xinference 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +473 -31
- xinference/client/restful/async_restful_client.py +178 -8
- xinference/client/restful/restful_client.py +151 -3
- xinference/core/supervisor.py +99 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +58 -21
- xinference/model/image/model_spec.json +159 -90
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1299 -174
- xinference/model/llm/mlx/distributed_models/core.py +41 -0
- xinference/model/llm/mlx/distributed_models/qwen2.py +1 -2
- xinference/model/llm/sglang/core.py +44 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +29 -4
- xinference/model/llm/transformers/chatglm.py +3 -0
- xinference/model/llm/transformers/core.py +129 -36
- xinference/model/llm/transformers/multimodal/minicpmv45.py +340 -0
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/transformers/utils.py +23 -0
- xinference/model/llm/utils.py +48 -32
- xinference/model/llm/vllm/core.py +207 -72
- xinference/model/utils.py +74 -31
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +1 -1
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/thirdparty/melo/text/chinese_mix.py +2 -2
- xinference/types.py +9 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.45e78536.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.45e78536.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.45e78536.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ea2a26361204e70cf1018d6990fb6354bed82b3ac69690391e0f100385e7abb7.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/METADATA +24 -6
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/RECORD +296 -77
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,454 @@
|
|
|
1
|
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
"""HIFI-GAN"""
|
|
16
|
+
|
|
17
|
+
import typing as tp
|
|
18
|
+
import numpy as np
|
|
19
|
+
from scipy.signal import get_window
|
|
20
|
+
import torch
|
|
21
|
+
import torch.nn as nn
|
|
22
|
+
import torch.nn.functional as F
|
|
23
|
+
from torch.nn import Conv1d
|
|
24
|
+
from torch.nn import ConvTranspose1d
|
|
25
|
+
from torch.nn.utils import remove_weight_norm
|
|
26
|
+
from torch.nn.utils import weight_norm
|
|
27
|
+
from torch.distributions.uniform import Uniform
|
|
28
|
+
|
|
29
|
+
from torch import sin
|
|
30
|
+
from torch.nn.parameter import Parameter
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
"""hifigan based generator implementation.
|
|
34
|
+
|
|
35
|
+
This code is modified from https://github.com/jik876/hifi-gan
|
|
36
|
+
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
|
37
|
+
https://github.com/NVIDIA/BigVGAN
|
|
38
|
+
|
|
39
|
+
"""
|
|
40
|
+
class Snake(nn.Module):
|
|
41
|
+
'''
|
|
42
|
+
Implementation of a sine-based periodic activation function
|
|
43
|
+
Shape:
|
|
44
|
+
- Input: (B, C, T)
|
|
45
|
+
- Output: (B, C, T), same shape as the input
|
|
46
|
+
Parameters:
|
|
47
|
+
- alpha - trainable parameter
|
|
48
|
+
References:
|
|
49
|
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
|
50
|
+
https://arxiv.org/abs/2006.08195
|
|
51
|
+
Examples:
|
|
52
|
+
>>> a1 = snake(256)
|
|
53
|
+
>>> x = torch.randn(256)
|
|
54
|
+
>>> x = a1(x)
|
|
55
|
+
'''
|
|
56
|
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
|
57
|
+
'''
|
|
58
|
+
Initialization.
|
|
59
|
+
INPUT:
|
|
60
|
+
- in_features: shape of the input
|
|
61
|
+
- alpha: trainable parameter
|
|
62
|
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
|
63
|
+
alpha will be trained along with the rest of your model.
|
|
64
|
+
'''
|
|
65
|
+
super(Snake, self).__init__()
|
|
66
|
+
self.in_features = in_features
|
|
67
|
+
|
|
68
|
+
# initialize alpha
|
|
69
|
+
self.alpha_logscale = alpha_logscale
|
|
70
|
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
|
71
|
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
|
72
|
+
else: # linear scale alphas initialized to ones
|
|
73
|
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
|
74
|
+
|
|
75
|
+
self.alpha.requires_grad = alpha_trainable
|
|
76
|
+
|
|
77
|
+
self.no_div_by_zero = 0.000000001
|
|
78
|
+
|
|
79
|
+
def forward(self, x):
|
|
80
|
+
'''
|
|
81
|
+
Forward pass of the function.
|
|
82
|
+
Applies the function to the input elementwise.
|
|
83
|
+
Snake ∶= x + 1/a * sin^2 (xa)
|
|
84
|
+
'''
|
|
85
|
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
|
86
|
+
if self.alpha_logscale:
|
|
87
|
+
alpha = torch.exp(alpha)
|
|
88
|
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
|
89
|
+
|
|
90
|
+
return x
|
|
91
|
+
|
|
92
|
+
def get_padding(kernel_size, dilation=1):
|
|
93
|
+
return int((kernel_size * dilation - dilation) / 2)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def init_weights(m, mean=0.0, std=0.01):
|
|
97
|
+
classname = m.__class__.__name__
|
|
98
|
+
if classname.find("Conv") != -1:
|
|
99
|
+
m.weight.data.normal_(mean, std)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
class ResBlock(torch.nn.Module):
|
|
104
|
+
"""Residual block module in HiFiGAN/BigVGAN."""
|
|
105
|
+
def __init__(
|
|
106
|
+
self,
|
|
107
|
+
channels: int = 512,
|
|
108
|
+
kernel_size: int = 3,
|
|
109
|
+
dilations: tp.List[int] = [1, 3, 5],
|
|
110
|
+
):
|
|
111
|
+
super(ResBlock, self).__init__()
|
|
112
|
+
self.convs1 = nn.ModuleList()
|
|
113
|
+
self.convs2 = nn.ModuleList()
|
|
114
|
+
|
|
115
|
+
for dilation in dilations:
|
|
116
|
+
self.convs1.append(
|
|
117
|
+
weight_norm(
|
|
118
|
+
Conv1d(
|
|
119
|
+
channels,
|
|
120
|
+
channels,
|
|
121
|
+
kernel_size,
|
|
122
|
+
1,
|
|
123
|
+
dilation=dilation,
|
|
124
|
+
padding=get_padding(kernel_size, dilation)
|
|
125
|
+
)
|
|
126
|
+
)
|
|
127
|
+
)
|
|
128
|
+
self.convs2.append(
|
|
129
|
+
weight_norm(
|
|
130
|
+
Conv1d(
|
|
131
|
+
channels,
|
|
132
|
+
channels,
|
|
133
|
+
kernel_size,
|
|
134
|
+
1,
|
|
135
|
+
dilation=1,
|
|
136
|
+
padding=get_padding(kernel_size, 1)
|
|
137
|
+
)
|
|
138
|
+
)
|
|
139
|
+
)
|
|
140
|
+
self.convs1.apply(init_weights)
|
|
141
|
+
self.convs2.apply(init_weights)
|
|
142
|
+
self.activations1 = nn.ModuleList([
|
|
143
|
+
Snake(channels, alpha_logscale=False)
|
|
144
|
+
for _ in range(len(self.convs1))
|
|
145
|
+
])
|
|
146
|
+
self.activations2 = nn.ModuleList([
|
|
147
|
+
Snake(channels, alpha_logscale=False)
|
|
148
|
+
for _ in range(len(self.convs2))
|
|
149
|
+
])
|
|
150
|
+
|
|
151
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
152
|
+
for idx in range(len(self.convs1)):
|
|
153
|
+
xt = self.activations1[idx](x)
|
|
154
|
+
xt = self.convs1[idx](xt)
|
|
155
|
+
xt = self.activations2[idx](xt)
|
|
156
|
+
xt = self.convs2[idx](xt)
|
|
157
|
+
x = xt + x
|
|
158
|
+
return x
|
|
159
|
+
|
|
160
|
+
def remove_weight_norm(self):
|
|
161
|
+
for idx in range(len(self.convs1)):
|
|
162
|
+
remove_weight_norm(self.convs1[idx])
|
|
163
|
+
remove_weight_norm(self.convs2[idx])
|
|
164
|
+
|
|
165
|
+
class SineGen(torch.nn.Module):
|
|
166
|
+
""" Definition of sine generator
|
|
167
|
+
SineGen(samp_rate, harmonic_num = 0,
|
|
168
|
+
sine_amp = 0.1, noise_std = 0.003,
|
|
169
|
+
voiced_threshold = 0,
|
|
170
|
+
flag_for_pulse=False)
|
|
171
|
+
samp_rate: sampling rate in Hz
|
|
172
|
+
harmonic_num: number of harmonic overtones (default 0)
|
|
173
|
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
|
174
|
+
noise_std: std of Gaussian noise (default 0.003)
|
|
175
|
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
|
176
|
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
|
177
|
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
|
178
|
+
segment is always sin(np.pi) or cos(0)
|
|
179
|
+
"""
|
|
180
|
+
|
|
181
|
+
def __init__(self, samp_rate, harmonic_num=0,
|
|
182
|
+
sine_amp=0.1, noise_std=0.003,
|
|
183
|
+
voiced_threshold=0):
|
|
184
|
+
super(SineGen, self).__init__()
|
|
185
|
+
self.sine_amp = sine_amp
|
|
186
|
+
self.noise_std = noise_std
|
|
187
|
+
self.harmonic_num = harmonic_num
|
|
188
|
+
self.sampling_rate = samp_rate
|
|
189
|
+
self.voiced_threshold = voiced_threshold
|
|
190
|
+
|
|
191
|
+
def _f02uv(self, f0):
|
|
192
|
+
# generate uv signal
|
|
193
|
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
|
194
|
+
return uv
|
|
195
|
+
|
|
196
|
+
@torch.no_grad()
|
|
197
|
+
def forward(self, f0):
|
|
198
|
+
"""
|
|
199
|
+
:param f0: [B, 1, sample_len], Hz
|
|
200
|
+
:return: [B, 1, sample_len]
|
|
201
|
+
"""
|
|
202
|
+
|
|
203
|
+
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
|
204
|
+
for i in range(self.harmonic_num + 1):
|
|
205
|
+
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
|
206
|
+
|
|
207
|
+
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
|
208
|
+
u_dist = Uniform(low=-np.pi, high=np.pi)
|
|
209
|
+
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
|
210
|
+
phase_vec[:, 0, :] = 0
|
|
211
|
+
|
|
212
|
+
# generate sine waveforms
|
|
213
|
+
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
|
214
|
+
|
|
215
|
+
# generate uv signal
|
|
216
|
+
uv = self._f02uv(f0)
|
|
217
|
+
|
|
218
|
+
# noise: for unvoiced should be similar to sine_amp
|
|
219
|
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
|
220
|
+
# . for voiced regions is self.noise_std
|
|
221
|
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
|
222
|
+
noise = noise_amp * torch.randn_like(sine_waves)
|
|
223
|
+
|
|
224
|
+
# first: set the unvoiced part to 0 by uv
|
|
225
|
+
# then: additive noise
|
|
226
|
+
sine_waves = sine_waves * uv + noise
|
|
227
|
+
return sine_waves, uv, noise
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
class SourceModuleHnNSF(torch.nn.Module):
|
|
231
|
+
""" SourceModule for hn-nsf
|
|
232
|
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
|
233
|
+
add_noise_std=0.003, voiced_threshod=0)
|
|
234
|
+
sampling_rate: sampling_rate in Hz
|
|
235
|
+
harmonic_num: number of harmonic above F0 (default: 0)
|
|
236
|
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
|
237
|
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
|
238
|
+
note that amplitude of noise in unvoiced is decided
|
|
239
|
+
by sine_amp
|
|
240
|
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
|
241
|
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
|
242
|
+
F0_sampled (batchsize, length, 1)
|
|
243
|
+
Sine_source (batchsize, length, 1)
|
|
244
|
+
noise_source (batchsize, length 1)
|
|
245
|
+
uv (batchsize, length, 1)
|
|
246
|
+
"""
|
|
247
|
+
|
|
248
|
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
|
249
|
+
add_noise_std=0.003, voiced_threshod=0):
|
|
250
|
+
super(SourceModuleHnNSF, self).__init__()
|
|
251
|
+
|
|
252
|
+
self.sine_amp = sine_amp
|
|
253
|
+
self.noise_std = add_noise_std
|
|
254
|
+
|
|
255
|
+
# to produce sine waveforms
|
|
256
|
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
|
257
|
+
sine_amp, add_noise_std, voiced_threshod)
|
|
258
|
+
|
|
259
|
+
# to merge source harmonics into a single excitation
|
|
260
|
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
|
261
|
+
self.l_tanh = torch.nn.Tanh()
|
|
262
|
+
|
|
263
|
+
def forward(self, x):
|
|
264
|
+
"""
|
|
265
|
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
|
266
|
+
F0_sampled (batchsize, length, 1)
|
|
267
|
+
Sine_source (batchsize, length, 1)
|
|
268
|
+
noise_source (batchsize, length 1)
|
|
269
|
+
"""
|
|
270
|
+
# source for harmonic branch
|
|
271
|
+
with torch.no_grad():
|
|
272
|
+
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
|
273
|
+
sine_wavs = sine_wavs.transpose(1, 2)
|
|
274
|
+
uv = uv.transpose(1, 2)
|
|
275
|
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
|
276
|
+
|
|
277
|
+
# source for noise branch, in the same shape as uv
|
|
278
|
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
|
279
|
+
return sine_merge, noise, uv
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
class HiFTGenerator(nn.Module):
|
|
283
|
+
"""
|
|
284
|
+
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
|
285
|
+
https://arxiv.org/abs/2309.09493
|
|
286
|
+
"""
|
|
287
|
+
def __init__(
|
|
288
|
+
self,
|
|
289
|
+
in_channels: int = 80,
|
|
290
|
+
base_channels: int = 512,
|
|
291
|
+
nb_harmonics: int = 8,
|
|
292
|
+
sampling_rate: int = 22050,
|
|
293
|
+
nsf_alpha: float = 0.1,
|
|
294
|
+
nsf_sigma: float = 0.003,
|
|
295
|
+
nsf_voiced_threshold: float = 10,
|
|
296
|
+
upsample_rates: tp.List[int] = [8, 8],
|
|
297
|
+
upsample_kernel_sizes: tp.List[int] = [16, 16],
|
|
298
|
+
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
|
299
|
+
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
|
|
300
|
+
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
|
301
|
+
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
|
|
302
|
+
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
|
|
303
|
+
lrelu_slope: float = 0.1,
|
|
304
|
+
audio_limit: float = 0.99,
|
|
305
|
+
f0_predictor: torch.nn.Module = None,
|
|
306
|
+
):
|
|
307
|
+
super(HiFTGenerator, self).__init__()
|
|
308
|
+
|
|
309
|
+
self.out_channels = 1
|
|
310
|
+
self.nb_harmonics = nb_harmonics
|
|
311
|
+
self.sampling_rate = sampling_rate
|
|
312
|
+
self.istft_params = istft_params
|
|
313
|
+
self.lrelu_slope = lrelu_slope
|
|
314
|
+
self.audio_limit = audio_limit
|
|
315
|
+
|
|
316
|
+
self.num_kernels = len(resblock_kernel_sizes)
|
|
317
|
+
self.num_upsamples = len(upsample_rates)
|
|
318
|
+
self.m_source = SourceModuleHnNSF(
|
|
319
|
+
sampling_rate=sampling_rate,
|
|
320
|
+
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
|
321
|
+
harmonic_num=nb_harmonics,
|
|
322
|
+
sine_amp=nsf_alpha,
|
|
323
|
+
add_noise_std=nsf_sigma,
|
|
324
|
+
voiced_threshod=nsf_voiced_threshold)
|
|
325
|
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
|
326
|
+
|
|
327
|
+
self.conv_pre = weight_norm(
|
|
328
|
+
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
|
329
|
+
)
|
|
330
|
+
|
|
331
|
+
# Up
|
|
332
|
+
self.ups = nn.ModuleList()
|
|
333
|
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
334
|
+
self.ups.append(
|
|
335
|
+
weight_norm(
|
|
336
|
+
ConvTranspose1d(
|
|
337
|
+
base_channels // (2**i),
|
|
338
|
+
base_channels // (2**(i + 1)),
|
|
339
|
+
k,
|
|
340
|
+
u,
|
|
341
|
+
padding=(k - u) // 2,
|
|
342
|
+
)
|
|
343
|
+
)
|
|
344
|
+
)
|
|
345
|
+
|
|
346
|
+
# Down
|
|
347
|
+
self.source_downs = nn.ModuleList()
|
|
348
|
+
self.source_resblocks = nn.ModuleList()
|
|
349
|
+
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
|
350
|
+
downsample_cum_rates = np.cumprod(downsample_rates)
|
|
351
|
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes,
|
|
352
|
+
source_resblock_dilation_sizes)):
|
|
353
|
+
if u == 1:
|
|
354
|
+
self.source_downs.append(
|
|
355
|
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
|
356
|
+
)
|
|
357
|
+
else:
|
|
358
|
+
self.source_downs.append(
|
|
359
|
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
|
360
|
+
)
|
|
361
|
+
|
|
362
|
+
self.source_resblocks.append(
|
|
363
|
+
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
|
364
|
+
)
|
|
365
|
+
|
|
366
|
+
self.resblocks = nn.ModuleList()
|
|
367
|
+
for i in range(len(self.ups)):
|
|
368
|
+
ch = base_channels // (2**(i + 1))
|
|
369
|
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
|
370
|
+
self.resblocks.append(ResBlock(ch, k, d))
|
|
371
|
+
|
|
372
|
+
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
|
373
|
+
self.ups.apply(init_weights)
|
|
374
|
+
self.conv_post.apply(init_weights)
|
|
375
|
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
|
376
|
+
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
|
377
|
+
self.f0_predictor = f0_predictor
|
|
378
|
+
|
|
379
|
+
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
|
|
380
|
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
|
381
|
+
|
|
382
|
+
har_source, _, _ = self.m_source(f0)
|
|
383
|
+
return har_source.transpose(1, 2)
|
|
384
|
+
|
|
385
|
+
def _stft(self, x):
|
|
386
|
+
spec = torch.stft(
|
|
387
|
+
x,
|
|
388
|
+
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
|
389
|
+
return_complex=True)
|
|
390
|
+
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
|
391
|
+
return spec[..., 0], spec[..., 1]
|
|
392
|
+
|
|
393
|
+
def _istft(self, magnitude, phase):
|
|
394
|
+
magnitude = torch.clip(magnitude, max=1e2)
|
|
395
|
+
real = magnitude * torch.cos(phase)
|
|
396
|
+
img = magnitude * torch.sin(phase)
|
|
397
|
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
|
398
|
+
return inverse_transform
|
|
399
|
+
|
|
400
|
+
def forward(self, x: torch.Tensor, f0=None) -> torch.Tensor:
|
|
401
|
+
if f0 is None:
|
|
402
|
+
f0 = self.f0_predictor(x)
|
|
403
|
+
s = self._f02source(f0)
|
|
404
|
+
|
|
405
|
+
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
|
406
|
+
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
|
407
|
+
|
|
408
|
+
x = self.conv_pre(x)
|
|
409
|
+
for i in range(self.num_upsamples):
|
|
410
|
+
x = F.leaky_relu(x, self.lrelu_slope)
|
|
411
|
+
x = self.ups[i](x)
|
|
412
|
+
|
|
413
|
+
if i == self.num_upsamples - 1:
|
|
414
|
+
x = self.reflection_pad(x)
|
|
415
|
+
|
|
416
|
+
# fusion
|
|
417
|
+
si = self.source_downs[i](s_stft)
|
|
418
|
+
si = self.source_resblocks[i](si)
|
|
419
|
+
x = x + si
|
|
420
|
+
|
|
421
|
+
xs = None
|
|
422
|
+
for j in range(self.num_kernels):
|
|
423
|
+
if xs is None:
|
|
424
|
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
|
425
|
+
else:
|
|
426
|
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
|
427
|
+
x = xs / self.num_kernels
|
|
428
|
+
|
|
429
|
+
x = F.leaky_relu(x)
|
|
430
|
+
x = self.conv_post(x)
|
|
431
|
+
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
|
432
|
+
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
|
433
|
+
|
|
434
|
+
x = self._istft(magnitude, phase)
|
|
435
|
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
|
436
|
+
return x
|
|
437
|
+
|
|
438
|
+
def remove_weight_norm(self):
|
|
439
|
+
print('Removing weight norm...')
|
|
440
|
+
for l in self.ups:
|
|
441
|
+
remove_weight_norm(l)
|
|
442
|
+
for l in self.resblocks:
|
|
443
|
+
l.remove_weight_norm()
|
|
444
|
+
remove_weight_norm(self.conv_pre)
|
|
445
|
+
remove_weight_norm(self.conv_post)
|
|
446
|
+
self.source_module.remove_weight_norm()
|
|
447
|
+
for l in self.source_downs:
|
|
448
|
+
remove_weight_norm(l)
|
|
449
|
+
for l in self.source_resblocks:
|
|
450
|
+
l.remove_weight_norm()
|
|
451
|
+
|
|
452
|
+
@torch.inference_mode()
|
|
453
|
+
def inference(self, mel: torch.Tensor, f0=None) -> torch.Tensor:
|
|
454
|
+
return self.forward(x=mel, f0=f0)
|