 'An Algorithm for Predicting the
|
|
44
|
+
Intelligibility of Speech Masked by Modulated Noise Maskers',
|
|
45
|
+
IEEE Transactions on Audio, Speech and Language Processing, 2016.
|
|
46
|
+
"""
|
|
47
|
+
import pystoi
|
|
48
|
+
|
|
49
|
+
estimates = estimates.clone().to_mono()
|
|
50
|
+
references = references.clone().to_mono()
|
|
51
|
+
|
|
52
|
+
stois = []
|
|
53
|
+
for i in range(estimates.batch_size):
|
|
54
|
+
_stoi = pystoi.stoi(
|
|
55
|
+
references.audio_data[i, 0].detach().cpu().numpy(),
|
|
56
|
+
estimates.audio_data[i, 0].detach().cpu().numpy(),
|
|
57
|
+
references.sample_rate,
|
|
58
|
+
extended=extended,
|
|
59
|
+
)
|
|
60
|
+
stois.append(_stoi)
|
|
61
|
+
return torch.from_numpy(np.array(stois))
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def pesq(
|
|
65
|
+
estimates: AudioSignal,
|
|
66
|
+
references: AudioSignal,
|
|
67
|
+
mode: str = "wb",
|
|
68
|
+
target_sr: float = 16000,
|
|
69
|
+
):
|
|
70
|
+
"""_summary_
|
|
71
|
+
|
|
72
|
+
Parameters
|
|
73
|
+
----------
|
|
74
|
+
estimates : AudioSignal
|
|
75
|
+
Degraded AudioSignal
|
|
76
|
+
references : AudioSignal
|
|
77
|
+
Reference AudioSignal
|
|
78
|
+
mode : str, optional
|
|
79
|
+
'wb' (wide-band) or 'nb' (narrow-band), by default "wb"
|
|
80
|
+
target_sr : float, optional
|
|
81
|
+
Target sample rate, by default 16000
|
|
82
|
+
|
|
83
|
+
Returns
|
|
84
|
+
-------
|
|
85
|
+
Tensor[float]
|
|
86
|
+
PESQ score: P.862.2 Prediction (MOS-LQO)
|
|
87
|
+
"""
|
|
88
|
+
from pesq import pesq as pesq_fn
|
|
89
|
+
|
|
90
|
+
estimates = estimates.clone().to_mono().resample(target_sr)
|
|
91
|
+
references = references.clone().to_mono().resample(target_sr)
|
|
92
|
+
|
|
93
|
+
pesqs = []
|
|
94
|
+
for i in range(estimates.batch_size):
|
|
95
|
+
_pesq = pesq_fn(
|
|
96
|
+
estimates.sample_rate,
|
|
97
|
+
references.audio_data[i, 0].detach().cpu().numpy(),
|
|
98
|
+
estimates.audio_data[i, 0].detach().cpu().numpy(),
|
|
99
|
+
mode,
|
|
100
|
+
)
|
|
101
|
+
pesqs.append(_pesq)
|
|
102
|
+
return torch.from_numpy(np.array(pesqs))
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def visqol(
|
|
106
|
+
estimates: AudioSignal,
|
|
107
|
+
references: AudioSignal,
|
|
108
|
+
mode: str = "audio",
|
|
109
|
+
): # pragma: no cover
|
|
110
|
+
"""ViSQOL score.
|
|
111
|
+
|
|
112
|
+
Parameters
|
|
113
|
+
----------
|
|
114
|
+
estimates : AudioSignal
|
|
115
|
+
Degraded AudioSignal
|
|
116
|
+
references : AudioSignal
|
|
117
|
+
Reference AudioSignal
|
|
118
|
+
mode : str, optional
|
|
119
|
+
'audio' or 'speech', by default 'audio'
|
|
120
|
+
|
|
121
|
+
Returns
|
|
122
|
+
-------
|
|
123
|
+
Tensor[float]
|
|
124
|
+
ViSQOL score (MOS-LQO)
|
|
125
|
+
"""
|
|
126
|
+
from visqol import visqol_lib_py
|
|
127
|
+
from visqol.pb2 import visqol_config_pb2
|
|
128
|
+
from visqol.pb2 import similarity_result_pb2
|
|
129
|
+
|
|
130
|
+
config = visqol_config_pb2.VisqolConfig()
|
|
131
|
+
if mode == "audio":
|
|
132
|
+
target_sr = 48000
|
|
133
|
+
config.options.use_speech_scoring = False
|
|
134
|
+
svr_model_path = "libsvm_nu_svr_model.txt"
|
|
135
|
+
elif mode == "speech":
|
|
136
|
+
target_sr = 16000
|
|
137
|
+
config.options.use_speech_scoring = True
|
|
138
|
+
svr_model_path = "lattice_tcditugenmeetpackhref_ls2_nl60_lr12_bs2048_learn.005_ep2400_train1_7_raw.tflite"
|
|
139
|
+
else:
|
|
140
|
+
raise ValueError(f"Unrecognized mode: {mode}")
|
|
141
|
+
config.audio.sample_rate = target_sr
|
|
142
|
+
config.options.svr_model_path = os.path.join(
|
|
143
|
+
os.path.dirname(visqol_lib_py.__file__), "model", svr_model_path
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
api = visqol_lib_py.VisqolApi()
|
|
147
|
+
api.Create(config)
|
|
148
|
+
|
|
149
|
+
estimates = estimates.clone().to_mono().resample(target_sr)
|
|
150
|
+
references = references.clone().to_mono().resample(target_sr)
|
|
151
|
+
|
|
152
|
+
visqols = []
|
|
153
|
+
for i in range(estimates.batch_size):
|
|
154
|
+
_visqol = api.Measure(
|
|
155
|
+
references.audio_data[i, 0].detach().cpu().numpy().astype(float),
|
|
156
|
+
estimates.audio_data[i, 0].detach().cpu().numpy().astype(float),
|
|
157
|
+
)
|
|
158
|
+
visqols.append(_visqol.moslqo)
|
|
159
|
+
return torch.from_numpy(np.array(visqols))
|
|
@@ -0,0 +1,247 @@
|
|
|
1
|
+
import typing
|
|
2
|
+
from typing import List
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
from torch import nn
|
|
6
|
+
|
|
7
|
+
from .. import AudioSignal
|
|
8
|
+
from .. import STFTParams
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class MultiScaleSTFTLoss(nn.Module):
|
|
12
|
+
"""Computes the multi-scale STFT loss from [1].
|
|
13
|
+
|
|
14
|
+
Parameters
|
|
15
|
+
----------
|
|
16
|
+
window_lengths : List[int], optional
|
|
17
|
+
Length of each window of each STFT, by default [2048, 512]
|
|
18
|
+
loss_fn : typing.Callable, optional
|
|
19
|
+
How to compare each loss, by default nn.L1Loss()
|
|
20
|
+
clamp_eps : float, optional
|
|
21
|
+
Clamp on the log magnitude, below, by default 1e-5
|
|
22
|
+
mag_weight : float, optional
|
|
23
|
+
Weight of raw magnitude portion of loss, by default 1.0
|
|
24
|
+
log_weight : float, optional
|
|
25
|
+
Weight of log magnitude portion of loss, by default 1.0
|
|
26
|
+
pow : float, optional
|
|
27
|
+
Power to raise magnitude to before taking log, by default 2.0
|
|
28
|
+
weight : float, optional
|
|
29
|
+
Weight of this loss, by default 1.0
|
|
30
|
+
match_stride : bool, optional
|
|
31
|
+
Whether to match the stride of convolutional layers, by default False
|
|
32
|
+
|
|
33
|
+
References
|
|
34
|
+
----------
|
|
35
|
+
|
|
36
|
+
1. Engel, Jesse, Chenjie Gu, and Adam Roberts.
|
|
37
|
+
"DDSP: Differentiable Digital Signal Processing."
|
|
38
|
+
International Conference on Learning Representations. 2019.
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
def __init__(
|
|
42
|
+
self,
|
|
43
|
+
window_lengths: List[int] = [2048, 512],
|
|
44
|
+
loss_fn: typing.Callable = nn.L1Loss(),
|
|
45
|
+
clamp_eps: float = 1e-5,
|
|
46
|
+
mag_weight: float = 1.0,
|
|
47
|
+
log_weight: float = 1.0,
|
|
48
|
+
pow: float = 2.0,
|
|
49
|
+
weight: float = 1.0,
|
|
50
|
+
match_stride: bool = False,
|
|
51
|
+
window_type: str = None,
|
|
52
|
+
):
|
|
53
|
+
super().__init__()
|
|
54
|
+
self.stft_params = [
|
|
55
|
+
STFTParams(
|
|
56
|
+
window_length=w,
|
|
57
|
+
hop_length=w // 4,
|
|
58
|
+
match_stride=match_stride,
|
|
59
|
+
window_type=window_type,
|
|
60
|
+
)
|
|
61
|
+
for w in window_lengths
|
|
62
|
+
]
|
|
63
|
+
self.loss_fn = loss_fn
|
|
64
|
+
self.log_weight = log_weight
|
|
65
|
+
self.mag_weight = mag_weight
|
|
66
|
+
self.clamp_eps = clamp_eps
|
|
67
|
+
self.weight = weight
|
|
68
|
+
self.pow = pow
|
|
69
|
+
|
|
70
|
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
71
|
+
"""Computes multi-scale STFT between an estimate and a reference
|
|
72
|
+
signal.
|
|
73
|
+
|
|
74
|
+
Parameters
|
|
75
|
+
----------
|
|
76
|
+
x : AudioSignal
|
|
77
|
+
Estimate signal
|
|
78
|
+
y : AudioSignal
|
|
79
|
+
Reference signal
|
|
80
|
+
|
|
81
|
+
Returns
|
|
82
|
+
-------
|
|
83
|
+
torch.Tensor
|
|
84
|
+
Multi-scale STFT loss.
|
|
85
|
+
"""
|
|
86
|
+
loss = 0.0
|
|
87
|
+
for s in self.stft_params:
|
|
88
|
+
x.stft(s.window_length, s.hop_length, s.window_type)
|
|
89
|
+
y.stft(s.window_length, s.hop_length, s.window_type)
|
|
90
|
+
loss += self.log_weight * self.loss_fn(
|
|
91
|
+
x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
92
|
+
y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
93
|
+
)
|
|
94
|
+
loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude)
|
|
95
|
+
return loss
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
class MelSpectrogramLoss(nn.Module):
|
|
99
|
+
"""Compute distance between mel spectrograms. Can be used
|
|
100
|
+
in a multi-scale way.
|
|
101
|
+
|
|
102
|
+
Parameters
|
|
103
|
+
----------
|
|
104
|
+
n_mels : List[int]
|
|
105
|
+
Number of mels per STFT, by default [150, 80],
|
|
106
|
+
window_lengths : List[int], optional
|
|
107
|
+
Length of each window of each STFT, by default [2048, 512]
|
|
108
|
+
loss_fn : typing.Callable, optional
|
|
109
|
+
How to compare each loss, by default nn.L1Loss()
|
|
110
|
+
clamp_eps : float, optional
|
|
111
|
+
Clamp on the log magnitude, below, by default 1e-5
|
|
112
|
+
mag_weight : float, optional
|
|
113
|
+
Weight of raw magnitude portion of loss, by default 1.0
|
|
114
|
+
log_weight : float, optional
|
|
115
|
+
Weight of log magnitude portion of loss, by default 1.0
|
|
116
|
+
pow : float, optional
|
|
117
|
+
Power to raise magnitude to before taking log, by default 2.0
|
|
118
|
+
weight : float, optional
|
|
119
|
+
Weight of this loss, by default 1.0
|
|
120
|
+
match_stride : bool, optional
|
|
121
|
+
Whether to match the stride of convolutional layers, by default False
|
|
122
|
+
"""
|
|
123
|
+
|
|
124
|
+
def __init__(
|
|
125
|
+
self,
|
|
126
|
+
n_mels: List[int] = [150, 80],
|
|
127
|
+
window_lengths: List[int] = [2048, 512],
|
|
128
|
+
loss_fn: typing.Callable = nn.L1Loss(),
|
|
129
|
+
clamp_eps: float = 1e-5,
|
|
130
|
+
mag_weight: float = 1.0,
|
|
131
|
+
log_weight: float = 1.0,
|
|
132
|
+
pow: float = 2.0,
|
|
133
|
+
weight: float = 1.0,
|
|
134
|
+
match_stride: bool = False,
|
|
135
|
+
mel_fmin: List[float] = [0.0, 0.0],
|
|
136
|
+
mel_fmax: List[float] = [None, None],
|
|
137
|
+
window_type: str = None,
|
|
138
|
+
):
|
|
139
|
+
super().__init__()
|
|
140
|
+
self.stft_params = [
|
|
141
|
+
STFTParams(
|
|
142
|
+
window_length=w,
|
|
143
|
+
hop_length=w // 4,
|
|
144
|
+
match_stride=match_stride,
|
|
145
|
+
window_type=window_type,
|
|
146
|
+
)
|
|
147
|
+
for w in window_lengths
|
|
148
|
+
]
|
|
149
|
+
self.n_mels = n_mels
|
|
150
|
+
self.loss_fn = loss_fn
|
|
151
|
+
self.clamp_eps = clamp_eps
|
|
152
|
+
self.log_weight = log_weight
|
|
153
|
+
self.mag_weight = mag_weight
|
|
154
|
+
self.weight = weight
|
|
155
|
+
self.mel_fmin = mel_fmin
|
|
156
|
+
self.mel_fmax = mel_fmax
|
|
157
|
+
self.pow = pow
|
|
158
|
+
|
|
159
|
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
160
|
+
"""Computes mel loss between an estimate and a reference
|
|
161
|
+
signal.
|
|
162
|
+
|
|
163
|
+
Parameters
|
|
164
|
+
----------
|
|
165
|
+
x : AudioSignal
|
|
166
|
+
Estimate signal
|
|
167
|
+
y : AudioSignal
|
|
168
|
+
Reference signal
|
|
169
|
+
|
|
170
|
+
Returns
|
|
171
|
+
-------
|
|
172
|
+
torch.Tensor
|
|
173
|
+
Mel loss.
|
|
174
|
+
"""
|
|
175
|
+
loss = 0.0
|
|
176
|
+
for n_mels, fmin, fmax, s in zip(
|
|
177
|
+
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
|
|
178
|
+
):
|
|
179
|
+
kwargs = {
|
|
180
|
+
"window_length": s.window_length,
|
|
181
|
+
"hop_length": s.hop_length,
|
|
182
|
+
"window_type": s.window_type,
|
|
183
|
+
}
|
|
184
|
+
x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
|
185
|
+
y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
|
186
|
+
|
|
187
|
+
loss += self.log_weight * self.loss_fn(
|
|
188
|
+
x_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
189
|
+
y_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
190
|
+
)
|
|
191
|
+
loss += self.mag_weight * self.loss_fn(x_mels, y_mels)
|
|
192
|
+
return loss
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
class PhaseLoss(nn.Module):
|
|
196
|
+
"""Difference between phase spectrograms.
|
|
197
|
+
|
|
198
|
+
Parameters
|
|
199
|
+
----------
|
|
200
|
+
window_length : int, optional
|
|
201
|
+
Length of STFT window, by default 2048
|
|
202
|
+
hop_length : int, optional
|
|
203
|
+
Hop length of STFT window, by default 512
|
|
204
|
+
weight : float, optional
|
|
205
|
+
Weight of loss, by default 1.0
|
|
206
|
+
"""
|
|
207
|
+
|
|
208
|
+
def __init__(
|
|
209
|
+
self, window_length: int = 2048, hop_length: int = 512, weight: float = 1.0
|
|
210
|
+
):
|
|
211
|
+
super().__init__()
|
|
212
|
+
|
|
213
|
+
self.weight = weight
|
|
214
|
+
self.stft_params = STFTParams(window_length, hop_length)
|
|
215
|
+
|
|
216
|
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
217
|
+
"""Computes phase loss between an estimate and a reference
|
|
218
|
+
signal.
|
|
219
|
+
|
|
220
|
+
Parameters
|
|
221
|
+
----------
|
|
222
|
+
x : AudioSignal
|
|
223
|
+
Estimate signal
|
|
224
|
+
y : AudioSignal
|
|
225
|
+
Reference signal
|
|
226
|
+
|
|
227
|
+
Returns
|
|
228
|
+
-------
|
|
229
|
+
torch.Tensor
|
|
230
|
+
Phase loss.
|
|
231
|
+
"""
|
|
232
|
+
s = self.stft_params
|
|
233
|
+
x.stft(s.window_length, s.hop_length, s.window_type)
|
|
234
|
+
y.stft(s.window_length, s.hop_length, s.window_type)
|
|
235
|
+
|
|
236
|
+
# Take circular difference
|
|
237
|
+
diff = x.phase - y.phase
|
|
238
|
+
diff[diff < -np.pi] += 2 * np.pi
|
|
239
|
+
diff[diff > np.pi] -= -2 * np.pi
|
|
240
|
+
|
|
241
|
+
# Scale true magnitude to weights in [0, 1]
|
|
242
|
+
x_min, x_max = x.magnitude.min(), x.magnitude.max()
|
|
243
|
+
weights = (x.magnitude - x_min) / (x_max - x_min)
|
|
244
|
+
|
|
245
|
+
# Take weighted mean of all phase errors
|
|
246
|
+
loss = ((weights * diff) ** 2).mean()
|
|
247
|
+
return loss
|