xinference 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +473 -31
- xinference/client/restful/async_restful_client.py +178 -8
- xinference/client/restful/restful_client.py +151 -3
- xinference/core/supervisor.py +99 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +58 -21
- xinference/model/image/model_spec.json +159 -90
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1299 -174
- xinference/model/llm/mlx/distributed_models/core.py +41 -0
- xinference/model/llm/mlx/distributed_models/qwen2.py +1 -2
- xinference/model/llm/sglang/core.py +44 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/tool_parsers/qwen_tool_parser.py +29 -4
- xinference/model/llm/transformers/chatglm.py +3 -0
- xinference/model/llm/transformers/core.py +129 -36
- xinference/model/llm/transformers/multimodal/minicpmv45.py +340 -0
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/transformers/utils.py +23 -0
- xinference/model/llm/utils.py +48 -32
- xinference/model/llm/vllm/core.py +207 -72
- xinference/model/utils.py +74 -31
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +1 -1
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/thirdparty/melo/text/chinese_mix.py +2 -2
- xinference/types.py +9 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.45e78536.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.45e78536.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.45e78536.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ea2a26361204e70cf1018d6990fb6354bed82b3ac69690391e0f100385e7abb7.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/METADATA +24 -6
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/RECORD +296 -77
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,632 @@
|
|
|
1
|
+
import math
|
|
2
|
+
import numpy as np
|
|
3
|
+
import torch
|
|
4
|
+
from torch import nn
|
|
5
|
+
from torch.nn import functional as F
|
|
6
|
+
from munch import Munch
|
|
7
|
+
import json
|
|
8
|
+
import argparse
|
|
9
|
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
10
|
+
|
|
11
|
+
def str2bool(v):
|
|
12
|
+
if isinstance(v, bool):
|
|
13
|
+
return v
|
|
14
|
+
if v.lower() in ("yes", "true", "t", "y", "1"):
|
|
15
|
+
return True
|
|
16
|
+
elif v.lower() in ("no", "false", "f", "n", "0"):
|
|
17
|
+
return False
|
|
18
|
+
else:
|
|
19
|
+
raise argparse.ArgumentTypeError("Boolean value expected.")
|
|
20
|
+
|
|
21
|
+
class AttrDict(dict):
|
|
22
|
+
def __init__(self, *args, **kwargs):
|
|
23
|
+
super(AttrDict, self).__init__(*args, **kwargs)
|
|
24
|
+
self.__dict__ = self
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def init_weights(m, mean=0.0, std=0.01):
|
|
28
|
+
classname = m.__class__.__name__
|
|
29
|
+
if classname.find("Conv") != -1:
|
|
30
|
+
m.weight.data.normal_(mean, std)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def get_padding(kernel_size, dilation=1):
|
|
34
|
+
return int((kernel_size * dilation - dilation) / 2)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def convert_pad_shape(pad_shape):
|
|
38
|
+
l = pad_shape[::-1]
|
|
39
|
+
pad_shape = [item for sublist in l for item in sublist]
|
|
40
|
+
return pad_shape
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def intersperse(lst, item):
|
|
44
|
+
result = [item] * (len(lst) * 2 + 1)
|
|
45
|
+
result[1::2] = lst
|
|
46
|
+
return result
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
|
50
|
+
"""KL(P||Q)"""
|
|
51
|
+
kl = (logs_q - logs_p) - 0.5
|
|
52
|
+
kl += (
|
|
53
|
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
|
54
|
+
)
|
|
55
|
+
return kl
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def rand_gumbel(shape):
|
|
59
|
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
|
60
|
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
|
61
|
+
return -torch.log(-torch.log(uniform_samples))
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def rand_gumbel_like(x):
|
|
65
|
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
|
66
|
+
return g
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def slice_segments(x, ids_str, segment_size=4):
|
|
70
|
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
|
71
|
+
for i in range(x.size(0)):
|
|
72
|
+
idx_str = ids_str[i]
|
|
73
|
+
idx_end = idx_str + segment_size
|
|
74
|
+
ret[i] = x[i, :, idx_str:idx_end]
|
|
75
|
+
return ret
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def slice_segments_audio(x, ids_str, segment_size=4):
|
|
79
|
+
ret = torch.zeros_like(x[:, :segment_size])
|
|
80
|
+
for i in range(x.size(0)):
|
|
81
|
+
idx_str = ids_str[i]
|
|
82
|
+
idx_end = idx_str + segment_size
|
|
83
|
+
ret[i] = x[i, idx_str:idx_end]
|
|
84
|
+
return ret
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
|
88
|
+
b, d, t = x.size()
|
|
89
|
+
if x_lengths is None:
|
|
90
|
+
x_lengths = t
|
|
91
|
+
ids_str_max = x_lengths - segment_size + 1
|
|
92
|
+
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
|
|
93
|
+
dtype=torch.long
|
|
94
|
+
)
|
|
95
|
+
ret = slice_segments(x, ids_str, segment_size)
|
|
96
|
+
return ret, ids_str
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
|
100
|
+
position = torch.arange(length, dtype=torch.float)
|
|
101
|
+
num_timescales = channels // 2
|
|
102
|
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
|
103
|
+
num_timescales - 1
|
|
104
|
+
)
|
|
105
|
+
inv_timescales = min_timescale * torch.exp(
|
|
106
|
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
|
107
|
+
)
|
|
108
|
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
|
109
|
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
|
110
|
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
|
111
|
+
signal = signal.view(1, channels, length)
|
|
112
|
+
return signal
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
|
116
|
+
b, channels, length = x.size()
|
|
117
|
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
|
118
|
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
|
122
|
+
b, channels, length = x.size()
|
|
123
|
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
|
124
|
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def subsequent_mask(length):
|
|
128
|
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
|
129
|
+
return mask
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
@torch.jit.script
|
|
133
|
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
|
134
|
+
n_channels_int = n_channels[0]
|
|
135
|
+
in_act = input_a + input_b
|
|
136
|
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
|
137
|
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
|
138
|
+
acts = t_act * s_act
|
|
139
|
+
return acts
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def convert_pad_shape(pad_shape):
|
|
143
|
+
l = pad_shape[::-1]
|
|
144
|
+
pad_shape = [item for sublist in l for item in sublist]
|
|
145
|
+
return pad_shape
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
def shift_1d(x):
|
|
149
|
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
|
150
|
+
return x
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
def sequence_mask(length, max_length=None):
|
|
154
|
+
if max_length is None:
|
|
155
|
+
max_length = length.max()
|
|
156
|
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
|
157
|
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def avg_with_mask(x, mask):
|
|
161
|
+
assert mask.dtype == torch.float, "Mask should be float"
|
|
162
|
+
|
|
163
|
+
if mask.ndim == 2:
|
|
164
|
+
mask = mask.unsqueeze(1)
|
|
165
|
+
|
|
166
|
+
if mask.shape[1] == 1:
|
|
167
|
+
mask = mask.expand_as(x)
|
|
168
|
+
|
|
169
|
+
return (x * mask).sum() / mask.sum()
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
def generate_path(duration, mask):
|
|
173
|
+
"""
|
|
174
|
+
duration: [b, 1, t_x]
|
|
175
|
+
mask: [b, 1, t_y, t_x]
|
|
176
|
+
"""
|
|
177
|
+
device = duration.device
|
|
178
|
+
|
|
179
|
+
b, _, t_y, t_x = mask.shape
|
|
180
|
+
cum_duration = torch.cumsum(duration, -1)
|
|
181
|
+
|
|
182
|
+
cum_duration_flat = cum_duration.view(b * t_x)
|
|
183
|
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
|
184
|
+
path = path.view(b, t_x, t_y)
|
|
185
|
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
|
186
|
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
|
187
|
+
return path
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
|
191
|
+
if isinstance(parameters, torch.Tensor):
|
|
192
|
+
parameters = [parameters]
|
|
193
|
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
|
194
|
+
norm_type = float(norm_type)
|
|
195
|
+
if clip_value is not None:
|
|
196
|
+
clip_value = float(clip_value)
|
|
197
|
+
|
|
198
|
+
total_norm = 0
|
|
199
|
+
for p in parameters:
|
|
200
|
+
param_norm = p.grad.data.norm(norm_type)
|
|
201
|
+
total_norm += param_norm.item() ** norm_type
|
|
202
|
+
if clip_value is not None:
|
|
203
|
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
|
204
|
+
total_norm = total_norm ** (1.0 / norm_type)
|
|
205
|
+
return total_norm
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
def log_norm(x, mean=-4, std=4, dim=2):
|
|
209
|
+
"""
|
|
210
|
+
normalized log mel -> mel -> norm -> log(norm)
|
|
211
|
+
"""
|
|
212
|
+
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
|
|
213
|
+
return x
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def load_F0_models(path):
|
|
217
|
+
# load F0 model
|
|
218
|
+
from .JDC.model import JDCNet
|
|
219
|
+
|
|
220
|
+
F0_model = JDCNet(num_class=1, seq_len=192)
|
|
221
|
+
params = torch.load(path, map_location="cpu")["net"]
|
|
222
|
+
F0_model.load_state_dict(params)
|
|
223
|
+
_ = F0_model.train()
|
|
224
|
+
|
|
225
|
+
return F0_model
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
def modify_w2v_forward(self, output_layer=15):
|
|
229
|
+
"""
|
|
230
|
+
change forward method of w2v encoder to get its intermediate layer output
|
|
231
|
+
:param self:
|
|
232
|
+
:param layer:
|
|
233
|
+
:return:
|
|
234
|
+
"""
|
|
235
|
+
from transformers.modeling_outputs import BaseModelOutput
|
|
236
|
+
|
|
237
|
+
def forward(
|
|
238
|
+
hidden_states,
|
|
239
|
+
attention_mask=None,
|
|
240
|
+
output_attentions=False,
|
|
241
|
+
output_hidden_states=False,
|
|
242
|
+
return_dict=True,
|
|
243
|
+
):
|
|
244
|
+
all_hidden_states = () if output_hidden_states else None
|
|
245
|
+
all_self_attentions = () if output_attentions else None
|
|
246
|
+
|
|
247
|
+
conv_attention_mask = attention_mask
|
|
248
|
+
if attention_mask is not None:
|
|
249
|
+
# make sure padded tokens output 0
|
|
250
|
+
hidden_states = hidden_states.masked_fill(
|
|
251
|
+
~attention_mask.bool().unsqueeze(-1), 0.0
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
# extend attention_mask
|
|
255
|
+
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
|
|
256
|
+
dtype=hidden_states.dtype
|
|
257
|
+
)
|
|
258
|
+
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
|
259
|
+
attention_mask = attention_mask.expand(
|
|
260
|
+
attention_mask.shape[0],
|
|
261
|
+
1,
|
|
262
|
+
attention_mask.shape[-1],
|
|
263
|
+
attention_mask.shape[-1],
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
hidden_states = self.dropout(hidden_states)
|
|
267
|
+
|
|
268
|
+
if self.embed_positions is not None:
|
|
269
|
+
relative_position_embeddings = self.embed_positions(hidden_states)
|
|
270
|
+
else:
|
|
271
|
+
relative_position_embeddings = None
|
|
272
|
+
|
|
273
|
+
deepspeed_zero3_is_enabled = False
|
|
274
|
+
|
|
275
|
+
for i, layer in enumerate(self.layers):
|
|
276
|
+
if output_hidden_states:
|
|
277
|
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
278
|
+
|
|
279
|
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
280
|
+
dropout_probability = torch.rand([])
|
|
281
|
+
|
|
282
|
+
skip_the_layer = (
|
|
283
|
+
True
|
|
284
|
+
if self.training and (dropout_probability < self.config.layerdrop)
|
|
285
|
+
else False
|
|
286
|
+
)
|
|
287
|
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
|
288
|
+
# under deepspeed zero3 all gpus must run in sync
|
|
289
|
+
if self.gradient_checkpointing and self.training:
|
|
290
|
+
layer_outputs = self._gradient_checkpointing_func(
|
|
291
|
+
layer.__call__,
|
|
292
|
+
hidden_states,
|
|
293
|
+
attention_mask,
|
|
294
|
+
relative_position_embeddings,
|
|
295
|
+
output_attentions,
|
|
296
|
+
conv_attention_mask,
|
|
297
|
+
)
|
|
298
|
+
else:
|
|
299
|
+
layer_outputs = layer(
|
|
300
|
+
hidden_states,
|
|
301
|
+
attention_mask=attention_mask,
|
|
302
|
+
relative_position_embeddings=relative_position_embeddings,
|
|
303
|
+
output_attentions=output_attentions,
|
|
304
|
+
conv_attention_mask=conv_attention_mask,
|
|
305
|
+
)
|
|
306
|
+
hidden_states = layer_outputs[0]
|
|
307
|
+
|
|
308
|
+
if skip_the_layer:
|
|
309
|
+
layer_outputs = (None, None)
|
|
310
|
+
|
|
311
|
+
if output_attentions:
|
|
312
|
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
|
313
|
+
|
|
314
|
+
if i == output_layer - 1:
|
|
315
|
+
break
|
|
316
|
+
|
|
317
|
+
if output_hidden_states:
|
|
318
|
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
319
|
+
|
|
320
|
+
if not return_dict:
|
|
321
|
+
return tuple(
|
|
322
|
+
v
|
|
323
|
+
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
|
324
|
+
if v is not None
|
|
325
|
+
)
|
|
326
|
+
return BaseModelOutput(
|
|
327
|
+
last_hidden_state=hidden_states,
|
|
328
|
+
hidden_states=all_hidden_states,
|
|
329
|
+
attentions=all_self_attentions,
|
|
330
|
+
)
|
|
331
|
+
|
|
332
|
+
return forward
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
MATPLOTLIB_FLAG = False
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
def plot_spectrogram_to_numpy(spectrogram):
|
|
339
|
+
global MATPLOTLIB_FLAG
|
|
340
|
+
if not MATPLOTLIB_FLAG:
|
|
341
|
+
import matplotlib
|
|
342
|
+
import logging
|
|
343
|
+
|
|
344
|
+
matplotlib.use("Agg")
|
|
345
|
+
MATPLOTLIB_FLAG = True
|
|
346
|
+
mpl_logger = logging.getLogger("matplotlib")
|
|
347
|
+
mpl_logger.setLevel(logging.WARNING)
|
|
348
|
+
import matplotlib.pylab as plt
|
|
349
|
+
import numpy as np
|
|
350
|
+
|
|
351
|
+
fig, ax = plt.subplots(figsize=(10, 2))
|
|
352
|
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
353
|
+
plt.colorbar(im, ax=ax)
|
|
354
|
+
plt.xlabel("Frames")
|
|
355
|
+
plt.ylabel("Channels")
|
|
356
|
+
plt.tight_layout()
|
|
357
|
+
|
|
358
|
+
fig.canvas.draw()
|
|
359
|
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
360
|
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
361
|
+
plt.close()
|
|
362
|
+
return data
|
|
363
|
+
|
|
364
|
+
|
|
365
|
+
def normalize_f0(f0_sequence):
|
|
366
|
+
# Remove unvoiced frames (replace with -1)
|
|
367
|
+
voiced_indices = np.where(f0_sequence > 0)[0]
|
|
368
|
+
f0_voiced = f0_sequence[voiced_indices]
|
|
369
|
+
|
|
370
|
+
# Convert to log scale
|
|
371
|
+
log_f0 = np.log2(f0_voiced)
|
|
372
|
+
|
|
373
|
+
# Calculate mean and standard deviation
|
|
374
|
+
mean_f0 = np.mean(log_f0)
|
|
375
|
+
std_f0 = np.std(log_f0)
|
|
376
|
+
|
|
377
|
+
# Normalize the F0 sequence
|
|
378
|
+
normalized_f0 = (log_f0 - mean_f0) / std_f0
|
|
379
|
+
|
|
380
|
+
# Create the normalized F0 sequence with unvoiced frames
|
|
381
|
+
normalized_sequence = np.zeros_like(f0_sequence)
|
|
382
|
+
normalized_sequence[voiced_indices] = normalized_f0
|
|
383
|
+
normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames
|
|
384
|
+
|
|
385
|
+
return normalized_sequence
|
|
386
|
+
|
|
387
|
+
|
|
388
|
+
class MyModel(nn.Module):
|
|
389
|
+
def __init__(self,args, use_emovec=False, use_gpt_latent=False):
|
|
390
|
+
super(MyModel, self).__init__()
|
|
391
|
+
from indextts.s2mel.modules.flow_matching import CFM
|
|
392
|
+
from indextts.s2mel.modules.length_regulator import InterpolateRegulator
|
|
393
|
+
|
|
394
|
+
length_regulator = InterpolateRegulator(
|
|
395
|
+
channels=args.length_regulator.channels,
|
|
396
|
+
sampling_ratios=args.length_regulator.sampling_ratios,
|
|
397
|
+
is_discrete=args.length_regulator.is_discrete,
|
|
398
|
+
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
|
|
399
|
+
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
|
|
400
|
+
codebook_size=args.length_regulator.content_codebook_size,
|
|
401
|
+
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
|
|
402
|
+
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
|
|
403
|
+
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
|
|
404
|
+
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
|
|
405
|
+
)
|
|
406
|
+
|
|
407
|
+
if use_gpt_latent:
|
|
408
|
+
self.models = nn.ModuleDict({
|
|
409
|
+
'cfm': CFM(args),
|
|
410
|
+
'length_regulator': length_regulator,
|
|
411
|
+
'gpt_layer': torch.nn.Sequential(torch.nn.Linear(1280, 256), torch.nn.Linear(256, 128), torch.nn.Linear(128, 1024))
|
|
412
|
+
})
|
|
413
|
+
|
|
414
|
+
else:
|
|
415
|
+
self.models = nn.ModuleDict({
|
|
416
|
+
'cfm': CFM(args),
|
|
417
|
+
'length_regulator': length_regulator
|
|
418
|
+
})
|
|
419
|
+
|
|
420
|
+
def forward(self, x, target_lengths, prompt_len, cond, y):
|
|
421
|
+
x = self.models['cfm'](x, target_lengths, prompt_len, cond, y)
|
|
422
|
+
return x
|
|
423
|
+
|
|
424
|
+
def forward2(self, S_ori,target_lengths,F0_ori):
|
|
425
|
+
x = self.models['length_regulator'](S_ori, ylens=target_lengths, f0=F0_ori)
|
|
426
|
+
return x
|
|
427
|
+
|
|
428
|
+
def forward_emovec(self, x):
|
|
429
|
+
x = self.models['emo_layer'](x)
|
|
430
|
+
return x
|
|
431
|
+
|
|
432
|
+
def forward_emo_encoder(self, x):
|
|
433
|
+
x = self.models['emo_encoder'](x)
|
|
434
|
+
return x
|
|
435
|
+
|
|
436
|
+
def forward_gpt(self,x):
|
|
437
|
+
x = self.models['gpt_layer'](x)
|
|
438
|
+
return x
|
|
439
|
+
|
|
440
|
+
|
|
441
|
+
|
|
442
|
+
def build_model(args, stage="DiT"):
|
|
443
|
+
if stage == "DiT":
|
|
444
|
+
from modules.flow_matching import CFM
|
|
445
|
+
from modules.length_regulator import InterpolateRegulator
|
|
446
|
+
|
|
447
|
+
length_regulator = InterpolateRegulator(
|
|
448
|
+
channels=args.length_regulator.channels,
|
|
449
|
+
sampling_ratios=args.length_regulator.sampling_ratios,
|
|
450
|
+
is_discrete=args.length_regulator.is_discrete,
|
|
451
|
+
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
|
|
452
|
+
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
|
|
453
|
+
codebook_size=args.length_regulator.content_codebook_size,
|
|
454
|
+
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
|
|
455
|
+
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
|
|
456
|
+
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
|
|
457
|
+
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
|
|
458
|
+
)
|
|
459
|
+
cfm = CFM(args)
|
|
460
|
+
nets = Munch(
|
|
461
|
+
cfm=cfm,
|
|
462
|
+
length_regulator=length_regulator,
|
|
463
|
+
)
|
|
464
|
+
|
|
465
|
+
elif stage == 'codec':
|
|
466
|
+
from dac.model.dac import Encoder
|
|
467
|
+
from modules.quantize import (
|
|
468
|
+
FAquantizer,
|
|
469
|
+
)
|
|
470
|
+
|
|
471
|
+
encoder = Encoder(
|
|
472
|
+
d_model=args.DAC.encoder_dim,
|
|
473
|
+
strides=args.DAC.encoder_rates,
|
|
474
|
+
d_latent=1024,
|
|
475
|
+
causal=args.causal,
|
|
476
|
+
lstm=args.lstm,
|
|
477
|
+
)
|
|
478
|
+
|
|
479
|
+
quantizer = FAquantizer(
|
|
480
|
+
in_dim=1024,
|
|
481
|
+
n_p_codebooks=1,
|
|
482
|
+
n_c_codebooks=args.n_c_codebooks,
|
|
483
|
+
n_t_codebooks=2,
|
|
484
|
+
n_r_codebooks=3,
|
|
485
|
+
codebook_size=1024,
|
|
486
|
+
codebook_dim=8,
|
|
487
|
+
quantizer_dropout=0.5,
|
|
488
|
+
causal=args.causal,
|
|
489
|
+
separate_prosody_encoder=args.separate_prosody_encoder,
|
|
490
|
+
timbre_norm=args.timbre_norm,
|
|
491
|
+
)
|
|
492
|
+
|
|
493
|
+
nets = Munch(
|
|
494
|
+
encoder=encoder,
|
|
495
|
+
quantizer=quantizer,
|
|
496
|
+
)
|
|
497
|
+
|
|
498
|
+
elif stage == "mel_vocos":
|
|
499
|
+
from modules.vocos import Vocos
|
|
500
|
+
decoder = Vocos(args)
|
|
501
|
+
nets = Munch(
|
|
502
|
+
decoder=decoder,
|
|
503
|
+
)
|
|
504
|
+
|
|
505
|
+
else:
|
|
506
|
+
raise ValueError(f"Unknown stage: {stage}")
|
|
507
|
+
|
|
508
|
+
return nets
|
|
509
|
+
|
|
510
|
+
|
|
511
|
+
def load_checkpoint(
|
|
512
|
+
model,
|
|
513
|
+
optimizer,
|
|
514
|
+
path,
|
|
515
|
+
load_only_params=True,
|
|
516
|
+
ignore_modules=[],
|
|
517
|
+
is_distributed=False,
|
|
518
|
+
load_ema=False,
|
|
519
|
+
):
|
|
520
|
+
state = torch.load(path, map_location="cpu")
|
|
521
|
+
params = state["net"]
|
|
522
|
+
if load_ema and "ema" in state:
|
|
523
|
+
print("Loading EMA")
|
|
524
|
+
for key in model:
|
|
525
|
+
i = 0
|
|
526
|
+
for param_name in params[key]:
|
|
527
|
+
if "input_pos" in param_name:
|
|
528
|
+
continue
|
|
529
|
+
assert params[key][param_name].shape == state["ema"][key][0][i].shape
|
|
530
|
+
params[key][param_name] = state["ema"][key][0][i].clone()
|
|
531
|
+
i += 1
|
|
532
|
+
for key in model:
|
|
533
|
+
if key in params and key not in ignore_modules:
|
|
534
|
+
if not is_distributed:
|
|
535
|
+
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
|
|
536
|
+
for k in list(params[key].keys()):
|
|
537
|
+
if k.startswith("module."):
|
|
538
|
+
params[key][k[len("module.") :]] = params[key][k]
|
|
539
|
+
del params[key][k]
|
|
540
|
+
model_state_dict = model[key].state_dict()
|
|
541
|
+
# 过滤出形状匹配的键值对
|
|
542
|
+
filtered_state_dict = {
|
|
543
|
+
k: v
|
|
544
|
+
for k, v in params[key].items()
|
|
545
|
+
if k in model_state_dict and v.shape == model_state_dict[k].shape
|
|
546
|
+
}
|
|
547
|
+
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
|
|
548
|
+
if skipped_keys:
|
|
549
|
+
print(
|
|
550
|
+
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
|
|
551
|
+
)
|
|
552
|
+
print("%s loaded" % key)
|
|
553
|
+
model[key].load_state_dict(filtered_state_dict, strict=False)
|
|
554
|
+
_ = [model[key].eval() for key in model]
|
|
555
|
+
|
|
556
|
+
if not load_only_params:
|
|
557
|
+
epoch = state["epoch"] + 1
|
|
558
|
+
iters = state["iters"]
|
|
559
|
+
optimizer.load_state_dict(state["optimizer"])
|
|
560
|
+
optimizer.load_scheduler_state_dict(state["scheduler"])
|
|
561
|
+
|
|
562
|
+
else:
|
|
563
|
+
epoch = 0
|
|
564
|
+
iters = 0
|
|
565
|
+
|
|
566
|
+
return model, optimizer, epoch, iters
|
|
567
|
+
|
|
568
|
+
def load_checkpoint2(
|
|
569
|
+
model,
|
|
570
|
+
optimizer,
|
|
571
|
+
path,
|
|
572
|
+
load_only_params=True,
|
|
573
|
+
ignore_modules=[],
|
|
574
|
+
is_distributed=False,
|
|
575
|
+
load_ema=False,
|
|
576
|
+
):
|
|
577
|
+
state = torch.load(path, map_location="cpu")
|
|
578
|
+
params = state["net"]
|
|
579
|
+
if load_ema and "ema" in state:
|
|
580
|
+
print("Loading EMA")
|
|
581
|
+
for key in model.models:
|
|
582
|
+
i = 0
|
|
583
|
+
for param_name in params[key]:
|
|
584
|
+
if "input_pos" in param_name:
|
|
585
|
+
continue
|
|
586
|
+
assert params[key][param_name].shape == state["ema"][key][0][i].shape
|
|
587
|
+
params[key][param_name] = state["ema"][key][0][i].clone()
|
|
588
|
+
i += 1
|
|
589
|
+
for key in model.models:
|
|
590
|
+
if key in params and key not in ignore_modules:
|
|
591
|
+
if not is_distributed:
|
|
592
|
+
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
|
|
593
|
+
for k in list(params[key].keys()):
|
|
594
|
+
if k.startswith("module."):
|
|
595
|
+
params[key][k[len("module.") :]] = params[key][k]
|
|
596
|
+
del params[key][k]
|
|
597
|
+
model_state_dict = model.models[key].state_dict()
|
|
598
|
+
# 过滤出形状匹配的键值对
|
|
599
|
+
filtered_state_dict = {
|
|
600
|
+
k: v
|
|
601
|
+
for k, v in params[key].items()
|
|
602
|
+
if k in model_state_dict and v.shape == model_state_dict[k].shape
|
|
603
|
+
}
|
|
604
|
+
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
|
|
605
|
+
if skipped_keys:
|
|
606
|
+
print(
|
|
607
|
+
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
|
|
608
|
+
)
|
|
609
|
+
print("%s loaded" % key)
|
|
610
|
+
model.models[key].load_state_dict(filtered_state_dict, strict=False)
|
|
611
|
+
model.eval()
|
|
612
|
+
# _ = [model[key].eval() for key in model]
|
|
613
|
+
|
|
614
|
+
if not load_only_params:
|
|
615
|
+
epoch = state["epoch"] + 1
|
|
616
|
+
iters = state["iters"]
|
|
617
|
+
optimizer.load_state_dict(state["optimizer"])
|
|
618
|
+
optimizer.load_scheduler_state_dict(state["scheduler"])
|
|
619
|
+
|
|
620
|
+
else:
|
|
621
|
+
epoch = 0
|
|
622
|
+
iters = 0
|
|
623
|
+
|
|
624
|
+
return model, optimizer, epoch, iters
|
|
625
|
+
|
|
626
|
+
def recursive_munch(d):
|
|
627
|
+
if isinstance(d, dict):
|
|
628
|
+
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
|
629
|
+
elif isinstance(d, list):
|
|
630
|
+
return [recursive_munch(v) for v in d]
|
|
631
|
+
else:
|
|
632
|
+
return d
|