xinference 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (328) hide show
  1. xinference/_version.py +3 -3
  2. xinference/api/restful_api.py +473 -31
  3. xinference/client/restful/async_restful_client.py +178 -8
  4. xinference/client/restful/restful_client.py +151 -3
  5. xinference/core/supervisor.py +99 -53
  6. xinference/core/worker.py +10 -0
  7. xinference/deploy/cmdline.py +15 -0
  8. xinference/model/audio/core.py +21 -6
  9. xinference/model/audio/indextts2.py +166 -0
  10. xinference/model/audio/model_spec.json +58 -21
  11. xinference/model/image/model_spec.json +159 -90
  12. xinference/model/image/stable_diffusion/core.py +13 -4
  13. xinference/model/llm/__init__.py +6 -2
  14. xinference/model/llm/llm_family.json +1299 -174
  15. xinference/model/llm/mlx/distributed_models/core.py +41 -0
  16. xinference/model/llm/mlx/distributed_models/qwen2.py +1 -2
  17. xinference/model/llm/sglang/core.py +44 -11
  18. xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
  19. xinference/model/llm/tool_parsers/qwen_tool_parser.py +29 -4
  20. xinference/model/llm/transformers/chatglm.py +3 -0
  21. xinference/model/llm/transformers/core.py +129 -36
  22. xinference/model/llm/transformers/multimodal/minicpmv45.py +340 -0
  23. xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
  24. xinference/model/llm/transformers/utils.py +23 -0
  25. xinference/model/llm/utils.py +48 -32
  26. xinference/model/llm/vllm/core.py +207 -72
  27. xinference/model/utils.py +74 -31
  28. xinference/thirdparty/audiotools/__init__.py +10 -0
  29. xinference/thirdparty/audiotools/core/__init__.py +4 -0
  30. xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
  31. xinference/thirdparty/audiotools/core/display.py +194 -0
  32. xinference/thirdparty/audiotools/core/dsp.py +390 -0
  33. xinference/thirdparty/audiotools/core/effects.py +647 -0
  34. xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
  35. xinference/thirdparty/audiotools/core/loudness.py +320 -0
  36. xinference/thirdparty/audiotools/core/playback.py +252 -0
  37. xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
  38. xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
  39. xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
  40. xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
  41. xinference/thirdparty/audiotools/core/util.py +671 -0
  42. xinference/thirdparty/audiotools/core/whisper.py +97 -0
  43. xinference/thirdparty/audiotools/data/__init__.py +3 -0
  44. xinference/thirdparty/audiotools/data/datasets.py +517 -0
  45. xinference/thirdparty/audiotools/data/preprocess.py +81 -0
  46. xinference/thirdparty/audiotools/data/transforms.py +1592 -0
  47. xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
  48. xinference/thirdparty/audiotools/metrics/distance.py +131 -0
  49. xinference/thirdparty/audiotools/metrics/quality.py +159 -0
  50. xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
  51. xinference/thirdparty/audiotools/ml/__init__.py +5 -0
  52. xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
  53. xinference/thirdparty/audiotools/ml/decorators.py +440 -0
  54. xinference/thirdparty/audiotools/ml/experiment.py +90 -0
  55. xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
  56. xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
  57. xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
  58. xinference/thirdparty/audiotools/post.py +140 -0
  59. xinference/thirdparty/audiotools/preference.py +600 -0
  60. xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +1 -1
  61. xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
  62. xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
  63. xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
  64. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
  65. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
  66. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
  67. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
  68. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  69. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
  70. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
  71. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
  72. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
  73. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
  74. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
  75. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
  76. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
  77. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
  78. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
  79. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
  80. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
  81. xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
  82. xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
  83. xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
  84. xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
  85. xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
  86. xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
  87. xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
  88. xinference/thirdparty/indextts/__init__.py +0 -0
  89. xinference/thirdparty/indextts/cli.py +65 -0
  90. xinference/thirdparty/indextts/gpt/__init__.py +0 -0
  91. xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
  92. xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
  93. xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
  94. xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
  95. xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
  96. xinference/thirdparty/indextts/gpt/model.py +713 -0
  97. xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
  98. xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
  99. xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
  100. xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
  101. xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
  102. xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
  103. xinference/thirdparty/indextts/infer.py +690 -0
  104. xinference/thirdparty/indextts/infer_v2.py +739 -0
  105. xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
  106. xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
  107. xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
  108. xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
  109. xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
  110. xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
  111. xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
  112. xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
  113. xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
  114. xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
  115. xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
  116. xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
  117. xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
  118. xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
  119. xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
  120. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
  121. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
  122. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
  123. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
  124. xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
  125. xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
  126. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
  127. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
  128. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  129. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
  130. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
  131. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
  132. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
  133. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
  134. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
  135. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
  136. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
  137. xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
  138. xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
  139. xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
  140. xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
  141. xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
  142. xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
  143. xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
  144. xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
  145. xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
  146. xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
  147. xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
  148. xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
  149. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
  150. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
  151. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
  152. xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
  153. xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
  154. xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
  155. xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
  156. xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
  157. xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
  158. xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
  159. xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
  160. xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
  161. xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
  162. xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
  163. xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
  164. xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
  165. xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
  166. xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
  167. xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
  168. xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
  169. xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
  170. xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
  171. xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
  172. xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
  173. xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
  174. xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
  175. xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
  176. xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
  177. xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
  178. xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
  179. xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
  180. xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
  181. xinference/thirdparty/indextts/utils/__init__.py +0 -0
  182. xinference/thirdparty/indextts/utils/arch_util.py +120 -0
  183. xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
  184. xinference/thirdparty/indextts/utils/common.py +121 -0
  185. xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
  186. xinference/thirdparty/indextts/utils/front.py +536 -0
  187. xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
  188. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
  189. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
  190. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
  191. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
  192. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
  193. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
  194. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
  195. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
  196. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
  197. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
  198. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
  199. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
  200. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
  201. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
  202. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
  203. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
  204. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
  205. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
  206. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
  207. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
  208. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
  209. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
  210. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
  211. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
  212. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
  213. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
  214. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
  215. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
  216. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
  217. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
  218. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
  219. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
  220. xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
  221. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
  222. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
  223. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
  224. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
  225. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
  226. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
  227. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
  228. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
  229. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
  230. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
  231. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
  232. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
  233. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
  234. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
  235. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
  236. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
  237. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
  238. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
  239. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
  240. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
  241. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
  242. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
  243. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
  244. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
  245. xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
  246. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
  247. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
  248. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
  249. xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
  250. xinference/thirdparty/indextts/utils/text_utils.py +41 -0
  251. xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
  252. xinference/thirdparty/indextts/utils/utils.py +93 -0
  253. xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
  254. xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
  255. xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
  256. xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
  257. xinference/thirdparty/melo/text/chinese_mix.py +2 -2
  258. xinference/types.py +9 -0
  259. xinference/ui/gradio/media_interface.py +66 -8
  260. xinference/ui/web/ui/build/asset-manifest.json +6 -6
  261. xinference/ui/web/ui/build/index.html +1 -1
  262. xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
  263. xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
  264. xinference/ui/web/ui/build/static/js/main.45e78536.js +3 -0
  265. xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.45e78536.js.LICENSE.txt} +0 -7
  266. xinference/ui/web/ui/build/static/js/main.45e78536.js.map +1 -0
  267. xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
  268. xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
  269. xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
  270. xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
  271. xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
  272. xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
  273. xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
  274. xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
  275. xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
  276. xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
  277. xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
  278. xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
  279. xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
  280. xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
  281. xinference/ui/web/ui/node_modules/.cache/babel-loader/ea2a26361204e70cf1018d6990fb6354bed82b3ac69690391e0f100385e7abb7.json +1 -0
  282. xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
  283. xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
  284. xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
  285. xinference/ui/web/ui/package-lock.json +0 -34
  286. xinference/ui/web/ui/package.json +0 -1
  287. xinference/ui/web/ui/src/locales/en.json +9 -3
  288. xinference/ui/web/ui/src/locales/ja.json +9 -3
  289. xinference/ui/web/ui/src/locales/ko.json +9 -3
  290. xinference/ui/web/ui/src/locales/zh.json +9 -3
  291. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/METADATA +24 -6
  292. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/RECORD +296 -77
  293. xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
  294. xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
  295. xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
  296. xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
  297. xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
  298. xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
  299. xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
  300. xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
  301. xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
  302. xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
  303. xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
  304. xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
  305. xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
  306. xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
  307. xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
  308. xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
  309. xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
  310. xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
  311. xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
  312. xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
  313. xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
  314. xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
  315. xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
  316. xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
  317. xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
  318. xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
  319. xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
  320. xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
  321. xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
  322. xinference/ui/web/ui/node_modules/select/bower.json +0 -13
  323. xinference/ui/web/ui/node_modules/select/package.json +0 -29
  324. xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
  325. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/WHEEL +0 -0
  326. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/entry_points.txt +0 -0
  327. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/licenses/LICENSE +0 -0
  328. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,631 @@
1
+ from io import BytesIO
2
+ import os
3
+ from typing import List, Optional, Tuple
4
+ import numpy as np
5
+ import torch
6
+
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+ from librosa.util import normalize, pad_center, tiny
10
+ from scipy.signal import get_window
11
+
12
+ import logging
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+
17
+ class STFT(torch.nn.Module):
18
+ def __init__(
19
+ self, filter_length=1024, hop_length=512, win_length=None, window="hann"
20
+ ):
21
+ """
22
+ This module implements an STFT using 1D convolution and 1D transpose convolutions.
23
+ This is a bit tricky so there are some cases that probably won't work as working
24
+ out the same sizes before and after in all overlap add setups is tough. Right now,
25
+ this code should work with hop lengths that are half the filter length (50% overlap
26
+ between frames).
27
+
28
+ Keyword Arguments:
29
+ filter_length {int} -- Length of filters used (default: {1024})
30
+ hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
31
+ win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
32
+ equals the filter length). (default: {None})
33
+ window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
34
+ (default: {'hann'})
35
+ """
36
+ super(STFT, self).__init__()
37
+ self.filter_length = filter_length
38
+ self.hop_length = hop_length
39
+ self.win_length = win_length if win_length else filter_length
40
+ self.window = window
41
+ self.forward_transform = None
42
+ self.pad_amount = int(self.filter_length / 2)
43
+ fourier_basis = np.fft.fft(np.eye(self.filter_length))
44
+
45
+ cutoff = int((self.filter_length / 2 + 1))
46
+ fourier_basis = np.vstack(
47
+ [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
48
+ )
49
+ forward_basis = torch.FloatTensor(fourier_basis)
50
+ inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis))
51
+
52
+ assert filter_length >= self.win_length
53
+ # get window and zero center pad it to filter_length
54
+ fft_window = get_window(window, self.win_length, fftbins=True)
55
+ fft_window = pad_center(fft_window, size=filter_length)
56
+ fft_window = torch.from_numpy(fft_window).float()
57
+
58
+ # window the bases
59
+ forward_basis *= fft_window
60
+ inverse_basis = (inverse_basis.T * fft_window).T
61
+
62
+ self.register_buffer("forward_basis", forward_basis.float())
63
+ self.register_buffer("inverse_basis", inverse_basis.float())
64
+ self.register_buffer("fft_window", fft_window.float())
65
+
66
+ def transform(self, input_data, return_phase=False):
67
+ """Take input data (audio) to STFT domain.
68
+
69
+ Arguments:
70
+ input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
71
+
72
+ Returns:
73
+ magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
74
+ num_frequencies, num_frames)
75
+ phase {tensor} -- Phase of STFT with shape (num_batch,
76
+ num_frequencies, num_frames)
77
+ """
78
+ input_data = F.pad(
79
+ input_data,
80
+ (self.pad_amount, self.pad_amount),
81
+ mode="reflect",
82
+ )
83
+ forward_transform = input_data.unfold(
84
+ 1, self.filter_length, self.hop_length
85
+ ).permute(0, 2, 1)
86
+ forward_transform = torch.matmul(self.forward_basis, forward_transform)
87
+ cutoff = int((self.filter_length / 2) + 1)
88
+ real_part = forward_transform[:, :cutoff, :]
89
+ imag_part = forward_transform[:, cutoff:, :]
90
+ magnitude = torch.sqrt(real_part**2 + imag_part**2)
91
+ if return_phase:
92
+ phase = torch.atan2(imag_part.data, real_part.data)
93
+ return magnitude, phase
94
+ else:
95
+ return magnitude
96
+
97
+ def inverse(self, magnitude, phase):
98
+ """Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
99
+ by the ```transform``` function.
100
+
101
+ Arguments:
102
+ magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
103
+ num_frequencies, num_frames)
104
+ phase {tensor} -- Phase of STFT with shape (num_batch,
105
+ num_frequencies, num_frames)
106
+
107
+ Returns:
108
+ inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
109
+ shape (num_batch, num_samples)
110
+ """
111
+ cat = torch.cat(
112
+ [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
113
+ )
114
+ fold = torch.nn.Fold(
115
+ output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
116
+ kernel_size=(1, self.filter_length),
117
+ stride=(1, self.hop_length),
118
+ )
119
+ inverse_transform = torch.matmul(self.inverse_basis, cat)
120
+ inverse_transform = fold(inverse_transform)[
121
+ :, 0, 0, self.pad_amount : -self.pad_amount
122
+ ]
123
+ window_square_sum = (
124
+ self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
125
+ )
126
+ window_square_sum = fold(window_square_sum)[
127
+ :, 0, 0, self.pad_amount : -self.pad_amount
128
+ ]
129
+ inverse_transform /= window_square_sum
130
+ return inverse_transform
131
+
132
+ def forward(self, input_data):
133
+ """Take input data (audio) to STFT domain and then back to audio.
134
+
135
+ Arguments:
136
+ input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
137
+
138
+ Returns:
139
+ reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
140
+ shape (num_batch, num_samples)
141
+ """
142
+ self.magnitude, self.phase = self.transform(input_data, return_phase=True)
143
+ reconstruction = self.inverse(self.magnitude, self.phase)
144
+ return reconstruction
145
+
146
+
147
+ from time import time as ttime
148
+
149
+
150
+ class BiGRU(nn.Module):
151
+ def __init__(self, input_features, hidden_features, num_layers):
152
+ super(BiGRU, self).__init__()
153
+ self.gru = nn.GRU(
154
+ input_features,
155
+ hidden_features,
156
+ num_layers=num_layers,
157
+ batch_first=True,
158
+ bidirectional=True,
159
+ )
160
+
161
+ def forward(self, x):
162
+ return self.gru(x)[0]
163
+
164
+
165
+ class ConvBlockRes(nn.Module):
166
+ def __init__(self, in_channels, out_channels, momentum=0.01):
167
+ super(ConvBlockRes, self).__init__()
168
+ self.conv = nn.Sequential(
169
+ nn.Conv2d(
170
+ in_channels=in_channels,
171
+ out_channels=out_channels,
172
+ kernel_size=(3, 3),
173
+ stride=(1, 1),
174
+ padding=(1, 1),
175
+ bias=False,
176
+ ),
177
+ nn.BatchNorm2d(out_channels, momentum=momentum),
178
+ nn.ReLU(),
179
+ nn.Conv2d(
180
+ in_channels=out_channels,
181
+ out_channels=out_channels,
182
+ kernel_size=(3, 3),
183
+ stride=(1, 1),
184
+ padding=(1, 1),
185
+ bias=False,
186
+ ),
187
+ nn.BatchNorm2d(out_channels, momentum=momentum),
188
+ nn.ReLU(),
189
+ )
190
+ # self.shortcut:Optional[nn.Module] = None
191
+ if in_channels != out_channels:
192
+ self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
193
+
194
+ def forward(self, x: torch.Tensor):
195
+ if not hasattr(self, "shortcut"):
196
+ return self.conv(x) + x
197
+ else:
198
+ return self.conv(x) + self.shortcut(x)
199
+
200
+
201
+ class Encoder(nn.Module):
202
+ def __init__(
203
+ self,
204
+ in_channels,
205
+ in_size,
206
+ n_encoders,
207
+ kernel_size,
208
+ n_blocks,
209
+ out_channels=16,
210
+ momentum=0.01,
211
+ ):
212
+ super(Encoder, self).__init__()
213
+ self.n_encoders = n_encoders
214
+ self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
215
+ self.layers = nn.ModuleList()
216
+ self.latent_channels = []
217
+ for i in range(self.n_encoders):
218
+ self.layers.append(
219
+ ResEncoderBlock(
220
+ in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
221
+ )
222
+ )
223
+ self.latent_channels.append([out_channels, in_size])
224
+ in_channels = out_channels
225
+ out_channels *= 2
226
+ in_size //= 2
227
+ self.out_size = in_size
228
+ self.out_channel = out_channels
229
+
230
+ def forward(self, x: torch.Tensor):
231
+ concat_tensors: List[torch.Tensor] = []
232
+ x = self.bn(x)
233
+ for i, layer in enumerate(self.layers):
234
+ t, x = layer(x)
235
+ concat_tensors.append(t)
236
+ return x, concat_tensors
237
+
238
+
239
+ class ResEncoderBlock(nn.Module):
240
+ def __init__(
241
+ self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
242
+ ):
243
+ super(ResEncoderBlock, self).__init__()
244
+ self.n_blocks = n_blocks
245
+ self.conv = nn.ModuleList()
246
+ self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
247
+ for i in range(n_blocks - 1):
248
+ self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
249
+ self.kernel_size = kernel_size
250
+ if self.kernel_size is not None:
251
+ self.pool = nn.AvgPool2d(kernel_size=kernel_size)
252
+
253
+ def forward(self, x):
254
+ for i, conv in enumerate(self.conv):
255
+ x = conv(x)
256
+ if self.kernel_size is not None:
257
+ return x, self.pool(x)
258
+ else:
259
+ return x
260
+
261
+
262
+ class Intermediate(nn.Module): #
263
+ def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
264
+ super(Intermediate, self).__init__()
265
+ self.n_inters = n_inters
266
+ self.layers = nn.ModuleList()
267
+ self.layers.append(
268
+ ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
269
+ )
270
+ for i in range(self.n_inters - 1):
271
+ self.layers.append(
272
+ ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
273
+ )
274
+
275
+ def forward(self, x):
276
+ for i, layer in enumerate(self.layers):
277
+ x = layer(x)
278
+ return x
279
+
280
+
281
+ class ResDecoderBlock(nn.Module):
282
+ def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
283
+ super(ResDecoderBlock, self).__init__()
284
+ out_padding = (0, 1) if stride == (1, 2) else (1, 1)
285
+ self.n_blocks = n_blocks
286
+ self.conv1 = nn.Sequential(
287
+ nn.ConvTranspose2d(
288
+ in_channels=in_channels,
289
+ out_channels=out_channels,
290
+ kernel_size=(3, 3),
291
+ stride=stride,
292
+ padding=(1, 1),
293
+ output_padding=out_padding,
294
+ bias=False,
295
+ ),
296
+ nn.BatchNorm2d(out_channels, momentum=momentum),
297
+ nn.ReLU(),
298
+ )
299
+ self.conv2 = nn.ModuleList()
300
+ self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
301
+ for i in range(n_blocks - 1):
302
+ self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
303
+
304
+ def forward(self, x, concat_tensor):
305
+ x = self.conv1(x)
306
+ x = torch.cat((x, concat_tensor), dim=1)
307
+ for i, conv2 in enumerate(self.conv2):
308
+ x = conv2(x)
309
+ return x
310
+
311
+
312
+ class Decoder(nn.Module):
313
+ def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
314
+ super(Decoder, self).__init__()
315
+ self.layers = nn.ModuleList()
316
+ self.n_decoders = n_decoders
317
+ for i in range(self.n_decoders):
318
+ out_channels = in_channels // 2
319
+ self.layers.append(
320
+ ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
321
+ )
322
+ in_channels = out_channels
323
+
324
+ def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]):
325
+ for i, layer in enumerate(self.layers):
326
+ x = layer(x, concat_tensors[-1 - i])
327
+ return x
328
+
329
+
330
+ class DeepUnet(nn.Module):
331
+ def __init__(
332
+ self,
333
+ kernel_size,
334
+ n_blocks,
335
+ en_de_layers=5,
336
+ inter_layers=4,
337
+ in_channels=1,
338
+ en_out_channels=16,
339
+ ):
340
+ super(DeepUnet, self).__init__()
341
+ self.encoder = Encoder(
342
+ in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
343
+ )
344
+ self.intermediate = Intermediate(
345
+ self.encoder.out_channel // 2,
346
+ self.encoder.out_channel,
347
+ inter_layers,
348
+ n_blocks,
349
+ )
350
+ self.decoder = Decoder(
351
+ self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
352
+ )
353
+
354
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
355
+ x, concat_tensors = self.encoder(x)
356
+ x = self.intermediate(x)
357
+ x = self.decoder(x, concat_tensors)
358
+ return x
359
+
360
+
361
+ class E2E(nn.Module):
362
+ def __init__(
363
+ self,
364
+ n_blocks,
365
+ n_gru,
366
+ kernel_size,
367
+ en_de_layers=5,
368
+ inter_layers=4,
369
+ in_channels=1,
370
+ en_out_channels=16,
371
+ ):
372
+ super(E2E, self).__init__()
373
+ self.unet = DeepUnet(
374
+ kernel_size,
375
+ n_blocks,
376
+ en_de_layers,
377
+ inter_layers,
378
+ in_channels,
379
+ en_out_channels,
380
+ )
381
+ self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
382
+ if n_gru:
383
+ self.fc = nn.Sequential(
384
+ BiGRU(3 * 128, 256, n_gru),
385
+ nn.Linear(512, 360),
386
+ nn.Dropout(0.25),
387
+ nn.Sigmoid(),
388
+ )
389
+ else:
390
+ self.fc = nn.Sequential(
391
+ nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
392
+ )
393
+
394
+ def forward(self, mel):
395
+ # print(mel.shape)
396
+ mel = mel.transpose(-1, -2).unsqueeze(1)
397
+ x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
398
+ x = self.fc(x)
399
+ # print(x.shape)
400
+ return x
401
+
402
+
403
+ from librosa.filters import mel
404
+
405
+
406
+ class MelSpectrogram(torch.nn.Module):
407
+ def __init__(
408
+ self,
409
+ is_half,
410
+ n_mel_channels,
411
+ sampling_rate,
412
+ win_length,
413
+ hop_length,
414
+ n_fft=None,
415
+ mel_fmin=0,
416
+ mel_fmax=None,
417
+ clamp=1e-5,
418
+ ):
419
+ super().__init__()
420
+ n_fft = win_length if n_fft is None else n_fft
421
+ self.hann_window = {}
422
+ mel_basis = mel(
423
+ sr=sampling_rate,
424
+ n_fft=n_fft,
425
+ n_mels=n_mel_channels,
426
+ fmin=mel_fmin,
427
+ fmax=mel_fmax,
428
+ htk=True,
429
+ )
430
+ mel_basis = torch.from_numpy(mel_basis).float()
431
+ self.register_buffer("mel_basis", mel_basis)
432
+ self.n_fft = win_length if n_fft is None else n_fft
433
+ self.hop_length = hop_length
434
+ self.win_length = win_length
435
+ self.sampling_rate = sampling_rate
436
+ self.n_mel_channels = n_mel_channels
437
+ self.clamp = clamp
438
+ self.is_half = is_half
439
+
440
+ def forward(self, audio, keyshift=0, speed=1, center=True):
441
+ factor = 2 ** (keyshift / 12)
442
+ n_fft_new = int(np.round(self.n_fft * factor))
443
+ win_length_new = int(np.round(self.win_length * factor))
444
+ hop_length_new = int(np.round(self.hop_length * speed))
445
+ keyshift_key = str(keyshift) + "_" + str(audio.device)
446
+ if keyshift_key not in self.hann_window:
447
+ self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
448
+ audio.device
449
+ )
450
+ if "privateuseone" in str(audio.device):
451
+ if not hasattr(self, "stft"):
452
+ self.stft = STFT(
453
+ filter_length=n_fft_new,
454
+ hop_length=hop_length_new,
455
+ win_length=win_length_new,
456
+ window="hann",
457
+ ).to(audio.device)
458
+ magnitude = self.stft.transform(audio)
459
+ else:
460
+ fft = torch.stft(
461
+ audio,
462
+ n_fft=n_fft_new,
463
+ hop_length=hop_length_new,
464
+ win_length=win_length_new,
465
+ window=self.hann_window[keyshift_key],
466
+ center=center,
467
+ return_complex=True,
468
+ )
469
+ magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
470
+ if keyshift != 0:
471
+ size = self.n_fft // 2 + 1
472
+ resize = magnitude.size(1)
473
+ if resize < size:
474
+ magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
475
+ magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
476
+ mel_output = torch.matmul(self.mel_basis, magnitude)
477
+ if self.is_half == True:
478
+ mel_output = mel_output.half()
479
+ log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
480
+ return log_mel_spec
481
+
482
+
483
+ class RMVPE:
484
+ def __init__(self, model_path: str, is_half, device=None, use_jit=False):
485
+ self.resample_kernel = {}
486
+ self.resample_kernel = {}
487
+ self.is_half = is_half
488
+ if device is None:
489
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
490
+ self.device = device
491
+ self.mel_extractor = MelSpectrogram(
492
+ is_half, 128, 16000, 1024, 160, None, 30, 8000
493
+ ).to(device)
494
+ if "privateuseone" in str(device):
495
+ import onnxruntime as ort
496
+
497
+ ort_session = ort.InferenceSession(
498
+ "%s/rmvpe.onnx" % os.environ["rmvpe_root"],
499
+ providers=["DmlExecutionProvider"],
500
+ )
501
+ self.model = ort_session
502
+ else:
503
+ if str(self.device) == "cuda":
504
+ self.device = torch.device("cuda:0")
505
+
506
+ def get_default_model():
507
+ model = E2E(4, 1, (2, 2))
508
+ ckpt = torch.load(model_path, map_location="cpu")
509
+ model.load_state_dict(ckpt)
510
+ model.eval()
511
+ if is_half:
512
+ model = model.half()
513
+ else:
514
+ model = model.float()
515
+ return model
516
+
517
+ self.model = get_default_model()
518
+
519
+ self.model = self.model.to(device)
520
+ cents_mapping = 20 * np.arange(360) + 1997.3794084376191
521
+ self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
522
+
523
+ def mel2hidden(self, mel):
524
+ with torch.no_grad():
525
+ n_frames = mel.shape[-1]
526
+ n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
527
+ if n_pad > 0:
528
+ mel = F.pad(mel, (0, n_pad), mode="constant")
529
+ if "privateuseone" in str(self.device):
530
+ onnx_input_name = self.model.get_inputs()[0].name
531
+ onnx_outputs_names = self.model.get_outputs()[0].name
532
+ hidden = self.model.run(
533
+ [onnx_outputs_names],
534
+ input_feed={onnx_input_name: mel.cpu().numpy()},
535
+ )[0]
536
+ else:
537
+ mel = mel.half() if self.is_half else mel.float()
538
+ hidden = self.model(mel)
539
+ return hidden[:, :n_frames]
540
+
541
+ def decode(self, hidden, thred=0.03):
542
+ cents_pred = self.to_local_average_cents(hidden, thred=thred)
543
+ f0 = 10 * (2 ** (cents_pred / 1200))
544
+ f0[f0 == 10] = 0
545
+ # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
546
+ return f0
547
+
548
+ def infer_from_audio(self, audio, thred=0.03):
549
+ # torch.cuda.synchronize()
550
+ # t0 = ttime()
551
+ if not torch.is_tensor(audio):
552
+ audio = torch.from_numpy(audio)
553
+ mel = self.mel_extractor(
554
+ audio.float().to(self.device).unsqueeze(0), center=True
555
+ )
556
+ # print(123123123,mel.device.type)
557
+ # torch.cuda.synchronize()
558
+ # t1 = ttime()
559
+ hidden = self.mel2hidden(mel)
560
+ # torch.cuda.synchronize()
561
+ # t2 = ttime()
562
+ # print(234234,hidden.device.type)
563
+ if "privateuseone" not in str(self.device):
564
+ hidden = hidden.squeeze(0).cpu().numpy()
565
+ else:
566
+ hidden = hidden[0]
567
+ if self.is_half == True:
568
+ hidden = hidden.astype("float32")
569
+
570
+ f0 = self.decode(hidden, thred=thred)
571
+ # torch.cuda.synchronize()
572
+ # t3 = ttime()
573
+ # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
574
+ return f0
575
+ def infer_from_audio_batch(self, audio, thred=0.03):
576
+ # torch.cuda.synchronize()
577
+ # t0 = ttime()
578
+ if not torch.is_tensor(audio):
579
+ audio = torch.from_numpy(audio)
580
+ mel = self.mel_extractor(
581
+ audio.float().to(self.device), center=True
582
+ )
583
+ # print(123123123,mel.device.type)
584
+ # torch.cuda.synchronize()
585
+ # t1 = ttime()
586
+ hidden = self.mel2hidden(mel)
587
+ # torch.cuda.synchronize()
588
+ # t2 = ttime()
589
+ # print(234234,hidden.device.type)
590
+ if "privateuseone" not in str(self.device):
591
+ hidden = hidden.cpu().numpy()
592
+ else:
593
+ pass
594
+ if self.is_half == True:
595
+ hidden = hidden.astype("float32")
596
+
597
+ f0s = []
598
+ for bib in range(hidden.shape[0]):
599
+ f0s.append(self.decode(hidden[bib], thred=thred))
600
+ f0s = np.stack(f0s)
601
+ f0s = torch.from_numpy(f0s).to(self.device)
602
+ # torch.cuda.synchronize()
603
+ # t3 = ttime()
604
+ # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
605
+ return f0s
606
+
607
+ def to_local_average_cents(self, salience, thred=0.05):
608
+ # t0 = ttime()
609
+ center = np.argmax(salience, axis=1) # 帧长#index
610
+ salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
611
+ # t1 = ttime()
612
+ center += 4
613
+ todo_salience = []
614
+ todo_cents_mapping = []
615
+ starts = center - 4
616
+ ends = center + 5
617
+ for idx in range(salience.shape[0]):
618
+ todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
619
+ todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
620
+ # t2 = ttime()
621
+ todo_salience = np.array(todo_salience) # 帧长,9
622
+ todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
623
+ product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
624
+ weight_sum = np.sum(todo_salience, 1) # 帧长
625
+ devided = product_sum / weight_sum # 帧长
626
+ # t3 = ttime()
627
+ maxx = np.max(salience, axis=1) # 帧长
628
+ devided[maxx <= thred] = 0
629
+ # t4 = ttime()
630
+ # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
631
+ return devided
@@ -0,0 +1,4 @@
1
+ from .pretrained import Vocos
2
+
3
+
4
+ __version__ = "0.1.0"