xinference 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (328) hide show
  1. xinference/_version.py +3 -3
  2. xinference/api/restful_api.py +473 -31
  3. xinference/client/restful/async_restful_client.py +178 -8
  4. xinference/client/restful/restful_client.py +151 -3
  5. xinference/core/supervisor.py +99 -53
  6. xinference/core/worker.py +10 -0
  7. xinference/deploy/cmdline.py +15 -0
  8. xinference/model/audio/core.py +21 -6
  9. xinference/model/audio/indextts2.py +166 -0
  10. xinference/model/audio/model_spec.json +58 -21
  11. xinference/model/image/model_spec.json +159 -90
  12. xinference/model/image/stable_diffusion/core.py +13 -4
  13. xinference/model/llm/__init__.py +6 -2
  14. xinference/model/llm/llm_family.json +1299 -174
  15. xinference/model/llm/mlx/distributed_models/core.py +41 -0
  16. xinference/model/llm/mlx/distributed_models/qwen2.py +1 -2
  17. xinference/model/llm/sglang/core.py +44 -11
  18. xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
  19. xinference/model/llm/tool_parsers/qwen_tool_parser.py +29 -4
  20. xinference/model/llm/transformers/chatglm.py +3 -0
  21. xinference/model/llm/transformers/core.py +129 -36
  22. xinference/model/llm/transformers/multimodal/minicpmv45.py +340 -0
  23. xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
  24. xinference/model/llm/transformers/utils.py +23 -0
  25. xinference/model/llm/utils.py +48 -32
  26. xinference/model/llm/vllm/core.py +207 -72
  27. xinference/model/utils.py +74 -31
  28. xinference/thirdparty/audiotools/__init__.py +10 -0
  29. xinference/thirdparty/audiotools/core/__init__.py +4 -0
  30. xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
  31. xinference/thirdparty/audiotools/core/display.py +194 -0
  32. xinference/thirdparty/audiotools/core/dsp.py +390 -0
  33. xinference/thirdparty/audiotools/core/effects.py +647 -0
  34. xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
  35. xinference/thirdparty/audiotools/core/loudness.py +320 -0
  36. xinference/thirdparty/audiotools/core/playback.py +252 -0
  37. xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
  38. xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
  39. xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
  40. xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
  41. xinference/thirdparty/audiotools/core/util.py +671 -0
  42. xinference/thirdparty/audiotools/core/whisper.py +97 -0
  43. xinference/thirdparty/audiotools/data/__init__.py +3 -0
  44. xinference/thirdparty/audiotools/data/datasets.py +517 -0
  45. xinference/thirdparty/audiotools/data/preprocess.py +81 -0
  46. xinference/thirdparty/audiotools/data/transforms.py +1592 -0
  47. xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
  48. xinference/thirdparty/audiotools/metrics/distance.py +131 -0
  49. xinference/thirdparty/audiotools/metrics/quality.py +159 -0
  50. xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
  51. xinference/thirdparty/audiotools/ml/__init__.py +5 -0
  52. xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
  53. xinference/thirdparty/audiotools/ml/decorators.py +440 -0
  54. xinference/thirdparty/audiotools/ml/experiment.py +90 -0
  55. xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
  56. xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
  57. xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
  58. xinference/thirdparty/audiotools/post.py +140 -0
  59. xinference/thirdparty/audiotools/preference.py +600 -0
  60. xinference/thirdparty/fish_speech/fish_speech/text/chn_text_norm/text.py +1 -1
  61. xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
  62. xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
  63. xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
  64. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
  65. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
  66. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
  67. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
  68. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  69. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
  70. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
  71. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
  72. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
  73. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
  74. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
  75. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
  76. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
  77. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
  78. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
  79. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
  80. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
  81. xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
  82. xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
  83. xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
  84. xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
  85. xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
  86. xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
  87. xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
  88. xinference/thirdparty/indextts/__init__.py +0 -0
  89. xinference/thirdparty/indextts/cli.py +65 -0
  90. xinference/thirdparty/indextts/gpt/__init__.py +0 -0
  91. xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
  92. xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
  93. xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
  94. xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
  95. xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
  96. xinference/thirdparty/indextts/gpt/model.py +713 -0
  97. xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
  98. xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
  99. xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
  100. xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
  101. xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
  102. xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
  103. xinference/thirdparty/indextts/infer.py +690 -0
  104. xinference/thirdparty/indextts/infer_v2.py +739 -0
  105. xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
  106. xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
  107. xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
  108. xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
  109. xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
  110. xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
  111. xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
  112. xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
  113. xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
  114. xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
  115. xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
  116. xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
  117. xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
  118. xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
  119. xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
  120. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
  121. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
  122. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
  123. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
  124. xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
  125. xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
  126. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
  127. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
  128. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  129. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
  130. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
  131. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
  132. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
  133. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
  134. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
  135. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
  136. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
  137. xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
  138. xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
  139. xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
  140. xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
  141. xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
  142. xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
  143. xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
  144. xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
  145. xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
  146. xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
  147. xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
  148. xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
  149. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
  150. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
  151. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
  152. xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
  153. xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
  154. xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
  155. xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
  156. xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
  157. xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
  158. xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
  159. xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
  160. xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
  161. xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
  162. xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
  163. xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
  164. xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
  165. xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
  166. xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
  167. xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
  168. xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
  169. xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
  170. xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
  171. xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
  172. xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
  173. xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
  174. xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
  175. xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
  176. xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
  177. xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
  178. xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
  179. xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
  180. xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
  181. xinference/thirdparty/indextts/utils/__init__.py +0 -0
  182. xinference/thirdparty/indextts/utils/arch_util.py +120 -0
  183. xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
  184. xinference/thirdparty/indextts/utils/common.py +121 -0
  185. xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
  186. xinference/thirdparty/indextts/utils/front.py +536 -0
  187. xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
  188. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
  189. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
  190. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
  191. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
  192. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
  193. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
  194. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
  195. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
  196. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
  197. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
  198. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
  199. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
  200. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
  201. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
  202. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
  203. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
  204. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
  205. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
  206. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
  207. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
  208. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
  209. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
  210. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
  211. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
  212. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
  213. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
  214. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
  215. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
  216. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
  217. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
  218. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
  219. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
  220. xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
  221. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
  222. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
  223. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
  224. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
  225. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
  226. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
  227. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
  228. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
  229. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
  230. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
  231. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
  232. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
  233. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
  234. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
  235. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
  236. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
  237. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
  238. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
  239. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
  240. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
  241. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
  242. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
  243. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
  244. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
  245. xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
  246. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
  247. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
  248. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
  249. xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
  250. xinference/thirdparty/indextts/utils/text_utils.py +41 -0
  251. xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
  252. xinference/thirdparty/indextts/utils/utils.py +93 -0
  253. xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
  254. xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
  255. xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
  256. xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
  257. xinference/thirdparty/melo/text/chinese_mix.py +2 -2
  258. xinference/types.py +9 -0
  259. xinference/ui/gradio/media_interface.py +66 -8
  260. xinference/ui/web/ui/build/asset-manifest.json +6 -6
  261. xinference/ui/web/ui/build/index.html +1 -1
  262. xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
  263. xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
  264. xinference/ui/web/ui/build/static/js/main.45e78536.js +3 -0
  265. xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.45e78536.js.LICENSE.txt} +0 -7
  266. xinference/ui/web/ui/build/static/js/main.45e78536.js.map +1 -0
  267. xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
  268. xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
  269. xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
  270. xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
  271. xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
  272. xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
  273. xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
  274. xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
  275. xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
  276. xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
  277. xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
  278. xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
  279. xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
  280. xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
  281. xinference/ui/web/ui/node_modules/.cache/babel-loader/ea2a26361204e70cf1018d6990fb6354bed82b3ac69690391e0f100385e7abb7.json +1 -0
  282. xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
  283. xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
  284. xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
  285. xinference/ui/web/ui/package-lock.json +0 -34
  286. xinference/ui/web/ui/package.json +0 -1
  287. xinference/ui/web/ui/src/locales/en.json +9 -3
  288. xinference/ui/web/ui/src/locales/ja.json +9 -3
  289. xinference/ui/web/ui/src/locales/ko.json +9 -3
  290. xinference/ui/web/ui/src/locales/zh.json +9 -3
  291. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/METADATA +24 -6
  292. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/RECORD +296 -77
  293. xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
  294. xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
  295. xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
  296. xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
  297. xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
  298. xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
  299. xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
  300. xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
  301. xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
  302. xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
  303. xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
  304. xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
  305. xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
  306. xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
  307. xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
  308. xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
  309. xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
  310. xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
  311. xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
  312. xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
  313. xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
  314. xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
  315. xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
  316. xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
  317. xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
  318. xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
  319. xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
  320. xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
  321. xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
  322. xinference/ui/web/ui/node_modules/select/bower.json +0 -13
  323. xinference/ui/web/ui/node_modules/select/package.json +0 -29
  324. xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
  325. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/WHEEL +0 -0
  326. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/entry_points.txt +0 -0
  327. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/licenses/LICENSE +0 -0
  328. {xinference-1.10.0.dist-info → xinference-1.11.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,110 @@
1
+ # Copyright (c) 2023 Amphion.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ # This code is modified from https://github.com/sh-lee-prml/HierSpeechpp/blob/main/ttv_v1/styleencoder.py
7
+
8
+ from . import attentions
9
+ from torch import nn
10
+ import torch
11
+ from torch.nn import functional as F
12
+
13
+
14
+ class Mish(nn.Module):
15
+ def __init__(self):
16
+ super(Mish, self).__init__()
17
+
18
+ def forward(self, x):
19
+ return x * torch.tanh(F.softplus(x))
20
+
21
+
22
+ class Conv1dGLU(nn.Module):
23
+ """
24
+ Conv1d + GLU(Gated Linear Unit) with residual connection.
25
+ For GLU refer to https://arxiv.org/abs/1612.08083 paper.
26
+ """
27
+
28
+ def __init__(self, in_channels, out_channels, kernel_size, dropout):
29
+ super(Conv1dGLU, self).__init__()
30
+ self.out_channels = out_channels
31
+ self.conv1 = nn.Conv1d(
32
+ in_channels, 2 * out_channels, kernel_size=kernel_size, padding=2
33
+ )
34
+ self.dropout = nn.Dropout(dropout)
35
+
36
+ def forward(self, x):
37
+ residual = x
38
+ x = self.conv1(x)
39
+ x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
40
+ x = x1 * torch.sigmoid(x2)
41
+ x = residual + self.dropout(x)
42
+ return x
43
+
44
+
45
+ class StyleEncoder(torch.nn.Module):
46
+ def __init__(self, in_dim=513, hidden_dim=128, out_dim=256):
47
+
48
+ super().__init__()
49
+
50
+ self.in_dim = in_dim # Linear 513 wav2vec 2.0 1024
51
+ self.hidden_dim = hidden_dim
52
+ self.out_dim = out_dim
53
+ self.kernel_size = 5
54
+ self.n_head = 2
55
+ self.dropout = 0.1
56
+
57
+ self.spectral = nn.Sequential(
58
+ nn.Conv1d(self.in_dim, self.hidden_dim, 1),
59
+ Mish(),
60
+ nn.Dropout(self.dropout),
61
+ nn.Conv1d(self.hidden_dim, self.hidden_dim, 1),
62
+ Mish(),
63
+ nn.Dropout(self.dropout),
64
+ )
65
+
66
+ self.temporal = nn.Sequential(
67
+ Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
68
+ Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
69
+ )
70
+
71
+ self.slf_attn = attentions.MultiHeadAttention(
72
+ self.hidden_dim,
73
+ self.hidden_dim,
74
+ self.n_head,
75
+ p_dropout=self.dropout,
76
+ proximal_bias=False,
77
+ proximal_init=True,
78
+ )
79
+ self.atten_drop = nn.Dropout(self.dropout)
80
+ self.fc = nn.Conv1d(self.hidden_dim, self.out_dim, 1)
81
+
82
+ def forward(self, x, mask=None):
83
+
84
+ # spectral
85
+ x = self.spectral(x) * mask
86
+ # temporal
87
+ x = self.temporal(x) * mask
88
+
89
+ # self-attention
90
+ attn_mask = mask.unsqueeze(2) * mask.unsqueeze(-1)
91
+ y = self.slf_attn(x, x, attn_mask=attn_mask)
92
+ x = x + self.atten_drop(y)
93
+
94
+ # fc
95
+ x = self.fc(x)
96
+
97
+ # temoral average pooling
98
+ w = self.temporal_avg_pool(x, mask=mask)
99
+
100
+ return w
101
+
102
+ def temporal_avg_pool(self, x, mask=None):
103
+ if mask is None:
104
+ out = torch.mean(x, dim=2)
105
+ else:
106
+ len_ = mask.sum(dim=2)
107
+ x = x.sum(dim=2)
108
+
109
+ out = torch.div(x, len_)
110
+ return out
@@ -0,0 +1,224 @@
1
+ # Copyright (c) 2023 Amphion.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ # This code is modified from https://github.com/sh-lee-prml/HierSpeechpp/blob/main/ttv_v1/modules.py
7
+
8
+ import math
9
+ import torch
10
+ from torch import nn
11
+ from torch.nn import functional as F
12
+
13
+ from modules.dac.model.encodec import SConv1d
14
+
15
+ from . import commons
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(
37
+ self,
38
+ in_channels,
39
+ hidden_channels,
40
+ out_channels,
41
+ kernel_size,
42
+ n_layers,
43
+ p_dropout,
44
+ ):
45
+ super().__init__()
46
+ self.in_channels = in_channels
47
+ self.hidden_channels = hidden_channels
48
+ self.out_channels = out_channels
49
+ self.kernel_size = kernel_size
50
+ self.n_layers = n_layers
51
+ self.p_dropout = p_dropout
52
+ assert n_layers > 1, "Number of layers should be larger than 0."
53
+
54
+ self.conv_layers = nn.ModuleList()
55
+ self.norm_layers = nn.ModuleList()
56
+ self.conv_layers.append(
57
+ nn.Conv1d(
58
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
59
+ )
60
+ )
61
+ self.norm_layers.append(LayerNorm(hidden_channels))
62
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
63
+ for _ in range(n_layers - 1):
64
+ self.conv_layers.append(
65
+ nn.Conv1d(
66
+ hidden_channels,
67
+ hidden_channels,
68
+ kernel_size,
69
+ padding=kernel_size // 2,
70
+ )
71
+ )
72
+ self.norm_layers.append(LayerNorm(hidden_channels))
73
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
74
+ self.proj.weight.data.zero_()
75
+ self.proj.bias.data.zero_()
76
+
77
+ def forward(self, x, x_mask):
78
+ x_org = x
79
+ for i in range(self.n_layers):
80
+ x = self.conv_layers[i](x * x_mask)
81
+ x = self.norm_layers[i](x)
82
+ x = self.relu_drop(x)
83
+ x = x_org + self.proj(x)
84
+ return x * x_mask
85
+
86
+
87
+ class DDSConv(nn.Module):
88
+ """
89
+ Dialted and Depth-Separable Convolution
90
+ """
91
+
92
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
93
+ super().__init__()
94
+ self.channels = channels
95
+ self.kernel_size = kernel_size
96
+ self.n_layers = n_layers
97
+ self.p_dropout = p_dropout
98
+
99
+ self.drop = nn.Dropout(p_dropout)
100
+ self.convs_sep = nn.ModuleList()
101
+ self.convs_1x1 = nn.ModuleList()
102
+ self.norms_1 = nn.ModuleList()
103
+ self.norms_2 = nn.ModuleList()
104
+ for i in range(n_layers):
105
+ dilation = kernel_size**i
106
+ padding = (kernel_size * dilation - dilation) // 2
107
+ self.convs_sep.append(
108
+ nn.Conv1d(
109
+ channels,
110
+ channels,
111
+ kernel_size,
112
+ groups=channels,
113
+ dilation=dilation,
114
+ padding=padding,
115
+ )
116
+ )
117
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
118
+ self.norms_1.append(LayerNorm(channels))
119
+ self.norms_2.append(LayerNorm(channels))
120
+
121
+ def forward(self, x, x_mask, g=None):
122
+ if g is not None:
123
+ x = x + g
124
+ for i in range(self.n_layers):
125
+ y = self.convs_sep[i](x * x_mask)
126
+ y = self.norms_1[i](y)
127
+ y = F.gelu(y)
128
+ y = self.convs_1x1[i](y)
129
+ y = self.norms_2[i](y)
130
+ y = F.gelu(y)
131
+ y = self.drop(y)
132
+ x = x + y
133
+ return x * x_mask
134
+
135
+
136
+ class WN(torch.nn.Module):
137
+ def __init__(
138
+ self,
139
+ hidden_channels,
140
+ kernel_size,
141
+ dilation_rate,
142
+ n_layers,
143
+ gin_channels=0,
144
+ p_dropout=0,
145
+ causal=False,
146
+ ):
147
+ super(WN, self).__init__()
148
+ conv1d_type = SConv1d
149
+ assert kernel_size % 2 == 1
150
+ self.hidden_channels = hidden_channels
151
+ self.kernel_size = (kernel_size,)
152
+ self.dilation_rate = dilation_rate
153
+ self.n_layers = n_layers
154
+ self.gin_channels = gin_channels
155
+ self.p_dropout = p_dropout
156
+
157
+ self.in_layers = torch.nn.ModuleList()
158
+ self.res_skip_layers = torch.nn.ModuleList()
159
+ self.drop = nn.Dropout(p_dropout)
160
+
161
+ if gin_channels != 0:
162
+ self.cond_layer = conv1d_type(
163
+ gin_channels, 2 * hidden_channels * n_layers, 1, norm="weight_norm"
164
+ )
165
+
166
+ for i in range(n_layers):
167
+ dilation = dilation_rate**i
168
+ padding = int((kernel_size * dilation - dilation) / 2)
169
+ in_layer = conv1d_type(
170
+ hidden_channels,
171
+ 2 * hidden_channels,
172
+ kernel_size,
173
+ dilation=dilation,
174
+ padding=padding,
175
+ norm="weight_norm",
176
+ causal=causal,
177
+ )
178
+ self.in_layers.append(in_layer)
179
+
180
+ # last one is not necessary
181
+ if i < n_layers - 1:
182
+ res_skip_channels = 2 * hidden_channels
183
+ else:
184
+ res_skip_channels = hidden_channels
185
+
186
+ res_skip_layer = conv1d_type(
187
+ hidden_channels, res_skip_channels, 1, norm="weight_norm", causal=causal
188
+ )
189
+ self.res_skip_layers.append(res_skip_layer)
190
+
191
+ def forward(self, x, x_mask, g=None, **kwargs):
192
+ output = torch.zeros_like(x)
193
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
194
+
195
+ if g is not None:
196
+ g = self.cond_layer(g)
197
+
198
+ for i in range(self.n_layers):
199
+ x_in = self.in_layers[i](x)
200
+ if g is not None:
201
+ cond_offset = i * 2 * self.hidden_channels
202
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
203
+ else:
204
+ g_l = torch.zeros_like(x_in)
205
+
206
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
207
+ acts = self.drop(acts)
208
+
209
+ res_skip_acts = self.res_skip_layers[i](acts)
210
+ if i < self.n_layers - 1:
211
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
212
+ x = (x + res_acts) * x_mask
213
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
214
+ else:
215
+ output = output + res_skip_acts
216
+ return output * x_mask
217
+
218
+ def remove_weight_norm(self):
219
+ if self.gin_channels != 0:
220
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
221
+ for l in self.in_layers:
222
+ torch.nn.utils.remove_weight_norm(l)
223
+ for l in self.res_skip_layers:
224
+ torch.nn.utils.remove_weight_norm(l)
@@ -0,0 +1,104 @@
1
+ # Copyright (c) 2023 Amphion.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import os, sys
7
+ import os.path as osp
8
+ import numpy as np
9
+ import torch
10
+ from torch import nn
11
+ from torch.optim import Optimizer
12
+ from functools import reduce
13
+ from torch.optim import AdamW
14
+
15
+
16
+ class MultiOptimizer:
17
+ def __init__(self, optimizers={}, schedulers={}):
18
+ self.optimizers = optimizers
19
+ self.schedulers = schedulers
20
+ self.keys = list(optimizers.keys())
21
+ self.param_groups = reduce(
22
+ lambda x, y: x + y, [v.param_groups for v in self.optimizers.values()]
23
+ )
24
+
25
+ def state_dict(self):
26
+ state_dicts = [(key, self.optimizers[key].state_dict()) for key in self.keys]
27
+ return state_dicts
28
+
29
+ def scheduler_state_dict(self):
30
+ state_dicts = [(key, self.schedulers[key].state_dict()) for key in self.keys]
31
+ return state_dicts
32
+
33
+ def load_state_dict(self, state_dict):
34
+ for key, val in state_dict:
35
+ try:
36
+ self.optimizers[key].load_state_dict(val)
37
+ except:
38
+ print("Unloaded %s" % key)
39
+
40
+ def load_scheduler_state_dict(self, state_dict):
41
+ for key, val in state_dict:
42
+ try:
43
+ self.schedulers[key].load_state_dict(val)
44
+ except:
45
+ print("Unloaded %s" % key)
46
+
47
+ def step(self, key=None, scaler=None):
48
+ keys = [key] if key is not None else self.keys
49
+ _ = [self._step(key, scaler) for key in keys]
50
+
51
+ def _step(self, key, scaler=None):
52
+ if scaler is not None:
53
+ scaler.step(self.optimizers[key])
54
+ scaler.update()
55
+ else:
56
+ self.optimizers[key].step()
57
+
58
+ def zero_grad(self, key=None):
59
+ if key is not None:
60
+ self.optimizers[key].zero_grad()
61
+ else:
62
+ _ = [self.optimizers[key].zero_grad() for key in self.keys]
63
+
64
+ def scheduler(self, *args, key=None):
65
+ if key is not None:
66
+ self.schedulers[key].step(*args)
67
+ else:
68
+ _ = [self.schedulers[key].step_batch(*args) for key in self.keys]
69
+
70
+
71
+ def define_scheduler(optimizer, params):
72
+ scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=params["gamma"])
73
+
74
+ return scheduler
75
+
76
+
77
+ def build_optimizer(model_dict, scheduler_params_dict, lr, type="AdamW"):
78
+ optim = {}
79
+ for key, model in model_dict.items():
80
+ model_parameters = model.parameters()
81
+ parameters_names = []
82
+ parameters_names.append(
83
+ [name_param_pair[0] for name_param_pair in model.named_parameters()]
84
+ )
85
+ if type == "AdamW":
86
+ optim[key] = AdamW(
87
+ model_parameters,
88
+ lr=lr,
89
+ betas=(0.9, 0.98),
90
+ eps=1e-9,
91
+ weight_decay=0.1,
92
+ )
93
+ else:
94
+ raise ValueError("Unknown optimizer type: %s" % type)
95
+
96
+ schedulers = dict(
97
+ [
98
+ (key, torch.optim.lr_scheduler.ExponentialLR(opt, gamma=0.999996))
99
+ for key, opt in optim.items()
100
+ ]
101
+ )
102
+
103
+ multi_optim = MultiOptimizer(optim, schedulers)
104
+ return multi_optim
@@ -0,0 +1,210 @@
1
+ # Copyright (c) 2024 Amphion.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from concurrent.futures import ALL_COMPLETED
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ from torch.nn import functional as F
12
+ from einops import rearrange, repeat
13
+
14
+ from indextts.utils.maskgct.models.codec.amphion_codec.quantize import ResidualVQ
15
+ from indextts.utils.maskgct.models.codec.kmeans.vocos import VocosBackbone
16
+
17
+
18
+ def init_weights(m):
19
+ if isinstance(m, nn.Conv1d):
20
+ nn.init.trunc_normal_(m.weight, std=0.02)
21
+ nn.init.constant_(m.bias, 0)
22
+ if isinstance(m, nn.Linear):
23
+ nn.init.trunc_normal_(m.weight, std=0.02)
24
+ nn.init.constant_(m.bias, 0)
25
+
26
+
27
+ def compute_codebook_perplexity(indices, codebook_size):
28
+ indices = indices.flatten()
29
+ prob = torch.bincount(indices, minlength=codebook_size).float() / indices.size(0)
30
+ perp = torch.exp(-torch.sum(prob * torch.log(prob + 1e-10)))
31
+ return perp
32
+
33
+
34
+ class RepCodec(nn.Module):
35
+ def __init__(
36
+ self,
37
+ codebook_size=8192,
38
+ hidden_size=1024,
39
+ codebook_dim=8,
40
+ vocos_dim=384,
41
+ vocos_intermediate_dim=2048,
42
+ vocos_num_layers=12,
43
+ num_quantizers=1,
44
+ downsample_scale=1,
45
+ cfg=None,
46
+ ):
47
+ super().__init__()
48
+ codebook_size = (
49
+ cfg.codebook_size
50
+ if cfg is not None and hasattr(cfg, "codebook_size")
51
+ else codebook_size
52
+ )
53
+ codebook_dim = (
54
+ cfg.codebook_dim
55
+ if cfg is not None and hasattr(cfg, "codebook_dim")
56
+ else codebook_dim
57
+ )
58
+ hidden_size = (
59
+ cfg.hidden_size
60
+ if cfg is not None and hasattr(cfg, "hidden_size")
61
+ else hidden_size
62
+ )
63
+ vocos_dim = (
64
+ cfg.vocos_dim
65
+ if cfg is not None and hasattr(cfg, "vocos_dim")
66
+ else vocos_dim
67
+ )
68
+ vocos_intermediate_dim = (
69
+ cfg.vocos_intermediate_dim
70
+ if cfg is not None and hasattr(cfg, "vocos_dim")
71
+ else vocos_intermediate_dim
72
+ )
73
+ vocos_num_layers = (
74
+ cfg.vocos_num_layers
75
+ if cfg is not None and hasattr(cfg, "vocos_dim")
76
+ else vocos_num_layers
77
+ )
78
+ num_quantizers = (
79
+ cfg.num_quantizers
80
+ if cfg is not None and hasattr(cfg, "num_quantizers")
81
+ else num_quantizers
82
+ )
83
+ downsample_scale = (
84
+ cfg.downsample_scale
85
+ if cfg is not None and hasattr(cfg, "downsample_scale")
86
+ else downsample_scale
87
+ )
88
+
89
+ self.codebook_size = codebook_size
90
+ self.codebook_dim = codebook_dim
91
+ self.hidden_size = hidden_size
92
+ self.vocos_dim = vocos_dim
93
+ self.vocos_intermediate_dim = vocos_intermediate_dim
94
+ self.vocos_num_layers = vocos_num_layers
95
+ self.num_quantizers = num_quantizers
96
+ self.downsample_scale = downsample_scale
97
+
98
+ if self.downsample_scale != None and self.downsample_scale > 1:
99
+ self.down = nn.Conv1d(
100
+ self.hidden_size, self.hidden_size, kernel_size=3, stride=2, padding=1
101
+ )
102
+ self.up = nn.Conv1d(
103
+ self.hidden_size, self.hidden_size, kernel_size=3, stride=1, padding=1
104
+ )
105
+
106
+ self.encoder = nn.Sequential(
107
+ VocosBackbone(
108
+ input_channels=self.hidden_size,
109
+ dim=self.vocos_dim,
110
+ intermediate_dim=self.vocos_intermediate_dim,
111
+ num_layers=self.vocos_num_layers,
112
+ adanorm_num_embeddings=None,
113
+ ),
114
+ nn.Linear(self.vocos_dim, self.hidden_size),
115
+ )
116
+ self.decoder = nn.Sequential(
117
+ VocosBackbone(
118
+ input_channels=self.hidden_size,
119
+ dim=self.vocos_dim,
120
+ intermediate_dim=self.vocos_intermediate_dim,
121
+ num_layers=self.vocos_num_layers,
122
+ adanorm_num_embeddings=None,
123
+ ),
124
+ nn.Linear(self.vocos_dim, self.hidden_size),
125
+ )
126
+
127
+ self.quantizer = ResidualVQ(
128
+ input_dim=hidden_size,
129
+ num_quantizers=num_quantizers,
130
+ codebook_size=codebook_size,
131
+ codebook_dim=codebook_dim,
132
+ quantizer_type="fvq",
133
+ quantizer_dropout=0.0,
134
+ commitment=0.15,
135
+ codebook_loss_weight=1.0,
136
+ use_l2_normlize=True,
137
+ )
138
+
139
+ self.reset_parameters()
140
+
141
+ def forward(self, x):
142
+
143
+ # downsample
144
+ if self.downsample_scale != None and self.downsample_scale > 1:
145
+ x = x.transpose(1, 2)
146
+ x = self.down(x)
147
+ x = F.gelu(x)
148
+ x = x.transpose(1, 2)
149
+
150
+ # encoder
151
+ x = self.encoder(x.transpose(1, 2)).transpose(1, 2)
152
+
153
+ # vq
154
+ (
155
+ quantized_out,
156
+ all_indices,
157
+ all_commit_losses,
158
+ all_codebook_losses,
159
+ _,
160
+ ) = self.quantizer(x)
161
+
162
+ # decoder
163
+ x = self.decoder(quantized_out)
164
+
165
+ # up
166
+ if self.downsample_scale != None and self.downsample_scale > 1:
167
+ x = x.transpose(1, 2)
168
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
169
+ x_rec = self.up(x).transpose(1, 2)
170
+
171
+ codebook_loss = (all_codebook_losses + all_commit_losses).mean()
172
+ all_indices = all_indices
173
+
174
+ return x_rec, codebook_loss, all_indices
175
+
176
+ def quantize(self, x):
177
+
178
+ if self.downsample_scale != None and self.downsample_scale > 1:
179
+ x = x.transpose(1, 2)
180
+ x = self.down(x)
181
+ x = F.gelu(x)
182
+ x = x.transpose(1, 2)
183
+
184
+ x = self.encoder(x.transpose(1, 2)).transpose(1, 2)
185
+
186
+ (
187
+ quantized_out,
188
+ all_indices,
189
+ all_commit_losses,
190
+ all_codebook_losses,
191
+ _,
192
+ ) = self.quantizer(x)
193
+
194
+ if all_indices.shape[0] == 1:
195
+ return all_indices.squeeze(0), quantized_out.transpose(1, 2)
196
+ return all_indices, quantized_out.transpose(1, 2)
197
+
198
+ def reset_parameters(self):
199
+ self.apply(init_weights)
200
+
201
+
202
+ if __name__ == "__main__":
203
+ repcodec = RepCodec(vocos_dim=1024, downsample_scale=2)
204
+ print(repcodec)
205
+ print(sum(p.numel() for p in repcodec.parameters()) / 1e6)
206
+ x = torch.randn(5, 10, 1024)
207
+ x_rec, codebook_loss, all_indices = repcodec(x)
208
+ print(x_rec.shape, codebook_loss, all_indices.shape)
209
+ vq_id, emb = repcodec.quantize(x)
210
+ print(vq_id.shape, emb.shape)