xinference 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +473 -31
- xinference/client/restful/async_restful_client.py +178 -8
- xinference/client/restful/restful_client.py +151 -3
- xinference/core/supervisor.py +99 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +58 -21
- xinference/model/image/model_spec.json +159 -90
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1299 -174
- xinference/model/llm/mlx/distributed_models/core.py +41 -0
- xinference/model/llm/mlx/distributed_models/qwen2.py +1 -2
- xinference/model/llm/sglang/core.py +44 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +29 -4
- xinference/model/llm/transformers/chatglm.py +3 -0
- xinference/model/llm/transformers/core.py +129 -36
- xinference/model/llm/transformers/multimodal/minicpmv45.py +340 -0
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/transformers/utils.py +23 -0
- xinference/model/llm/utils.py +48 -32
- xinference/model/llm/vllm/core.py +207 -72
- xinference/model/utils.py +74 -31
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +1 -1
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/thirdparty/melo/text/chinese_mix.py +2 -2
- xinference/types.py +9 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.45e78536.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.45e78536.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.45e78536.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ea2a26361204e70cf1018d6990fb6354bed82b3ac69690391e0f100385e7abb7.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/METADATA +24 -6
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/RECORD +296 -77
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,400 @@
|
|
|
1
|
+
import math
|
|
2
|
+
from typing import List
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import torch
|
|
7
|
+
from audiotools import AudioSignal
|
|
8
|
+
from audiotools.ml import BaseModel
|
|
9
|
+
from torch import nn
|
|
10
|
+
|
|
11
|
+
from .base import CodecMixin
|
|
12
|
+
from indextts.s2mel.dac.nn.layers import Snake1d
|
|
13
|
+
from indextts.s2mel.dac.nn.layers import WNConv1d
|
|
14
|
+
from indextts.s2mel.dac.nn.layers import WNConvTranspose1d
|
|
15
|
+
from indextts.s2mel.dac.nn.quantize import ResidualVectorQuantize
|
|
16
|
+
from .encodec import SConv1d, SConvTranspose1d, SLSTM
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def init_weights(m):
|
|
20
|
+
if isinstance(m, nn.Conv1d):
|
|
21
|
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
22
|
+
nn.init.constant_(m.bias, 0)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class ResidualUnit(nn.Module):
|
|
26
|
+
def __init__(self, dim: int = 16, dilation: int = 1, causal: bool = False):
|
|
27
|
+
super().__init__()
|
|
28
|
+
conv1d_type = SConv1d# if causal else WNConv1d
|
|
29
|
+
pad = ((7 - 1) * dilation) // 2
|
|
30
|
+
self.block = nn.Sequential(
|
|
31
|
+
Snake1d(dim),
|
|
32
|
+
conv1d_type(dim, dim, kernel_size=7, dilation=dilation, padding=pad, causal=causal, norm='weight_norm'),
|
|
33
|
+
Snake1d(dim),
|
|
34
|
+
conv1d_type(dim, dim, kernel_size=1, causal=causal, norm='weight_norm'),
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
def forward(self, x):
|
|
38
|
+
y = self.block(x)
|
|
39
|
+
pad = (x.shape[-1] - y.shape[-1]) // 2
|
|
40
|
+
if pad > 0:
|
|
41
|
+
x = x[..., pad:-pad]
|
|
42
|
+
return x + y
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class EncoderBlock(nn.Module):
|
|
46
|
+
def __init__(self, dim: int = 16, stride: int = 1, causal: bool = False):
|
|
47
|
+
super().__init__()
|
|
48
|
+
conv1d_type = SConv1d# if causal else WNConv1d
|
|
49
|
+
self.block = nn.Sequential(
|
|
50
|
+
ResidualUnit(dim // 2, dilation=1, causal=causal),
|
|
51
|
+
ResidualUnit(dim // 2, dilation=3, causal=causal),
|
|
52
|
+
ResidualUnit(dim // 2, dilation=9, causal=causal),
|
|
53
|
+
Snake1d(dim // 2),
|
|
54
|
+
conv1d_type(
|
|
55
|
+
dim // 2,
|
|
56
|
+
dim,
|
|
57
|
+
kernel_size=2 * stride,
|
|
58
|
+
stride=stride,
|
|
59
|
+
padding=math.ceil(stride / 2),
|
|
60
|
+
causal=causal,
|
|
61
|
+
norm='weight_norm',
|
|
62
|
+
),
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
def forward(self, x):
|
|
66
|
+
return self.block(x)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
class Encoder(nn.Module):
|
|
70
|
+
def __init__(
|
|
71
|
+
self,
|
|
72
|
+
d_model: int = 64,
|
|
73
|
+
strides: list = [2, 4, 8, 8],
|
|
74
|
+
d_latent: int = 64,
|
|
75
|
+
causal: bool = False,
|
|
76
|
+
lstm: int = 2,
|
|
77
|
+
):
|
|
78
|
+
super().__init__()
|
|
79
|
+
conv1d_type = SConv1d# if causal else WNConv1d
|
|
80
|
+
# Create first convolution
|
|
81
|
+
self.block = [conv1d_type(1, d_model, kernel_size=7, padding=3, causal=causal, norm='weight_norm')]
|
|
82
|
+
|
|
83
|
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
|
84
|
+
for stride in strides:
|
|
85
|
+
d_model *= 2
|
|
86
|
+
self.block += [EncoderBlock(d_model, stride=stride, causal=causal)]
|
|
87
|
+
|
|
88
|
+
# Add LSTM if needed
|
|
89
|
+
self.use_lstm = lstm
|
|
90
|
+
if lstm:
|
|
91
|
+
self.block += [SLSTM(d_model, lstm)]
|
|
92
|
+
|
|
93
|
+
# Create last convolution
|
|
94
|
+
self.block += [
|
|
95
|
+
Snake1d(d_model),
|
|
96
|
+
conv1d_type(d_model, d_latent, kernel_size=3, padding=1, causal=causal, norm='weight_norm'),
|
|
97
|
+
]
|
|
98
|
+
|
|
99
|
+
# Wrap black into nn.Sequential
|
|
100
|
+
self.block = nn.Sequential(*self.block)
|
|
101
|
+
self.enc_dim = d_model
|
|
102
|
+
|
|
103
|
+
def forward(self, x):
|
|
104
|
+
return self.block(x)
|
|
105
|
+
|
|
106
|
+
def reset_cache(self):
|
|
107
|
+
# recursively find all submodules named SConv1d in self.block and use their reset_cache method
|
|
108
|
+
def reset_cache(m):
|
|
109
|
+
if isinstance(m, SConv1d) or isinstance(m, SLSTM):
|
|
110
|
+
m.reset_cache()
|
|
111
|
+
return
|
|
112
|
+
for child in m.children():
|
|
113
|
+
reset_cache(child)
|
|
114
|
+
|
|
115
|
+
reset_cache(self.block)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
class DecoderBlock(nn.Module):
|
|
119
|
+
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1, causal: bool = False):
|
|
120
|
+
super().__init__()
|
|
121
|
+
conv1d_type = SConvTranspose1d #if causal else WNConvTranspose1d
|
|
122
|
+
self.block = nn.Sequential(
|
|
123
|
+
Snake1d(input_dim),
|
|
124
|
+
conv1d_type(
|
|
125
|
+
input_dim,
|
|
126
|
+
output_dim,
|
|
127
|
+
kernel_size=2 * stride,
|
|
128
|
+
stride=stride,
|
|
129
|
+
padding=math.ceil(stride / 2),
|
|
130
|
+
causal=causal,
|
|
131
|
+
norm='weight_norm'
|
|
132
|
+
),
|
|
133
|
+
ResidualUnit(output_dim, dilation=1, causal=causal),
|
|
134
|
+
ResidualUnit(output_dim, dilation=3, causal=causal),
|
|
135
|
+
ResidualUnit(output_dim, dilation=9, causal=causal),
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
def forward(self, x):
|
|
139
|
+
return self.block(x)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
class Decoder(nn.Module):
|
|
143
|
+
def __init__(
|
|
144
|
+
self,
|
|
145
|
+
input_channel,
|
|
146
|
+
channels,
|
|
147
|
+
rates,
|
|
148
|
+
d_out: int = 1,
|
|
149
|
+
causal: bool = False,
|
|
150
|
+
lstm: int = 2,
|
|
151
|
+
):
|
|
152
|
+
super().__init__()
|
|
153
|
+
conv1d_type = SConv1d# if causal else WNConv1d
|
|
154
|
+
# Add first conv layer
|
|
155
|
+
layers = [conv1d_type(input_channel, channels, kernel_size=7, padding=3, causal=causal, norm='weight_norm')]
|
|
156
|
+
|
|
157
|
+
if lstm:
|
|
158
|
+
layers += [SLSTM(channels, num_layers=lstm)]
|
|
159
|
+
|
|
160
|
+
# Add upsampling + MRF blocks
|
|
161
|
+
for i, stride in enumerate(rates):
|
|
162
|
+
input_dim = channels // 2**i
|
|
163
|
+
output_dim = channels // 2 ** (i + 1)
|
|
164
|
+
layers += [DecoderBlock(input_dim, output_dim, stride, causal=causal)]
|
|
165
|
+
|
|
166
|
+
# Add final conv layer
|
|
167
|
+
layers += [
|
|
168
|
+
Snake1d(output_dim),
|
|
169
|
+
conv1d_type(output_dim, d_out, kernel_size=7, padding=3, causal=causal, norm='weight_norm'),
|
|
170
|
+
nn.Tanh(),
|
|
171
|
+
]
|
|
172
|
+
|
|
173
|
+
self.model = nn.Sequential(*layers)
|
|
174
|
+
|
|
175
|
+
def forward(self, x):
|
|
176
|
+
return self.model(x)
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
class DAC(BaseModel, CodecMixin):
|
|
180
|
+
def __init__(
|
|
181
|
+
self,
|
|
182
|
+
encoder_dim: int = 64,
|
|
183
|
+
encoder_rates: List[int] = [2, 4, 8, 8],
|
|
184
|
+
latent_dim: int = None,
|
|
185
|
+
decoder_dim: int = 1536,
|
|
186
|
+
decoder_rates: List[int] = [8, 8, 4, 2],
|
|
187
|
+
n_codebooks: int = 9,
|
|
188
|
+
codebook_size: int = 1024,
|
|
189
|
+
codebook_dim: Union[int, list] = 8,
|
|
190
|
+
quantizer_dropout: bool = False,
|
|
191
|
+
sample_rate: int = 44100,
|
|
192
|
+
lstm: int = 2,
|
|
193
|
+
causal: bool = False,
|
|
194
|
+
):
|
|
195
|
+
super().__init__()
|
|
196
|
+
|
|
197
|
+
self.encoder_dim = encoder_dim
|
|
198
|
+
self.encoder_rates = encoder_rates
|
|
199
|
+
self.decoder_dim = decoder_dim
|
|
200
|
+
self.decoder_rates = decoder_rates
|
|
201
|
+
self.sample_rate = sample_rate
|
|
202
|
+
|
|
203
|
+
if latent_dim is None:
|
|
204
|
+
latent_dim = encoder_dim * (2 ** len(encoder_rates))
|
|
205
|
+
|
|
206
|
+
self.latent_dim = latent_dim
|
|
207
|
+
|
|
208
|
+
self.hop_length = np.prod(encoder_rates)
|
|
209
|
+
self.encoder = Encoder(encoder_dim, encoder_rates, latent_dim, causal=causal, lstm=lstm)
|
|
210
|
+
|
|
211
|
+
self.n_codebooks = n_codebooks
|
|
212
|
+
self.codebook_size = codebook_size
|
|
213
|
+
self.codebook_dim = codebook_dim
|
|
214
|
+
self.quantizer = ResidualVectorQuantize(
|
|
215
|
+
input_dim=latent_dim,
|
|
216
|
+
n_codebooks=n_codebooks,
|
|
217
|
+
codebook_size=codebook_size,
|
|
218
|
+
codebook_dim=codebook_dim,
|
|
219
|
+
quantizer_dropout=quantizer_dropout,
|
|
220
|
+
)
|
|
221
|
+
|
|
222
|
+
self.decoder = Decoder(
|
|
223
|
+
latent_dim,
|
|
224
|
+
decoder_dim,
|
|
225
|
+
decoder_rates,
|
|
226
|
+
lstm=lstm,
|
|
227
|
+
causal=causal,
|
|
228
|
+
)
|
|
229
|
+
self.sample_rate = sample_rate
|
|
230
|
+
self.apply(init_weights)
|
|
231
|
+
|
|
232
|
+
self.delay = self.get_delay()
|
|
233
|
+
|
|
234
|
+
def preprocess(self, audio_data, sample_rate):
|
|
235
|
+
if sample_rate is None:
|
|
236
|
+
sample_rate = self.sample_rate
|
|
237
|
+
assert sample_rate == self.sample_rate
|
|
238
|
+
|
|
239
|
+
length = audio_data.shape[-1]
|
|
240
|
+
right_pad = math.ceil(length / self.hop_length) * self.hop_length - length
|
|
241
|
+
audio_data = nn.functional.pad(audio_data, (0, right_pad))
|
|
242
|
+
|
|
243
|
+
return audio_data
|
|
244
|
+
|
|
245
|
+
def encode(
|
|
246
|
+
self,
|
|
247
|
+
audio_data: torch.Tensor,
|
|
248
|
+
n_quantizers: int = None,
|
|
249
|
+
):
|
|
250
|
+
"""Encode given audio data and return quantized latent codes
|
|
251
|
+
|
|
252
|
+
Parameters
|
|
253
|
+
----------
|
|
254
|
+
audio_data : Tensor[B x 1 x T]
|
|
255
|
+
Audio data to encode
|
|
256
|
+
n_quantizers : int, optional
|
|
257
|
+
Number of quantizers to use, by default None
|
|
258
|
+
If None, all quantizers are used.
|
|
259
|
+
|
|
260
|
+
Returns
|
|
261
|
+
-------
|
|
262
|
+
dict
|
|
263
|
+
A dictionary with the following keys:
|
|
264
|
+
"z" : Tensor[B x D x T]
|
|
265
|
+
Quantized continuous representation of input
|
|
266
|
+
"codes" : Tensor[B x N x T]
|
|
267
|
+
Codebook indices for each codebook
|
|
268
|
+
(quantized discrete representation of input)
|
|
269
|
+
"latents" : Tensor[B x N*D x T]
|
|
270
|
+
Projected latents (continuous representation of input before quantization)
|
|
271
|
+
"vq/commitment_loss" : Tensor[1]
|
|
272
|
+
Commitment loss to train encoder to predict vectors closer to codebook
|
|
273
|
+
entries
|
|
274
|
+
"vq/codebook_loss" : Tensor[1]
|
|
275
|
+
Codebook loss to update the codebook
|
|
276
|
+
"length" : int
|
|
277
|
+
Number of samples in input audio
|
|
278
|
+
"""
|
|
279
|
+
z = self.encoder(audio_data)
|
|
280
|
+
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(
|
|
281
|
+
z, n_quantizers
|
|
282
|
+
)
|
|
283
|
+
return z, codes, latents, commitment_loss, codebook_loss
|
|
284
|
+
|
|
285
|
+
def decode(self, z: torch.Tensor):
|
|
286
|
+
"""Decode given latent codes and return audio data
|
|
287
|
+
|
|
288
|
+
Parameters
|
|
289
|
+
----------
|
|
290
|
+
z : Tensor[B x D x T]
|
|
291
|
+
Quantized continuous representation of input
|
|
292
|
+
length : int, optional
|
|
293
|
+
Number of samples in output audio, by default None
|
|
294
|
+
|
|
295
|
+
Returns
|
|
296
|
+
-------
|
|
297
|
+
dict
|
|
298
|
+
A dictionary with the following keys:
|
|
299
|
+
"audio" : Tensor[B x 1 x length]
|
|
300
|
+
Decoded audio data.
|
|
301
|
+
"""
|
|
302
|
+
return self.decoder(z)
|
|
303
|
+
|
|
304
|
+
def forward(
|
|
305
|
+
self,
|
|
306
|
+
audio_data: torch.Tensor,
|
|
307
|
+
sample_rate: int = None,
|
|
308
|
+
n_quantizers: int = None,
|
|
309
|
+
):
|
|
310
|
+
"""Model forward pass
|
|
311
|
+
|
|
312
|
+
Parameters
|
|
313
|
+
----------
|
|
314
|
+
audio_data : Tensor[B x 1 x T]
|
|
315
|
+
Audio data to encode
|
|
316
|
+
sample_rate : int, optional
|
|
317
|
+
Sample rate of audio data in Hz, by default None
|
|
318
|
+
If None, defaults to `self.sample_rate`
|
|
319
|
+
n_quantizers : int, optional
|
|
320
|
+
Number of quantizers to use, by default None.
|
|
321
|
+
If None, all quantizers are used.
|
|
322
|
+
|
|
323
|
+
Returns
|
|
324
|
+
-------
|
|
325
|
+
dict
|
|
326
|
+
A dictionary with the following keys:
|
|
327
|
+
"z" : Tensor[B x D x T]
|
|
328
|
+
Quantized continuous representation of input
|
|
329
|
+
"codes" : Tensor[B x N x T]
|
|
330
|
+
Codebook indices for each codebook
|
|
331
|
+
(quantized discrete representation of input)
|
|
332
|
+
"latents" : Tensor[B x N*D x T]
|
|
333
|
+
Projected latents (continuous representation of input before quantization)
|
|
334
|
+
"vq/commitment_loss" : Tensor[1]
|
|
335
|
+
Commitment loss to train encoder to predict vectors closer to codebook
|
|
336
|
+
entries
|
|
337
|
+
"vq/codebook_loss" : Tensor[1]
|
|
338
|
+
Codebook loss to update the codebook
|
|
339
|
+
"length" : int
|
|
340
|
+
Number of samples in input audio
|
|
341
|
+
"audio" : Tensor[B x 1 x length]
|
|
342
|
+
Decoded audio data.
|
|
343
|
+
"""
|
|
344
|
+
length = audio_data.shape[-1]
|
|
345
|
+
audio_data = self.preprocess(audio_data, sample_rate)
|
|
346
|
+
z, codes, latents, commitment_loss, codebook_loss = self.encode(
|
|
347
|
+
audio_data, n_quantizers
|
|
348
|
+
)
|
|
349
|
+
|
|
350
|
+
x = self.decode(z)
|
|
351
|
+
return {
|
|
352
|
+
"audio": x[..., :length],
|
|
353
|
+
"z": z,
|
|
354
|
+
"codes": codes,
|
|
355
|
+
"latents": latents,
|
|
356
|
+
"vq/commitment_loss": commitment_loss,
|
|
357
|
+
"vq/codebook_loss": codebook_loss,
|
|
358
|
+
}
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
if __name__ == "__main__":
|
|
362
|
+
import numpy as np
|
|
363
|
+
from functools import partial
|
|
364
|
+
|
|
365
|
+
model = DAC().to("cpu")
|
|
366
|
+
|
|
367
|
+
for n, m in model.named_modules():
|
|
368
|
+
o = m.extra_repr()
|
|
369
|
+
p = sum([np.prod(p.size()) for p in m.parameters()])
|
|
370
|
+
fn = lambda o, p: o + f" {p/1e6:<.3f}M params."
|
|
371
|
+
setattr(m, "extra_repr", partial(fn, o=o, p=p))
|
|
372
|
+
print(model)
|
|
373
|
+
print("Total # of params: ", sum([np.prod(p.size()) for p in model.parameters()]))
|
|
374
|
+
|
|
375
|
+
length = 88200 * 2
|
|
376
|
+
x = torch.randn(1, 1, length).to(model.device)
|
|
377
|
+
x.requires_grad_(True)
|
|
378
|
+
x.retain_grad()
|
|
379
|
+
|
|
380
|
+
# Make a forward pass
|
|
381
|
+
out = model(x)["audio"]
|
|
382
|
+
print("Input shape:", x.shape)
|
|
383
|
+
print("Output shape:", out.shape)
|
|
384
|
+
|
|
385
|
+
# Create gradient variable
|
|
386
|
+
grad = torch.zeros_like(out)
|
|
387
|
+
grad[:, :, grad.shape[-1] // 2] = 1
|
|
388
|
+
|
|
389
|
+
# Make a backward pass
|
|
390
|
+
out.backward(grad)
|
|
391
|
+
|
|
392
|
+
# Check non-zero values
|
|
393
|
+
gradmap = x.grad.squeeze(0)
|
|
394
|
+
gradmap = (gradmap != 0).sum(0) # sum across features
|
|
395
|
+
rf = (gradmap != 0).sum()
|
|
396
|
+
|
|
397
|
+
print(f"Receptive field: {rf.item()}")
|
|
398
|
+
|
|
399
|
+
x = AudioSignal(torch.randn(1, 1, 44100 * 60), 44100)
|
|
400
|
+
model.decompress(model.compress(x, verbose=True), verbose=True)
|
|
@@ -0,0 +1,228 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
import torch.nn.functional as F
|
|
4
|
+
from audiotools import AudioSignal
|
|
5
|
+
from audiotools import ml
|
|
6
|
+
from audiotools import STFTParams
|
|
7
|
+
from einops import rearrange
|
|
8
|
+
from torch.nn.utils import weight_norm
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def WNConv1d(*args, **kwargs):
|
|
12
|
+
act = kwargs.pop("act", True)
|
|
13
|
+
conv = weight_norm(nn.Conv1d(*args, **kwargs))
|
|
14
|
+
if not act:
|
|
15
|
+
return conv
|
|
16
|
+
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def WNConv2d(*args, **kwargs):
|
|
20
|
+
act = kwargs.pop("act", True)
|
|
21
|
+
conv = weight_norm(nn.Conv2d(*args, **kwargs))
|
|
22
|
+
if not act:
|
|
23
|
+
return conv
|
|
24
|
+
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class MPD(nn.Module):
|
|
28
|
+
def __init__(self, period):
|
|
29
|
+
super().__init__()
|
|
30
|
+
self.period = period
|
|
31
|
+
self.convs = nn.ModuleList(
|
|
32
|
+
[
|
|
33
|
+
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
|
|
34
|
+
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
|
|
35
|
+
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
|
|
36
|
+
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
|
|
37
|
+
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
|
|
38
|
+
]
|
|
39
|
+
)
|
|
40
|
+
self.conv_post = WNConv2d(
|
|
41
|
+
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
def pad_to_period(self, x):
|
|
45
|
+
t = x.shape[-1]
|
|
46
|
+
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
|
|
47
|
+
return x
|
|
48
|
+
|
|
49
|
+
def forward(self, x):
|
|
50
|
+
fmap = []
|
|
51
|
+
|
|
52
|
+
x = self.pad_to_period(x)
|
|
53
|
+
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
|
|
54
|
+
|
|
55
|
+
for layer in self.convs:
|
|
56
|
+
x = layer(x)
|
|
57
|
+
fmap.append(x)
|
|
58
|
+
|
|
59
|
+
x = self.conv_post(x)
|
|
60
|
+
fmap.append(x)
|
|
61
|
+
|
|
62
|
+
return fmap
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
class MSD(nn.Module):
|
|
66
|
+
def __init__(self, rate: int = 1, sample_rate: int = 44100):
|
|
67
|
+
super().__init__()
|
|
68
|
+
self.convs = nn.ModuleList(
|
|
69
|
+
[
|
|
70
|
+
WNConv1d(1, 16, 15, 1, padding=7),
|
|
71
|
+
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
|
|
72
|
+
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
|
|
73
|
+
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
|
|
74
|
+
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
|
|
75
|
+
WNConv1d(1024, 1024, 5, 1, padding=2),
|
|
76
|
+
]
|
|
77
|
+
)
|
|
78
|
+
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
|
|
79
|
+
self.sample_rate = sample_rate
|
|
80
|
+
self.rate = rate
|
|
81
|
+
|
|
82
|
+
def forward(self, x):
|
|
83
|
+
x = AudioSignal(x, self.sample_rate)
|
|
84
|
+
x.resample(self.sample_rate // self.rate)
|
|
85
|
+
x = x.audio_data
|
|
86
|
+
|
|
87
|
+
fmap = []
|
|
88
|
+
|
|
89
|
+
for l in self.convs:
|
|
90
|
+
x = l(x)
|
|
91
|
+
fmap.append(x)
|
|
92
|
+
x = self.conv_post(x)
|
|
93
|
+
fmap.append(x)
|
|
94
|
+
|
|
95
|
+
return fmap
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
class MRD(nn.Module):
|
|
102
|
+
def __init__(
|
|
103
|
+
self,
|
|
104
|
+
window_length: int,
|
|
105
|
+
hop_factor: float = 0.25,
|
|
106
|
+
sample_rate: int = 44100,
|
|
107
|
+
bands: list = BANDS,
|
|
108
|
+
):
|
|
109
|
+
"""Complex multi-band spectrogram discriminator.
|
|
110
|
+
Parameters
|
|
111
|
+
----------
|
|
112
|
+
window_length : int
|
|
113
|
+
Window length of STFT.
|
|
114
|
+
hop_factor : float, optional
|
|
115
|
+
Hop factor of the STFT, defaults to ``0.25 * window_length``.
|
|
116
|
+
sample_rate : int, optional
|
|
117
|
+
Sampling rate of audio in Hz, by default 44100
|
|
118
|
+
bands : list, optional
|
|
119
|
+
Bands to run discriminator over.
|
|
120
|
+
"""
|
|
121
|
+
super().__init__()
|
|
122
|
+
|
|
123
|
+
self.window_length = window_length
|
|
124
|
+
self.hop_factor = hop_factor
|
|
125
|
+
self.sample_rate = sample_rate
|
|
126
|
+
self.stft_params = STFTParams(
|
|
127
|
+
window_length=window_length,
|
|
128
|
+
hop_length=int(window_length * hop_factor),
|
|
129
|
+
match_stride=True,
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
n_fft = window_length // 2 + 1
|
|
133
|
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
|
134
|
+
self.bands = bands
|
|
135
|
+
|
|
136
|
+
ch = 32
|
|
137
|
+
convs = lambda: nn.ModuleList(
|
|
138
|
+
[
|
|
139
|
+
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
|
|
140
|
+
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
|
141
|
+
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
|
142
|
+
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
|
143
|
+
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
|
|
144
|
+
]
|
|
145
|
+
)
|
|
146
|
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
|
147
|
+
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
|
|
148
|
+
|
|
149
|
+
def spectrogram(self, x):
|
|
150
|
+
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
|
|
151
|
+
x = torch.view_as_real(x.stft())
|
|
152
|
+
x = rearrange(x, "b 1 f t c -> (b 1) c t f")
|
|
153
|
+
# Split into bands
|
|
154
|
+
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
|
155
|
+
return x_bands
|
|
156
|
+
|
|
157
|
+
def forward(self, x):
|
|
158
|
+
x_bands = self.spectrogram(x)
|
|
159
|
+
fmap = []
|
|
160
|
+
|
|
161
|
+
x = []
|
|
162
|
+
for band, stack in zip(x_bands, self.band_convs):
|
|
163
|
+
for layer in stack:
|
|
164
|
+
band = layer(band)
|
|
165
|
+
fmap.append(band)
|
|
166
|
+
x.append(band)
|
|
167
|
+
|
|
168
|
+
x = torch.cat(x, dim=-1)
|
|
169
|
+
x = self.conv_post(x)
|
|
170
|
+
fmap.append(x)
|
|
171
|
+
|
|
172
|
+
return fmap
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
class Discriminator(nn.Module):
|
|
176
|
+
def __init__(
|
|
177
|
+
self,
|
|
178
|
+
rates: list = [],
|
|
179
|
+
periods: list = [2, 3, 5, 7, 11],
|
|
180
|
+
fft_sizes: list = [2048, 1024, 512],
|
|
181
|
+
sample_rate: int = 44100,
|
|
182
|
+
bands: list = BANDS,
|
|
183
|
+
):
|
|
184
|
+
"""Discriminator that combines multiple discriminators.
|
|
185
|
+
|
|
186
|
+
Parameters
|
|
187
|
+
----------
|
|
188
|
+
rates : list, optional
|
|
189
|
+
sampling rates (in Hz) to run MSD at, by default []
|
|
190
|
+
If empty, MSD is not used.
|
|
191
|
+
periods : list, optional
|
|
192
|
+
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
|
|
193
|
+
fft_sizes : list, optional
|
|
194
|
+
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
|
|
195
|
+
sample_rate : int, optional
|
|
196
|
+
Sampling rate of audio in Hz, by default 44100
|
|
197
|
+
bands : list, optional
|
|
198
|
+
Bands to run MRD at, by default `BANDS`
|
|
199
|
+
"""
|
|
200
|
+
super().__init__()
|
|
201
|
+
discs = []
|
|
202
|
+
discs += [MPD(p) for p in periods]
|
|
203
|
+
discs += [MSD(r, sample_rate=sample_rate) for r in rates]
|
|
204
|
+
discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
|
|
205
|
+
self.discriminators = nn.ModuleList(discs)
|
|
206
|
+
|
|
207
|
+
def preprocess(self, y):
|
|
208
|
+
# Remove DC offset
|
|
209
|
+
y = y - y.mean(dim=-1, keepdims=True)
|
|
210
|
+
# Peak normalize the volume of input audio
|
|
211
|
+
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
|
212
|
+
return y
|
|
213
|
+
|
|
214
|
+
def forward(self, x):
|
|
215
|
+
x = self.preprocess(x)
|
|
216
|
+
fmaps = [d(x) for d in self.discriminators]
|
|
217
|
+
return fmaps
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
if __name__ == "__main__":
|
|
221
|
+
disc = Discriminator()
|
|
222
|
+
x = torch.zeros(1, 1, 44100)
|
|
223
|
+
results = disc(x)
|
|
224
|
+
for i, result in enumerate(results):
|
|
225
|
+
print(f"disc{i}")
|
|
226
|
+
for i, r in enumerate(result):
|
|
227
|
+
print(r.shape, r.mean(), r.min(), r.max())
|
|
228
|
+
print()
|