warp-lang 1.9.1__py3-none-manylinux_2_34_aarch64.whl → 1.10.0rc2__py3-none-manylinux_2_34_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +301 -287
- warp/__init__.pyi +794 -305
- warp/_src/__init__.py +14 -0
- warp/_src/autograd.py +1075 -0
- warp/_src/build.py +618 -0
- warp/_src/build_dll.py +640 -0
- warp/{builtins.py → _src/builtins.py} +1382 -377
- warp/_src/codegen.py +4359 -0
- warp/{config.py → _src/config.py} +178 -169
- warp/_src/constants.py +57 -0
- warp/_src/context.py +8294 -0
- warp/_src/dlpack.py +462 -0
- warp/_src/fabric.py +355 -0
- warp/_src/fem/__init__.py +14 -0
- warp/_src/fem/adaptivity.py +508 -0
- warp/_src/fem/cache.py +687 -0
- warp/_src/fem/dirichlet.py +188 -0
- warp/{fem → _src/fem}/domain.py +40 -30
- warp/_src/fem/field/__init__.py +131 -0
- warp/_src/fem/field/field.py +701 -0
- warp/{fem → _src/fem}/field/nodal_field.py +30 -15
- warp/{fem → _src/fem}/field/restriction.py +1 -1
- warp/{fem → _src/fem}/field/virtual.py +53 -27
- warp/_src/fem/geometry/__init__.py +32 -0
- warp/{fem → _src/fem}/geometry/adaptive_nanogrid.py +77 -163
- warp/_src/fem/geometry/closest_point.py +97 -0
- warp/{fem → _src/fem}/geometry/deformed_geometry.py +14 -22
- warp/{fem → _src/fem}/geometry/element.py +32 -10
- warp/{fem → _src/fem}/geometry/geometry.py +48 -20
- warp/{fem → _src/fem}/geometry/grid_2d.py +12 -23
- warp/{fem → _src/fem}/geometry/grid_3d.py +12 -23
- warp/{fem → _src/fem}/geometry/hexmesh.py +40 -63
- warp/{fem → _src/fem}/geometry/nanogrid.py +255 -248
- warp/{fem → _src/fem}/geometry/partition.py +121 -63
- warp/{fem → _src/fem}/geometry/quadmesh.py +26 -45
- warp/{fem → _src/fem}/geometry/tetmesh.py +40 -63
- warp/{fem → _src/fem}/geometry/trimesh.py +26 -45
- warp/{fem → _src/fem}/integrate.py +164 -158
- warp/_src/fem/linalg.py +383 -0
- warp/_src/fem/operator.py +396 -0
- warp/_src/fem/polynomial.py +229 -0
- warp/{fem → _src/fem}/quadrature/pic_quadrature.py +15 -20
- warp/{fem → _src/fem}/quadrature/quadrature.py +95 -47
- warp/_src/fem/space/__init__.py +248 -0
- warp/{fem → _src/fem}/space/basis_function_space.py +20 -11
- warp/_src/fem/space/basis_space.py +679 -0
- warp/{fem → _src/fem}/space/dof_mapper.py +3 -3
- warp/{fem → _src/fem}/space/function_space.py +14 -13
- warp/{fem → _src/fem}/space/grid_2d_function_space.py +4 -7
- warp/{fem → _src/fem}/space/grid_3d_function_space.py +4 -4
- warp/{fem → _src/fem}/space/hexmesh_function_space.py +4 -10
- warp/{fem → _src/fem}/space/nanogrid_function_space.py +3 -9
- warp/{fem → _src/fem}/space/partition.py +117 -60
- warp/{fem → _src/fem}/space/quadmesh_function_space.py +4 -10
- warp/{fem → _src/fem}/space/restriction.py +66 -33
- warp/_src/fem/space/shape/__init__.py +152 -0
- warp/{fem → _src/fem}/space/shape/cube_shape_function.py +9 -9
- warp/{fem → _src/fem}/space/shape/shape_function.py +8 -9
- warp/{fem → _src/fem}/space/shape/square_shape_function.py +6 -6
- warp/{fem → _src/fem}/space/shape/tet_shape_function.py +3 -3
- warp/{fem → _src/fem}/space/shape/triangle_shape_function.py +3 -3
- warp/{fem → _src/fem}/space/tetmesh_function_space.py +3 -9
- warp/_src/fem/space/topology.py +459 -0
- warp/{fem → _src/fem}/space/trimesh_function_space.py +3 -9
- warp/_src/fem/types.py +112 -0
- warp/_src/fem/utils.py +486 -0
- warp/_src/jax.py +186 -0
- warp/_src/jax_experimental/__init__.py +14 -0
- warp/_src/jax_experimental/custom_call.py +387 -0
- warp/_src/jax_experimental/ffi.py +1284 -0
- warp/_src/jax_experimental/xla_ffi.py +656 -0
- warp/_src/marching_cubes.py +708 -0
- warp/_src/math.py +414 -0
- warp/_src/optim/__init__.py +14 -0
- warp/_src/optim/adam.py +163 -0
- warp/_src/optim/linear.py +1606 -0
- warp/_src/optim/sgd.py +112 -0
- warp/_src/paddle.py +406 -0
- warp/_src/render/__init__.py +14 -0
- warp/_src/render/imgui_manager.py +289 -0
- warp/_src/render/render_opengl.py +3636 -0
- warp/_src/render/render_usd.py +937 -0
- warp/_src/render/utils.py +160 -0
- warp/_src/sparse.py +2716 -0
- warp/_src/tape.py +1206 -0
- warp/{thirdparty → _src/thirdparty}/unittest_parallel.py +9 -2
- warp/_src/torch.py +391 -0
- warp/_src/types.py +5870 -0
- warp/_src/utils.py +1693 -0
- warp/autograd.py +12 -1054
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +8 -588
- warp/build_dll.py +6 -721
- warp/codegen.py +6 -4251
- warp/constants.py +6 -39
- warp/context.py +12 -8062
- warp/dlpack.py +6 -444
- warp/examples/distributed/example_jacobi_mpi.py +4 -5
- warp/examples/fem/example_adaptive_grid.py +1 -1
- warp/examples/fem/example_apic_fluid.py +1 -1
- warp/examples/fem/example_burgers.py +8 -8
- warp/examples/fem/example_diffusion.py +1 -1
- warp/examples/fem/example_distortion_energy.py +1 -1
- warp/examples/fem/example_mixed_elasticity.py +2 -2
- warp/examples/fem/example_navier_stokes.py +1 -1
- warp/examples/fem/example_nonconforming_contact.py +7 -7
- warp/examples/fem/example_stokes.py +1 -1
- warp/examples/fem/example_stokes_transfer.py +1 -1
- warp/examples/fem/utils.py +2 -2
- warp/examples/interop/example_jax_callable.py +1 -1
- warp/examples/interop/example_jax_ffi_callback.py +1 -1
- warp/examples/interop/example_jax_kernel.py +1 -1
- warp/examples/tile/example_tile_mcgp.py +191 -0
- warp/fabric.py +6 -337
- warp/fem/__init__.py +159 -97
- warp/fem/adaptivity.py +7 -489
- warp/fem/cache.py +9 -648
- warp/fem/dirichlet.py +6 -184
- warp/fem/field/__init__.py +8 -109
- warp/fem/field/field.py +7 -652
- warp/fem/geometry/__init__.py +7 -18
- warp/fem/geometry/closest_point.py +11 -77
- warp/fem/linalg.py +18 -366
- warp/fem/operator.py +11 -369
- warp/fem/polynomial.py +9 -209
- warp/fem/space/__init__.py +5 -211
- warp/fem/space/basis_space.py +6 -662
- warp/fem/space/shape/__init__.py +41 -118
- warp/fem/space/topology.py +6 -437
- warp/fem/types.py +6 -81
- warp/fem/utils.py +11 -444
- warp/jax.py +8 -165
- warp/jax_experimental/__init__.py +14 -1
- warp/jax_experimental/custom_call.py +8 -365
- warp/jax_experimental/ffi.py +17 -873
- warp/jax_experimental/xla_ffi.py +5 -605
- warp/marching_cubes.py +5 -689
- warp/math.py +16 -393
- warp/native/array.h +385 -37
- warp/native/builtin.h +314 -37
- warp/native/bvh.cpp +43 -9
- warp/native/bvh.cu +62 -27
- warp/native/bvh.h +310 -309
- warp/native/clang/clang.cpp +102 -97
- warp/native/coloring.cpp +0 -1
- warp/native/crt.h +208 -0
- warp/native/exports.h +156 -0
- warp/native/hashgrid.cu +2 -0
- warp/native/intersect.h +24 -1
- warp/native/intersect_tri.h +44 -35
- warp/native/mat.h +1456 -276
- warp/native/mesh.cpp +4 -4
- warp/native/mesh.cu +4 -2
- warp/native/mesh.h +176 -61
- warp/native/quat.h +0 -52
- warp/native/scan.cu +2 -0
- warp/native/sparse.cu +7 -3
- warp/native/spatial.h +12 -0
- warp/native/tile.h +681 -89
- warp/native/tile_radix_sort.h +1 -1
- warp/native/tile_reduce.h +394 -46
- warp/native/tile_scan.h +4 -4
- warp/native/vec.h +469 -0
- warp/native/version.h +23 -0
- warp/native/volume.cpp +1 -1
- warp/native/volume.cu +1 -0
- warp/native/volume.h +1 -1
- warp/native/volume_builder.cu +2 -0
- warp/native/warp.cpp +57 -29
- warp/native/warp.cu +253 -171
- warp/native/warp.h +11 -8
- warp/optim/__init__.py +6 -3
- warp/optim/adam.py +6 -145
- warp/optim/linear.py +14 -1585
- warp/optim/sgd.py +6 -94
- warp/paddle.py +6 -388
- warp/render/__init__.py +8 -4
- warp/render/imgui_manager.py +7 -267
- warp/render/render_opengl.py +6 -3618
- warp/render/render_usd.py +6 -919
- warp/render/utils.py +6 -142
- warp/sparse.py +37 -2563
- warp/tape.py +6 -1188
- warp/tests/__main__.py +1 -1
- warp/tests/cuda/test_async.py +4 -4
- warp/tests/cuda/test_conditional_captures.py +1 -1
- warp/tests/cuda/test_multigpu.py +1 -1
- warp/tests/cuda/test_streams.py +58 -1
- warp/tests/geometry/test_bvh.py +157 -22
- warp/tests/geometry/test_marching_cubes.py +0 -1
- warp/tests/geometry/test_mesh.py +5 -3
- warp/tests/geometry/test_mesh_query_aabb.py +5 -12
- warp/tests/geometry/test_mesh_query_point.py +5 -2
- warp/tests/geometry/test_mesh_query_ray.py +15 -3
- warp/tests/geometry/test_volume_write.py +5 -5
- warp/tests/interop/test_dlpack.py +14 -14
- warp/tests/interop/test_jax.py +772 -49
- warp/tests/interop/test_paddle.py +1 -1
- warp/tests/test_adam.py +0 -1
- warp/tests/test_arithmetic.py +9 -9
- warp/tests/test_array.py +527 -100
- warp/tests/test_array_reduce.py +3 -3
- warp/tests/test_atomic.py +12 -8
- warp/tests/test_atomic_bitwise.py +209 -0
- warp/tests/test_atomic_cas.py +4 -4
- warp/tests/test_bool.py +2 -2
- warp/tests/test_builtins_resolution.py +5 -571
- warp/tests/test_codegen.py +33 -14
- warp/tests/test_conditional.py +1 -1
- warp/tests/test_context.py +6 -6
- warp/tests/test_copy.py +242 -161
- warp/tests/test_ctypes.py +3 -3
- warp/tests/test_devices.py +24 -2
- warp/tests/test_examples.py +16 -84
- warp/tests/test_fabricarray.py +35 -35
- warp/tests/test_fast_math.py +0 -2
- warp/tests/test_fem.py +56 -10
- warp/tests/test_fixedarray.py +3 -3
- warp/tests/test_func.py +8 -5
- warp/tests/test_generics.py +1 -1
- warp/tests/test_indexedarray.py +24 -24
- warp/tests/test_intersect.py +39 -9
- warp/tests/test_large.py +1 -1
- warp/tests/test_lerp.py +3 -1
- warp/tests/test_linear_solvers.py +1 -1
- warp/tests/test_map.py +35 -4
- warp/tests/test_mat.py +52 -62
- warp/tests/test_mat_constructors.py +4 -5
- warp/tests/test_mat_lite.py +1 -1
- warp/tests/test_mat_scalar_ops.py +121 -121
- warp/tests/test_math.py +34 -0
- warp/tests/test_module_aot.py +4 -4
- warp/tests/test_modules_lite.py +28 -2
- warp/tests/test_print.py +11 -11
- warp/tests/test_quat.py +93 -58
- warp/tests/test_runlength_encode.py +1 -1
- warp/tests/test_scalar_ops.py +38 -10
- warp/tests/test_smoothstep.py +1 -1
- warp/tests/test_sparse.py +126 -15
- warp/tests/test_spatial.py +105 -87
- warp/tests/test_special_values.py +6 -6
- warp/tests/test_static.py +7 -7
- warp/tests/test_struct.py +13 -2
- warp/tests/test_triangle_closest_point.py +48 -1
- warp/tests/test_types.py +27 -15
- warp/tests/test_utils.py +52 -52
- warp/tests/test_vec.py +29 -29
- warp/tests/test_vec_constructors.py +5 -5
- warp/tests/test_vec_scalar_ops.py +97 -97
- warp/tests/test_version.py +75 -0
- warp/tests/tile/test_tile.py +178 -0
- warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
- warp/tests/tile/test_tile_cholesky.py +7 -4
- warp/tests/tile/test_tile_load.py +26 -2
- warp/tests/tile/test_tile_mathdx.py +3 -3
- warp/tests/tile/test_tile_matmul.py +1 -1
- warp/tests/tile/test_tile_mlp.py +2 -4
- warp/tests/tile/test_tile_reduce.py +214 -13
- warp/tests/unittest_suites.py +6 -14
- warp/tests/unittest_utils.py +10 -9
- warp/tests/walkthrough_debug.py +3 -1
- warp/torch.py +6 -373
- warp/types.py +29 -5764
- warp/utils.py +10 -1659
- {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/METADATA +46 -99
- warp_lang-1.10.0rc2.dist-info/RECORD +468 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
- warp/examples/assets/cartpole.urdf +0 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/nv_ant.xml +0 -92
- warp/examples/assets/nv_humanoid.xml +0 -183
- warp/examples/assets/quadruped.urdf +0 -268
- warp/examples/optim/example_bounce.py +0 -266
- warp/examples/optim/example_cloth_throw.py +0 -228
- warp/examples/optim/example_drone.py +0 -870
- warp/examples/optim/example_inverse_kinematics.py +0 -182
- warp/examples/optim/example_inverse_kinematics_torch.py +0 -191
- warp/examples/optim/example_softbody_properties.py +0 -400
- warp/examples/optim/example_spring_cage.py +0 -245
- warp/examples/optim/example_trajectory.py +0 -227
- warp/examples/sim/example_cartpole.py +0 -143
- warp/examples/sim/example_cloth.py +0 -225
- warp/examples/sim/example_cloth_self_contact.py +0 -316
- warp/examples/sim/example_granular.py +0 -130
- warp/examples/sim/example_granular_collision_sdf.py +0 -202
- warp/examples/sim/example_jacobian_ik.py +0 -244
- warp/examples/sim/example_particle_chain.py +0 -124
- warp/examples/sim/example_quadruped.py +0 -203
- warp/examples/sim/example_rigid_chain.py +0 -203
- warp/examples/sim/example_rigid_contact.py +0 -195
- warp/examples/sim/example_rigid_force.py +0 -133
- warp/examples/sim/example_rigid_gyroscopic.py +0 -115
- warp/examples/sim/example_rigid_soft_contact.py +0 -140
- warp/examples/sim/example_soft_body.py +0 -196
- warp/examples/tile/example_tile_walker.py +0 -327
- warp/sim/__init__.py +0 -74
- warp/sim/articulation.py +0 -793
- warp/sim/collide.py +0 -2570
- warp/sim/graph_coloring.py +0 -307
- warp/sim/import_mjcf.py +0 -791
- warp/sim/import_snu.py +0 -227
- warp/sim/import_urdf.py +0 -579
- warp/sim/import_usd.py +0 -898
- warp/sim/inertia.py +0 -357
- warp/sim/integrator.py +0 -245
- warp/sim/integrator_euler.py +0 -2000
- warp/sim/integrator_featherstone.py +0 -2101
- warp/sim/integrator_vbd.py +0 -2487
- warp/sim/integrator_xpbd.py +0 -3295
- warp/sim/model.py +0 -4821
- warp/sim/particles.py +0 -121
- warp/sim/render.py +0 -431
- warp/sim/utils.py +0 -431
- warp/tests/sim/disabled_kinematics.py +0 -244
- warp/tests/sim/test_cloth.py +0 -863
- warp/tests/sim/test_collision.py +0 -743
- warp/tests/sim/test_coloring.py +0 -347
- warp/tests/sim/test_inertia.py +0 -161
- warp/tests/sim/test_model.py +0 -226
- warp/tests/sim/test_sim_grad.py +0 -287
- warp/tests/sim/test_sim_grad_bounce_linear.py +0 -212
- warp/tests/sim/test_sim_kinematics.py +0 -98
- warp/thirdparty/__init__.py +0 -0
- warp_lang-1.9.1.dist-info/RECORD +0 -456
- /warp/{fem → _src/fem}/quadrature/__init__.py +0 -0
- /warp/{tests/sim → _src/thirdparty}/__init__.py +0 -0
- /warp/{thirdparty → _src/thirdparty}/appdirs.py +0 -0
- /warp/{thirdparty → _src/thirdparty}/dlpack.py +0 -0
- {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/WHEEL +0 -0
- {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/licenses/LICENSE.md +0 -0
- {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/top_level.txt +0 -0
warp/dlpack.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# SPDX-FileCopyrightText: Copyright (c)
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
2
|
# SPDX-License-Identifier: Apache-2.0
|
|
3
3
|
#
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -13,450 +13,12 @@
|
|
|
13
13
|
# See the License for the specific language governing permissions and
|
|
14
14
|
# limitations under the License.
|
|
15
15
|
|
|
16
|
-
#
|
|
17
|
-
# https://dmlc.github.io/dlpack/latest/python_spec.html
|
|
16
|
+
# TODO: Remove after cleaning up the public API.
|
|
18
17
|
|
|
19
|
-
import
|
|
18
|
+
from warp._src import dlpack as _dlpack
|
|
20
19
|
|
|
21
|
-
import warp
|
|
22
|
-
from warp.thirdparty.dlpack import (
|
|
23
|
-
DLDataType,
|
|
24
|
-
DLDataTypeCode,
|
|
25
|
-
DLDevice,
|
|
26
|
-
DLDeviceType,
|
|
27
|
-
DLManagedTensor,
|
|
28
|
-
_c_str_dltensor,
|
|
29
|
-
)
|
|
30
20
|
|
|
31
|
-
|
|
21
|
+
def __getattr__(name):
|
|
22
|
+
from warp._src.utils import get_deprecated_api
|
|
32
23
|
|
|
33
|
-
|
|
34
|
-
PyMem_RawMalloc.argtypes = [ctypes.c_size_t]
|
|
35
|
-
PyMem_RawMalloc.restype = ctypes.c_void_p
|
|
36
|
-
|
|
37
|
-
PyMem_RawFree = ctypes.pythonapi.PyMem_RawFree
|
|
38
|
-
PyMem_RawFree.argtypes = [ctypes.c_void_p]
|
|
39
|
-
PyMem_RawFree.restype = None
|
|
40
|
-
|
|
41
|
-
Py_IncRef = ctypes.pythonapi.Py_IncRef
|
|
42
|
-
Py_IncRef.argtypes = [ctypes.py_object]
|
|
43
|
-
Py_IncRef.restype = None
|
|
44
|
-
|
|
45
|
-
Py_DecRef = ctypes.pythonapi.Py_DecRef
|
|
46
|
-
Py_DecRef.argtypes = [ctypes.py_object]
|
|
47
|
-
Py_DecRef.restype = None
|
|
48
|
-
|
|
49
|
-
PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.c_void_p)
|
|
50
|
-
|
|
51
|
-
PyCapsule_IsValid = ctypes.pythonapi.PyCapsule_IsValid
|
|
52
|
-
PyCapsule_IsValid.argtypes = [ctypes.py_object, ctypes.c_char_p]
|
|
53
|
-
PyCapsule_IsValid.restype = ctypes.c_int
|
|
54
|
-
|
|
55
|
-
PyCapsule_GetPointer = ctypes.pythonapi.PyCapsule_GetPointer
|
|
56
|
-
PyCapsule_GetPointer.argtypes = [ctypes.py_object, ctypes.c_char_p]
|
|
57
|
-
PyCapsule_GetPointer.restype = ctypes.c_void_p
|
|
58
|
-
|
|
59
|
-
PyCapsule_SetName = ctypes.pythonapi.PyCapsule_SetName
|
|
60
|
-
PyCapsule_SetName.argtypes = [ctypes.py_object, ctypes.c_char_p]
|
|
61
|
-
PyCapsule_SetName.restype = ctypes.c_int
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
class _DLPackTensorHolder:
|
|
65
|
-
"""Class responsible for deleting DLManagedTensor memory after ownership is transferred from a capsule."""
|
|
66
|
-
|
|
67
|
-
def __new__(cls, *args, **kwargs):
|
|
68
|
-
instance = super().__new__(cls)
|
|
69
|
-
instance.mem_ptr = None
|
|
70
|
-
return instance
|
|
71
|
-
|
|
72
|
-
def __init__(self, mem_ptr):
|
|
73
|
-
self.mem_ptr = mem_ptr
|
|
74
|
-
|
|
75
|
-
def __del__(self):
|
|
76
|
-
if not self.mem_ptr:
|
|
77
|
-
return
|
|
78
|
-
|
|
79
|
-
managed_tensor = DLManagedTensor.from_address(self.mem_ptr)
|
|
80
|
-
if managed_tensor.deleter:
|
|
81
|
-
managed_tensor.deleter(self.mem_ptr)
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
@ctypes.CFUNCTYPE(None, ctypes.c_void_p)
|
|
85
|
-
def _dlpack_tensor_deleter(managed_ptr) -> None:
|
|
86
|
-
"""A function to deallocate a DLManagedTensor."""
|
|
87
|
-
|
|
88
|
-
managed_tensor = DLManagedTensor.from_address(managed_ptr)
|
|
89
|
-
|
|
90
|
-
# unreference the source array
|
|
91
|
-
manager = ctypes.cast(managed_tensor.manager_ctx, ctypes.py_object)
|
|
92
|
-
ctypes.pythonapi.Py_DecRef(manager)
|
|
93
|
-
|
|
94
|
-
# free the DLManagedTensor memory, including shape and strides
|
|
95
|
-
PyMem_RawFree(ctypes.c_void_p(managed_ptr))
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
@PyCapsule_Destructor
|
|
99
|
-
def _dlpack_capsule_deleter(ptr) -> None:
|
|
100
|
-
"""Destructor for a capsule holding a DLManagedTensor."""
|
|
101
|
-
|
|
102
|
-
capsule = ctypes.cast(ptr, ctypes.py_object)
|
|
103
|
-
|
|
104
|
-
if PyCapsule_IsValid(capsule, _c_str_dltensor):
|
|
105
|
-
managed_ptr = PyCapsule_GetPointer(capsule, _c_str_dltensor)
|
|
106
|
-
managed_tensor = DLManagedTensor.from_address(managed_ptr)
|
|
107
|
-
if managed_tensor.deleter:
|
|
108
|
-
managed_tensor.deleter(managed_ptr)
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
def _device_to_dlpack(wp_device: warp.context.Device) -> DLDevice:
|
|
112
|
-
dl_device = DLDevice()
|
|
113
|
-
|
|
114
|
-
if wp_device.is_cpu:
|
|
115
|
-
dl_device.device_type = DLDeviceType.kDLCPU
|
|
116
|
-
dl_device.device_id = 0
|
|
117
|
-
elif wp_device.is_cuda:
|
|
118
|
-
dl_device.device_type = DLDeviceType.kDLCUDA
|
|
119
|
-
dl_device.device_id = wp_device.ordinal
|
|
120
|
-
else:
|
|
121
|
-
raise RuntimeError(f"Invalid device type converting to DLPack: {wp_device}")
|
|
122
|
-
|
|
123
|
-
return dl_device
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
def device_to_dlpack(wp_device) -> DLDevice:
|
|
127
|
-
return _device_to_dlpack(warp.get_device(wp_device))
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
def dtype_to_dlpack(wp_dtype) -> DLDataType:
|
|
131
|
-
if wp_dtype == warp.bool:
|
|
132
|
-
return (DLDataTypeCode.kDLBool, 8, 1)
|
|
133
|
-
if wp_dtype == warp.int8:
|
|
134
|
-
return (DLDataTypeCode.kDLInt, 8, 1)
|
|
135
|
-
elif wp_dtype == warp.uint8:
|
|
136
|
-
return (DLDataTypeCode.kDLUInt, 8, 1)
|
|
137
|
-
elif wp_dtype == warp.int16:
|
|
138
|
-
return (DLDataTypeCode.kDLInt, 16, 1)
|
|
139
|
-
elif wp_dtype == warp.uint16:
|
|
140
|
-
return (DLDataTypeCode.kDLUInt, 16, 1)
|
|
141
|
-
elif wp_dtype == warp.int32:
|
|
142
|
-
return (DLDataTypeCode.kDLInt, 32, 1)
|
|
143
|
-
elif wp_dtype == warp.uint32:
|
|
144
|
-
return (DLDataTypeCode.kDLUInt, 32, 1)
|
|
145
|
-
elif wp_dtype == warp.int64:
|
|
146
|
-
return (DLDataTypeCode.kDLInt, 64, 1)
|
|
147
|
-
elif wp_dtype == warp.uint64:
|
|
148
|
-
return (DLDataTypeCode.kDLUInt, 64, 1)
|
|
149
|
-
elif wp_dtype == warp.float16:
|
|
150
|
-
return (DLDataTypeCode.kDLFloat, 16, 1)
|
|
151
|
-
elif wp_dtype == warp.float32:
|
|
152
|
-
return (DLDataTypeCode.kDLFloat, 32, 1)
|
|
153
|
-
elif wp_dtype == warp.float64:
|
|
154
|
-
return (DLDataTypeCode.kDLFloat, 64, 1)
|
|
155
|
-
else:
|
|
156
|
-
raise RuntimeError(f"No conversion from Warp type {wp_dtype} to DLPack type")
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
def dtype_from_dlpack(dl_dtype):
|
|
160
|
-
# unpack to tuple for easier comparison
|
|
161
|
-
dl_dtype = (dl_dtype.type_code.value, dl_dtype.bits)
|
|
162
|
-
|
|
163
|
-
if dl_dtype == (DLDataTypeCode.kDLUInt, 1):
|
|
164
|
-
raise RuntimeError("Warp does not support bit boolean types")
|
|
165
|
-
elif dl_dtype == (DLDataTypeCode.kDLInt, 8):
|
|
166
|
-
return warp.types.int8
|
|
167
|
-
elif dl_dtype == (DLDataTypeCode.kDLInt, 16):
|
|
168
|
-
return warp.types.int16
|
|
169
|
-
elif dl_dtype == (DLDataTypeCode.kDLInt, 32):
|
|
170
|
-
return warp.types.int32
|
|
171
|
-
elif dl_dtype == (DLDataTypeCode.kDLInt, 64):
|
|
172
|
-
return warp.types.int64
|
|
173
|
-
elif dl_dtype == (DLDataTypeCode.kDLUInt, 8):
|
|
174
|
-
return warp.types.uint8
|
|
175
|
-
elif dl_dtype == (DLDataTypeCode.kDLUInt, 16):
|
|
176
|
-
return warp.types.uint16
|
|
177
|
-
elif dl_dtype == (DLDataTypeCode.kDLUInt, 32):
|
|
178
|
-
return warp.types.uint32
|
|
179
|
-
elif dl_dtype == (DLDataTypeCode.kDLUInt, 64):
|
|
180
|
-
return warp.types.uint64
|
|
181
|
-
elif dl_dtype == (DLDataTypeCode.kDLFloat, 16):
|
|
182
|
-
return warp.types.float16
|
|
183
|
-
elif dl_dtype == (DLDataTypeCode.kDLFloat, 32):
|
|
184
|
-
return warp.types.float32
|
|
185
|
-
elif dl_dtype == (DLDataTypeCode.kDLFloat, 64):
|
|
186
|
-
return warp.types.float64
|
|
187
|
-
elif dl_dtype == (DLDataTypeCode.kDLComplex, 64):
|
|
188
|
-
raise RuntimeError("Warp does not support complex types")
|
|
189
|
-
elif dl_dtype == (DLDataTypeCode.kDLComplex, 128):
|
|
190
|
-
raise RuntimeError("Warp does not support complex types")
|
|
191
|
-
else:
|
|
192
|
-
raise RuntimeError(f"Unknown DLPack datatype {dl_dtype}")
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
def device_from_dlpack(dl_device):
|
|
196
|
-
assert warp.context.runtime is not None, "Warp not initialized, call wp.init() before use"
|
|
197
|
-
|
|
198
|
-
if dl_device.device_type.value == DLDeviceType.kDLCPU or dl_device.device_type.value == DLDeviceType.kDLCUDAHost:
|
|
199
|
-
return warp.context.runtime.cpu_device
|
|
200
|
-
elif (
|
|
201
|
-
dl_device.device_type.value == DLDeviceType.kDLCUDA
|
|
202
|
-
or dl_device.device_type.value == DLDeviceType.kDLCUDAManaged
|
|
203
|
-
):
|
|
204
|
-
return warp.context.runtime.cuda_devices[dl_device.device_id]
|
|
205
|
-
else:
|
|
206
|
-
raise RuntimeError(f"Unknown device type from DLPack: {dl_device.device_type.value}")
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
def shape_to_dlpack(shape):
|
|
210
|
-
a = (ctypes.c_int64 * len(shape))(*shape)
|
|
211
|
-
return a
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
def strides_to_dlpack(strides, dtype):
|
|
215
|
-
# convert from byte count to element count
|
|
216
|
-
ndim = len(strides)
|
|
217
|
-
a = (ctypes.c_int64 * ndim)()
|
|
218
|
-
dtype_size = warp.types.type_size_in_bytes(dtype)
|
|
219
|
-
for i in range(ndim):
|
|
220
|
-
a[i] = strides[i] // dtype_size
|
|
221
|
-
return a
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
def to_dlpack(wp_array: warp.array):
|
|
225
|
-
"""Convert a Warp array to another type of DLPack-compatible array.
|
|
226
|
-
|
|
227
|
-
Args:
|
|
228
|
-
wp_array: The source Warp array that will be converted.
|
|
229
|
-
|
|
230
|
-
Returns:
|
|
231
|
-
A capsule containing a DLManagedTensor that can be converted
|
|
232
|
-
to another array type without copying the underlying memory.
|
|
233
|
-
"""
|
|
234
|
-
|
|
235
|
-
# DLPack does not support structured arrays
|
|
236
|
-
if isinstance(wp_array.dtype, warp.codegen.Struct):
|
|
237
|
-
raise RuntimeError("Cannot convert structured Warp arrays to DLPack.")
|
|
238
|
-
|
|
239
|
-
# handle vector types
|
|
240
|
-
if hasattr(wp_array.dtype, "_wp_scalar_type_"):
|
|
241
|
-
# vector type, flatten the dimensions into one tuple
|
|
242
|
-
target_dtype = wp_array.dtype._wp_scalar_type_
|
|
243
|
-
target_ndim = wp_array.ndim + len(wp_array.dtype._shape_)
|
|
244
|
-
target_shape = (*wp_array.shape, *wp_array.dtype._shape_)
|
|
245
|
-
dtype_strides = warp.types.strides_from_shape(wp_array.dtype._shape_, wp_array.dtype._wp_scalar_type_)
|
|
246
|
-
target_strides = (*wp_array.strides, *dtype_strides)
|
|
247
|
-
else:
|
|
248
|
-
# scalar type
|
|
249
|
-
target_dtype = wp_array.dtype
|
|
250
|
-
target_ndim = wp_array.ndim
|
|
251
|
-
target_shape = wp_array.shape
|
|
252
|
-
target_strides = wp_array.strides
|
|
253
|
-
|
|
254
|
-
if wp_array.pinned:
|
|
255
|
-
dl_device = DLDevice()
|
|
256
|
-
dl_device.device_type = DLDeviceType.kDLCUDAHost
|
|
257
|
-
dl_device.device_id = 0
|
|
258
|
-
else:
|
|
259
|
-
dl_device = _device_to_dlpack(wp_array.device)
|
|
260
|
-
|
|
261
|
-
# allocate DLManagedTensor, shape, and strides together
|
|
262
|
-
managed_tensor_size = ctypes.sizeof(DLManagedTensor)
|
|
263
|
-
padding = managed_tensor_size & 7
|
|
264
|
-
shape_size = target_ndim * 8
|
|
265
|
-
mem_size = managed_tensor_size + padding + 2 * shape_size
|
|
266
|
-
mem_ptr = PyMem_RawMalloc(mem_size)
|
|
267
|
-
assert mem_ptr, "Failed to allocate memory for DLManagedTensor"
|
|
268
|
-
|
|
269
|
-
# set managed tensor attributes
|
|
270
|
-
managed_tensor = DLManagedTensor.from_address(mem_ptr)
|
|
271
|
-
managed_tensor.dl_tensor.data = wp_array.ptr
|
|
272
|
-
managed_tensor.dl_tensor.device = dl_device
|
|
273
|
-
managed_tensor.dl_tensor.ndim = target_ndim
|
|
274
|
-
managed_tensor.dl_tensor.dtype = dtype_to_dlpack(target_dtype)
|
|
275
|
-
managed_tensor.dl_tensor.byte_offset = 0
|
|
276
|
-
|
|
277
|
-
# shape
|
|
278
|
-
shape_offset = managed_tensor_size + padding
|
|
279
|
-
shape_ptr = ctypes.cast(mem_ptr + shape_offset, ctypes.POINTER(ctypes.c_int64))
|
|
280
|
-
for i in range(target_ndim):
|
|
281
|
-
shape_ptr[i] = target_shape[i]
|
|
282
|
-
managed_tensor.dl_tensor.shape = shape_ptr
|
|
283
|
-
|
|
284
|
-
# strides, if not contiguous
|
|
285
|
-
if wp_array.is_contiguous:
|
|
286
|
-
managed_tensor.dl_tensor.strides = None
|
|
287
|
-
else:
|
|
288
|
-
stride_offset = shape_offset + shape_size
|
|
289
|
-
stride_ptr = ctypes.cast(mem_ptr + stride_offset, ctypes.POINTER(ctypes.c_int64))
|
|
290
|
-
dtype_size = warp.types.type_size_in_bytes(target_dtype)
|
|
291
|
-
for i in range(target_ndim):
|
|
292
|
-
stride_ptr[i] = target_strides[i] // dtype_size
|
|
293
|
-
managed_tensor.dl_tensor.strides = stride_ptr
|
|
294
|
-
|
|
295
|
-
# DLManagedTensor holds a reference to the source array
|
|
296
|
-
managed_tensor.manager_ctx = id(wp_array)
|
|
297
|
-
Py_IncRef(wp_array)
|
|
298
|
-
|
|
299
|
-
managed_tensor.deleter = _dlpack_tensor_deleter
|
|
300
|
-
|
|
301
|
-
# NOTE: jax.ffi.pycapsule() defines the PyCapsule_New() argtypes incorrectly, which causes problems.
|
|
302
|
-
# Here we make sure that the PyCapsule_Destructor callback is correctly defined.
|
|
303
|
-
PyCapsule_New = ctypes.pythonapi.PyCapsule_New
|
|
304
|
-
PyCapsule_New.argtypes = [ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor]
|
|
305
|
-
PyCapsule_New.restype = ctypes.py_object
|
|
306
|
-
|
|
307
|
-
capsule = PyCapsule_New(
|
|
308
|
-
ctypes.byref(managed_tensor),
|
|
309
|
-
_c_str_dltensor,
|
|
310
|
-
_dlpack_capsule_deleter,
|
|
311
|
-
)
|
|
312
|
-
|
|
313
|
-
return capsule
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
def dtype_is_compatible(dl_dtype, wp_dtype):
|
|
317
|
-
if dl_dtype.bits % 8 != 0:
|
|
318
|
-
raise RuntimeError("Data types with less than 8 bits are not supported")
|
|
319
|
-
|
|
320
|
-
if dl_dtype.type_code.value == DLDataTypeCode.kDLFloat:
|
|
321
|
-
if dl_dtype.bits == 16:
|
|
322
|
-
return wp_dtype == warp.float16
|
|
323
|
-
elif dl_dtype.bits == 32:
|
|
324
|
-
return wp_dtype == warp.float32
|
|
325
|
-
elif dl_dtype.bits == 64:
|
|
326
|
-
return wp_dtype == warp.float64
|
|
327
|
-
elif dl_dtype.type_code.value == DLDataTypeCode.kDLInt or dl_dtype.type_code.value == DLDataTypeCode.kDLUInt:
|
|
328
|
-
if dl_dtype.bits == 8:
|
|
329
|
-
return wp_dtype == warp.int8 or wp_dtype == warp.uint8
|
|
330
|
-
elif dl_dtype.bits == 16:
|
|
331
|
-
return wp_dtype == warp.int16 or wp_dtype == warp.uint16
|
|
332
|
-
elif dl_dtype.bits == 32:
|
|
333
|
-
return wp_dtype == warp.int32 or wp_dtype == warp.uint32
|
|
334
|
-
elif dl_dtype.bits == 64:
|
|
335
|
-
return wp_dtype == warp.int64 or wp_dtype == warp.uint64
|
|
336
|
-
elif dl_dtype.type_code.value == DLDataTypeCode.kDLBfloat:
|
|
337
|
-
raise RuntimeError("Bfloat data type is not supported")
|
|
338
|
-
elif dl_dtype.type_code.value == DLDataTypeCode.kDLComplex:
|
|
339
|
-
raise RuntimeError("Complex data types are not supported")
|
|
340
|
-
else:
|
|
341
|
-
raise RuntimeError(f"Unsupported DLPack dtype {(str(dl_dtype.type_code), dl_dtype.bits)}")
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
def _from_dlpack(capsule, dtype=None) -> warp.array:
|
|
345
|
-
"""Convert a DLPack capsule into a Warp array without copying.
|
|
346
|
-
|
|
347
|
-
Args:
|
|
348
|
-
capsule: A DLPack capsule wrapping an external array or tensor.
|
|
349
|
-
dtype: An optional Warp data type to interpret the source data.
|
|
350
|
-
|
|
351
|
-
Returns:
|
|
352
|
-
A new Warp array that uses the same underlying memory as the input capsule.
|
|
353
|
-
"""
|
|
354
|
-
|
|
355
|
-
assert PyCapsule_IsValid(capsule, _c_str_dltensor), "Invalid capsule"
|
|
356
|
-
mem_ptr = PyCapsule_GetPointer(capsule, _c_str_dltensor)
|
|
357
|
-
managed_tensor = DLManagedTensor.from_address(mem_ptr)
|
|
358
|
-
|
|
359
|
-
dlt = managed_tensor.dl_tensor
|
|
360
|
-
|
|
361
|
-
device = device_from_dlpack(dlt.device)
|
|
362
|
-
pinned = dlt.device.device_type.value == DLDeviceType.kDLCUDAHost
|
|
363
|
-
shape = tuple(dlt.shape[dim] for dim in range(dlt.ndim))
|
|
364
|
-
|
|
365
|
-
# strides, if not contiguous
|
|
366
|
-
itemsize = dlt.dtype.bits // 8
|
|
367
|
-
if dlt.strides:
|
|
368
|
-
strides = tuple(dlt.strides[dim] * itemsize for dim in range(dlt.ndim))
|
|
369
|
-
else:
|
|
370
|
-
strides = None
|
|
371
|
-
|
|
372
|
-
# handle multi-lane dtypes as another dimension
|
|
373
|
-
if dlt.dtype.lanes > 1:
|
|
374
|
-
shape = (*shape, dlt.dtype.lanes)
|
|
375
|
-
if strides is not None:
|
|
376
|
-
strides = (*strides, itemsize)
|
|
377
|
-
|
|
378
|
-
if dtype is None:
|
|
379
|
-
# automatically detect dtype
|
|
380
|
-
dtype = dtype_from_dlpack(dlt.dtype)
|
|
381
|
-
|
|
382
|
-
elif hasattr(dtype, "_wp_scalar_type_"):
|
|
383
|
-
# handle vector/matrix types
|
|
384
|
-
|
|
385
|
-
if not dtype_is_compatible(dlt.dtype, dtype._wp_scalar_type_):
|
|
386
|
-
raise RuntimeError(f"Incompatible data types: {dlt.dtype} and {dtype}")
|
|
387
|
-
|
|
388
|
-
dtype_shape = dtype._shape_
|
|
389
|
-
dtype_dims = len(dtype._shape_)
|
|
390
|
-
if dtype_dims > len(shape) or dtype_shape != shape[-dtype_dims:]:
|
|
391
|
-
raise RuntimeError(
|
|
392
|
-
f"Could not convert DLPack tensor with shape {shape} to Warp array with dtype={dtype}, ensure that source inner shape is {dtype_shape}"
|
|
393
|
-
)
|
|
394
|
-
|
|
395
|
-
if strides is not None:
|
|
396
|
-
# ensure the inner strides are contiguous
|
|
397
|
-
stride = itemsize
|
|
398
|
-
for i in range(dtype_dims):
|
|
399
|
-
if strides[-i - 1] != stride:
|
|
400
|
-
raise RuntimeError(
|
|
401
|
-
f"Could not convert DLPack tensor with shape {shape} to Warp array with dtype={dtype}, because the source inner strides are not contiguous"
|
|
402
|
-
)
|
|
403
|
-
stride *= dtype_shape[-i - 1]
|
|
404
|
-
strides = tuple(strides[:-dtype_dims]) or (itemsize,)
|
|
405
|
-
|
|
406
|
-
shape = tuple(shape[:-dtype_dims]) or (1,)
|
|
407
|
-
|
|
408
|
-
elif not dtype_is_compatible(dlt.dtype, dtype):
|
|
409
|
-
# incompatible dtype requested
|
|
410
|
-
raise RuntimeError(f"Incompatible data types: {dlt.dtype} and {dtype}")
|
|
411
|
-
|
|
412
|
-
a = warp.types.array(
|
|
413
|
-
ptr=dlt.data, dtype=dtype, shape=shape, strides=strides, copy=False, device=device, pinned=pinned
|
|
414
|
-
)
|
|
415
|
-
|
|
416
|
-
# take ownership of the DLManagedTensor
|
|
417
|
-
a._dlpack_tensor_holder = _DLPackTensorHolder(mem_ptr)
|
|
418
|
-
|
|
419
|
-
# rename the capsule so that it no longer owns the DLManagedTensor
|
|
420
|
-
PyCapsule_SetName(capsule, _c_str_used_dltensor)
|
|
421
|
-
|
|
422
|
-
return a
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
def from_dlpack(source, dtype=None) -> warp.array:
|
|
426
|
-
"""Convert a source array or DLPack capsule into a Warp array without copying.
|
|
427
|
-
|
|
428
|
-
Args:
|
|
429
|
-
source: A DLPack-compatible array or PyCapsule
|
|
430
|
-
dtype: An optional Warp data type to interpret the source data.
|
|
431
|
-
|
|
432
|
-
Returns:
|
|
433
|
-
A new Warp array that uses the same underlying memory as the input
|
|
434
|
-
pycapsule.
|
|
435
|
-
"""
|
|
436
|
-
|
|
437
|
-
# See https://data-apis.org/array-api/2022.12/API_specification/generated/array_api.array.__dlpack__.html
|
|
438
|
-
|
|
439
|
-
if hasattr(source, "__dlpack__"):
|
|
440
|
-
device_type, device_id = source.__dlpack_device__()
|
|
441
|
-
# Check if the source lives on a CUDA device
|
|
442
|
-
if device_type in (DLDeviceType.kDLCUDA, DLDeviceType.kDLCUDAManaged):
|
|
443
|
-
# Assume that the caller will use the array on its device's current stream.
|
|
444
|
-
# Note that we pass 1 for the null stream, per DLPack spec.
|
|
445
|
-
cuda_stream = warp.get_cuda_device(device_id).stream.cuda_stream or 1
|
|
446
|
-
elif device_type == DLDeviceType.kDLCPU:
|
|
447
|
-
# No stream sync for CPU arrays.
|
|
448
|
-
cuda_stream = None
|
|
449
|
-
elif device_type == DLDeviceType.kDLCUDAHost:
|
|
450
|
-
# For pinned memory, we sync with the current CUDA device's stream.
|
|
451
|
-
# Note that we pass 1 for the null stream, per DLPack spec.
|
|
452
|
-
cuda_stream = warp.get_cuda_device().stream.cuda_stream or 1
|
|
453
|
-
else:
|
|
454
|
-
raise TypeError("Unsupported source device")
|
|
455
|
-
|
|
456
|
-
capsule = source.__dlpack__(stream=cuda_stream)
|
|
457
|
-
|
|
458
|
-
else:
|
|
459
|
-
# legacy behaviour, assume source is a capsule
|
|
460
|
-
capsule = source
|
|
461
|
-
|
|
462
|
-
return _from_dlpack(capsule, dtype=dtype)
|
|
24
|
+
return get_deprecated_api(_dlpack, "wp", name)
|
|
@@ -39,7 +39,6 @@ import numpy as np
|
|
|
39
39
|
from mpi4py import MPI
|
|
40
40
|
|
|
41
41
|
import warp as wp
|
|
42
|
-
import warp.context
|
|
43
42
|
from warp.types import warp_type_to_np_dtype
|
|
44
43
|
|
|
45
44
|
wp.config.quiet = True # Suppress wp.init() output
|
|
@@ -50,7 +49,7 @@ wptype = wp.float32 # Global precision setting, can set wp.float64 here for dou
|
|
|
50
49
|
pi = wptype(math.pi) # GitHub #485
|
|
51
50
|
|
|
52
51
|
|
|
53
|
-
def calc_default_device(mpi_comm: "MPI.Comm") ->
|
|
52
|
+
def calc_default_device(mpi_comm: "MPI.Comm") -> wp.context.Device:
|
|
54
53
|
"""Return the device that should be used for the current rank.
|
|
55
54
|
|
|
56
55
|
This function is used to ensure that multiple MPI ranks running on the same
|
|
@@ -72,7 +71,7 @@ def calc_default_device(mpi_comm: "MPI.Comm") -> warp.context.Device:
|
|
|
72
71
|
local_size = local_mpi_comm.Get_size()
|
|
73
72
|
local_rank = local_mpi_comm.Get_rank()
|
|
74
73
|
|
|
75
|
-
num_cuda_devices =
|
|
74
|
+
num_cuda_devices = wp.get_cuda_device_count()
|
|
76
75
|
|
|
77
76
|
if 1 < num_cuda_devices < local_size:
|
|
78
77
|
raise RuntimeError(
|
|
@@ -81,9 +80,9 @@ def calc_default_device(mpi_comm: "MPI.Comm") -> warp.context.Device:
|
|
|
81
80
|
|
|
82
81
|
if 1 < num_cuda_devices:
|
|
83
82
|
# Get the device based on local_rank
|
|
84
|
-
return
|
|
83
|
+
return wp.get_cuda_device(local_rank)
|
|
85
84
|
else:
|
|
86
|
-
return
|
|
85
|
+
return wp.get_device()
|
|
87
86
|
|
|
88
87
|
|
|
89
88
|
def calc_decomp_1d(total_points: int, rank: int, total_ranks: int) -> Tuple[int, int]:
|
|
@@ -16,7 +16,7 @@
|
|
|
16
16
|
###########################################################################
|
|
17
17
|
# Example Adaptive Grid
|
|
18
18
|
#
|
|
19
|
-
# Demonstrates using an adaptive grid to increase the simulation
|
|
19
|
+
# Demonstrates using an adaptive grid to increase the simulation resolution
|
|
20
20
|
# near a collider boundary.
|
|
21
21
|
#
|
|
22
22
|
###########################################################################
|
|
@@ -400,7 +400,7 @@ class Example:
|
|
|
400
400
|
cell_volume = np.prod(cell_size)
|
|
401
401
|
|
|
402
402
|
radius = np.max(cell_size) * 0.5
|
|
403
|
-
volume =
|
|
403
|
+
volume = cell_volume * packing_fraction
|
|
404
404
|
|
|
405
405
|
rng = np.random.default_rng(42)
|
|
406
406
|
points += 2.0 * radius * (rng.random(points.shape) - 0.5)
|
|
@@ -172,7 +172,7 @@ class Example:
|
|
|
172
172
|
|
|
173
173
|
if self.velocity_field.space.degree > 0:
|
|
174
174
|
# Integration on cells (if not piecewise-constant)
|
|
175
|
-
fem.
|
|
175
|
+
fem.linalg.array_axpy(
|
|
176
176
|
x=fem.integrate(
|
|
177
177
|
cell_transport_form,
|
|
178
178
|
fields={"u": trial_velocity, "v": self._test, "w": trial_velocity},
|
|
@@ -196,19 +196,19 @@ class Example:
|
|
|
196
196
|
|
|
197
197
|
# tmp = v0 - dt * k1
|
|
198
198
|
tmp = self.velocity_field.space.make_field()
|
|
199
|
-
fem.
|
|
200
|
-
fem.
|
|
199
|
+
fem.linalg.array_axpy(y=tmp.dof_values, x=self.velocity_field.dof_values, alpha=1.0, beta=0.0)
|
|
200
|
+
fem.linalg.array_axpy(y=tmp.dof_values, x=k1, alpha=-self.sim_dt, beta=1.0)
|
|
201
201
|
k2 = self._velocity_delta(tmp)
|
|
202
202
|
|
|
203
203
|
# tmp = v0 - dt * (0.25 * k1 + 0.25 * k2)
|
|
204
|
-
fem.
|
|
205
|
-
fem.
|
|
204
|
+
fem.linalg.array_axpy(y=tmp.dof_values, x=k1, alpha=0.75 * self.sim_dt, beta=1.0)
|
|
205
|
+
fem.linalg.array_axpy(y=tmp.dof_values, x=k2, alpha=-0.25 * self.sim_dt, beta=1.0)
|
|
206
206
|
k3 = self._velocity_delta(tmp)
|
|
207
207
|
|
|
208
208
|
# v = v0 - dt * (1/6 * k1 + 1/6 * k2 + 2/3 * k3)
|
|
209
|
-
fem.
|
|
210
|
-
fem.
|
|
211
|
-
fem.
|
|
209
|
+
fem.linalg.array_axpy(y=self.velocity_field.dof_values, x=k1, alpha=-1.0 / 6.0 * self.sim_dt, beta=1.0)
|
|
210
|
+
fem.linalg.array_axpy(y=self.velocity_field.dof_values, x=k2, alpha=-1.0 / 6.0 * self.sim_dt, beta=1.0)
|
|
211
|
+
fem.linalg.array_axpy(y=self.velocity_field.dof_values, x=k3, alpha=-2.0 / 3.0 * self.sim_dt, beta=1.0)
|
|
212
212
|
|
|
213
213
|
# Apply slope limiter
|
|
214
214
|
if self.velocity_field.space.degree > 0:
|
|
@@ -183,7 +183,7 @@ class Example:
|
|
|
183
183
|
fem_example_utils.bsr_cg(u_matrix, b=u_rhs, x=du, quiet=self._quiet)
|
|
184
184
|
|
|
185
185
|
# Accumulate to UV field
|
|
186
|
-
fem.
|
|
186
|
+
fem.linalg.array_axpy(x=du, y=self._u_field.dof_values, alpha=-1.0, beta=1.0)
|
|
187
187
|
|
|
188
188
|
def render(self):
|
|
189
189
|
# Visualization
|
|
@@ -159,7 +159,7 @@ class Example:
|
|
|
159
159
|
self._geo, degree=degree, dtype=wp.vec2, element_basis=fem.ElementBasis.SERENDIPITY
|
|
160
160
|
)
|
|
161
161
|
|
|
162
|
-
if
|
|
162
|
+
if self._geo.reference_cell() == fem.Element.TRIANGLE:
|
|
163
163
|
# triangle elements
|
|
164
164
|
tau_basis = fem.ElementBasis.NONCONFORMING_POLYNOMIAL
|
|
165
165
|
tau_degree = degree - 1
|
|
@@ -240,7 +240,7 @@ class Example:
|
|
|
240
240
|
# Extract result -- cast to float32 and accumulate to displacement field
|
|
241
241
|
delta_u = wp.empty_like(self._u_field.dof_values)
|
|
242
242
|
wp.utils.array_cast(in_array=x, out_array=delta_u)
|
|
243
|
-
fem.
|
|
243
|
+
fem.linalg.array_axpy(x=delta_u, y=self._u_field.dof_values)
|
|
244
244
|
|
|
245
245
|
# Evaluate area conservation, should converge to 1.0 as Poisson ratio approaches 1.0
|
|
246
246
|
final_area = fem.integrate(
|
|
@@ -123,7 +123,7 @@ class Example:
|
|
|
123
123
|
[
|
|
124
124
|
[1.0, poisson, 0.0],
|
|
125
125
|
[poisson, 1.0, 0.0],
|
|
126
|
-
[0.0, 0.0, (
|
|
126
|
+
[0.0, 0.0, (1.0 - poisson * poisson) / (2.0 * (1.0 + poisson))],
|
|
127
127
|
]
|
|
128
128
|
)
|
|
129
129
|
)
|
|
@@ -142,14 +142,14 @@ class Example:
|
|
|
142
142
|
# Store stress degrees of freedom as symmetric tensors (3 dof) rather than full 2x2 matrices
|
|
143
143
|
self._tau1_space = fem.make_polynomial_space(
|
|
144
144
|
self._geo1,
|
|
145
|
-
degree=degree
|
|
145
|
+
degree=degree,
|
|
146
146
|
discontinuous=True,
|
|
147
147
|
element_basis=fem.ElementBasis.LAGRANGE,
|
|
148
148
|
dof_mapper=fem.SymmetricTensorMapper(wp.mat22),
|
|
149
149
|
)
|
|
150
150
|
self._tau2_space = fem.make_polynomial_space(
|
|
151
151
|
self._geo2,
|
|
152
|
-
degree=degree
|
|
152
|
+
degree=degree,
|
|
153
153
|
discontinuous=True,
|
|
154
154
|
element_basis=fem.ElementBasis.LAGRANGE,
|
|
155
155
|
dof_mapper=fem.SymmetricTensorMapper(wp.mat22),
|
|
@@ -173,7 +173,7 @@ class Example:
|
|
|
173
173
|
|
|
174
174
|
# Damped update of coupling stress (for stability)
|
|
175
175
|
alpha = 0.1
|
|
176
|
-
fem.
|
|
176
|
+
fem.linalg.array_axpy(
|
|
177
177
|
x=self._sig2_field_new.dof_values, y=self._sig2_field.dof_values, alpha=alpha, beta=1.0 - alpha
|
|
178
178
|
)
|
|
179
179
|
|
|
@@ -219,7 +219,7 @@ class Example:
|
|
|
219
219
|
u_rhs = fem.integrate(gravity_form, fields={"v": u_test}, values={"gravity": gravity}, output_dtype=wp.vec2d)
|
|
220
220
|
|
|
221
221
|
# Add boundary stress from other solid field
|
|
222
|
-
other_stress_field = fem.
|
|
222
|
+
other_stress_field = fem.NonconformingField(boundary, other_stress_field)
|
|
223
223
|
fem.integrate(
|
|
224
224
|
boundary_stress_form,
|
|
225
225
|
fields={"u": u_bd_test, "tau": other_stress_field},
|
|
@@ -232,8 +232,8 @@ class Example:
|
|
|
232
232
|
bottom_boundary_projector_form, fields={"u": u_bd_trial, "v": u_bd_test}, assembly="nodal"
|
|
233
233
|
)
|
|
234
234
|
|
|
235
|
-
#
|
|
236
|
-
other_u_field = fem.
|
|
235
|
+
# displacement from other body defines bottom boundary Dirichlet BC
|
|
236
|
+
other_u_field = fem.NonconformingField(boundary, other_u_field)
|
|
237
237
|
u_bd_rhs = fem.integrate(
|
|
238
238
|
bottom_boundary_projector_form, fields={"u": other_u_field, "v": u_bd_test}, assembly="nodal"
|
|
239
239
|
)
|