warp-lang 1.9.1__py3-none-manylinux_2_34_aarch64.whl → 1.10.0rc2__py3-none-manylinux_2_34_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +301 -287
- warp/__init__.pyi +794 -305
- warp/_src/__init__.py +14 -0
- warp/_src/autograd.py +1075 -0
- warp/_src/build.py +618 -0
- warp/_src/build_dll.py +640 -0
- warp/{builtins.py → _src/builtins.py} +1382 -377
- warp/_src/codegen.py +4359 -0
- warp/{config.py → _src/config.py} +178 -169
- warp/_src/constants.py +57 -0
- warp/_src/context.py +8294 -0
- warp/_src/dlpack.py +462 -0
- warp/_src/fabric.py +355 -0
- warp/_src/fem/__init__.py +14 -0
- warp/_src/fem/adaptivity.py +508 -0
- warp/_src/fem/cache.py +687 -0
- warp/_src/fem/dirichlet.py +188 -0
- warp/{fem → _src/fem}/domain.py +40 -30
- warp/_src/fem/field/__init__.py +131 -0
- warp/_src/fem/field/field.py +701 -0
- warp/{fem → _src/fem}/field/nodal_field.py +30 -15
- warp/{fem → _src/fem}/field/restriction.py +1 -1
- warp/{fem → _src/fem}/field/virtual.py +53 -27
- warp/_src/fem/geometry/__init__.py +32 -0
- warp/{fem → _src/fem}/geometry/adaptive_nanogrid.py +77 -163
- warp/_src/fem/geometry/closest_point.py +97 -0
- warp/{fem → _src/fem}/geometry/deformed_geometry.py +14 -22
- warp/{fem → _src/fem}/geometry/element.py +32 -10
- warp/{fem → _src/fem}/geometry/geometry.py +48 -20
- warp/{fem → _src/fem}/geometry/grid_2d.py +12 -23
- warp/{fem → _src/fem}/geometry/grid_3d.py +12 -23
- warp/{fem → _src/fem}/geometry/hexmesh.py +40 -63
- warp/{fem → _src/fem}/geometry/nanogrid.py +255 -248
- warp/{fem → _src/fem}/geometry/partition.py +121 -63
- warp/{fem → _src/fem}/geometry/quadmesh.py +26 -45
- warp/{fem → _src/fem}/geometry/tetmesh.py +40 -63
- warp/{fem → _src/fem}/geometry/trimesh.py +26 -45
- warp/{fem → _src/fem}/integrate.py +164 -158
- warp/_src/fem/linalg.py +383 -0
- warp/_src/fem/operator.py +396 -0
- warp/_src/fem/polynomial.py +229 -0
- warp/{fem → _src/fem}/quadrature/pic_quadrature.py +15 -20
- warp/{fem → _src/fem}/quadrature/quadrature.py +95 -47
- warp/_src/fem/space/__init__.py +248 -0
- warp/{fem → _src/fem}/space/basis_function_space.py +20 -11
- warp/_src/fem/space/basis_space.py +679 -0
- warp/{fem → _src/fem}/space/dof_mapper.py +3 -3
- warp/{fem → _src/fem}/space/function_space.py +14 -13
- warp/{fem → _src/fem}/space/grid_2d_function_space.py +4 -7
- warp/{fem → _src/fem}/space/grid_3d_function_space.py +4 -4
- warp/{fem → _src/fem}/space/hexmesh_function_space.py +4 -10
- warp/{fem → _src/fem}/space/nanogrid_function_space.py +3 -9
- warp/{fem → _src/fem}/space/partition.py +117 -60
- warp/{fem → _src/fem}/space/quadmesh_function_space.py +4 -10
- warp/{fem → _src/fem}/space/restriction.py +66 -33
- warp/_src/fem/space/shape/__init__.py +152 -0
- warp/{fem → _src/fem}/space/shape/cube_shape_function.py +9 -9
- warp/{fem → _src/fem}/space/shape/shape_function.py +8 -9
- warp/{fem → _src/fem}/space/shape/square_shape_function.py +6 -6
- warp/{fem → _src/fem}/space/shape/tet_shape_function.py +3 -3
- warp/{fem → _src/fem}/space/shape/triangle_shape_function.py +3 -3
- warp/{fem → _src/fem}/space/tetmesh_function_space.py +3 -9
- warp/_src/fem/space/topology.py +459 -0
- warp/{fem → _src/fem}/space/trimesh_function_space.py +3 -9
- warp/_src/fem/types.py +112 -0
- warp/_src/fem/utils.py +486 -0
- warp/_src/jax.py +186 -0
- warp/_src/jax_experimental/__init__.py +14 -0
- warp/_src/jax_experimental/custom_call.py +387 -0
- warp/_src/jax_experimental/ffi.py +1284 -0
- warp/_src/jax_experimental/xla_ffi.py +656 -0
- warp/_src/marching_cubes.py +708 -0
- warp/_src/math.py +414 -0
- warp/_src/optim/__init__.py +14 -0
- warp/_src/optim/adam.py +163 -0
- warp/_src/optim/linear.py +1606 -0
- warp/_src/optim/sgd.py +112 -0
- warp/_src/paddle.py +406 -0
- warp/_src/render/__init__.py +14 -0
- warp/_src/render/imgui_manager.py +289 -0
- warp/_src/render/render_opengl.py +3636 -0
- warp/_src/render/render_usd.py +937 -0
- warp/_src/render/utils.py +160 -0
- warp/_src/sparse.py +2716 -0
- warp/_src/tape.py +1206 -0
- warp/{thirdparty → _src/thirdparty}/unittest_parallel.py +9 -2
- warp/_src/torch.py +391 -0
- warp/_src/types.py +5870 -0
- warp/_src/utils.py +1693 -0
- warp/autograd.py +12 -1054
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +8 -588
- warp/build_dll.py +6 -721
- warp/codegen.py +6 -4251
- warp/constants.py +6 -39
- warp/context.py +12 -8062
- warp/dlpack.py +6 -444
- warp/examples/distributed/example_jacobi_mpi.py +4 -5
- warp/examples/fem/example_adaptive_grid.py +1 -1
- warp/examples/fem/example_apic_fluid.py +1 -1
- warp/examples/fem/example_burgers.py +8 -8
- warp/examples/fem/example_diffusion.py +1 -1
- warp/examples/fem/example_distortion_energy.py +1 -1
- warp/examples/fem/example_mixed_elasticity.py +2 -2
- warp/examples/fem/example_navier_stokes.py +1 -1
- warp/examples/fem/example_nonconforming_contact.py +7 -7
- warp/examples/fem/example_stokes.py +1 -1
- warp/examples/fem/example_stokes_transfer.py +1 -1
- warp/examples/fem/utils.py +2 -2
- warp/examples/interop/example_jax_callable.py +1 -1
- warp/examples/interop/example_jax_ffi_callback.py +1 -1
- warp/examples/interop/example_jax_kernel.py +1 -1
- warp/examples/tile/example_tile_mcgp.py +191 -0
- warp/fabric.py +6 -337
- warp/fem/__init__.py +159 -97
- warp/fem/adaptivity.py +7 -489
- warp/fem/cache.py +9 -648
- warp/fem/dirichlet.py +6 -184
- warp/fem/field/__init__.py +8 -109
- warp/fem/field/field.py +7 -652
- warp/fem/geometry/__init__.py +7 -18
- warp/fem/geometry/closest_point.py +11 -77
- warp/fem/linalg.py +18 -366
- warp/fem/operator.py +11 -369
- warp/fem/polynomial.py +9 -209
- warp/fem/space/__init__.py +5 -211
- warp/fem/space/basis_space.py +6 -662
- warp/fem/space/shape/__init__.py +41 -118
- warp/fem/space/topology.py +6 -437
- warp/fem/types.py +6 -81
- warp/fem/utils.py +11 -444
- warp/jax.py +8 -165
- warp/jax_experimental/__init__.py +14 -1
- warp/jax_experimental/custom_call.py +8 -365
- warp/jax_experimental/ffi.py +17 -873
- warp/jax_experimental/xla_ffi.py +5 -605
- warp/marching_cubes.py +5 -689
- warp/math.py +16 -393
- warp/native/array.h +385 -37
- warp/native/builtin.h +314 -37
- warp/native/bvh.cpp +43 -9
- warp/native/bvh.cu +62 -27
- warp/native/bvh.h +310 -309
- warp/native/clang/clang.cpp +102 -97
- warp/native/coloring.cpp +0 -1
- warp/native/crt.h +208 -0
- warp/native/exports.h +156 -0
- warp/native/hashgrid.cu +2 -0
- warp/native/intersect.h +24 -1
- warp/native/intersect_tri.h +44 -35
- warp/native/mat.h +1456 -276
- warp/native/mesh.cpp +4 -4
- warp/native/mesh.cu +4 -2
- warp/native/mesh.h +176 -61
- warp/native/quat.h +0 -52
- warp/native/scan.cu +2 -0
- warp/native/sparse.cu +7 -3
- warp/native/spatial.h +12 -0
- warp/native/tile.h +681 -89
- warp/native/tile_radix_sort.h +1 -1
- warp/native/tile_reduce.h +394 -46
- warp/native/tile_scan.h +4 -4
- warp/native/vec.h +469 -0
- warp/native/version.h +23 -0
- warp/native/volume.cpp +1 -1
- warp/native/volume.cu +1 -0
- warp/native/volume.h +1 -1
- warp/native/volume_builder.cu +2 -0
- warp/native/warp.cpp +57 -29
- warp/native/warp.cu +253 -171
- warp/native/warp.h +11 -8
- warp/optim/__init__.py +6 -3
- warp/optim/adam.py +6 -145
- warp/optim/linear.py +14 -1585
- warp/optim/sgd.py +6 -94
- warp/paddle.py +6 -388
- warp/render/__init__.py +8 -4
- warp/render/imgui_manager.py +7 -267
- warp/render/render_opengl.py +6 -3618
- warp/render/render_usd.py +6 -919
- warp/render/utils.py +6 -142
- warp/sparse.py +37 -2563
- warp/tape.py +6 -1188
- warp/tests/__main__.py +1 -1
- warp/tests/cuda/test_async.py +4 -4
- warp/tests/cuda/test_conditional_captures.py +1 -1
- warp/tests/cuda/test_multigpu.py +1 -1
- warp/tests/cuda/test_streams.py +58 -1
- warp/tests/geometry/test_bvh.py +157 -22
- warp/tests/geometry/test_marching_cubes.py +0 -1
- warp/tests/geometry/test_mesh.py +5 -3
- warp/tests/geometry/test_mesh_query_aabb.py +5 -12
- warp/tests/geometry/test_mesh_query_point.py +5 -2
- warp/tests/geometry/test_mesh_query_ray.py +15 -3
- warp/tests/geometry/test_volume_write.py +5 -5
- warp/tests/interop/test_dlpack.py +14 -14
- warp/tests/interop/test_jax.py +772 -49
- warp/tests/interop/test_paddle.py +1 -1
- warp/tests/test_adam.py +0 -1
- warp/tests/test_arithmetic.py +9 -9
- warp/tests/test_array.py +527 -100
- warp/tests/test_array_reduce.py +3 -3
- warp/tests/test_atomic.py +12 -8
- warp/tests/test_atomic_bitwise.py +209 -0
- warp/tests/test_atomic_cas.py +4 -4
- warp/tests/test_bool.py +2 -2
- warp/tests/test_builtins_resolution.py +5 -571
- warp/tests/test_codegen.py +33 -14
- warp/tests/test_conditional.py +1 -1
- warp/tests/test_context.py +6 -6
- warp/tests/test_copy.py +242 -161
- warp/tests/test_ctypes.py +3 -3
- warp/tests/test_devices.py +24 -2
- warp/tests/test_examples.py +16 -84
- warp/tests/test_fabricarray.py +35 -35
- warp/tests/test_fast_math.py +0 -2
- warp/tests/test_fem.py +56 -10
- warp/tests/test_fixedarray.py +3 -3
- warp/tests/test_func.py +8 -5
- warp/tests/test_generics.py +1 -1
- warp/tests/test_indexedarray.py +24 -24
- warp/tests/test_intersect.py +39 -9
- warp/tests/test_large.py +1 -1
- warp/tests/test_lerp.py +3 -1
- warp/tests/test_linear_solvers.py +1 -1
- warp/tests/test_map.py +35 -4
- warp/tests/test_mat.py +52 -62
- warp/tests/test_mat_constructors.py +4 -5
- warp/tests/test_mat_lite.py +1 -1
- warp/tests/test_mat_scalar_ops.py +121 -121
- warp/tests/test_math.py +34 -0
- warp/tests/test_module_aot.py +4 -4
- warp/tests/test_modules_lite.py +28 -2
- warp/tests/test_print.py +11 -11
- warp/tests/test_quat.py +93 -58
- warp/tests/test_runlength_encode.py +1 -1
- warp/tests/test_scalar_ops.py +38 -10
- warp/tests/test_smoothstep.py +1 -1
- warp/tests/test_sparse.py +126 -15
- warp/tests/test_spatial.py +105 -87
- warp/tests/test_special_values.py +6 -6
- warp/tests/test_static.py +7 -7
- warp/tests/test_struct.py +13 -2
- warp/tests/test_triangle_closest_point.py +48 -1
- warp/tests/test_types.py +27 -15
- warp/tests/test_utils.py +52 -52
- warp/tests/test_vec.py +29 -29
- warp/tests/test_vec_constructors.py +5 -5
- warp/tests/test_vec_scalar_ops.py +97 -97
- warp/tests/test_version.py +75 -0
- warp/tests/tile/test_tile.py +178 -0
- warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
- warp/tests/tile/test_tile_cholesky.py +7 -4
- warp/tests/tile/test_tile_load.py +26 -2
- warp/tests/tile/test_tile_mathdx.py +3 -3
- warp/tests/tile/test_tile_matmul.py +1 -1
- warp/tests/tile/test_tile_mlp.py +2 -4
- warp/tests/tile/test_tile_reduce.py +214 -13
- warp/tests/unittest_suites.py +6 -14
- warp/tests/unittest_utils.py +10 -9
- warp/tests/walkthrough_debug.py +3 -1
- warp/torch.py +6 -373
- warp/types.py +29 -5764
- warp/utils.py +10 -1659
- {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/METADATA +46 -99
- warp_lang-1.10.0rc2.dist-info/RECORD +468 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
- warp_lang-1.10.0rc2.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
- warp/examples/assets/cartpole.urdf +0 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/nv_ant.xml +0 -92
- warp/examples/assets/nv_humanoid.xml +0 -183
- warp/examples/assets/quadruped.urdf +0 -268
- warp/examples/optim/example_bounce.py +0 -266
- warp/examples/optim/example_cloth_throw.py +0 -228
- warp/examples/optim/example_drone.py +0 -870
- warp/examples/optim/example_inverse_kinematics.py +0 -182
- warp/examples/optim/example_inverse_kinematics_torch.py +0 -191
- warp/examples/optim/example_softbody_properties.py +0 -400
- warp/examples/optim/example_spring_cage.py +0 -245
- warp/examples/optim/example_trajectory.py +0 -227
- warp/examples/sim/example_cartpole.py +0 -143
- warp/examples/sim/example_cloth.py +0 -225
- warp/examples/sim/example_cloth_self_contact.py +0 -316
- warp/examples/sim/example_granular.py +0 -130
- warp/examples/sim/example_granular_collision_sdf.py +0 -202
- warp/examples/sim/example_jacobian_ik.py +0 -244
- warp/examples/sim/example_particle_chain.py +0 -124
- warp/examples/sim/example_quadruped.py +0 -203
- warp/examples/sim/example_rigid_chain.py +0 -203
- warp/examples/sim/example_rigid_contact.py +0 -195
- warp/examples/sim/example_rigid_force.py +0 -133
- warp/examples/sim/example_rigid_gyroscopic.py +0 -115
- warp/examples/sim/example_rigid_soft_contact.py +0 -140
- warp/examples/sim/example_soft_body.py +0 -196
- warp/examples/tile/example_tile_walker.py +0 -327
- warp/sim/__init__.py +0 -74
- warp/sim/articulation.py +0 -793
- warp/sim/collide.py +0 -2570
- warp/sim/graph_coloring.py +0 -307
- warp/sim/import_mjcf.py +0 -791
- warp/sim/import_snu.py +0 -227
- warp/sim/import_urdf.py +0 -579
- warp/sim/import_usd.py +0 -898
- warp/sim/inertia.py +0 -357
- warp/sim/integrator.py +0 -245
- warp/sim/integrator_euler.py +0 -2000
- warp/sim/integrator_featherstone.py +0 -2101
- warp/sim/integrator_vbd.py +0 -2487
- warp/sim/integrator_xpbd.py +0 -3295
- warp/sim/model.py +0 -4821
- warp/sim/particles.py +0 -121
- warp/sim/render.py +0 -431
- warp/sim/utils.py +0 -431
- warp/tests/sim/disabled_kinematics.py +0 -244
- warp/tests/sim/test_cloth.py +0 -863
- warp/tests/sim/test_collision.py +0 -743
- warp/tests/sim/test_coloring.py +0 -347
- warp/tests/sim/test_inertia.py +0 -161
- warp/tests/sim/test_model.py +0 -226
- warp/tests/sim/test_sim_grad.py +0 -287
- warp/tests/sim/test_sim_grad_bounce_linear.py +0 -212
- warp/tests/sim/test_sim_kinematics.py +0 -98
- warp/thirdparty/__init__.py +0 -0
- warp_lang-1.9.1.dist-info/RECORD +0 -456
- /warp/{fem → _src/fem}/quadrature/__init__.py +0 -0
- /warp/{tests/sim → _src/thirdparty}/__init__.py +0 -0
- /warp/{thirdparty → _src/thirdparty}/appdirs.py +0 -0
- /warp/{thirdparty → _src/thirdparty}/dlpack.py +0 -0
- {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/WHEEL +0 -0
- {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/licenses/LICENSE.md +0 -0
- {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -1,2101 +0,0 @@
|
|
|
1
|
-
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
-
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
import warp as wp
|
|
17
|
-
|
|
18
|
-
from .articulation import (
|
|
19
|
-
compute_2d_rotational_dofs,
|
|
20
|
-
compute_3d_rotational_dofs,
|
|
21
|
-
eval_fk,
|
|
22
|
-
)
|
|
23
|
-
from .integrator import Integrator
|
|
24
|
-
from .integrator_euler import (
|
|
25
|
-
eval_bending_forces,
|
|
26
|
-
eval_joint_force,
|
|
27
|
-
eval_muscle_forces,
|
|
28
|
-
eval_particle_body_contact_forces,
|
|
29
|
-
eval_particle_forces,
|
|
30
|
-
eval_particle_ground_contact_forces,
|
|
31
|
-
eval_rigid_contacts,
|
|
32
|
-
eval_spring_forces,
|
|
33
|
-
eval_tetrahedral_forces,
|
|
34
|
-
eval_triangle_contact_forces,
|
|
35
|
-
eval_triangle_forces,
|
|
36
|
-
)
|
|
37
|
-
from .model import Control, Model, State
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
# Frank & Park definition 3.20, pg 100
|
|
41
|
-
@wp.func
|
|
42
|
-
def transform_twist(t: wp.transform, x: wp.spatial_vector):
|
|
43
|
-
q = wp.transform_get_rotation(t)
|
|
44
|
-
p = wp.transform_get_translation(t)
|
|
45
|
-
|
|
46
|
-
w = wp.spatial_top(x)
|
|
47
|
-
v = wp.spatial_bottom(x)
|
|
48
|
-
|
|
49
|
-
w = wp.quat_rotate(q, w)
|
|
50
|
-
v = wp.quat_rotate(q, v) + wp.cross(p, w)
|
|
51
|
-
|
|
52
|
-
return wp.spatial_vector(w, v)
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
@wp.func
|
|
56
|
-
def transform_wrench(t: wp.transform, x: wp.spatial_vector):
|
|
57
|
-
q = wp.transform_get_rotation(t)
|
|
58
|
-
p = wp.transform_get_translation(t)
|
|
59
|
-
|
|
60
|
-
w = wp.spatial_top(x)
|
|
61
|
-
v = wp.spatial_bottom(x)
|
|
62
|
-
|
|
63
|
-
v = wp.quat_rotate(q, v)
|
|
64
|
-
w = wp.quat_rotate(q, w) + wp.cross(p, v)
|
|
65
|
-
|
|
66
|
-
return wp.spatial_vector(w, v)
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
@wp.func
|
|
70
|
-
def spatial_adjoint(R: wp.mat33, S: wp.mat33):
|
|
71
|
-
# T = [R 0]
|
|
72
|
-
# [S R]
|
|
73
|
-
|
|
74
|
-
# fmt: off
|
|
75
|
-
return wp.spatial_matrix(
|
|
76
|
-
R[0, 0], R[0, 1], R[0, 2], 0.0, 0.0, 0.0,
|
|
77
|
-
R[1, 0], R[1, 1], R[1, 2], 0.0, 0.0, 0.0,
|
|
78
|
-
R[2, 0], R[2, 1], R[2, 2], 0.0, 0.0, 0.0,
|
|
79
|
-
S[0, 0], S[0, 1], S[0, 2], R[0, 0], R[0, 1], R[0, 2],
|
|
80
|
-
S[1, 0], S[1, 1], S[1, 2], R[1, 0], R[1, 1], R[1, 2],
|
|
81
|
-
S[2, 0], S[2, 1], S[2, 2], R[2, 0], R[2, 1], R[2, 2],
|
|
82
|
-
)
|
|
83
|
-
# fmt: on
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
@wp.kernel
|
|
87
|
-
def compute_spatial_inertia(
|
|
88
|
-
body_inertia: wp.array(dtype=wp.mat33),
|
|
89
|
-
body_mass: wp.array(dtype=float),
|
|
90
|
-
# outputs
|
|
91
|
-
body_I_m: wp.array(dtype=wp.spatial_matrix),
|
|
92
|
-
):
|
|
93
|
-
tid = wp.tid()
|
|
94
|
-
I = body_inertia[tid]
|
|
95
|
-
m = body_mass[tid]
|
|
96
|
-
# fmt: off
|
|
97
|
-
body_I_m[tid] = wp.spatial_matrix(
|
|
98
|
-
I[0, 0], I[0, 1], I[0, 2], 0.0, 0.0, 0.0,
|
|
99
|
-
I[1, 0], I[1, 1], I[1, 2], 0.0, 0.0, 0.0,
|
|
100
|
-
I[2, 0], I[2, 1], I[2, 2], 0.0, 0.0, 0.0,
|
|
101
|
-
0.0, 0.0, 0.0, m, 0.0, 0.0,
|
|
102
|
-
0.0, 0.0, 0.0, 0.0, m, 0.0,
|
|
103
|
-
0.0, 0.0, 0.0, 0.0, 0.0, m,
|
|
104
|
-
)
|
|
105
|
-
# fmt: on
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
@wp.kernel
|
|
109
|
-
def compute_com_transforms(
|
|
110
|
-
body_com: wp.array(dtype=wp.vec3),
|
|
111
|
-
# outputs
|
|
112
|
-
body_X_com: wp.array(dtype=wp.transform),
|
|
113
|
-
):
|
|
114
|
-
tid = wp.tid()
|
|
115
|
-
com = body_com[tid]
|
|
116
|
-
body_X_com[tid] = wp.transform(com, wp.quat_identity())
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
# computes adj_t^-T*I*adj_t^-1 (tensor change of coordinates), Frank & Park, section 8.2.3, pg 290
|
|
120
|
-
@wp.func
|
|
121
|
-
def spatial_transform_inertia(t: wp.transform, I: wp.spatial_matrix):
|
|
122
|
-
t_inv = wp.transform_inverse(t)
|
|
123
|
-
|
|
124
|
-
q = wp.transform_get_rotation(t_inv)
|
|
125
|
-
p = wp.transform_get_translation(t_inv)
|
|
126
|
-
|
|
127
|
-
r1 = wp.quat_rotate(q, wp.vec3(1.0, 0.0, 0.0))
|
|
128
|
-
r2 = wp.quat_rotate(q, wp.vec3(0.0, 1.0, 0.0))
|
|
129
|
-
r3 = wp.quat_rotate(q, wp.vec3(0.0, 0.0, 1.0))
|
|
130
|
-
|
|
131
|
-
R = wp.matrix_from_cols(r1, r2, r3)
|
|
132
|
-
S = wp.skew(p) @ R
|
|
133
|
-
|
|
134
|
-
T = spatial_adjoint(R, S)
|
|
135
|
-
|
|
136
|
-
return wp.mul(wp.mul(wp.transpose(T), I), T)
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
# compute transform across a joint
|
|
140
|
-
@wp.func
|
|
141
|
-
def jcalc_transform(
|
|
142
|
-
type: int,
|
|
143
|
-
joint_axis: wp.array(dtype=wp.vec3),
|
|
144
|
-
axis_start: int,
|
|
145
|
-
lin_axis_count: int,
|
|
146
|
-
ang_axis_count: int,
|
|
147
|
-
joint_q: wp.array(dtype=float),
|
|
148
|
-
start: int,
|
|
149
|
-
):
|
|
150
|
-
if type == wp.sim.JOINT_PRISMATIC:
|
|
151
|
-
q = joint_q[start]
|
|
152
|
-
axis = joint_axis[axis_start]
|
|
153
|
-
X_jc = wp.transform(axis * q, wp.quat_identity())
|
|
154
|
-
return X_jc
|
|
155
|
-
|
|
156
|
-
if type == wp.sim.JOINT_REVOLUTE:
|
|
157
|
-
q = joint_q[start]
|
|
158
|
-
axis = joint_axis[axis_start]
|
|
159
|
-
X_jc = wp.transform(wp.vec3(), wp.quat_from_axis_angle(axis, q))
|
|
160
|
-
return X_jc
|
|
161
|
-
|
|
162
|
-
if type == wp.sim.JOINT_BALL:
|
|
163
|
-
qx = joint_q[start + 0]
|
|
164
|
-
qy = joint_q[start + 1]
|
|
165
|
-
qz = joint_q[start + 2]
|
|
166
|
-
qw = joint_q[start + 3]
|
|
167
|
-
|
|
168
|
-
X_jc = wp.transform(wp.vec3(), wp.quat(qx, qy, qz, qw))
|
|
169
|
-
return X_jc
|
|
170
|
-
|
|
171
|
-
if type == wp.sim.JOINT_FIXED:
|
|
172
|
-
X_jc = wp.transform_identity()
|
|
173
|
-
return X_jc
|
|
174
|
-
|
|
175
|
-
if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE:
|
|
176
|
-
px = joint_q[start + 0]
|
|
177
|
-
py = joint_q[start + 1]
|
|
178
|
-
pz = joint_q[start + 2]
|
|
179
|
-
|
|
180
|
-
qx = joint_q[start + 3]
|
|
181
|
-
qy = joint_q[start + 4]
|
|
182
|
-
qz = joint_q[start + 5]
|
|
183
|
-
qw = joint_q[start + 6]
|
|
184
|
-
|
|
185
|
-
X_jc = wp.transform(wp.vec3(px, py, pz), wp.quat(qx, qy, qz, qw))
|
|
186
|
-
return X_jc
|
|
187
|
-
|
|
188
|
-
if type == wp.sim.JOINT_COMPOUND:
|
|
189
|
-
rot, _ = compute_3d_rotational_dofs(
|
|
190
|
-
joint_axis[axis_start],
|
|
191
|
-
joint_axis[axis_start + 1],
|
|
192
|
-
joint_axis[axis_start + 2],
|
|
193
|
-
joint_q[start + 0],
|
|
194
|
-
joint_q[start + 1],
|
|
195
|
-
joint_q[start + 2],
|
|
196
|
-
0.0,
|
|
197
|
-
0.0,
|
|
198
|
-
0.0,
|
|
199
|
-
)
|
|
200
|
-
|
|
201
|
-
X_jc = wp.transform(wp.vec3(), rot)
|
|
202
|
-
return X_jc
|
|
203
|
-
|
|
204
|
-
if type == wp.sim.JOINT_UNIVERSAL:
|
|
205
|
-
rot, _ = compute_2d_rotational_dofs(
|
|
206
|
-
joint_axis[axis_start],
|
|
207
|
-
joint_axis[axis_start + 1],
|
|
208
|
-
joint_q[start + 0],
|
|
209
|
-
joint_q[start + 1],
|
|
210
|
-
0.0,
|
|
211
|
-
0.0,
|
|
212
|
-
)
|
|
213
|
-
|
|
214
|
-
X_jc = wp.transform(wp.vec3(), rot)
|
|
215
|
-
return X_jc
|
|
216
|
-
|
|
217
|
-
if type == wp.sim.JOINT_D6:
|
|
218
|
-
pos = wp.vec3(0.0)
|
|
219
|
-
rot = wp.quat_identity()
|
|
220
|
-
|
|
221
|
-
# unroll for loop to ensure joint actions remain differentiable
|
|
222
|
-
# (since differentiating through a for loop that updates a local variable is not supported)
|
|
223
|
-
|
|
224
|
-
if lin_axis_count > 0:
|
|
225
|
-
axis = joint_axis[axis_start + 0]
|
|
226
|
-
pos += axis * joint_q[start + 0]
|
|
227
|
-
if lin_axis_count > 1:
|
|
228
|
-
axis = joint_axis[axis_start + 1]
|
|
229
|
-
pos += axis * joint_q[start + 1]
|
|
230
|
-
if lin_axis_count > 2:
|
|
231
|
-
axis = joint_axis[axis_start + 2]
|
|
232
|
-
pos += axis * joint_q[start + 2]
|
|
233
|
-
|
|
234
|
-
ia = axis_start + lin_axis_count
|
|
235
|
-
iq = start + lin_axis_count
|
|
236
|
-
if ang_axis_count == 1:
|
|
237
|
-
axis = joint_axis[ia]
|
|
238
|
-
rot = wp.quat_from_axis_angle(axis, joint_q[iq])
|
|
239
|
-
if ang_axis_count == 2:
|
|
240
|
-
rot, _ = compute_2d_rotational_dofs(
|
|
241
|
-
joint_axis[ia + 0],
|
|
242
|
-
joint_axis[ia + 1],
|
|
243
|
-
joint_q[iq + 0],
|
|
244
|
-
joint_q[iq + 1],
|
|
245
|
-
0.0,
|
|
246
|
-
0.0,
|
|
247
|
-
)
|
|
248
|
-
if ang_axis_count == 3:
|
|
249
|
-
rot, _ = compute_3d_rotational_dofs(
|
|
250
|
-
joint_axis[ia + 0],
|
|
251
|
-
joint_axis[ia + 1],
|
|
252
|
-
joint_axis[ia + 2],
|
|
253
|
-
joint_q[iq + 0],
|
|
254
|
-
joint_q[iq + 1],
|
|
255
|
-
joint_q[iq + 2],
|
|
256
|
-
0.0,
|
|
257
|
-
0.0,
|
|
258
|
-
0.0,
|
|
259
|
-
)
|
|
260
|
-
|
|
261
|
-
X_jc = wp.transform(pos, rot)
|
|
262
|
-
return X_jc
|
|
263
|
-
|
|
264
|
-
# default case
|
|
265
|
-
return wp.transform_identity()
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
# compute motion subspace and velocity for a joint
|
|
269
|
-
@wp.func
|
|
270
|
-
def jcalc_motion(
|
|
271
|
-
type: int,
|
|
272
|
-
joint_axis: wp.array(dtype=wp.vec3),
|
|
273
|
-
axis_start: int,
|
|
274
|
-
lin_axis_count: int,
|
|
275
|
-
ang_axis_count: int,
|
|
276
|
-
X_sc: wp.transform,
|
|
277
|
-
joint_q: wp.array(dtype=float),
|
|
278
|
-
joint_qd: wp.array(dtype=float),
|
|
279
|
-
q_start: int,
|
|
280
|
-
qd_start: int,
|
|
281
|
-
# outputs
|
|
282
|
-
joint_S_s: wp.array(dtype=wp.spatial_vector),
|
|
283
|
-
):
|
|
284
|
-
if type == wp.sim.JOINT_PRISMATIC:
|
|
285
|
-
axis = joint_axis[axis_start]
|
|
286
|
-
S_s = transform_twist(X_sc, wp.spatial_vector(wp.vec3(), axis))
|
|
287
|
-
v_j_s = S_s * joint_qd[qd_start]
|
|
288
|
-
joint_S_s[qd_start] = S_s
|
|
289
|
-
return v_j_s
|
|
290
|
-
|
|
291
|
-
if type == wp.sim.JOINT_REVOLUTE:
|
|
292
|
-
axis = joint_axis[axis_start]
|
|
293
|
-
S_s = transform_twist(X_sc, wp.spatial_vector(axis, wp.vec3()))
|
|
294
|
-
v_j_s = S_s * joint_qd[qd_start]
|
|
295
|
-
joint_S_s[qd_start] = S_s
|
|
296
|
-
return v_j_s
|
|
297
|
-
|
|
298
|
-
if type == wp.sim.JOINT_UNIVERSAL:
|
|
299
|
-
axis_0 = joint_axis[axis_start + 0]
|
|
300
|
-
axis_1 = joint_axis[axis_start + 1]
|
|
301
|
-
q_off = wp.quat_from_matrix(wp.matrix_from_cols(axis_0, axis_1, wp.cross(axis_0, axis_1)))
|
|
302
|
-
local_0 = wp.quat_rotate(q_off, wp.vec3(1.0, 0.0, 0.0))
|
|
303
|
-
local_1 = wp.quat_rotate(q_off, wp.vec3(0.0, 1.0, 0.0))
|
|
304
|
-
|
|
305
|
-
axis_0 = local_0
|
|
306
|
-
q_0 = wp.quat_from_axis_angle(axis_0, joint_q[q_start + 0])
|
|
307
|
-
|
|
308
|
-
axis_1 = wp.quat_rotate(q_0, local_1)
|
|
309
|
-
|
|
310
|
-
S_0 = transform_twist(X_sc, wp.spatial_vector(axis_0, wp.vec3()))
|
|
311
|
-
S_1 = transform_twist(X_sc, wp.spatial_vector(axis_1, wp.vec3()))
|
|
312
|
-
|
|
313
|
-
joint_S_s[qd_start + 0] = S_0
|
|
314
|
-
joint_S_s[qd_start + 1] = S_1
|
|
315
|
-
|
|
316
|
-
return S_0 * joint_qd[qd_start + 0] + S_1 * joint_qd[qd_start + 1]
|
|
317
|
-
|
|
318
|
-
if type == wp.sim.JOINT_COMPOUND:
|
|
319
|
-
axis_0 = joint_axis[axis_start + 0]
|
|
320
|
-
axis_1 = joint_axis[axis_start + 1]
|
|
321
|
-
axis_2 = joint_axis[axis_start + 2]
|
|
322
|
-
q_off = wp.quat_from_matrix(wp.matrix_from_cols(axis_0, axis_1, axis_2))
|
|
323
|
-
local_0 = wp.quat_rotate(q_off, wp.vec3(1.0, 0.0, 0.0))
|
|
324
|
-
local_1 = wp.quat_rotate(q_off, wp.vec3(0.0, 1.0, 0.0))
|
|
325
|
-
local_2 = wp.quat_rotate(q_off, wp.vec3(0.0, 0.0, 1.0))
|
|
326
|
-
|
|
327
|
-
axis_0 = local_0
|
|
328
|
-
q_0 = wp.quat_from_axis_angle(axis_0, joint_q[q_start + 0])
|
|
329
|
-
|
|
330
|
-
axis_1 = wp.quat_rotate(q_0, local_1)
|
|
331
|
-
q_1 = wp.quat_from_axis_angle(axis_1, joint_q[q_start + 1])
|
|
332
|
-
|
|
333
|
-
axis_2 = wp.quat_rotate(q_1 * q_0, local_2)
|
|
334
|
-
|
|
335
|
-
S_0 = transform_twist(X_sc, wp.spatial_vector(axis_0, wp.vec3()))
|
|
336
|
-
S_1 = transform_twist(X_sc, wp.spatial_vector(axis_1, wp.vec3()))
|
|
337
|
-
S_2 = transform_twist(X_sc, wp.spatial_vector(axis_2, wp.vec3()))
|
|
338
|
-
|
|
339
|
-
joint_S_s[qd_start + 0] = S_0
|
|
340
|
-
joint_S_s[qd_start + 1] = S_1
|
|
341
|
-
joint_S_s[qd_start + 2] = S_2
|
|
342
|
-
|
|
343
|
-
return S_0 * joint_qd[qd_start + 0] + S_1 * joint_qd[qd_start + 1] + S_2 * joint_qd[qd_start + 2]
|
|
344
|
-
|
|
345
|
-
if type == wp.sim.JOINT_D6:
|
|
346
|
-
v_j_s = wp.spatial_vector()
|
|
347
|
-
if lin_axis_count > 0:
|
|
348
|
-
axis = joint_axis[axis_start + 0]
|
|
349
|
-
S_s = transform_twist(X_sc, wp.spatial_vector(wp.vec3(), axis))
|
|
350
|
-
v_j_s += S_s * joint_qd[qd_start + 0]
|
|
351
|
-
joint_S_s[qd_start + 0] = S_s
|
|
352
|
-
if lin_axis_count > 1:
|
|
353
|
-
axis = joint_axis[axis_start + 1]
|
|
354
|
-
S_s = transform_twist(X_sc, wp.spatial_vector(wp.vec3(), axis))
|
|
355
|
-
v_j_s += S_s * joint_qd[qd_start + 1]
|
|
356
|
-
joint_S_s[qd_start + 1] = S_s
|
|
357
|
-
if lin_axis_count > 2:
|
|
358
|
-
axis = joint_axis[axis_start + 2]
|
|
359
|
-
S_s = transform_twist(X_sc, wp.spatial_vector(wp.vec3(), axis))
|
|
360
|
-
v_j_s += S_s * joint_qd[qd_start + 2]
|
|
361
|
-
joint_S_s[qd_start + 2] = S_s
|
|
362
|
-
if ang_axis_count > 0:
|
|
363
|
-
axis = joint_axis[axis_start + lin_axis_count + 0]
|
|
364
|
-
S_s = transform_twist(X_sc, wp.spatial_vector(axis, wp.vec3()))
|
|
365
|
-
v_j_s += S_s * joint_qd[qd_start + lin_axis_count + 0]
|
|
366
|
-
joint_S_s[qd_start + lin_axis_count + 0] = S_s
|
|
367
|
-
if ang_axis_count > 1:
|
|
368
|
-
axis = joint_axis[axis_start + lin_axis_count + 1]
|
|
369
|
-
S_s = transform_twist(X_sc, wp.spatial_vector(axis, wp.vec3()))
|
|
370
|
-
v_j_s += S_s * joint_qd[qd_start + lin_axis_count + 1]
|
|
371
|
-
joint_S_s[qd_start + lin_axis_count + 1] = S_s
|
|
372
|
-
if ang_axis_count > 2:
|
|
373
|
-
axis = joint_axis[axis_start + lin_axis_count + 2]
|
|
374
|
-
S_s = transform_twist(X_sc, wp.spatial_vector(axis, wp.vec3()))
|
|
375
|
-
v_j_s += S_s * joint_qd[qd_start + lin_axis_count + 2]
|
|
376
|
-
joint_S_s[qd_start + lin_axis_count + 2] = S_s
|
|
377
|
-
|
|
378
|
-
return v_j_s
|
|
379
|
-
|
|
380
|
-
if type == wp.sim.JOINT_BALL:
|
|
381
|
-
S_0 = transform_twist(X_sc, wp.spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0))
|
|
382
|
-
S_1 = transform_twist(X_sc, wp.spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0))
|
|
383
|
-
S_2 = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0))
|
|
384
|
-
|
|
385
|
-
joint_S_s[qd_start + 0] = S_0
|
|
386
|
-
joint_S_s[qd_start + 1] = S_1
|
|
387
|
-
joint_S_s[qd_start + 2] = S_2
|
|
388
|
-
|
|
389
|
-
return S_0 * joint_qd[qd_start + 0] + S_1 * joint_qd[qd_start + 1] + S_2 * joint_qd[qd_start + 2]
|
|
390
|
-
|
|
391
|
-
if type == wp.sim.JOINT_FIXED:
|
|
392
|
-
return wp.spatial_vector()
|
|
393
|
-
|
|
394
|
-
if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE:
|
|
395
|
-
v_j_s = transform_twist(
|
|
396
|
-
X_sc,
|
|
397
|
-
wp.spatial_vector(
|
|
398
|
-
joint_qd[qd_start + 0],
|
|
399
|
-
joint_qd[qd_start + 1],
|
|
400
|
-
joint_qd[qd_start + 2],
|
|
401
|
-
joint_qd[qd_start + 3],
|
|
402
|
-
joint_qd[qd_start + 4],
|
|
403
|
-
joint_qd[qd_start + 5],
|
|
404
|
-
),
|
|
405
|
-
)
|
|
406
|
-
|
|
407
|
-
joint_S_s[qd_start + 0] = transform_twist(X_sc, wp.spatial_vector(1.0, 0.0, 0.0, 0.0, 0.0, 0.0))
|
|
408
|
-
joint_S_s[qd_start + 1] = transform_twist(X_sc, wp.spatial_vector(0.0, 1.0, 0.0, 0.0, 0.0, 0.0))
|
|
409
|
-
joint_S_s[qd_start + 2] = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 1.0, 0.0, 0.0, 0.0))
|
|
410
|
-
joint_S_s[qd_start + 3] = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 0.0, 1.0, 0.0, 0.0))
|
|
411
|
-
joint_S_s[qd_start + 4] = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 0.0, 0.0, 1.0, 0.0))
|
|
412
|
-
joint_S_s[qd_start + 5] = transform_twist(X_sc, wp.spatial_vector(0.0, 0.0, 0.0, 0.0, 0.0, 1.0))
|
|
413
|
-
|
|
414
|
-
return v_j_s
|
|
415
|
-
|
|
416
|
-
wp.printf("jcalc_motion not implemented for joint type %d\n", type)
|
|
417
|
-
|
|
418
|
-
# default case
|
|
419
|
-
return wp.spatial_vector()
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
# computes joint space forces/torques in tau
|
|
423
|
-
@wp.func
|
|
424
|
-
def jcalc_tau(
|
|
425
|
-
type: int,
|
|
426
|
-
joint_target_ke: wp.array(dtype=float),
|
|
427
|
-
joint_target_kd: wp.array(dtype=float),
|
|
428
|
-
joint_limit_ke: wp.array(dtype=float),
|
|
429
|
-
joint_limit_kd: wp.array(dtype=float),
|
|
430
|
-
joint_S_s: wp.array(dtype=wp.spatial_vector),
|
|
431
|
-
joint_q: wp.array(dtype=float),
|
|
432
|
-
joint_qd: wp.array(dtype=float),
|
|
433
|
-
joint_act: wp.array(dtype=float),
|
|
434
|
-
joint_axis_mode: wp.array(dtype=int),
|
|
435
|
-
joint_limit_lower: wp.array(dtype=float),
|
|
436
|
-
joint_limit_upper: wp.array(dtype=float),
|
|
437
|
-
coord_start: int,
|
|
438
|
-
dof_start: int,
|
|
439
|
-
axis_start: int,
|
|
440
|
-
lin_axis_count: int,
|
|
441
|
-
ang_axis_count: int,
|
|
442
|
-
body_f_s: wp.spatial_vector,
|
|
443
|
-
# outputs
|
|
444
|
-
tau: wp.array(dtype=float),
|
|
445
|
-
):
|
|
446
|
-
if type == wp.sim.JOINT_PRISMATIC or type == wp.sim.JOINT_REVOLUTE:
|
|
447
|
-
S_s = joint_S_s[dof_start]
|
|
448
|
-
|
|
449
|
-
q = joint_q[coord_start]
|
|
450
|
-
qd = joint_qd[dof_start]
|
|
451
|
-
act = joint_act[axis_start]
|
|
452
|
-
|
|
453
|
-
lower = joint_limit_lower[axis_start]
|
|
454
|
-
upper = joint_limit_upper[axis_start]
|
|
455
|
-
|
|
456
|
-
limit_ke = joint_limit_ke[axis_start]
|
|
457
|
-
limit_kd = joint_limit_kd[axis_start]
|
|
458
|
-
target_ke = joint_target_ke[axis_start]
|
|
459
|
-
target_kd = joint_target_kd[axis_start]
|
|
460
|
-
mode = joint_axis_mode[axis_start]
|
|
461
|
-
|
|
462
|
-
# total torque / force on the joint
|
|
463
|
-
t = -wp.dot(S_s, body_f_s) + eval_joint_force(
|
|
464
|
-
q, qd, act, target_ke, target_kd, lower, upper, limit_ke, limit_kd, mode
|
|
465
|
-
)
|
|
466
|
-
|
|
467
|
-
tau[dof_start] = t
|
|
468
|
-
|
|
469
|
-
return
|
|
470
|
-
|
|
471
|
-
if type == wp.sim.JOINT_BALL:
|
|
472
|
-
# target_ke = joint_target_ke[axis_start]
|
|
473
|
-
# target_kd = joint_target_kd[axis_start]
|
|
474
|
-
|
|
475
|
-
for i in range(3):
|
|
476
|
-
S_s = joint_S_s[dof_start + i]
|
|
477
|
-
|
|
478
|
-
# w = joint_qd[dof_start + i]
|
|
479
|
-
# r = joint_q[coord_start + i]
|
|
480
|
-
|
|
481
|
-
tau[dof_start + i] = -wp.dot(S_s, body_f_s) # - w * target_kd - r * target_ke
|
|
482
|
-
|
|
483
|
-
return
|
|
484
|
-
|
|
485
|
-
if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE:
|
|
486
|
-
for i in range(6):
|
|
487
|
-
S_s = joint_S_s[dof_start + i]
|
|
488
|
-
tau[dof_start + i] = -wp.dot(S_s, body_f_s)
|
|
489
|
-
|
|
490
|
-
return
|
|
491
|
-
|
|
492
|
-
if type == wp.sim.JOINT_COMPOUND or type == wp.sim.JOINT_UNIVERSAL or type == wp.sim.JOINT_D6:
|
|
493
|
-
axis_count = lin_axis_count + ang_axis_count
|
|
494
|
-
|
|
495
|
-
for i in range(axis_count):
|
|
496
|
-
S_s = joint_S_s[dof_start + i]
|
|
497
|
-
|
|
498
|
-
q = joint_q[coord_start + i]
|
|
499
|
-
qd = joint_qd[dof_start + i]
|
|
500
|
-
act = joint_act[axis_start + i]
|
|
501
|
-
|
|
502
|
-
lower = joint_limit_lower[axis_start + i]
|
|
503
|
-
upper = joint_limit_upper[axis_start + i]
|
|
504
|
-
limit_ke = joint_limit_ke[axis_start + i]
|
|
505
|
-
limit_kd = joint_limit_kd[axis_start + i]
|
|
506
|
-
target_ke = joint_target_ke[axis_start + i]
|
|
507
|
-
target_kd = joint_target_kd[axis_start + i]
|
|
508
|
-
mode = joint_axis_mode[axis_start + i]
|
|
509
|
-
|
|
510
|
-
f = eval_joint_force(q, qd, act, target_ke, target_kd, lower, upper, limit_ke, limit_kd, mode)
|
|
511
|
-
|
|
512
|
-
# total torque / force on the joint
|
|
513
|
-
t = -wp.dot(S_s, body_f_s) + f
|
|
514
|
-
|
|
515
|
-
tau[dof_start + i] = t
|
|
516
|
-
|
|
517
|
-
return
|
|
518
|
-
|
|
519
|
-
|
|
520
|
-
@wp.func
|
|
521
|
-
def jcalc_integrate(
|
|
522
|
-
type: int,
|
|
523
|
-
joint_q: wp.array(dtype=float),
|
|
524
|
-
joint_qd: wp.array(dtype=float),
|
|
525
|
-
joint_qdd: wp.array(dtype=float),
|
|
526
|
-
coord_start: int,
|
|
527
|
-
dof_start: int,
|
|
528
|
-
lin_axis_count: int,
|
|
529
|
-
ang_axis_count: int,
|
|
530
|
-
dt: float,
|
|
531
|
-
# outputs
|
|
532
|
-
joint_q_new: wp.array(dtype=float),
|
|
533
|
-
joint_qd_new: wp.array(dtype=float),
|
|
534
|
-
):
|
|
535
|
-
if type == wp.sim.JOINT_FIXED:
|
|
536
|
-
return
|
|
537
|
-
|
|
538
|
-
# prismatic / revolute
|
|
539
|
-
if type == wp.sim.JOINT_PRISMATIC or type == wp.sim.JOINT_REVOLUTE:
|
|
540
|
-
qdd = joint_qdd[dof_start]
|
|
541
|
-
qd = joint_qd[dof_start]
|
|
542
|
-
q = joint_q[coord_start]
|
|
543
|
-
|
|
544
|
-
qd_new = qd + qdd * dt
|
|
545
|
-
q_new = q + qd_new * dt
|
|
546
|
-
|
|
547
|
-
joint_qd_new[dof_start] = qd_new
|
|
548
|
-
joint_q_new[coord_start] = q_new
|
|
549
|
-
|
|
550
|
-
return
|
|
551
|
-
|
|
552
|
-
# ball
|
|
553
|
-
if type == wp.sim.JOINT_BALL:
|
|
554
|
-
m_j = wp.vec3(joint_qdd[dof_start + 0], joint_qdd[dof_start + 1], joint_qdd[dof_start + 2])
|
|
555
|
-
w_j = wp.vec3(joint_qd[dof_start + 0], joint_qd[dof_start + 1], joint_qd[dof_start + 2])
|
|
556
|
-
|
|
557
|
-
r_j = wp.quat(
|
|
558
|
-
joint_q[coord_start + 0], joint_q[coord_start + 1], joint_q[coord_start + 2], joint_q[coord_start + 3]
|
|
559
|
-
)
|
|
560
|
-
|
|
561
|
-
# symplectic Euler
|
|
562
|
-
w_j_new = w_j + m_j * dt
|
|
563
|
-
|
|
564
|
-
drdt_j = wp.quat(w_j_new, 0.0) * r_j * 0.5
|
|
565
|
-
|
|
566
|
-
# new orientation (normalized)
|
|
567
|
-
r_j_new = wp.normalize(r_j + drdt_j * dt)
|
|
568
|
-
|
|
569
|
-
# update joint coords
|
|
570
|
-
joint_q_new[coord_start + 0] = r_j_new[0]
|
|
571
|
-
joint_q_new[coord_start + 1] = r_j_new[1]
|
|
572
|
-
joint_q_new[coord_start + 2] = r_j_new[2]
|
|
573
|
-
joint_q_new[coord_start + 3] = r_j_new[3]
|
|
574
|
-
|
|
575
|
-
# update joint vel
|
|
576
|
-
joint_qd_new[dof_start + 0] = w_j_new[0]
|
|
577
|
-
joint_qd_new[dof_start + 1] = w_j_new[1]
|
|
578
|
-
joint_qd_new[dof_start + 2] = w_j_new[2]
|
|
579
|
-
|
|
580
|
-
return
|
|
581
|
-
|
|
582
|
-
# free joint
|
|
583
|
-
if type == wp.sim.JOINT_FREE or type == wp.sim.JOINT_DISTANCE:
|
|
584
|
-
# dofs: qd = (omega_x, omega_y, omega_z, vel_x, vel_y, vel_z)
|
|
585
|
-
# coords: q = (trans_x, trans_y, trans_z, quat_x, quat_y, quat_z, quat_w)
|
|
586
|
-
|
|
587
|
-
# angular and linear acceleration
|
|
588
|
-
m_s = wp.vec3(joint_qdd[dof_start + 0], joint_qdd[dof_start + 1], joint_qdd[dof_start + 2])
|
|
589
|
-
a_s = wp.vec3(joint_qdd[dof_start + 3], joint_qdd[dof_start + 4], joint_qdd[dof_start + 5])
|
|
590
|
-
|
|
591
|
-
# angular and linear velocity
|
|
592
|
-
w_s = wp.vec3(joint_qd[dof_start + 0], joint_qd[dof_start + 1], joint_qd[dof_start + 2])
|
|
593
|
-
v_s = wp.vec3(joint_qd[dof_start + 3], joint_qd[dof_start + 4], joint_qd[dof_start + 5])
|
|
594
|
-
|
|
595
|
-
# symplectic Euler
|
|
596
|
-
w_s = w_s + m_s * dt
|
|
597
|
-
v_s = v_s + a_s * dt
|
|
598
|
-
|
|
599
|
-
# translation of origin
|
|
600
|
-
p_s = wp.vec3(joint_q[coord_start + 0], joint_q[coord_start + 1], joint_q[coord_start + 2])
|
|
601
|
-
|
|
602
|
-
# linear vel of origin (note q/qd switch order of linear angular elements)
|
|
603
|
-
# note we are converting the body twist in the space frame (w_s, v_s) to compute center of mass velocity
|
|
604
|
-
dpdt_s = v_s + wp.cross(w_s, p_s)
|
|
605
|
-
|
|
606
|
-
# quat and quat derivative
|
|
607
|
-
r_s = wp.quat(
|
|
608
|
-
joint_q[coord_start + 3], joint_q[coord_start + 4], joint_q[coord_start + 5], joint_q[coord_start + 6]
|
|
609
|
-
)
|
|
610
|
-
|
|
611
|
-
drdt_s = wp.quat(w_s, 0.0) * r_s * 0.5
|
|
612
|
-
|
|
613
|
-
# new orientation (normalized)
|
|
614
|
-
p_s_new = p_s + dpdt_s * dt
|
|
615
|
-
r_s_new = wp.normalize(r_s + drdt_s * dt)
|
|
616
|
-
|
|
617
|
-
# update transform
|
|
618
|
-
joint_q_new[coord_start + 0] = p_s_new[0]
|
|
619
|
-
joint_q_new[coord_start + 1] = p_s_new[1]
|
|
620
|
-
joint_q_new[coord_start + 2] = p_s_new[2]
|
|
621
|
-
|
|
622
|
-
joint_q_new[coord_start + 3] = r_s_new[0]
|
|
623
|
-
joint_q_new[coord_start + 4] = r_s_new[1]
|
|
624
|
-
joint_q_new[coord_start + 5] = r_s_new[2]
|
|
625
|
-
joint_q_new[coord_start + 6] = r_s_new[3]
|
|
626
|
-
|
|
627
|
-
# update joint_twist
|
|
628
|
-
joint_qd_new[dof_start + 0] = w_s[0]
|
|
629
|
-
joint_qd_new[dof_start + 1] = w_s[1]
|
|
630
|
-
joint_qd_new[dof_start + 2] = w_s[2]
|
|
631
|
-
joint_qd_new[dof_start + 3] = v_s[0]
|
|
632
|
-
joint_qd_new[dof_start + 4] = v_s[1]
|
|
633
|
-
joint_qd_new[dof_start + 5] = v_s[2]
|
|
634
|
-
|
|
635
|
-
return
|
|
636
|
-
|
|
637
|
-
# other joint types (compound, universal, D6)
|
|
638
|
-
if type == wp.sim.JOINT_COMPOUND or type == wp.sim.JOINT_UNIVERSAL or type == wp.sim.JOINT_D6:
|
|
639
|
-
axis_count = lin_axis_count + ang_axis_count
|
|
640
|
-
|
|
641
|
-
for i in range(axis_count):
|
|
642
|
-
qdd = joint_qdd[dof_start + i]
|
|
643
|
-
qd = joint_qd[dof_start + i]
|
|
644
|
-
q = joint_q[coord_start + i]
|
|
645
|
-
|
|
646
|
-
qd_new = qd + qdd * dt
|
|
647
|
-
q_new = q + qd_new * dt
|
|
648
|
-
|
|
649
|
-
joint_qd_new[dof_start + i] = qd_new
|
|
650
|
-
joint_q_new[coord_start + i] = q_new
|
|
651
|
-
|
|
652
|
-
return
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
@wp.func
|
|
656
|
-
def compute_link_transform(
|
|
657
|
-
i: int,
|
|
658
|
-
joint_type: wp.array(dtype=int),
|
|
659
|
-
joint_parent: wp.array(dtype=int),
|
|
660
|
-
joint_child: wp.array(dtype=int),
|
|
661
|
-
joint_q_start: wp.array(dtype=int),
|
|
662
|
-
joint_q: wp.array(dtype=float),
|
|
663
|
-
joint_X_p: wp.array(dtype=wp.transform),
|
|
664
|
-
joint_X_c: wp.array(dtype=wp.transform),
|
|
665
|
-
body_X_com: wp.array(dtype=wp.transform),
|
|
666
|
-
joint_axis: wp.array(dtype=wp.vec3),
|
|
667
|
-
joint_axis_start: wp.array(dtype=int),
|
|
668
|
-
joint_axis_dim: wp.array(dtype=int, ndim=2),
|
|
669
|
-
# outputs
|
|
670
|
-
body_q: wp.array(dtype=wp.transform),
|
|
671
|
-
body_q_com: wp.array(dtype=wp.transform),
|
|
672
|
-
):
|
|
673
|
-
# parent transform
|
|
674
|
-
parent = joint_parent[i]
|
|
675
|
-
child = joint_child[i]
|
|
676
|
-
|
|
677
|
-
# parent transform in spatial coordinates
|
|
678
|
-
X_pj = joint_X_p[i]
|
|
679
|
-
X_cj = joint_X_c[i]
|
|
680
|
-
# parent anchor frame in world space
|
|
681
|
-
X_wpj = X_pj
|
|
682
|
-
if parent >= 0:
|
|
683
|
-
X_wp = body_q[parent]
|
|
684
|
-
X_wpj = X_wp * X_wpj
|
|
685
|
-
|
|
686
|
-
type = joint_type[i]
|
|
687
|
-
axis_start = joint_axis_start[i]
|
|
688
|
-
lin_axis_count = joint_axis_dim[i, 0]
|
|
689
|
-
ang_axis_count = joint_axis_dim[i, 1]
|
|
690
|
-
coord_start = joint_q_start[i]
|
|
691
|
-
|
|
692
|
-
# compute transform across joint
|
|
693
|
-
X_j = jcalc_transform(type, joint_axis, axis_start, lin_axis_count, ang_axis_count, joint_q, coord_start)
|
|
694
|
-
|
|
695
|
-
# transform from world to joint anchor frame at child body
|
|
696
|
-
X_wcj = X_wpj * X_j
|
|
697
|
-
# transform from world to child body frame
|
|
698
|
-
X_wc = X_wcj * wp.transform_inverse(X_cj)
|
|
699
|
-
|
|
700
|
-
# compute transform of center of mass
|
|
701
|
-
X_cm = body_X_com[child]
|
|
702
|
-
X_sm = X_wc * X_cm
|
|
703
|
-
|
|
704
|
-
# store geometry transforms
|
|
705
|
-
body_q[child] = X_wc
|
|
706
|
-
body_q_com[child] = X_sm
|
|
707
|
-
|
|
708
|
-
|
|
709
|
-
@wp.kernel
|
|
710
|
-
def eval_rigid_fk(
|
|
711
|
-
articulation_start: wp.array(dtype=int),
|
|
712
|
-
joint_type: wp.array(dtype=int),
|
|
713
|
-
joint_parent: wp.array(dtype=int),
|
|
714
|
-
joint_child: wp.array(dtype=int),
|
|
715
|
-
joint_q_start: wp.array(dtype=int),
|
|
716
|
-
joint_q: wp.array(dtype=float),
|
|
717
|
-
joint_X_p: wp.array(dtype=wp.transform),
|
|
718
|
-
joint_X_c: wp.array(dtype=wp.transform),
|
|
719
|
-
body_X_com: wp.array(dtype=wp.transform),
|
|
720
|
-
joint_axis: wp.array(dtype=wp.vec3),
|
|
721
|
-
joint_axis_start: wp.array(dtype=int),
|
|
722
|
-
joint_axis_dim: wp.array(dtype=int, ndim=2),
|
|
723
|
-
# outputs
|
|
724
|
-
body_q: wp.array(dtype=wp.transform),
|
|
725
|
-
body_q_com: wp.array(dtype=wp.transform),
|
|
726
|
-
):
|
|
727
|
-
# one thread per-articulation
|
|
728
|
-
index = wp.tid()
|
|
729
|
-
|
|
730
|
-
start = articulation_start[index]
|
|
731
|
-
end = articulation_start[index + 1]
|
|
732
|
-
|
|
733
|
-
for i in range(start, end):
|
|
734
|
-
compute_link_transform(
|
|
735
|
-
i,
|
|
736
|
-
joint_type,
|
|
737
|
-
joint_parent,
|
|
738
|
-
joint_child,
|
|
739
|
-
joint_q_start,
|
|
740
|
-
joint_q,
|
|
741
|
-
joint_X_p,
|
|
742
|
-
joint_X_c,
|
|
743
|
-
body_X_com,
|
|
744
|
-
joint_axis,
|
|
745
|
-
joint_axis_start,
|
|
746
|
-
joint_axis_dim,
|
|
747
|
-
body_q,
|
|
748
|
-
body_q_com,
|
|
749
|
-
)
|
|
750
|
-
|
|
751
|
-
|
|
752
|
-
@wp.func
|
|
753
|
-
def spatial_cross(a: wp.spatial_vector, b: wp.spatial_vector):
|
|
754
|
-
w_a = wp.spatial_top(a)
|
|
755
|
-
v_a = wp.spatial_bottom(a)
|
|
756
|
-
|
|
757
|
-
w_b = wp.spatial_top(b)
|
|
758
|
-
v_b = wp.spatial_bottom(b)
|
|
759
|
-
|
|
760
|
-
w = wp.cross(w_a, w_b)
|
|
761
|
-
v = wp.cross(w_a, v_b) + wp.cross(v_a, w_b)
|
|
762
|
-
|
|
763
|
-
return wp.spatial_vector(w, v)
|
|
764
|
-
|
|
765
|
-
|
|
766
|
-
@wp.func
|
|
767
|
-
def spatial_cross_dual(a: wp.spatial_vector, b: wp.spatial_vector):
|
|
768
|
-
w_a = wp.spatial_top(a)
|
|
769
|
-
v_a = wp.spatial_bottom(a)
|
|
770
|
-
|
|
771
|
-
w_b = wp.spatial_top(b)
|
|
772
|
-
v_b = wp.spatial_bottom(b)
|
|
773
|
-
|
|
774
|
-
w = wp.cross(w_a, w_b) + wp.cross(v_a, v_b)
|
|
775
|
-
v = wp.cross(w_a, v_b)
|
|
776
|
-
|
|
777
|
-
return wp.spatial_vector(w, v)
|
|
778
|
-
|
|
779
|
-
|
|
780
|
-
@wp.func
|
|
781
|
-
def dense_index(stride: int, i: int, j: int):
|
|
782
|
-
return i * stride + j
|
|
783
|
-
|
|
784
|
-
|
|
785
|
-
@wp.func
|
|
786
|
-
def compute_link_velocity(
|
|
787
|
-
i: int,
|
|
788
|
-
joint_type: wp.array(dtype=int),
|
|
789
|
-
joint_parent: wp.array(dtype=int),
|
|
790
|
-
joint_child: wp.array(dtype=int),
|
|
791
|
-
joint_q_start: wp.array(dtype=int),
|
|
792
|
-
joint_qd_start: wp.array(dtype=int),
|
|
793
|
-
joint_q: wp.array(dtype=float),
|
|
794
|
-
joint_qd: wp.array(dtype=float),
|
|
795
|
-
joint_axis: wp.array(dtype=wp.vec3),
|
|
796
|
-
joint_axis_start: wp.array(dtype=int),
|
|
797
|
-
joint_axis_dim: wp.array(dtype=int, ndim=2),
|
|
798
|
-
body_I_m: wp.array(dtype=wp.spatial_matrix),
|
|
799
|
-
body_q: wp.array(dtype=wp.transform),
|
|
800
|
-
body_q_com: wp.array(dtype=wp.transform),
|
|
801
|
-
joint_X_p: wp.array(dtype=wp.transform),
|
|
802
|
-
joint_X_c: wp.array(dtype=wp.transform),
|
|
803
|
-
gravity: wp.vec3,
|
|
804
|
-
# outputs
|
|
805
|
-
joint_S_s: wp.array(dtype=wp.spatial_vector),
|
|
806
|
-
body_I_s: wp.array(dtype=wp.spatial_matrix),
|
|
807
|
-
body_v_s: wp.array(dtype=wp.spatial_vector),
|
|
808
|
-
body_f_s: wp.array(dtype=wp.spatial_vector),
|
|
809
|
-
body_a_s: wp.array(dtype=wp.spatial_vector),
|
|
810
|
-
):
|
|
811
|
-
type = joint_type[i]
|
|
812
|
-
child = joint_child[i]
|
|
813
|
-
parent = joint_parent[i]
|
|
814
|
-
q_start = joint_q_start[i]
|
|
815
|
-
qd_start = joint_qd_start[i]
|
|
816
|
-
|
|
817
|
-
X_pj = joint_X_p[i]
|
|
818
|
-
# X_cj = joint_X_c[i]
|
|
819
|
-
|
|
820
|
-
# parent anchor frame in world space
|
|
821
|
-
X_wpj = X_pj
|
|
822
|
-
if parent >= 0:
|
|
823
|
-
X_wp = body_q[parent]
|
|
824
|
-
X_wpj = X_wp * X_wpj
|
|
825
|
-
|
|
826
|
-
# compute motion subspace and velocity across the joint (also stores S_s to global memory)
|
|
827
|
-
axis_start = joint_axis_start[i]
|
|
828
|
-
lin_axis_count = joint_axis_dim[i, 0]
|
|
829
|
-
ang_axis_count = joint_axis_dim[i, 1]
|
|
830
|
-
v_j_s = jcalc_motion(
|
|
831
|
-
type,
|
|
832
|
-
joint_axis,
|
|
833
|
-
axis_start,
|
|
834
|
-
lin_axis_count,
|
|
835
|
-
ang_axis_count,
|
|
836
|
-
X_wpj,
|
|
837
|
-
joint_q,
|
|
838
|
-
joint_qd,
|
|
839
|
-
q_start,
|
|
840
|
-
qd_start,
|
|
841
|
-
joint_S_s,
|
|
842
|
-
)
|
|
843
|
-
|
|
844
|
-
# parent velocity
|
|
845
|
-
v_parent_s = wp.spatial_vector()
|
|
846
|
-
a_parent_s = wp.spatial_vector()
|
|
847
|
-
|
|
848
|
-
if parent >= 0:
|
|
849
|
-
v_parent_s = body_v_s[parent]
|
|
850
|
-
a_parent_s = body_a_s[parent]
|
|
851
|
-
|
|
852
|
-
# body velocity, acceleration
|
|
853
|
-
v_s = v_parent_s + v_j_s
|
|
854
|
-
a_s = a_parent_s + spatial_cross(v_s, v_j_s) # + joint_S_s[i]*self.joint_qdd[i]
|
|
855
|
-
|
|
856
|
-
# compute body forces
|
|
857
|
-
X_sm = body_q_com[child]
|
|
858
|
-
I_m = body_I_m[child]
|
|
859
|
-
|
|
860
|
-
# gravity and external forces (expressed in frame aligned with s but centered at body mass)
|
|
861
|
-
m = I_m[3, 3]
|
|
862
|
-
|
|
863
|
-
f_g = m * gravity
|
|
864
|
-
r_com = wp.transform_get_translation(X_sm)
|
|
865
|
-
f_g_s = wp.spatial_vector(wp.cross(r_com, f_g), f_g)
|
|
866
|
-
|
|
867
|
-
# body forces
|
|
868
|
-
I_s = spatial_transform_inertia(X_sm, I_m)
|
|
869
|
-
|
|
870
|
-
f_b_s = I_s * a_s + spatial_cross_dual(v_s, I_s * v_s)
|
|
871
|
-
|
|
872
|
-
body_v_s[child] = v_s
|
|
873
|
-
body_a_s[child] = a_s
|
|
874
|
-
body_f_s[child] = f_b_s - f_g_s
|
|
875
|
-
body_I_s[child] = I_s
|
|
876
|
-
|
|
877
|
-
|
|
878
|
-
# Inverse dynamics via Recursive Newton-Euler algorithm (Featherstone Table 5.1)
|
|
879
|
-
@wp.kernel
|
|
880
|
-
def eval_rigid_id(
|
|
881
|
-
articulation_start: wp.array(dtype=int),
|
|
882
|
-
joint_type: wp.array(dtype=int),
|
|
883
|
-
joint_parent: wp.array(dtype=int),
|
|
884
|
-
joint_child: wp.array(dtype=int),
|
|
885
|
-
joint_q_start: wp.array(dtype=int),
|
|
886
|
-
joint_qd_start: wp.array(dtype=int),
|
|
887
|
-
joint_q: wp.array(dtype=float),
|
|
888
|
-
joint_qd: wp.array(dtype=float),
|
|
889
|
-
joint_axis: wp.array(dtype=wp.vec3),
|
|
890
|
-
joint_axis_start: wp.array(dtype=int),
|
|
891
|
-
joint_axis_dim: wp.array(dtype=int, ndim=2),
|
|
892
|
-
body_I_m: wp.array(dtype=wp.spatial_matrix),
|
|
893
|
-
body_q: wp.array(dtype=wp.transform),
|
|
894
|
-
body_q_com: wp.array(dtype=wp.transform),
|
|
895
|
-
joint_X_p: wp.array(dtype=wp.transform),
|
|
896
|
-
joint_X_c: wp.array(dtype=wp.transform),
|
|
897
|
-
gravity: wp.vec3,
|
|
898
|
-
# outputs
|
|
899
|
-
joint_S_s: wp.array(dtype=wp.spatial_vector),
|
|
900
|
-
body_I_s: wp.array(dtype=wp.spatial_matrix),
|
|
901
|
-
body_v_s: wp.array(dtype=wp.spatial_vector),
|
|
902
|
-
body_f_s: wp.array(dtype=wp.spatial_vector),
|
|
903
|
-
body_a_s: wp.array(dtype=wp.spatial_vector),
|
|
904
|
-
):
|
|
905
|
-
# one thread per-articulation
|
|
906
|
-
index = wp.tid()
|
|
907
|
-
|
|
908
|
-
start = articulation_start[index]
|
|
909
|
-
end = articulation_start[index + 1]
|
|
910
|
-
|
|
911
|
-
# compute link velocities and coriolis forces
|
|
912
|
-
for i in range(start, end):
|
|
913
|
-
compute_link_velocity(
|
|
914
|
-
i,
|
|
915
|
-
joint_type,
|
|
916
|
-
joint_parent,
|
|
917
|
-
joint_child,
|
|
918
|
-
joint_q_start,
|
|
919
|
-
joint_qd_start,
|
|
920
|
-
joint_q,
|
|
921
|
-
joint_qd,
|
|
922
|
-
joint_axis,
|
|
923
|
-
joint_axis_start,
|
|
924
|
-
joint_axis_dim,
|
|
925
|
-
body_I_m,
|
|
926
|
-
body_q,
|
|
927
|
-
body_q_com,
|
|
928
|
-
joint_X_p,
|
|
929
|
-
joint_X_c,
|
|
930
|
-
gravity,
|
|
931
|
-
joint_S_s,
|
|
932
|
-
body_I_s,
|
|
933
|
-
body_v_s,
|
|
934
|
-
body_f_s,
|
|
935
|
-
body_a_s,
|
|
936
|
-
)
|
|
937
|
-
|
|
938
|
-
|
|
939
|
-
@wp.kernel
|
|
940
|
-
def eval_rigid_tau(
|
|
941
|
-
articulation_start: wp.array(dtype=int),
|
|
942
|
-
joint_type: wp.array(dtype=int),
|
|
943
|
-
joint_parent: wp.array(dtype=int),
|
|
944
|
-
joint_child: wp.array(dtype=int),
|
|
945
|
-
joint_q_start: wp.array(dtype=int),
|
|
946
|
-
joint_qd_start: wp.array(dtype=int),
|
|
947
|
-
joint_axis_start: wp.array(dtype=int),
|
|
948
|
-
joint_axis_dim: wp.array(dtype=int, ndim=2),
|
|
949
|
-
joint_axis_mode: wp.array(dtype=int),
|
|
950
|
-
joint_q: wp.array(dtype=float),
|
|
951
|
-
joint_qd: wp.array(dtype=float),
|
|
952
|
-
joint_act: wp.array(dtype=float),
|
|
953
|
-
joint_target_ke: wp.array(dtype=float),
|
|
954
|
-
joint_target_kd: wp.array(dtype=float),
|
|
955
|
-
joint_limit_lower: wp.array(dtype=float),
|
|
956
|
-
joint_limit_upper: wp.array(dtype=float),
|
|
957
|
-
joint_limit_ke: wp.array(dtype=float),
|
|
958
|
-
joint_limit_kd: wp.array(dtype=float),
|
|
959
|
-
joint_S_s: wp.array(dtype=wp.spatial_vector),
|
|
960
|
-
body_fb_s: wp.array(dtype=wp.spatial_vector),
|
|
961
|
-
body_f_ext: wp.array(dtype=wp.spatial_vector),
|
|
962
|
-
# outputs
|
|
963
|
-
body_ft_s: wp.array(dtype=wp.spatial_vector),
|
|
964
|
-
tau: wp.array(dtype=float),
|
|
965
|
-
):
|
|
966
|
-
# one thread per-articulation
|
|
967
|
-
index = wp.tid()
|
|
968
|
-
|
|
969
|
-
start = articulation_start[index]
|
|
970
|
-
end = articulation_start[index + 1]
|
|
971
|
-
count = end - start
|
|
972
|
-
|
|
973
|
-
# compute joint forces
|
|
974
|
-
for offset in range(count):
|
|
975
|
-
# for backwards traversal
|
|
976
|
-
i = end - offset - 1
|
|
977
|
-
|
|
978
|
-
type = joint_type[i]
|
|
979
|
-
parent = joint_parent[i]
|
|
980
|
-
child = joint_child[i]
|
|
981
|
-
dof_start = joint_qd_start[i]
|
|
982
|
-
coord_start = joint_q_start[i]
|
|
983
|
-
axis_start = joint_axis_start[i]
|
|
984
|
-
lin_axis_count = joint_axis_dim[i, 0]
|
|
985
|
-
ang_axis_count = joint_axis_dim[i, 1]
|
|
986
|
-
|
|
987
|
-
# total forces on body
|
|
988
|
-
f_b_s = body_fb_s[child]
|
|
989
|
-
f_t_s = body_ft_s[child]
|
|
990
|
-
f_ext = body_f_ext[child]
|
|
991
|
-
f_s = f_b_s + f_t_s + f_ext
|
|
992
|
-
|
|
993
|
-
# compute joint-space forces, writes out tau
|
|
994
|
-
jcalc_tau(
|
|
995
|
-
type,
|
|
996
|
-
joint_target_ke,
|
|
997
|
-
joint_target_kd,
|
|
998
|
-
joint_limit_ke,
|
|
999
|
-
joint_limit_kd,
|
|
1000
|
-
joint_S_s,
|
|
1001
|
-
joint_q,
|
|
1002
|
-
joint_qd,
|
|
1003
|
-
joint_act,
|
|
1004
|
-
joint_axis_mode,
|
|
1005
|
-
joint_limit_lower,
|
|
1006
|
-
joint_limit_upper,
|
|
1007
|
-
coord_start,
|
|
1008
|
-
dof_start,
|
|
1009
|
-
axis_start,
|
|
1010
|
-
lin_axis_count,
|
|
1011
|
-
ang_axis_count,
|
|
1012
|
-
f_s,
|
|
1013
|
-
tau,
|
|
1014
|
-
)
|
|
1015
|
-
|
|
1016
|
-
# update parent forces, todo: check that this is valid for the backwards pass
|
|
1017
|
-
if parent >= 0:
|
|
1018
|
-
wp.atomic_add(body_ft_s, parent, f_s)
|
|
1019
|
-
|
|
1020
|
-
|
|
1021
|
-
# builds spatial Jacobian J which is an (joint_count*6)x(dof_count) matrix
|
|
1022
|
-
@wp.kernel
|
|
1023
|
-
def eval_rigid_jacobian(
|
|
1024
|
-
articulation_start: wp.array(dtype=int),
|
|
1025
|
-
articulation_J_start: wp.array(dtype=int),
|
|
1026
|
-
joint_ancestor: wp.array(dtype=int),
|
|
1027
|
-
joint_qd_start: wp.array(dtype=int),
|
|
1028
|
-
joint_S_s: wp.array(dtype=wp.spatial_vector),
|
|
1029
|
-
# outputs
|
|
1030
|
-
J: wp.array(dtype=float),
|
|
1031
|
-
):
|
|
1032
|
-
# one thread per-articulation
|
|
1033
|
-
index = wp.tid()
|
|
1034
|
-
|
|
1035
|
-
joint_start = articulation_start[index]
|
|
1036
|
-
joint_end = articulation_start[index + 1]
|
|
1037
|
-
joint_count = joint_end - joint_start
|
|
1038
|
-
|
|
1039
|
-
J_offset = articulation_J_start[index]
|
|
1040
|
-
|
|
1041
|
-
articulation_dof_start = joint_qd_start[joint_start]
|
|
1042
|
-
articulation_dof_end = joint_qd_start[joint_end]
|
|
1043
|
-
articulation_dof_count = articulation_dof_end - articulation_dof_start
|
|
1044
|
-
|
|
1045
|
-
for i in range(joint_count):
|
|
1046
|
-
row_start = i * 6
|
|
1047
|
-
|
|
1048
|
-
j = joint_start + i
|
|
1049
|
-
while j != -1:
|
|
1050
|
-
joint_dof_start = joint_qd_start[j]
|
|
1051
|
-
joint_dof_end = joint_qd_start[j + 1]
|
|
1052
|
-
joint_dof_count = joint_dof_end - joint_dof_start
|
|
1053
|
-
|
|
1054
|
-
# fill out each row of the Jacobian walking up the tree
|
|
1055
|
-
for dof in range(joint_dof_count):
|
|
1056
|
-
col = (joint_dof_start - articulation_dof_start) + dof
|
|
1057
|
-
S = joint_S_s[joint_dof_start + dof]
|
|
1058
|
-
|
|
1059
|
-
for k in range(6):
|
|
1060
|
-
J[J_offset + dense_index(articulation_dof_count, row_start + k, col)] = S[k]
|
|
1061
|
-
|
|
1062
|
-
j = joint_ancestor[j]
|
|
1063
|
-
|
|
1064
|
-
|
|
1065
|
-
@wp.func
|
|
1066
|
-
def spatial_mass(
|
|
1067
|
-
body_I_s: wp.array(dtype=wp.spatial_matrix),
|
|
1068
|
-
joint_start: int,
|
|
1069
|
-
joint_count: int,
|
|
1070
|
-
M_start: int,
|
|
1071
|
-
# outputs
|
|
1072
|
-
M: wp.array(dtype=float),
|
|
1073
|
-
):
|
|
1074
|
-
stride = joint_count * 6
|
|
1075
|
-
for l in range(joint_count):
|
|
1076
|
-
I = body_I_s[joint_start + l]
|
|
1077
|
-
for i in range(6):
|
|
1078
|
-
for j in range(6):
|
|
1079
|
-
M[M_start + dense_index(stride, l * 6 + i, l * 6 + j)] = I[i, j]
|
|
1080
|
-
|
|
1081
|
-
|
|
1082
|
-
@wp.kernel
|
|
1083
|
-
def eval_rigid_mass(
|
|
1084
|
-
articulation_start: wp.array(dtype=int),
|
|
1085
|
-
articulation_M_start: wp.array(dtype=int),
|
|
1086
|
-
body_I_s: wp.array(dtype=wp.spatial_matrix),
|
|
1087
|
-
# outputs
|
|
1088
|
-
M: wp.array(dtype=float),
|
|
1089
|
-
):
|
|
1090
|
-
# one thread per-articulation
|
|
1091
|
-
index = wp.tid()
|
|
1092
|
-
|
|
1093
|
-
joint_start = articulation_start[index]
|
|
1094
|
-
joint_end = articulation_start[index + 1]
|
|
1095
|
-
joint_count = joint_end - joint_start
|
|
1096
|
-
|
|
1097
|
-
M_offset = articulation_M_start[index]
|
|
1098
|
-
|
|
1099
|
-
spatial_mass(body_I_s, joint_start, joint_count, M_offset, M)
|
|
1100
|
-
|
|
1101
|
-
|
|
1102
|
-
@wp.func
|
|
1103
|
-
def dense_gemm(
|
|
1104
|
-
m: int,
|
|
1105
|
-
n: int,
|
|
1106
|
-
p: int,
|
|
1107
|
-
transpose_A: bool,
|
|
1108
|
-
transpose_B: bool,
|
|
1109
|
-
add_to_C: bool,
|
|
1110
|
-
A_start: int,
|
|
1111
|
-
B_start: int,
|
|
1112
|
-
C_start: int,
|
|
1113
|
-
A: wp.array(dtype=float),
|
|
1114
|
-
B: wp.array(dtype=float),
|
|
1115
|
-
# outputs
|
|
1116
|
-
C: wp.array(dtype=float),
|
|
1117
|
-
):
|
|
1118
|
-
# multiply a `m x p` matrix A by a `p x n` matrix B to produce a `m x n` matrix C
|
|
1119
|
-
for i in range(m):
|
|
1120
|
-
for j in range(n):
|
|
1121
|
-
sum = float(0.0)
|
|
1122
|
-
for k in range(p):
|
|
1123
|
-
if transpose_A:
|
|
1124
|
-
a_i = k * m + i
|
|
1125
|
-
else:
|
|
1126
|
-
a_i = i * p + k
|
|
1127
|
-
if transpose_B:
|
|
1128
|
-
b_j = j * p + k
|
|
1129
|
-
else:
|
|
1130
|
-
b_j = k * n + j
|
|
1131
|
-
sum += A[A_start + a_i] * B[B_start + b_j]
|
|
1132
|
-
|
|
1133
|
-
if add_to_C:
|
|
1134
|
-
C[C_start + i * n + j] += sum
|
|
1135
|
-
else:
|
|
1136
|
-
C[C_start + i * n + j] = sum
|
|
1137
|
-
|
|
1138
|
-
|
|
1139
|
-
# @wp.func_grad(dense_gemm)
|
|
1140
|
-
# def adj_dense_gemm(
|
|
1141
|
-
# m: int,
|
|
1142
|
-
# n: int,
|
|
1143
|
-
# p: int,
|
|
1144
|
-
# transpose_A: bool,
|
|
1145
|
-
# transpose_B: bool,
|
|
1146
|
-
# add_to_C: bool,
|
|
1147
|
-
# A_start: int,
|
|
1148
|
-
# B_start: int,
|
|
1149
|
-
# C_start: int,
|
|
1150
|
-
# A: wp.array(dtype=float),
|
|
1151
|
-
# B: wp.array(dtype=float),
|
|
1152
|
-
# # outputs
|
|
1153
|
-
# C: wp.array(dtype=float),
|
|
1154
|
-
# ):
|
|
1155
|
-
# add_to_C = True
|
|
1156
|
-
# if transpose_A:
|
|
1157
|
-
# dense_gemm(p, m, n, False, True, add_to_C, A_start, B_start, C_start, B, wp.adjoint[C], wp.adjoint[A])
|
|
1158
|
-
# dense_gemm(p, n, m, False, False, add_to_C, A_start, B_start, C_start, A, wp.adjoint[C], wp.adjoint[B])
|
|
1159
|
-
# else:
|
|
1160
|
-
# dense_gemm(
|
|
1161
|
-
# m, p, n, False, not transpose_B, add_to_C, A_start, B_start, C_start, wp.adjoint[C], B, wp.adjoint[A]
|
|
1162
|
-
# )
|
|
1163
|
-
# dense_gemm(p, n, m, True, False, add_to_C, A_start, B_start, C_start, A, wp.adjoint[C], wp.adjoint[B])
|
|
1164
|
-
|
|
1165
|
-
|
|
1166
|
-
def create_inertia_matrix_kernel(num_joints, num_dofs):
|
|
1167
|
-
@wp.kernel
|
|
1168
|
-
def eval_dense_gemm_tile(
|
|
1169
|
-
J_arr: wp.array3d(dtype=float), M_arr: wp.array3d(dtype=float), H_arr: wp.array3d(dtype=float)
|
|
1170
|
-
):
|
|
1171
|
-
articulation = wp.tid()
|
|
1172
|
-
|
|
1173
|
-
J = wp.tile_load(J_arr[articulation], shape=(wp.static(6 * num_joints), num_dofs))
|
|
1174
|
-
P = wp.tile_zeros(shape=(wp.static(6 * num_joints), num_dofs), dtype=float)
|
|
1175
|
-
|
|
1176
|
-
# compute P = M*J where M is a 6x6 block diagonal mass matrix
|
|
1177
|
-
for i in range(int(num_joints)):
|
|
1178
|
-
# 6x6 block matrices are on the diagonal
|
|
1179
|
-
M_body = wp.tile_load(M_arr[articulation], shape=(6, 6), offset=(i * 6, i * 6))
|
|
1180
|
-
|
|
1181
|
-
# load a 6xN row from the Jacobian
|
|
1182
|
-
J_body = wp.tile_view(J, offset=(i * 6, 0), shape=(6, num_dofs))
|
|
1183
|
-
|
|
1184
|
-
# compute weighted row
|
|
1185
|
-
P_body = wp.tile_matmul(M_body, J_body)
|
|
1186
|
-
|
|
1187
|
-
# assign to the P slice
|
|
1188
|
-
wp.tile_assign(P, P_body, offset=(i * 6, 0))
|
|
1189
|
-
|
|
1190
|
-
# compute H = J^T*P
|
|
1191
|
-
H = wp.tile_matmul(wp.tile_transpose(J), P)
|
|
1192
|
-
|
|
1193
|
-
wp.tile_store(H_arr[articulation], H)
|
|
1194
|
-
|
|
1195
|
-
return eval_dense_gemm_tile
|
|
1196
|
-
|
|
1197
|
-
|
|
1198
|
-
def create_batched_cholesky_kernel(num_dofs):
|
|
1199
|
-
assert num_dofs == 18
|
|
1200
|
-
|
|
1201
|
-
@wp.kernel
|
|
1202
|
-
def eval_tiled_dense_cholesky_batched(
|
|
1203
|
-
A: wp.array3d(dtype=float), R: wp.array2d(dtype=float), L: wp.array3d(dtype=float)
|
|
1204
|
-
):
|
|
1205
|
-
articulation = wp.tid()
|
|
1206
|
-
|
|
1207
|
-
a = wp.tile_load(A[articulation], shape=(num_dofs, num_dofs), storage="shared")
|
|
1208
|
-
r = wp.tile_load(R[articulation], shape=num_dofs, storage="shared")
|
|
1209
|
-
a_r = wp.tile_diag_add(a, r)
|
|
1210
|
-
l = wp.tile_cholesky(a_r)
|
|
1211
|
-
wp.tile_store(L[articulation], wp.tile_transpose(l))
|
|
1212
|
-
|
|
1213
|
-
return eval_tiled_dense_cholesky_batched
|
|
1214
|
-
|
|
1215
|
-
|
|
1216
|
-
def create_inertia_matrix_cholesky_kernel(num_joints, num_dofs):
|
|
1217
|
-
@wp.kernel
|
|
1218
|
-
def eval_dense_gemm_and_cholesky_tile(
|
|
1219
|
-
J_arr: wp.array3d(dtype=float),
|
|
1220
|
-
M_arr: wp.array3d(dtype=float),
|
|
1221
|
-
R_arr: wp.array2d(dtype=float),
|
|
1222
|
-
H_arr: wp.array3d(dtype=float),
|
|
1223
|
-
L_arr: wp.array3d(dtype=float),
|
|
1224
|
-
):
|
|
1225
|
-
articulation = wp.tid()
|
|
1226
|
-
|
|
1227
|
-
J = wp.tile_load(J_arr[articulation], shape=(wp.static(6 * num_joints), num_dofs))
|
|
1228
|
-
P = wp.tile_zeros(shape=(wp.static(6 * num_joints), num_dofs), dtype=float)
|
|
1229
|
-
|
|
1230
|
-
# compute P = M*J where M is a 6x6 block diagonal mass matrix
|
|
1231
|
-
for i in range(int(num_joints)):
|
|
1232
|
-
# 6x6 block matrices are on the diagonal
|
|
1233
|
-
M_body = wp.tile_load(M_arr[articulation], shape=(6, 6), offset=(i * 6, i * 6))
|
|
1234
|
-
|
|
1235
|
-
# load a 6xN row from the Jacobian
|
|
1236
|
-
J_body = wp.tile_view(J, offset=(i * 6, 0), shape=(6, num_dofs))
|
|
1237
|
-
|
|
1238
|
-
# compute weighted row
|
|
1239
|
-
P_body = wp.tile_matmul(M_body, J_body)
|
|
1240
|
-
|
|
1241
|
-
# assign to the P slice
|
|
1242
|
-
wp.tile_assign(P, P_body, offset=(i * 6, 0))
|
|
1243
|
-
|
|
1244
|
-
# compute H = J^T*P
|
|
1245
|
-
H = wp.tile_matmul(wp.tile_transpose(J), P)
|
|
1246
|
-
wp.tile_store(H_arr[articulation], H)
|
|
1247
|
-
|
|
1248
|
-
# cholesky L L^T = (H + diag(R))
|
|
1249
|
-
R = wp.tile_load(R_arr[articulation], shape=num_dofs, storage="shared")
|
|
1250
|
-
H_R = wp.tile_diag_add(H, R)
|
|
1251
|
-
L = wp.tile_cholesky(H_R)
|
|
1252
|
-
wp.tile_store(L_arr[articulation], L)
|
|
1253
|
-
|
|
1254
|
-
return eval_dense_gemm_and_cholesky_tile
|
|
1255
|
-
|
|
1256
|
-
|
|
1257
|
-
@wp.kernel
|
|
1258
|
-
def eval_dense_gemm_batched(
|
|
1259
|
-
m: wp.array(dtype=int),
|
|
1260
|
-
n: wp.array(dtype=int),
|
|
1261
|
-
p: wp.array(dtype=int),
|
|
1262
|
-
transpose_A: bool,
|
|
1263
|
-
transpose_B: bool,
|
|
1264
|
-
A_start: wp.array(dtype=int),
|
|
1265
|
-
B_start: wp.array(dtype=int),
|
|
1266
|
-
C_start: wp.array(dtype=int),
|
|
1267
|
-
A: wp.array(dtype=float),
|
|
1268
|
-
B: wp.array(dtype=float),
|
|
1269
|
-
C: wp.array(dtype=float),
|
|
1270
|
-
):
|
|
1271
|
-
# on the CPU each thread computes the whole matrix multiply
|
|
1272
|
-
# on the GPU each block computes the multiply with one output per-thread
|
|
1273
|
-
batch = wp.tid() # /kNumThreadsPerBlock;
|
|
1274
|
-
add_to_C = False
|
|
1275
|
-
|
|
1276
|
-
dense_gemm(
|
|
1277
|
-
m[batch],
|
|
1278
|
-
n[batch],
|
|
1279
|
-
p[batch],
|
|
1280
|
-
transpose_A,
|
|
1281
|
-
transpose_B,
|
|
1282
|
-
add_to_C,
|
|
1283
|
-
A_start[batch],
|
|
1284
|
-
B_start[batch],
|
|
1285
|
-
C_start[batch],
|
|
1286
|
-
A,
|
|
1287
|
-
B,
|
|
1288
|
-
C,
|
|
1289
|
-
)
|
|
1290
|
-
|
|
1291
|
-
|
|
1292
|
-
@wp.func
|
|
1293
|
-
def dense_cholesky(
|
|
1294
|
-
n: int,
|
|
1295
|
-
A: wp.array(dtype=float),
|
|
1296
|
-
R: wp.array(dtype=float),
|
|
1297
|
-
A_start: int,
|
|
1298
|
-
R_start: int,
|
|
1299
|
-
# outputs
|
|
1300
|
-
L: wp.array(dtype=float),
|
|
1301
|
-
):
|
|
1302
|
-
# compute the Cholesky factorization of A = L L^T with diagonal regularization R
|
|
1303
|
-
for j in range(n):
|
|
1304
|
-
s = A[A_start + dense_index(n, j, j)] + R[R_start + j]
|
|
1305
|
-
|
|
1306
|
-
for k in range(j):
|
|
1307
|
-
r = L[A_start + dense_index(n, j, k)]
|
|
1308
|
-
s -= r * r
|
|
1309
|
-
|
|
1310
|
-
s = wp.sqrt(s)
|
|
1311
|
-
invS = 1.0 / s
|
|
1312
|
-
|
|
1313
|
-
L[A_start + dense_index(n, j, j)] = s
|
|
1314
|
-
|
|
1315
|
-
for i in range(j + 1, n):
|
|
1316
|
-
s = A[A_start + dense_index(n, i, j)]
|
|
1317
|
-
|
|
1318
|
-
for k in range(j):
|
|
1319
|
-
s -= L[A_start + dense_index(n, i, k)] * L[A_start + dense_index(n, j, k)]
|
|
1320
|
-
|
|
1321
|
-
L[A_start + dense_index(n, i, j)] = s * invS
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
@wp.func_grad(dense_cholesky)
|
|
1325
|
-
def adj_dense_cholesky(
|
|
1326
|
-
n: int,
|
|
1327
|
-
A: wp.array(dtype=float),
|
|
1328
|
-
R: wp.array(dtype=float),
|
|
1329
|
-
A_start: int,
|
|
1330
|
-
R_start: int,
|
|
1331
|
-
# outputs
|
|
1332
|
-
L: wp.array(dtype=float),
|
|
1333
|
-
):
|
|
1334
|
-
# nop, use dense_solve to differentiate through (A^-1)b = x
|
|
1335
|
-
pass
|
|
1336
|
-
|
|
1337
|
-
|
|
1338
|
-
@wp.kernel
|
|
1339
|
-
def eval_dense_cholesky_batched(
|
|
1340
|
-
A_starts: wp.array(dtype=int),
|
|
1341
|
-
A_dim: wp.array(dtype=int),
|
|
1342
|
-
A: wp.array(dtype=float),
|
|
1343
|
-
R: wp.array(dtype=float),
|
|
1344
|
-
L: wp.array(dtype=float),
|
|
1345
|
-
):
|
|
1346
|
-
batch = wp.tid()
|
|
1347
|
-
|
|
1348
|
-
n = A_dim[batch]
|
|
1349
|
-
A_start = A_starts[batch]
|
|
1350
|
-
R_start = n * batch
|
|
1351
|
-
|
|
1352
|
-
dense_cholesky(n, A, R, A_start, R_start, L)
|
|
1353
|
-
|
|
1354
|
-
|
|
1355
|
-
@wp.func
|
|
1356
|
-
def dense_subs(
|
|
1357
|
-
n: int,
|
|
1358
|
-
L_start: int,
|
|
1359
|
-
b_start: int,
|
|
1360
|
-
L: wp.array(dtype=float),
|
|
1361
|
-
b: wp.array(dtype=float),
|
|
1362
|
-
# outputs
|
|
1363
|
-
x: wp.array(dtype=float),
|
|
1364
|
-
):
|
|
1365
|
-
# Solves (L L^T) x = b for x given the Cholesky factor L
|
|
1366
|
-
# forward substitution solves the lower triangular system L y = b for y
|
|
1367
|
-
for i in range(n):
|
|
1368
|
-
s = b[b_start + i]
|
|
1369
|
-
|
|
1370
|
-
for j in range(i):
|
|
1371
|
-
s -= L[L_start + dense_index(n, i, j)] * x[b_start + j]
|
|
1372
|
-
|
|
1373
|
-
x[b_start + i] = s / L[L_start + dense_index(n, i, i)]
|
|
1374
|
-
|
|
1375
|
-
# backward substitution solves the upper triangular system L^T x = y for x
|
|
1376
|
-
for i in range(n - 1, -1, -1):
|
|
1377
|
-
s = x[b_start + i]
|
|
1378
|
-
|
|
1379
|
-
for j in range(i + 1, n):
|
|
1380
|
-
s -= L[L_start + dense_index(n, j, i)] * x[b_start + j]
|
|
1381
|
-
|
|
1382
|
-
x[b_start + i] = s / L[L_start + dense_index(n, i, i)]
|
|
1383
|
-
|
|
1384
|
-
|
|
1385
|
-
@wp.func
|
|
1386
|
-
def dense_solve(
|
|
1387
|
-
n: int,
|
|
1388
|
-
L_start: int,
|
|
1389
|
-
b_start: int,
|
|
1390
|
-
A: wp.array(dtype=float),
|
|
1391
|
-
L: wp.array(dtype=float),
|
|
1392
|
-
b: wp.array(dtype=float),
|
|
1393
|
-
# outputs
|
|
1394
|
-
x: wp.array(dtype=float),
|
|
1395
|
-
tmp: wp.array(dtype=float),
|
|
1396
|
-
):
|
|
1397
|
-
# helper function to include tmp argument for backward pass
|
|
1398
|
-
dense_subs(n, L_start, b_start, L, b, x)
|
|
1399
|
-
|
|
1400
|
-
|
|
1401
|
-
@wp.func_grad(dense_solve)
|
|
1402
|
-
def adj_dense_solve(
|
|
1403
|
-
n: int,
|
|
1404
|
-
L_start: int,
|
|
1405
|
-
b_start: int,
|
|
1406
|
-
A: wp.array(dtype=float),
|
|
1407
|
-
L: wp.array(dtype=float),
|
|
1408
|
-
b: wp.array(dtype=float),
|
|
1409
|
-
# outputs
|
|
1410
|
-
x: wp.array(dtype=float),
|
|
1411
|
-
tmp: wp.array(dtype=float),
|
|
1412
|
-
):
|
|
1413
|
-
if not tmp or not wp.adjoint[x] or not wp.adjoint[A] or not wp.adjoint[L]:
|
|
1414
|
-
return
|
|
1415
|
-
for i in range(n):
|
|
1416
|
-
tmp[b_start + i] = 0.0
|
|
1417
|
-
|
|
1418
|
-
dense_subs(n, L_start, b_start, L, wp.adjoint[x], tmp)
|
|
1419
|
-
|
|
1420
|
-
for i in range(n):
|
|
1421
|
-
wp.adjoint[b][b_start + i] += tmp[b_start + i]
|
|
1422
|
-
|
|
1423
|
-
# A* = -adj_b*x^T
|
|
1424
|
-
for i in range(n):
|
|
1425
|
-
for j in range(n):
|
|
1426
|
-
wp.adjoint[L][L_start + dense_index(n, i, j)] += -tmp[b_start + i] * x[b_start + j]
|
|
1427
|
-
|
|
1428
|
-
for i in range(n):
|
|
1429
|
-
for j in range(n):
|
|
1430
|
-
wp.adjoint[A][L_start + dense_index(n, i, j)] += -tmp[b_start + i] * x[b_start + j]
|
|
1431
|
-
|
|
1432
|
-
|
|
1433
|
-
@wp.kernel
|
|
1434
|
-
def eval_dense_solve_batched(
|
|
1435
|
-
L_start: wp.array(dtype=int),
|
|
1436
|
-
L_dim: wp.array(dtype=int),
|
|
1437
|
-
b_start: wp.array(dtype=int),
|
|
1438
|
-
A: wp.array(dtype=float),
|
|
1439
|
-
L: wp.array(dtype=float),
|
|
1440
|
-
b: wp.array(dtype=float),
|
|
1441
|
-
# outputs
|
|
1442
|
-
x: wp.array(dtype=float),
|
|
1443
|
-
tmp: wp.array(dtype=float),
|
|
1444
|
-
):
|
|
1445
|
-
batch = wp.tid()
|
|
1446
|
-
|
|
1447
|
-
dense_solve(L_dim[batch], L_start[batch], b_start[batch], A, L, b, x, tmp)
|
|
1448
|
-
|
|
1449
|
-
|
|
1450
|
-
@wp.kernel
|
|
1451
|
-
def integrate_generalized_joints(
|
|
1452
|
-
joint_type: wp.array(dtype=int),
|
|
1453
|
-
joint_q_start: wp.array(dtype=int),
|
|
1454
|
-
joint_qd_start: wp.array(dtype=int),
|
|
1455
|
-
joint_axis_dim: wp.array(dtype=int, ndim=2),
|
|
1456
|
-
joint_q: wp.array(dtype=float),
|
|
1457
|
-
joint_qd: wp.array(dtype=float),
|
|
1458
|
-
joint_qdd: wp.array(dtype=float),
|
|
1459
|
-
dt: float,
|
|
1460
|
-
# outputs
|
|
1461
|
-
joint_q_new: wp.array(dtype=float),
|
|
1462
|
-
joint_qd_new: wp.array(dtype=float),
|
|
1463
|
-
):
|
|
1464
|
-
# one thread per-articulation
|
|
1465
|
-
index = wp.tid()
|
|
1466
|
-
|
|
1467
|
-
type = joint_type[index]
|
|
1468
|
-
coord_start = joint_q_start[index]
|
|
1469
|
-
dof_start = joint_qd_start[index]
|
|
1470
|
-
lin_axis_count = joint_axis_dim[index, 0]
|
|
1471
|
-
ang_axis_count = joint_axis_dim[index, 1]
|
|
1472
|
-
|
|
1473
|
-
jcalc_integrate(
|
|
1474
|
-
type,
|
|
1475
|
-
joint_q,
|
|
1476
|
-
joint_qd,
|
|
1477
|
-
joint_qdd,
|
|
1478
|
-
coord_start,
|
|
1479
|
-
dof_start,
|
|
1480
|
-
lin_axis_count,
|
|
1481
|
-
ang_axis_count,
|
|
1482
|
-
dt,
|
|
1483
|
-
joint_q_new,
|
|
1484
|
-
joint_qd_new,
|
|
1485
|
-
)
|
|
1486
|
-
|
|
1487
|
-
|
|
1488
|
-
class FeatherstoneIntegrator(Integrator):
|
|
1489
|
-
"""A semi-implicit integrator using symplectic Euler that operates
|
|
1490
|
-
on reduced (also called generalized) coordinates to simulate articulated rigid body dynamics
|
|
1491
|
-
based on Featherstone's composite rigid body algorithm (CRBA).
|
|
1492
|
-
|
|
1493
|
-
See: Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer US, 2014.
|
|
1494
|
-
|
|
1495
|
-
Instead of maximal coordinates :attr:`State.body_q` (rigid body positions) and :attr:`State.body_qd`
|
|
1496
|
-
(rigid body velocities) as is the case :class:`SemiImplicitIntegrator`, :class:`FeatherstoneIntegrator`
|
|
1497
|
-
uses :attr:`State.joint_q` and :attr:`State.joint_qd` to represent the positions and velocities of
|
|
1498
|
-
joints without allowing any redundant degrees of freedom.
|
|
1499
|
-
|
|
1500
|
-
After constructing :class:`Model` and :class:`State` objects this time-integrator
|
|
1501
|
-
may be used to advance the simulation state forward in time.
|
|
1502
|
-
|
|
1503
|
-
Note:
|
|
1504
|
-
Unlike :class:`SemiImplicitIntegrator` and :class:`XPBDIntegrator`, :class:`FeatherstoneIntegrator` does not simulate rigid bodies with nonzero mass as floating bodies if they are not connected through any joints. Floating-base systems require an explicit free joint with which the body is connected to the world, see :meth:`ModelBuilder.add_joint_free`.
|
|
1505
|
-
|
|
1506
|
-
Semi-implicit time integration is a variational integrator that
|
|
1507
|
-
preserves energy, however it not unconditionally stable, and requires a time-step
|
|
1508
|
-
small enough to support the required stiffness and damping forces.
|
|
1509
|
-
|
|
1510
|
-
See: https://en.wikipedia.org/wiki/Semi-implicit_Euler_method
|
|
1511
|
-
|
|
1512
|
-
Example
|
|
1513
|
-
-------
|
|
1514
|
-
|
|
1515
|
-
.. code-block:: python
|
|
1516
|
-
|
|
1517
|
-
integrator = wp.FeatherstoneIntegrator(model)
|
|
1518
|
-
|
|
1519
|
-
# simulation loop
|
|
1520
|
-
for i in range(100):
|
|
1521
|
-
state = integrator.simulate(model, state_in, state_out, dt)
|
|
1522
|
-
|
|
1523
|
-
Note:
|
|
1524
|
-
The :class:`FeatherstoneIntegrator` requires the :class:`Model` to be passed in as a constructor argument.
|
|
1525
|
-
|
|
1526
|
-
"""
|
|
1527
|
-
|
|
1528
|
-
def __init__(
|
|
1529
|
-
self,
|
|
1530
|
-
model,
|
|
1531
|
-
angular_damping=0.05,
|
|
1532
|
-
update_mass_matrix_every=1,
|
|
1533
|
-
friction_smoothing=1.0,
|
|
1534
|
-
use_tile_gemm=False,
|
|
1535
|
-
fuse_cholesky=True,
|
|
1536
|
-
):
|
|
1537
|
-
"""
|
|
1538
|
-
Args:
|
|
1539
|
-
model (Model): the model to be simulated.
|
|
1540
|
-
angular_damping (float, optional): Angular damping factor. Defaults to 0.05.
|
|
1541
|
-
update_mass_matrix_every (int, optional): How often to update the mass matrix (every n-th time the :meth:`simulate` function gets called). Defaults to 1.
|
|
1542
|
-
friction_smoothing (float, optional): The delta value for the Huber norm (see :func:`warp.math.norm_huber`) used for the friction velocity normalization. Defaults to 1.0.
|
|
1543
|
-
"""
|
|
1544
|
-
self.angular_damping = angular_damping
|
|
1545
|
-
self.update_mass_matrix_every = update_mass_matrix_every
|
|
1546
|
-
self.friction_smoothing = friction_smoothing
|
|
1547
|
-
self.use_tile_gemm = use_tile_gemm
|
|
1548
|
-
self.fuse_cholesky = fuse_cholesky
|
|
1549
|
-
|
|
1550
|
-
self._step = 0
|
|
1551
|
-
|
|
1552
|
-
self.compute_articulation_indices(model)
|
|
1553
|
-
self.allocate_model_aux_vars(model)
|
|
1554
|
-
|
|
1555
|
-
if self.use_tile_gemm:
|
|
1556
|
-
# create a custom kernel to evaluate the system matrix for this type
|
|
1557
|
-
if self.fuse_cholesky:
|
|
1558
|
-
self.eval_inertia_matrix_cholesky_kernel = create_inertia_matrix_cholesky_kernel(
|
|
1559
|
-
int(self.joint_count), int(self.dof_count)
|
|
1560
|
-
)
|
|
1561
|
-
else:
|
|
1562
|
-
self.eval_inertia_matrix_kernel = create_inertia_matrix_kernel(
|
|
1563
|
-
int(self.joint_count), int(self.dof_count)
|
|
1564
|
-
)
|
|
1565
|
-
|
|
1566
|
-
# ensure matrix is reloaded since otherwise an unload can happen during graph capture
|
|
1567
|
-
# todo: should not be necessary?
|
|
1568
|
-
wp.load_module(device=wp.get_device())
|
|
1569
|
-
|
|
1570
|
-
def compute_articulation_indices(self, model):
|
|
1571
|
-
# calculate total size and offsets of Jacobian and mass matrices for entire system
|
|
1572
|
-
if model.joint_count:
|
|
1573
|
-
self.J_size = 0
|
|
1574
|
-
self.M_size = 0
|
|
1575
|
-
self.H_size = 0
|
|
1576
|
-
|
|
1577
|
-
articulation_J_start = []
|
|
1578
|
-
articulation_M_start = []
|
|
1579
|
-
articulation_H_start = []
|
|
1580
|
-
|
|
1581
|
-
articulation_M_rows = []
|
|
1582
|
-
articulation_H_rows = []
|
|
1583
|
-
articulation_J_rows = []
|
|
1584
|
-
articulation_J_cols = []
|
|
1585
|
-
|
|
1586
|
-
articulation_dof_start = []
|
|
1587
|
-
articulation_coord_start = []
|
|
1588
|
-
|
|
1589
|
-
articulation_start = model.articulation_start.numpy()
|
|
1590
|
-
joint_q_start = model.joint_q_start.numpy()
|
|
1591
|
-
joint_qd_start = model.joint_qd_start.numpy()
|
|
1592
|
-
|
|
1593
|
-
for i in range(model.articulation_count):
|
|
1594
|
-
first_joint = articulation_start[i]
|
|
1595
|
-
last_joint = articulation_start[i + 1]
|
|
1596
|
-
|
|
1597
|
-
first_coord = joint_q_start[first_joint]
|
|
1598
|
-
|
|
1599
|
-
first_dof = joint_qd_start[first_joint]
|
|
1600
|
-
last_dof = joint_qd_start[last_joint]
|
|
1601
|
-
|
|
1602
|
-
joint_count = last_joint - first_joint
|
|
1603
|
-
dof_count = last_dof - first_dof
|
|
1604
|
-
|
|
1605
|
-
articulation_J_start.append(self.J_size)
|
|
1606
|
-
articulation_M_start.append(self.M_size)
|
|
1607
|
-
articulation_H_start.append(self.H_size)
|
|
1608
|
-
articulation_dof_start.append(first_dof)
|
|
1609
|
-
articulation_coord_start.append(first_coord)
|
|
1610
|
-
|
|
1611
|
-
# bit of data duplication here, but will leave it as such for clarity
|
|
1612
|
-
articulation_M_rows.append(joint_count * 6)
|
|
1613
|
-
articulation_H_rows.append(dof_count)
|
|
1614
|
-
articulation_J_rows.append(joint_count * 6)
|
|
1615
|
-
articulation_J_cols.append(dof_count)
|
|
1616
|
-
|
|
1617
|
-
if self.use_tile_gemm:
|
|
1618
|
-
# store the joint and dof count assuming all
|
|
1619
|
-
# articulations have the same structure
|
|
1620
|
-
self.joint_count = joint_count
|
|
1621
|
-
self.dof_count = dof_count
|
|
1622
|
-
|
|
1623
|
-
self.J_size += 6 * joint_count * dof_count
|
|
1624
|
-
self.M_size += 6 * joint_count * 6 * joint_count
|
|
1625
|
-
self.H_size += dof_count * dof_count
|
|
1626
|
-
|
|
1627
|
-
# matrix offsets for batched gemm
|
|
1628
|
-
self.articulation_J_start = wp.array(articulation_J_start, dtype=wp.int32, device=model.device)
|
|
1629
|
-
self.articulation_M_start = wp.array(articulation_M_start, dtype=wp.int32, device=model.device)
|
|
1630
|
-
self.articulation_H_start = wp.array(articulation_H_start, dtype=wp.int32, device=model.device)
|
|
1631
|
-
|
|
1632
|
-
self.articulation_M_rows = wp.array(articulation_M_rows, dtype=wp.int32, device=model.device)
|
|
1633
|
-
self.articulation_H_rows = wp.array(articulation_H_rows, dtype=wp.int32, device=model.device)
|
|
1634
|
-
self.articulation_J_rows = wp.array(articulation_J_rows, dtype=wp.int32, device=model.device)
|
|
1635
|
-
self.articulation_J_cols = wp.array(articulation_J_cols, dtype=wp.int32, device=model.device)
|
|
1636
|
-
|
|
1637
|
-
self.articulation_dof_start = wp.array(articulation_dof_start, dtype=wp.int32, device=model.device)
|
|
1638
|
-
self.articulation_coord_start = wp.array(articulation_coord_start, dtype=wp.int32, device=model.device)
|
|
1639
|
-
|
|
1640
|
-
def allocate_model_aux_vars(self, model):
|
|
1641
|
-
# allocate mass, Jacobian matrices, and other auxiliary variables pertaining to the model
|
|
1642
|
-
if model.joint_count:
|
|
1643
|
-
# system matrices
|
|
1644
|
-
self.M = wp.zeros((self.M_size,), dtype=wp.float32, device=model.device, requires_grad=model.requires_grad)
|
|
1645
|
-
self.J = wp.zeros((self.J_size,), dtype=wp.float32, device=model.device, requires_grad=model.requires_grad)
|
|
1646
|
-
self.P = wp.empty_like(self.J, requires_grad=model.requires_grad)
|
|
1647
|
-
self.H = wp.empty((self.H_size,), dtype=wp.float32, device=model.device, requires_grad=model.requires_grad)
|
|
1648
|
-
|
|
1649
|
-
# zero since only upper triangle is set which can trigger NaN detection
|
|
1650
|
-
self.L = wp.zeros_like(self.H)
|
|
1651
|
-
|
|
1652
|
-
if model.body_count:
|
|
1653
|
-
self.body_I_m = wp.empty(
|
|
1654
|
-
(model.body_count,), dtype=wp.spatial_matrix, device=model.device, requires_grad=model.requires_grad
|
|
1655
|
-
)
|
|
1656
|
-
wp.launch(
|
|
1657
|
-
compute_spatial_inertia,
|
|
1658
|
-
model.body_count,
|
|
1659
|
-
inputs=[model.body_inertia, model.body_mass],
|
|
1660
|
-
outputs=[self.body_I_m],
|
|
1661
|
-
device=model.device,
|
|
1662
|
-
)
|
|
1663
|
-
self.body_X_com = wp.empty(
|
|
1664
|
-
(model.body_count,), dtype=wp.transform, device=model.device, requires_grad=model.requires_grad
|
|
1665
|
-
)
|
|
1666
|
-
wp.launch(
|
|
1667
|
-
compute_com_transforms,
|
|
1668
|
-
model.body_count,
|
|
1669
|
-
inputs=[model.body_com],
|
|
1670
|
-
outputs=[self.body_X_com],
|
|
1671
|
-
device=model.device,
|
|
1672
|
-
)
|
|
1673
|
-
|
|
1674
|
-
def allocate_state_aux_vars(self, model, target, requires_grad):
|
|
1675
|
-
# allocate auxiliary variables that vary with state
|
|
1676
|
-
if model.body_count:
|
|
1677
|
-
# joints
|
|
1678
|
-
target.joint_qdd = wp.zeros_like(model.joint_qd, requires_grad=requires_grad)
|
|
1679
|
-
target.joint_tau = wp.empty_like(model.joint_qd, requires_grad=requires_grad)
|
|
1680
|
-
if requires_grad:
|
|
1681
|
-
# used in the custom grad implementation of eval_dense_solve_batched
|
|
1682
|
-
target.joint_solve_tmp = wp.zeros_like(model.joint_qd, requires_grad=True)
|
|
1683
|
-
else:
|
|
1684
|
-
target.joint_solve_tmp = None
|
|
1685
|
-
target.joint_S_s = wp.empty(
|
|
1686
|
-
(model.joint_dof_count,),
|
|
1687
|
-
dtype=wp.spatial_vector,
|
|
1688
|
-
device=model.device,
|
|
1689
|
-
requires_grad=requires_grad,
|
|
1690
|
-
)
|
|
1691
|
-
|
|
1692
|
-
# derived rigid body data (maximal coordinates)
|
|
1693
|
-
target.body_q_com = wp.empty_like(model.body_q, requires_grad=requires_grad)
|
|
1694
|
-
target.body_I_s = wp.empty(
|
|
1695
|
-
(model.body_count,), dtype=wp.spatial_matrix, device=model.device, requires_grad=requires_grad
|
|
1696
|
-
)
|
|
1697
|
-
target.body_v_s = wp.empty(
|
|
1698
|
-
(model.body_count,), dtype=wp.spatial_vector, device=model.device, requires_grad=requires_grad
|
|
1699
|
-
)
|
|
1700
|
-
target.body_a_s = wp.empty(
|
|
1701
|
-
(model.body_count,), dtype=wp.spatial_vector, device=model.device, requires_grad=requires_grad
|
|
1702
|
-
)
|
|
1703
|
-
target.body_f_s = wp.zeros(
|
|
1704
|
-
(model.body_count,), dtype=wp.spatial_vector, device=model.device, requires_grad=requires_grad
|
|
1705
|
-
)
|
|
1706
|
-
target.body_ft_s = wp.zeros(
|
|
1707
|
-
(model.body_count,), dtype=wp.spatial_vector, device=model.device, requires_grad=requires_grad
|
|
1708
|
-
)
|
|
1709
|
-
|
|
1710
|
-
target._featherstone_augmented = True
|
|
1711
|
-
|
|
1712
|
-
def simulate(self, model: Model, state_in: State, state_out: State, dt: float, control: Control = None):
|
|
1713
|
-
requires_grad = state_in.requires_grad
|
|
1714
|
-
|
|
1715
|
-
# optionally create dynamical auxiliary variables
|
|
1716
|
-
if requires_grad:
|
|
1717
|
-
state_aug = state_out
|
|
1718
|
-
else:
|
|
1719
|
-
state_aug = self
|
|
1720
|
-
|
|
1721
|
-
if not getattr(state_aug, "_featherstone_augmented", False):
|
|
1722
|
-
self.allocate_state_aux_vars(model, state_aug, requires_grad)
|
|
1723
|
-
if control is None:
|
|
1724
|
-
control = model.control(clone_variables=False)
|
|
1725
|
-
|
|
1726
|
-
with wp.ScopedTimer("simulate", False):
|
|
1727
|
-
particle_f = None
|
|
1728
|
-
body_f = None
|
|
1729
|
-
|
|
1730
|
-
if state_in.particle_count:
|
|
1731
|
-
particle_f = state_in.particle_f
|
|
1732
|
-
|
|
1733
|
-
if state_in.body_count:
|
|
1734
|
-
body_f = state_in.body_f
|
|
1735
|
-
|
|
1736
|
-
# damped springs
|
|
1737
|
-
eval_spring_forces(model, state_in, particle_f)
|
|
1738
|
-
|
|
1739
|
-
# triangle elastic and lift/drag forces
|
|
1740
|
-
eval_triangle_forces(model, state_in, control, particle_f)
|
|
1741
|
-
|
|
1742
|
-
# triangle/triangle contacts
|
|
1743
|
-
eval_triangle_contact_forces(model, state_in, particle_f)
|
|
1744
|
-
|
|
1745
|
-
# triangle bending
|
|
1746
|
-
eval_bending_forces(model, state_in, particle_f)
|
|
1747
|
-
|
|
1748
|
-
# tetrahedral FEM
|
|
1749
|
-
eval_tetrahedral_forces(model, state_in, control, particle_f)
|
|
1750
|
-
|
|
1751
|
-
# particle-particle interactions
|
|
1752
|
-
eval_particle_forces(model, state_in, particle_f)
|
|
1753
|
-
|
|
1754
|
-
# particle ground contacts
|
|
1755
|
-
eval_particle_ground_contact_forces(model, state_in, particle_f)
|
|
1756
|
-
|
|
1757
|
-
# particle shape contact
|
|
1758
|
-
eval_particle_body_contact_forces(model, state_in, particle_f, body_f, body_f_in_world_frame=True)
|
|
1759
|
-
|
|
1760
|
-
# muscles
|
|
1761
|
-
if False:
|
|
1762
|
-
eval_muscle_forces(model, state_in, control, body_f)
|
|
1763
|
-
|
|
1764
|
-
# ----------------------------
|
|
1765
|
-
# articulations
|
|
1766
|
-
|
|
1767
|
-
if model.joint_count:
|
|
1768
|
-
# evaluate body transforms
|
|
1769
|
-
wp.launch(
|
|
1770
|
-
eval_rigid_fk,
|
|
1771
|
-
dim=model.articulation_count,
|
|
1772
|
-
inputs=[
|
|
1773
|
-
model.articulation_start,
|
|
1774
|
-
model.joint_type,
|
|
1775
|
-
model.joint_parent,
|
|
1776
|
-
model.joint_child,
|
|
1777
|
-
model.joint_q_start,
|
|
1778
|
-
state_in.joint_q,
|
|
1779
|
-
model.joint_X_p,
|
|
1780
|
-
model.joint_X_c,
|
|
1781
|
-
self.body_X_com,
|
|
1782
|
-
model.joint_axis,
|
|
1783
|
-
model.joint_axis_start,
|
|
1784
|
-
model.joint_axis_dim,
|
|
1785
|
-
],
|
|
1786
|
-
outputs=[state_in.body_q, state_aug.body_q_com],
|
|
1787
|
-
device=model.device,
|
|
1788
|
-
)
|
|
1789
|
-
|
|
1790
|
-
# print("body_X_sc:")
|
|
1791
|
-
# print(state_in.body_q.numpy())
|
|
1792
|
-
|
|
1793
|
-
# evaluate joint inertias, motion vectors, and forces
|
|
1794
|
-
state_aug.body_f_s.zero_()
|
|
1795
|
-
wp.launch(
|
|
1796
|
-
eval_rigid_id,
|
|
1797
|
-
dim=model.articulation_count,
|
|
1798
|
-
inputs=[
|
|
1799
|
-
model.articulation_start,
|
|
1800
|
-
model.joint_type,
|
|
1801
|
-
model.joint_parent,
|
|
1802
|
-
model.joint_child,
|
|
1803
|
-
model.joint_q_start,
|
|
1804
|
-
model.joint_qd_start,
|
|
1805
|
-
state_in.joint_q,
|
|
1806
|
-
state_in.joint_qd,
|
|
1807
|
-
model.joint_axis,
|
|
1808
|
-
model.joint_axis_start,
|
|
1809
|
-
model.joint_axis_dim,
|
|
1810
|
-
self.body_I_m,
|
|
1811
|
-
state_in.body_q,
|
|
1812
|
-
state_aug.body_q_com,
|
|
1813
|
-
model.joint_X_p,
|
|
1814
|
-
model.joint_X_c,
|
|
1815
|
-
model.gravity,
|
|
1816
|
-
],
|
|
1817
|
-
outputs=[
|
|
1818
|
-
state_aug.joint_S_s,
|
|
1819
|
-
state_aug.body_I_s,
|
|
1820
|
-
state_aug.body_v_s,
|
|
1821
|
-
state_aug.body_f_s,
|
|
1822
|
-
state_aug.body_a_s,
|
|
1823
|
-
],
|
|
1824
|
-
device=model.device,
|
|
1825
|
-
)
|
|
1826
|
-
|
|
1827
|
-
if model.rigid_contact_max and (
|
|
1828
|
-
(model.ground and model.shape_ground_contact_pair_count) or model.shape_contact_pair_count
|
|
1829
|
-
):
|
|
1830
|
-
wp.launch(
|
|
1831
|
-
kernel=eval_rigid_contacts,
|
|
1832
|
-
dim=model.rigid_contact_max,
|
|
1833
|
-
inputs=[
|
|
1834
|
-
state_in.body_q,
|
|
1835
|
-
state_aug.body_v_s,
|
|
1836
|
-
model.body_com,
|
|
1837
|
-
model.shape_materials,
|
|
1838
|
-
model.shape_geo,
|
|
1839
|
-
model.shape_body,
|
|
1840
|
-
model.rigid_contact_count,
|
|
1841
|
-
model.rigid_contact_point0,
|
|
1842
|
-
model.rigid_contact_point1,
|
|
1843
|
-
model.rigid_contact_normal,
|
|
1844
|
-
model.rigid_contact_shape0,
|
|
1845
|
-
model.rigid_contact_shape1,
|
|
1846
|
-
True,
|
|
1847
|
-
self.friction_smoothing,
|
|
1848
|
-
],
|
|
1849
|
-
outputs=[body_f],
|
|
1850
|
-
device=model.device,
|
|
1851
|
-
)
|
|
1852
|
-
|
|
1853
|
-
# if model.rigid_contact_count.numpy()[0] > 0:
|
|
1854
|
-
# print(body_f.numpy())
|
|
1855
|
-
|
|
1856
|
-
if model.articulation_count:
|
|
1857
|
-
# evaluate joint torques
|
|
1858
|
-
state_aug.body_ft_s.zero_()
|
|
1859
|
-
wp.launch(
|
|
1860
|
-
eval_rigid_tau,
|
|
1861
|
-
dim=model.articulation_count,
|
|
1862
|
-
inputs=[
|
|
1863
|
-
model.articulation_start,
|
|
1864
|
-
model.joint_type,
|
|
1865
|
-
model.joint_parent,
|
|
1866
|
-
model.joint_child,
|
|
1867
|
-
model.joint_q_start,
|
|
1868
|
-
model.joint_qd_start,
|
|
1869
|
-
model.joint_axis_start,
|
|
1870
|
-
model.joint_axis_dim,
|
|
1871
|
-
model.joint_axis_mode,
|
|
1872
|
-
state_in.joint_q,
|
|
1873
|
-
state_in.joint_qd,
|
|
1874
|
-
control.joint_act,
|
|
1875
|
-
model.joint_target_ke,
|
|
1876
|
-
model.joint_target_kd,
|
|
1877
|
-
model.joint_limit_lower,
|
|
1878
|
-
model.joint_limit_upper,
|
|
1879
|
-
model.joint_limit_ke,
|
|
1880
|
-
model.joint_limit_kd,
|
|
1881
|
-
state_aug.joint_S_s,
|
|
1882
|
-
state_aug.body_f_s,
|
|
1883
|
-
body_f,
|
|
1884
|
-
],
|
|
1885
|
-
outputs=[
|
|
1886
|
-
state_aug.body_ft_s,
|
|
1887
|
-
state_aug.joint_tau,
|
|
1888
|
-
],
|
|
1889
|
-
device=model.device,
|
|
1890
|
-
)
|
|
1891
|
-
|
|
1892
|
-
# print("joint_tau:")
|
|
1893
|
-
# print(state_aug.joint_tau.numpy())
|
|
1894
|
-
# print("body_q:")
|
|
1895
|
-
# print(state_in.body_q.numpy())
|
|
1896
|
-
# print("body_qd:")
|
|
1897
|
-
# print(state_in.body_qd.numpy())
|
|
1898
|
-
|
|
1899
|
-
if self._step % self.update_mass_matrix_every == 0:
|
|
1900
|
-
# build J
|
|
1901
|
-
wp.launch(
|
|
1902
|
-
eval_rigid_jacobian,
|
|
1903
|
-
dim=model.articulation_count,
|
|
1904
|
-
inputs=[
|
|
1905
|
-
model.articulation_start,
|
|
1906
|
-
self.articulation_J_start,
|
|
1907
|
-
model.joint_ancestor,
|
|
1908
|
-
model.joint_qd_start,
|
|
1909
|
-
state_aug.joint_S_s,
|
|
1910
|
-
],
|
|
1911
|
-
outputs=[self.J],
|
|
1912
|
-
device=model.device,
|
|
1913
|
-
)
|
|
1914
|
-
|
|
1915
|
-
# build M
|
|
1916
|
-
wp.launch(
|
|
1917
|
-
eval_rigid_mass,
|
|
1918
|
-
dim=model.articulation_count,
|
|
1919
|
-
inputs=[
|
|
1920
|
-
model.articulation_start,
|
|
1921
|
-
self.articulation_M_start,
|
|
1922
|
-
state_aug.body_I_s,
|
|
1923
|
-
],
|
|
1924
|
-
outputs=[self.M],
|
|
1925
|
-
device=model.device,
|
|
1926
|
-
)
|
|
1927
|
-
|
|
1928
|
-
if self.use_tile_gemm:
|
|
1929
|
-
# reshape arrays
|
|
1930
|
-
M_tiled = self.M.reshape((-1, 6 * self.joint_count, 6 * self.joint_count))
|
|
1931
|
-
J_tiled = self.J.reshape((-1, 6 * self.joint_count, self.dof_count))
|
|
1932
|
-
R_tiled = model.joint_armature.reshape((-1, self.dof_count))
|
|
1933
|
-
H_tiled = self.H.reshape((-1, self.dof_count, self.dof_count))
|
|
1934
|
-
L_tiled = self.L.reshape((-1, self.dof_count, self.dof_count))
|
|
1935
|
-
assert H_tiled.shape == (model.articulation_count, 18, 18)
|
|
1936
|
-
assert L_tiled.shape == (model.articulation_count, 18, 18)
|
|
1937
|
-
assert R_tiled.shape == (model.articulation_count, 18)
|
|
1938
|
-
|
|
1939
|
-
if self.fuse_cholesky:
|
|
1940
|
-
wp.launch_tiled(
|
|
1941
|
-
self.eval_inertia_matrix_cholesky_kernel,
|
|
1942
|
-
dim=model.articulation_count,
|
|
1943
|
-
inputs=[J_tiled, M_tiled, R_tiled],
|
|
1944
|
-
outputs=[H_tiled, L_tiled],
|
|
1945
|
-
device=model.device,
|
|
1946
|
-
block_dim=64,
|
|
1947
|
-
)
|
|
1948
|
-
|
|
1949
|
-
else:
|
|
1950
|
-
wp.launch_tiled(
|
|
1951
|
-
self.eval_inertia_matrix_kernel,
|
|
1952
|
-
dim=model.articulation_count,
|
|
1953
|
-
inputs=[J_tiled, M_tiled],
|
|
1954
|
-
outputs=[H_tiled],
|
|
1955
|
-
device=model.device,
|
|
1956
|
-
block_dim=256,
|
|
1957
|
-
)
|
|
1958
|
-
|
|
1959
|
-
wp.launch(
|
|
1960
|
-
eval_dense_cholesky_batched,
|
|
1961
|
-
dim=model.articulation_count,
|
|
1962
|
-
inputs=[
|
|
1963
|
-
self.articulation_H_start,
|
|
1964
|
-
self.articulation_H_rows,
|
|
1965
|
-
self.H,
|
|
1966
|
-
model.joint_armature,
|
|
1967
|
-
],
|
|
1968
|
-
outputs=[self.L],
|
|
1969
|
-
device=model.device,
|
|
1970
|
-
)
|
|
1971
|
-
|
|
1972
|
-
# import numpy as np
|
|
1973
|
-
# J = J_tiled.numpy()
|
|
1974
|
-
# M = M_tiled.numpy()
|
|
1975
|
-
# R = R_tiled.numpy()
|
|
1976
|
-
# for i in range(model.articulation_count):
|
|
1977
|
-
# r = R[i,:,0]
|
|
1978
|
-
# H = J[i].T @ M[i] @ J[i]
|
|
1979
|
-
# L = np.linalg.cholesky(H + np.diag(r))
|
|
1980
|
-
# np.testing.assert_allclose(H, H_tiled.numpy()[i], rtol=1e-2, atol=1e-2)
|
|
1981
|
-
# np.testing.assert_allclose(L, L_tiled.numpy()[i], rtol=1e-1, atol=1e-1)
|
|
1982
|
-
|
|
1983
|
-
else:
|
|
1984
|
-
# form P = M*J
|
|
1985
|
-
wp.launch(
|
|
1986
|
-
eval_dense_gemm_batched,
|
|
1987
|
-
dim=model.articulation_count,
|
|
1988
|
-
inputs=[
|
|
1989
|
-
self.articulation_M_rows,
|
|
1990
|
-
self.articulation_J_cols,
|
|
1991
|
-
self.articulation_J_rows,
|
|
1992
|
-
False,
|
|
1993
|
-
False,
|
|
1994
|
-
self.articulation_M_start,
|
|
1995
|
-
self.articulation_J_start,
|
|
1996
|
-
# P start is the same as J start since it has the same dims as J
|
|
1997
|
-
self.articulation_J_start,
|
|
1998
|
-
self.M,
|
|
1999
|
-
self.J,
|
|
2000
|
-
],
|
|
2001
|
-
outputs=[self.P],
|
|
2002
|
-
device=model.device,
|
|
2003
|
-
)
|
|
2004
|
-
|
|
2005
|
-
# form H = J^T*P
|
|
2006
|
-
wp.launch(
|
|
2007
|
-
eval_dense_gemm_batched,
|
|
2008
|
-
dim=model.articulation_count,
|
|
2009
|
-
inputs=[
|
|
2010
|
-
self.articulation_J_cols,
|
|
2011
|
-
self.articulation_J_cols,
|
|
2012
|
-
# P rows is the same as J rows
|
|
2013
|
-
self.articulation_J_rows,
|
|
2014
|
-
True,
|
|
2015
|
-
False,
|
|
2016
|
-
self.articulation_J_start,
|
|
2017
|
-
# P start is the same as J start since it has the same dims as J
|
|
2018
|
-
self.articulation_J_start,
|
|
2019
|
-
self.articulation_H_start,
|
|
2020
|
-
self.J,
|
|
2021
|
-
self.P,
|
|
2022
|
-
],
|
|
2023
|
-
outputs=[self.H],
|
|
2024
|
-
device=model.device,
|
|
2025
|
-
)
|
|
2026
|
-
|
|
2027
|
-
# compute decomposition
|
|
2028
|
-
wp.launch(
|
|
2029
|
-
eval_dense_cholesky_batched,
|
|
2030
|
-
dim=model.articulation_count,
|
|
2031
|
-
inputs=[
|
|
2032
|
-
self.articulation_H_start,
|
|
2033
|
-
self.articulation_H_rows,
|
|
2034
|
-
self.H,
|
|
2035
|
-
model.joint_armature,
|
|
2036
|
-
],
|
|
2037
|
-
outputs=[self.L],
|
|
2038
|
-
device=model.device,
|
|
2039
|
-
)
|
|
2040
|
-
|
|
2041
|
-
# print("joint_act:")
|
|
2042
|
-
# print(control.joint_act.numpy())
|
|
2043
|
-
# print("joint_tau:")
|
|
2044
|
-
# print(state_aug.joint_tau.numpy())
|
|
2045
|
-
# print("H:")
|
|
2046
|
-
# print(self.H.numpy())
|
|
2047
|
-
# print("L:")
|
|
2048
|
-
# print(self.L.numpy())
|
|
2049
|
-
|
|
2050
|
-
# solve for qdd
|
|
2051
|
-
state_aug.joint_qdd.zero_()
|
|
2052
|
-
wp.launch(
|
|
2053
|
-
eval_dense_solve_batched,
|
|
2054
|
-
dim=model.articulation_count,
|
|
2055
|
-
inputs=[
|
|
2056
|
-
self.articulation_H_start,
|
|
2057
|
-
self.articulation_H_rows,
|
|
2058
|
-
self.articulation_dof_start,
|
|
2059
|
-
self.H,
|
|
2060
|
-
self.L,
|
|
2061
|
-
state_aug.joint_tau,
|
|
2062
|
-
],
|
|
2063
|
-
outputs=[
|
|
2064
|
-
state_aug.joint_qdd,
|
|
2065
|
-
state_aug.joint_solve_tmp,
|
|
2066
|
-
],
|
|
2067
|
-
device=model.device,
|
|
2068
|
-
)
|
|
2069
|
-
# print("joint_qdd:")
|
|
2070
|
-
# print(state_aug.joint_qdd.numpy())
|
|
2071
|
-
# print("\n\n")
|
|
2072
|
-
|
|
2073
|
-
# -------------------------------------
|
|
2074
|
-
# integrate bodies
|
|
2075
|
-
|
|
2076
|
-
if model.joint_count:
|
|
2077
|
-
wp.launch(
|
|
2078
|
-
kernel=integrate_generalized_joints,
|
|
2079
|
-
dim=model.joint_count,
|
|
2080
|
-
inputs=[
|
|
2081
|
-
model.joint_type,
|
|
2082
|
-
model.joint_q_start,
|
|
2083
|
-
model.joint_qd_start,
|
|
2084
|
-
model.joint_axis_dim,
|
|
2085
|
-
state_in.joint_q,
|
|
2086
|
-
state_in.joint_qd,
|
|
2087
|
-
state_aug.joint_qdd,
|
|
2088
|
-
dt,
|
|
2089
|
-
],
|
|
2090
|
-
outputs=[state_out.joint_q, state_out.joint_qd],
|
|
2091
|
-
device=model.device,
|
|
2092
|
-
)
|
|
2093
|
-
|
|
2094
|
-
# update maximal coordinates
|
|
2095
|
-
eval_fk(model, state_out.joint_q, state_out.joint_qd, None, state_out)
|
|
2096
|
-
|
|
2097
|
-
self.integrate_particles(model, state_in, state_out, dt)
|
|
2098
|
-
|
|
2099
|
-
self._step += 1
|
|
2100
|
-
|
|
2101
|
-
return state_out
|