transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +49 -3
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/cli/serve.py +47 -17
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +83 -7
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +374 -147
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +2 -3
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +55 -24
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +165 -124
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +228 -136
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +3 -14
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +16 -2
- transformers/integrations/accelerate.py +58 -113
- transformers/integrations/aqlm.py +36 -66
- transformers/integrations/awq.py +46 -515
- transformers/integrations/bitnet.py +47 -105
- transformers/integrations/bitsandbytes.py +91 -202
- transformers/integrations/deepspeed.py +18 -2
- transformers/integrations/eetq.py +84 -81
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +241 -208
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +37 -62
- transformers/integrations/hub_kernels.py +65 -8
- transformers/integrations/integration_utils.py +45 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +28 -74
- transformers/integrations/peft.py +12 -29
- transformers/integrations/quanto.py +77 -56
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +42 -90
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +40 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +74 -19
- transformers/modeling_rope_utils.py +107 -86
- transformers/modeling_utils.py +611 -527
- transformers/models/__init__.py +22 -0
- transformers/models/afmoe/modeling_afmoe.py +10 -19
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +14 -6
- transformers/models/altclip/modeling_altclip.py +11 -3
- transformers/models/apertus/modeling_apertus.py +8 -6
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +5 -5
- transformers/models/aria/modeling_aria.py +12 -8
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +38 -0
- transformers/models/auto/feature_extraction_auto.py +9 -3
- transformers/models/auto/image_processing_auto.py +5 -2
- transformers/models/auto/modeling_auto.py +37 -0
- transformers/models/auto/processing_auto.py +22 -10
- transformers/models/auto/tokenization_auto.py +147 -566
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +21 -21
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +11 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +14 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +9 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +15 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +16 -3
- transformers/models/bitnet/modeling_bitnet.py +5 -5
- transformers/models/blenderbot/modeling_blenderbot.py +12 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +18 -23
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +12 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +10 -0
- transformers/models/blip_2/modeling_blip_2.py +4 -1
- transformers/models/bloom/modeling_bloom.py +17 -44
- transformers/models/blt/modeling_blt.py +164 -4
- transformers/models/blt/modular_blt.py +170 -5
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +11 -1
- transformers/models/bros/modeling_bros.py +12 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +11 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +11 -5
- transformers/models/chinese_clip/modeling_chinese_clip.py +9 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +30 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +9 -0
- transformers/models/clvp/modeling_clvp.py +19 -3
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +5 -4
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +8 -7
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -4
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +9 -1
- transformers/models/convbert/modeling_convbert.py +9 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +7 -4
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +15 -2
- transformers/models/cvt/modeling_cvt.py +7 -1
- transformers/models/cwm/modeling_cwm.py +5 -5
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +48 -39
- transformers/models/d_fine/modular_d_fine.py +16 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +5 -1
- transformers/models/dac/modeling_dac.py +6 -6
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +3 -3
- transformers/models/deberta/modeling_deberta.py +7 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +8 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +12 -6
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +9 -7
- transformers/models/deepseek_v2/modular_deepseek_v2.py +6 -4
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +12 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +7 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +5 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +13 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +16 -4
- transformers/models/dia/modular_dia.py +11 -1
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +5 -5
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -2
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +3 -4
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +18 -12
- transformers/models/dots1/modeling_dots1.py +23 -11
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +6 -3
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +56 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +14 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +16 -3
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +7 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +12 -6
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +60 -16
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +5 -5
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +20 -17
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +11 -37
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +11 -5
- transformers/models/evolla/modeling_evolla.py +13 -5
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +3 -3
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +9 -4
- transformers/models/falcon_h1/modeling_falcon_h1.py +32 -26
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +31 -37
- transformers/models/falcon_mamba/modular_falcon_mamba.py +19 -33
- transformers/models/fast_vlm/__init__.py +27 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +459 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +31 -13
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +21 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +10 -2
- transformers/models/flex_olmo/modeling_flex_olmo.py +10 -8
- transformers/models/florence2/modeling_florence2.py +22 -4
- transformers/models/florence2/modular_florence2.py +15 -1
- transformers/models/fnet/modeling_fnet.py +14 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +19 -3
- transformers/models/gemma/modeling_gemma.py +14 -16
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +5 -5
- transformers/models/gemma2/modular_gemma2.py +3 -2
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +42 -91
- transformers/models/gemma3/modular_gemma3.py +38 -87
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +65 -218
- transformers/models/gemma3n/modular_gemma3n.py +68 -68
- transformers/models/git/modeling_git.py +183 -126
- transformers/models/glm/modeling_glm.py +5 -5
- transformers/models/glm4/modeling_glm4.py +5 -5
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +13 -7
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +18 -8
- transformers/models/glm4v/modular_glm4v.py +17 -7
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +44 -27
- transformers/models/glm4v_moe/modular_glm4v_moe.py +13 -1
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +13 -6
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +4 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +19 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +6 -3
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +4 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +10 -14
- transformers/models/gpt_oss/modular_gpt_oss.py +8 -12
- transformers/models/gptj/modeling_gptj.py +18 -6
- transformers/models/granite/modeling_granite.py +5 -5
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +6 -9
- transformers/models/granitemoe/modular_granitemoe.py +1 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +36 -28
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +6 -9
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +8 -4
- transformers/models/groupvit/modeling_groupvit.py +9 -1
- transformers/models/helium/modeling_helium.py +5 -4
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +7 -0
- transformers/models/hubert/modular_hubert.py +5 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +5 -5
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +15 -7
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +22 -0
- transformers/models/idefics/modeling_idefics.py +15 -21
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +11 -3
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +13 -12
- transformers/models/internvl/modular_internvl.py +7 -13
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +25 -20
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +16 -7
- transformers/models/janus/modular_janus.py +17 -7
- transformers/models/jetmoe/modeling_jetmoe.py +4 -4
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +15 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +12 -4
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +248 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +730 -0
- transformers/models/lasr/modular_lasr.py +576 -0
- transformers/models/lasr/processing_lasr.py +94 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +10 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +16 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +11 -53
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +33 -5
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +12 -0
- transformers/models/levit/modeling_levit.py +21 -0
- transformers/models/lfm2/modeling_lfm2.py +5 -6
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +17 -8
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +23 -15
- transformers/models/llama/modeling_llama.py +5 -5
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +11 -6
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +6 -5
- transformers/models/longcat_flash/modular_longcat_flash.py +3 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -4
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +14 -0
- transformers/models/mamba/modeling_mamba.py +16 -23
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +8 -0
- transformers/models/markuplm/modeling_markuplm.py +9 -8
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +11 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +11 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +21 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +14 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +9 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +28 -5
- transformers/models/minimax/modeling_minimax.py +19 -6
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +5 -5
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +5 -4
- transformers/models/mistral/modeling_mistral.py +5 -4
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +15 -7
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +15 -4
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +8 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +7 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +7 -0
- transformers/models/modernbert/modeling_modernbert.py +16 -2
- transformers/models/modernbert/modular_modernbert.py +14 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +17 -10
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +15 -8
- transformers/models/moonshine/modeling_moonshine.py +5 -3
- transformers/models/moshi/modeling_moshi.py +26 -53
- transformers/models/mpnet/modeling_mpnet.py +7 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +10 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +7 -10
- transformers/models/musicgen/modeling_musicgen.py +7 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -0
- transformers/models/mvp/modeling_mvp.py +14 -0
- transformers/models/nanochat/modeling_nanochat.py +5 -5
- transformers/models/nemotron/modeling_nemotron.py +7 -5
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +15 -68
- transformers/models/nystromformer/modeling_nystromformer.py +13 -0
- transformers/models/olmo/modeling_olmo.py +5 -5
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +5 -6
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +5 -5
- transformers/models/olmoe/modeling_olmoe.py +15 -7
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +6 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +11 -39
- transformers/models/openai/modeling_openai.py +15 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +11 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +11 -3
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +504 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1682 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1359 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +14 -6
- transformers/models/parakeet/modular_parakeet.py +7 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +10 -0
- transformers/models/patchtst/modeling_patchtst.py +25 -6
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/{kernels/falcon_mamba/__init__.py → models/pe_audio/processing_pe_audio.py} +11 -2
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +8 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +5 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +13 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +3 -2
- transformers/models/phi/modeling_phi.py +5 -6
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +3 -2
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +9 -6
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +7 -4
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +15 -7
- transformers/models/phimoe/modular_phimoe.py +3 -3
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +3 -2
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +13 -0
- transformers/models/plbart/modular_plbart.py +8 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +13 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +5 -1
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +5 -5
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +116 -79
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +71 -33
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +23 -11
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +29 -27
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +4 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +15 -7
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +23 -20
- transformers/models/qwen3/modeling_qwen3.py +5 -5
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +15 -7
- transformers/models/qwen3_next/modeling_qwen3_next.py +7 -8
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +112 -68
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +62 -20
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +57 -42
- transformers/models/qwen3_vl/modular_qwen3_vl.py +59 -46
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +132 -148
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +36 -82
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +8 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +18 -3
- transformers/models/reformer/modeling_reformer.py +13 -1
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +10 -1
- transformers/models/rembert/modeling_rembert.py +13 -1
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +19 -5
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +6 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +13 -4
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +9 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +2 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +7 -3
- transformers/models/sam2/modular_sam2.py +7 -3
- transformers/models/sam2_video/modeling_sam2_video.py +52 -43
- transformers/models/sam2_video/modular_sam2_video.py +32 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +100 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +27 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +4 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +32 -12
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +11 -1
- transformers/models/seed_oss/modeling_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +6 -3
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +67 -41
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +5 -5
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +14 -0
- transformers/models/speecht5/modeling_speecht5.py +41 -1
- transformers/models/splinter/modeling_splinter.py +12 -3
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +8 -0
- transformers/models/stablelm/modeling_stablelm.py +4 -2
- transformers/models/starcoder2/modeling_starcoder2.py +5 -4
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +6 -0
- transformers/models/swin/modeling_swin.py +20 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +51 -33
- transformers/models/swinv2/modeling_swinv2.py +45 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +8 -7
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +6 -6
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +19 -10
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +5 -1
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +14 -0
- transformers/models/timesfm/modular_timesfm.py +14 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +20 -14
- transformers/models/trocr/modeling_trocr.py +3 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +6 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +7 -7
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +7 -6
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +5 -5
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +13 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +8 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +5 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +21 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +12 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +27 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +11 -3
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +5 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +11 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +18 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +10 -1
- transformers/models/zamba/modeling_zamba.py +4 -1
- transformers/models/zamba2/modeling_zamba2.py +7 -4
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +8 -0
- transformers/pipelines/__init__.py +11 -9
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +2 -10
- transformers/pipelines/document_question_answering.py +4 -2
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +133 -50
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +44 -174
- transformers/quantizers/quantizer_aqlm.py +2 -23
- transformers/quantizers/quantizer_auto_round.py +2 -12
- transformers/quantizers/quantizer_awq.py +20 -89
- transformers/quantizers/quantizer_bitnet.py +4 -14
- transformers/quantizers/quantizer_bnb_4bit.py +18 -155
- transformers/quantizers/quantizer_bnb_8bit.py +24 -110
- transformers/quantizers/quantizer_compressed_tensors.py +2 -9
- transformers/quantizers/quantizer_eetq.py +16 -74
- transformers/quantizers/quantizer_fbgemm_fp8.py +38 -138
- transformers/quantizers/quantizer_finegrained_fp8.py +26 -113
- transformers/quantizers/quantizer_fp_quant.py +52 -82
- transformers/quantizers/quantizer_gptq.py +8 -28
- transformers/quantizers/quantizer_higgs.py +42 -60
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +14 -194
- transformers/quantizers/quantizer_quanto.py +35 -79
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +4 -12
- transformers/quantizers/quantizer_torchao.py +50 -325
- transformers/quantizers/quantizer_vptq.py +4 -27
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +324 -47
- transformers/tokenization_mistral_common.py +7 -2
- transformers/tokenization_utils_base.py +116 -224
- transformers/tokenization_utils_tokenizers.py +190 -106
- transformers/trainer.py +51 -32
- transformers/trainer_callback.py +8 -0
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +74 -38
- transformers/utils/__init__.py +7 -4
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +35 -25
- transformers/utils/generic.py +47 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +112 -25
- transformers/utils/kernel_config.py +74 -19
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +78 -245
- transformers/video_processing_utils.py +17 -14
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +275 -229
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +832 -777
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -150,8 +150,8 @@ class LayoutXLMTokenizer(TokenizersBackend):
|
|
|
150
150
|
refer to this superclass for more information regarding those methods.
|
|
151
151
|
|
|
152
152
|
Args:
|
|
153
|
-
vocab (`
|
|
154
|
-
Vocabulary for the tokenizer as a list of (token, score) tuples.
|
|
153
|
+
vocab (`str`, `dict` or `list`, *optional*):
|
|
154
|
+
Vocabulary for the tokenizer as a path, a dictionary or a list of `(token, score)` tuples.
|
|
155
155
|
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
|
156
156
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
|
157
157
|
|
|
@@ -206,12 +206,11 @@ class LayoutXLMTokenizer(TokenizersBackend):
|
|
|
206
206
|
|
|
207
207
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
208
208
|
model_input_names = ["input_ids", "attention_mask"]
|
|
209
|
-
|
|
209
|
+
model = Unigram
|
|
210
210
|
|
|
211
211
|
def __init__(
|
|
212
212
|
self,
|
|
213
|
-
|
|
214
|
-
vocab=None,
|
|
213
|
+
vocab: Optional[Union[str, list]] = None,
|
|
215
214
|
bos_token="<s>",
|
|
216
215
|
eos_token="</s>",
|
|
217
216
|
sep_token="</s>",
|
|
@@ -229,17 +228,10 @@ class LayoutXLMTokenizer(TokenizersBackend):
|
|
|
229
228
|
):
|
|
230
229
|
# Mask token behave like a normal word, i.e. include the space before it
|
|
231
230
|
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
|
232
|
-
|
|
233
231
|
self.add_prefix_space = add_prefix_space
|
|
234
232
|
|
|
235
|
-
# Build vocab from list of tuples if provided, else use default
|
|
236
|
-
# Handle both list of tuples (when creating) and dict (when loading)
|
|
237
233
|
if vocab is not None:
|
|
238
|
-
|
|
239
|
-
# Convert dict to list of tuples
|
|
240
|
-
self._vocab = [(token, score) for token, score in vocab.items()]
|
|
241
|
-
else:
|
|
242
|
-
self._vocab = vocab
|
|
234
|
+
self._vocab = vocab
|
|
243
235
|
else:
|
|
244
236
|
self._vocab = [
|
|
245
237
|
("<s>", 0.0),
|
|
@@ -250,10 +242,7 @@ class LayoutXLMTokenizer(TokenizersBackend):
|
|
|
250
242
|
if mask_token not in [v[0] for v in self._vocab]:
|
|
251
243
|
self._vocab.append((str(mask_token), 0.0))
|
|
252
244
|
|
|
253
|
-
# Create the Unigram tokenizer
|
|
254
245
|
self._tokenizer = Tokenizer(Unigram(self._vocab, unk_id=3, byte_fallback=False))
|
|
255
|
-
|
|
256
|
-
# Set up normalizer (strip right, replace multiple spaces)
|
|
257
246
|
self._tokenizer.normalizer = normalizers.Sequence(
|
|
258
247
|
[
|
|
259
248
|
normalizers.Strip(left=False, right=True),
|
|
@@ -261,30 +250,11 @@ class LayoutXLMTokenizer(TokenizersBackend):
|
|
|
261
250
|
]
|
|
262
251
|
)
|
|
263
252
|
|
|
264
|
-
# Set up pre_tokenizer (Metaspace)
|
|
265
253
|
prepend_scheme = _get_prepend_scheme(add_prefix_space, self)
|
|
266
254
|
self._tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement="▁", prepend_scheme=prepend_scheme)
|
|
267
255
|
|
|
268
|
-
# Set up decoder
|
|
269
256
|
self._tokenizer.decoder = decoders.Metaspace(replacement="▁", prepend_scheme=prepend_scheme)
|
|
270
257
|
|
|
271
|
-
# Set up post_processor for XLM-RoBERTa style
|
|
272
|
-
# Get token IDs
|
|
273
|
-
cls_token_id = self._get_token_id(str(cls_token))
|
|
274
|
-
sep_token_id = self._get_token_id(str(sep_token))
|
|
275
|
-
|
|
276
|
-
self._tokenizer.post_processor = processors.TemplateProcessing(
|
|
277
|
-
single="<s> $A </s>",
|
|
278
|
-
pair="<s> $A </s> </s> $B </s>",
|
|
279
|
-
special_tokens=[
|
|
280
|
-
("<s>", cls_token_id),
|
|
281
|
-
("</s>", sep_token_id),
|
|
282
|
-
],
|
|
283
|
-
)
|
|
284
|
-
|
|
285
|
-
tokenizer_object = self._tokenizer
|
|
286
|
-
|
|
287
|
-
# additional properties
|
|
288
258
|
self.cls_token_box = cls_token_box
|
|
289
259
|
self.sep_token_box = sep_token_box
|
|
290
260
|
self.pad_token_box = pad_token_box
|
|
@@ -292,7 +262,6 @@ class LayoutXLMTokenizer(TokenizersBackend):
|
|
|
292
262
|
self.only_label_first_subword = only_label_first_subword
|
|
293
263
|
|
|
294
264
|
super().__init__(
|
|
295
|
-
tokenizer_object=tokenizer_object,
|
|
296
265
|
bos_token=bos_token,
|
|
297
266
|
eos_token=eos_token,
|
|
298
267
|
sep_token=sep_token,
|
|
@@ -300,7 +269,6 @@ class LayoutXLMTokenizer(TokenizersBackend):
|
|
|
300
269
|
unk_token=unk_token,
|
|
301
270
|
pad_token=pad_token,
|
|
302
271
|
mask_token=mask_token,
|
|
303
|
-
vocab_file=vocab_file,
|
|
304
272
|
vocab=vocab,
|
|
305
273
|
add_prefix_space=add_prefix_space,
|
|
306
274
|
cls_token_box=cls_token_box,
|
|
@@ -311,7 +279,14 @@ class LayoutXLMTokenizer(TokenizersBackend):
|
|
|
311
279
|
**kwargs,
|
|
312
280
|
)
|
|
313
281
|
|
|
314
|
-
self.
|
|
282
|
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
|
283
|
+
single=f"{str(self.cls_token)}:0 $A:0 {str(self.sep_token)}:0",
|
|
284
|
+
pair=f"{str(self.cls_token)}:0 $A:0 {str(self.sep_token)}:0 {str(self.sep_token)}:0 $B:0 {str(self.sep_token)}:0",
|
|
285
|
+
special_tokens=[
|
|
286
|
+
(str(self.cls_token), self.cls_token_id),
|
|
287
|
+
(str(self.sep_token), self.sep_token_id),
|
|
288
|
+
],
|
|
289
|
+
)
|
|
315
290
|
|
|
316
291
|
def _get_token_id(self, token: str) -> int:
|
|
317
292
|
"""Helper to get token ID from vocab."""
|
|
@@ -23,6 +23,7 @@ import torch
|
|
|
23
23
|
from torch import nn
|
|
24
24
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
25
25
|
|
|
26
|
+
from ... import initialization as init
|
|
26
27
|
from ...activations import ACT2FN
|
|
27
28
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
28
29
|
from ...generation import GenerationMixin
|
|
@@ -1077,6 +1078,11 @@ class LEDPreTrainedModel(PreTrainedModel):
|
|
|
1077
1078
|
}
|
|
1078
1079
|
return dummy_inputs
|
|
1079
1080
|
|
|
1081
|
+
def _init_weights(self, module):
|
|
1082
|
+
super()._init_weights(module)
|
|
1083
|
+
if isinstance(module, LEDForConditionalGeneration):
|
|
1084
|
+
init.zeros_(module.final_logits_bias)
|
|
1085
|
+
|
|
1080
1086
|
|
|
1081
1087
|
@dataclass
|
|
1082
1088
|
@auto_docstring(
|
|
@@ -1379,6 +1385,7 @@ class LEDEncoder(LEDPreTrainedModel):
|
|
|
1379
1385
|
output_attentions=None,
|
|
1380
1386
|
output_hidden_states=None,
|
|
1381
1387
|
return_dict=None,
|
|
1388
|
+
**kwargs,
|
|
1382
1389
|
):
|
|
1383
1390
|
r"""
|
|
1384
1391
|
Args:
|
|
@@ -1573,6 +1580,7 @@ class LEDDecoder(LEDPreTrainedModel):
|
|
|
1573
1580
|
output_hidden_states=None,
|
|
1574
1581
|
return_dict=None,
|
|
1575
1582
|
cache_position=None,
|
|
1583
|
+
**kwargs,
|
|
1576
1584
|
):
|
|
1577
1585
|
r"""
|
|
1578
1586
|
Args:
|
|
@@ -1788,6 +1796,7 @@ class LEDModel(LEDPreTrainedModel):
|
|
|
1788
1796
|
output_hidden_states: Optional[bool] = None,
|
|
1789
1797
|
return_dict: Optional[bool] = None,
|
|
1790
1798
|
cache_position: Optional[torch.Tensor] = None,
|
|
1799
|
+
**kwargs,
|
|
1791
1800
|
) -> Union[tuple[torch.Tensor], LEDSeq2SeqModelOutput]:
|
|
1792
1801
|
r"""
|
|
1793
1802
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
@@ -1938,6 +1947,7 @@ class LEDForConditionalGeneration(LEDPreTrainedModel, GenerationMixin):
|
|
|
1938
1947
|
output_hidden_states: Optional[bool] = None,
|
|
1939
1948
|
return_dict: Optional[bool] = None,
|
|
1940
1949
|
cache_position: Optional[torch.Tensor] = None,
|
|
1950
|
+
**kwargs,
|
|
1941
1951
|
) -> Union[tuple[torch.Tensor], LEDSeq2SeqLMOutput]:
|
|
1942
1952
|
r"""
|
|
1943
1953
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
@@ -2120,6 +2130,7 @@ class LEDForSequenceClassification(LEDPreTrainedModel):
|
|
|
2120
2130
|
output_attentions: Optional[bool] = None,
|
|
2121
2131
|
output_hidden_states: Optional[bool] = None,
|
|
2122
2132
|
return_dict: Optional[bool] = None,
|
|
2133
|
+
**kwargs,
|
|
2123
2134
|
) -> Union[tuple[torch.Tensor], LEDSeq2SeqSequenceClassifierOutput]:
|
|
2124
2135
|
r"""
|
|
2125
2136
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
@@ -2258,6 +2269,7 @@ class LEDForQuestionAnswering(LEDPreTrainedModel):
|
|
|
2258
2269
|
output_attentions: Optional[bool] = None,
|
|
2259
2270
|
output_hidden_states: Optional[bool] = None,
|
|
2260
2271
|
return_dict: Optional[bool] = None,
|
|
2272
|
+
**kwargs,
|
|
2261
2273
|
) -> Union[tuple[torch.Tensor], LEDSeq2SeqQuestionAnsweringModelOutput]:
|
|
2262
2274
|
r"""
|
|
2263
2275
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
@@ -21,6 +21,7 @@ from typing import Optional, Union
|
|
|
21
21
|
import torch
|
|
22
22
|
from torch import nn
|
|
23
23
|
|
|
24
|
+
from ... import initialization as init
|
|
24
25
|
from ...modeling_outputs import (
|
|
25
26
|
BaseModelOutputWithNoAttention,
|
|
26
27
|
BaseModelOutputWithPoolingAndNoAttention,
|
|
@@ -165,6 +166,7 @@ class LevitAttention(nn.Module):
|
|
|
165
166
|
|
|
166
167
|
points = list(itertools.product(range(resolution), range(resolution)))
|
|
167
168
|
len_points = len(points)
|
|
169
|
+
self.len_points = len_points
|
|
168
170
|
attention_offsets, indices = {}, []
|
|
169
171
|
for p1 in points:
|
|
170
172
|
for p2 in points:
|
|
@@ -172,6 +174,7 @@ class LevitAttention(nn.Module):
|
|
|
172
174
|
if offset not in attention_offsets:
|
|
173
175
|
attention_offsets[offset] = len(attention_offsets)
|
|
174
176
|
indices.append(attention_offsets[offset])
|
|
177
|
+
self.indices = indices
|
|
175
178
|
|
|
176
179
|
self.attention_bias_cache = {}
|
|
177
180
|
self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
|
|
@@ -243,6 +246,8 @@ class LevitAttentionSubsample(nn.Module):
|
|
|
243
246
|
points = list(itertools.product(range(resolution_in), range(resolution_in)))
|
|
244
247
|
points_ = list(itertools.product(range(resolution_out), range(resolution_out)))
|
|
245
248
|
len_points, len_points_ = len(points), len(points_)
|
|
249
|
+
self.len_points_ = len_points_
|
|
250
|
+
self.len_points = len_points
|
|
246
251
|
attention_offsets, indices = {}, []
|
|
247
252
|
for p1 in points_:
|
|
248
253
|
for p2 in points:
|
|
@@ -251,6 +256,7 @@ class LevitAttentionSubsample(nn.Module):
|
|
|
251
256
|
if offset not in attention_offsets:
|
|
252
257
|
attention_offsets[offset] = len(attention_offsets)
|
|
253
258
|
indices.append(attention_offsets[offset])
|
|
259
|
+
self.indices = indices
|
|
254
260
|
|
|
255
261
|
self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
|
|
256
262
|
self.register_buffer(
|
|
@@ -472,6 +478,18 @@ class LevitPreTrainedModel(PreTrainedModel):
|
|
|
472
478
|
input_modalities = ("image",)
|
|
473
479
|
_no_split_modules = ["LevitResidualLayer"]
|
|
474
480
|
|
|
481
|
+
def _init_weights(self, module):
|
|
482
|
+
super()._init_weights(module)
|
|
483
|
+
if isinstance(module, LevitAttention):
|
|
484
|
+
init.copy_(
|
|
485
|
+
module.attention_bias_idxs, torch.LongTensor(module.indices).view(module.len_points, module.len_points)
|
|
486
|
+
)
|
|
487
|
+
elif isinstance(module, LevitAttentionSubsample):
|
|
488
|
+
init.copy_(
|
|
489
|
+
module.attention_bias_idxs,
|
|
490
|
+
torch.LongTensor(module.indices).view(module.len_points_, module.len_points),
|
|
491
|
+
)
|
|
492
|
+
|
|
475
493
|
|
|
476
494
|
@auto_docstring
|
|
477
495
|
class LevitModel(LevitPreTrainedModel):
|
|
@@ -489,6 +507,7 @@ class LevitModel(LevitPreTrainedModel):
|
|
|
489
507
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
490
508
|
output_hidden_states: Optional[bool] = None,
|
|
491
509
|
return_dict: Optional[bool] = None,
|
|
510
|
+
**kwargs,
|
|
492
511
|
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
|
493
512
|
output_hidden_states = (
|
|
494
513
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
@@ -550,6 +569,7 @@ class LevitForImageClassification(LevitPreTrainedModel):
|
|
|
550
569
|
labels: Optional[torch.LongTensor] = None,
|
|
551
570
|
output_hidden_states: Optional[bool] = None,
|
|
552
571
|
return_dict: Optional[bool] = None,
|
|
572
|
+
**kwargs,
|
|
553
573
|
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
|
|
554
574
|
r"""
|
|
555
575
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -616,6 +636,7 @@ class LevitForImageClassificationWithTeacher(LevitPreTrainedModel):
|
|
|
616
636
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
617
637
|
output_hidden_states: Optional[bool] = None,
|
|
618
638
|
return_dict: Optional[bool] = None,
|
|
639
|
+
**kwargs,
|
|
619
640
|
) -> Union[tuple, LevitForImageClassificationWithTeacherOutput]:
|
|
620
641
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
621
642
|
|
|
@@ -26,7 +26,7 @@ from torch import nn
|
|
|
26
26
|
|
|
27
27
|
from ...cache_utils import Cache
|
|
28
28
|
from ...generation import GenerationMixin
|
|
29
|
-
from ...integrations import use_kernel_forward_from_hub, use_kernel_func_from_hub
|
|
29
|
+
from ...integrations import use_kernel_forward_from_hub, use_kernel_func_from_hub, use_kernelized_func
|
|
30
30
|
from ...masking_utils import create_causal_mask
|
|
31
31
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
32
32
|
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
@@ -34,7 +34,7 @@ from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
|
34
34
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
35
35
|
from ...processing_utils import Unpack
|
|
36
36
|
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
|
|
37
|
-
from ...utils.generic import check_model_inputs
|
|
37
|
+
from ...utils.generic import check_model_inputs, maybe_autocast
|
|
38
38
|
from ...utils.import_utils import is_causal_conv1d_available, is_torchdynamo_compiling
|
|
39
39
|
from .configuration_lfm2 import Lfm2Config
|
|
40
40
|
|
|
@@ -83,7 +83,7 @@ class Lfm2RotaryEmbedding(nn.Module):
|
|
|
83
83
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
84
84
|
|
|
85
85
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
86
|
-
self.original_inv_freq =
|
|
86
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
87
87
|
|
|
88
88
|
@staticmethod
|
|
89
89
|
def compute_default_rope_parameters(
|
|
@@ -122,7 +122,7 @@ class Lfm2RotaryEmbedding(nn.Module):
|
|
|
122
122
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
123
123
|
|
|
124
124
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
125
|
-
with
|
|
125
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
126
126
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
127
127
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
128
128
|
cos = emb.cos() * self.attention_scaling
|
|
@@ -358,6 +358,7 @@ def eager_attention_forward(
|
|
|
358
358
|
return attn_output, attn_weights
|
|
359
359
|
|
|
360
360
|
|
|
361
|
+
@use_kernelized_func(apply_rotary_pos_emb)
|
|
361
362
|
class Lfm2Attention(nn.Module):
|
|
362
363
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
363
364
|
|
|
@@ -372,7 +373,6 @@ class Lfm2Attention(nn.Module):
|
|
|
372
373
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
|
|
373
374
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
|
|
374
375
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
|
|
375
|
-
self.rotary_fn = apply_rotary_pos_emb
|
|
376
376
|
self.out_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
|
377
377
|
self.q_layernorm = Lfm2RMSNorm(self.head_dim, eps=config.norm_eps)
|
|
378
378
|
self.k_layernorm = Lfm2RMSNorm(self.head_dim, eps=config.norm_eps)
|
|
@@ -384,7 +384,6 @@ class Lfm2Attention(nn.Module):
|
|
|
384
384
|
attention_mask: Optional[torch.Tensor],
|
|
385
385
|
past_key_values: Optional[Lfm2HybridConvCache] = None,
|
|
386
386
|
cache_position: Optional[torch.LongTensor] = None,
|
|
387
|
-
position_ids: Optional[torch.LongTensor] = None,
|
|
388
387
|
**kwargs,
|
|
389
388
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
390
389
|
input_shape = hidden_states.shape[:-1]
|
|
@@ -233,7 +233,6 @@ class Lfm2Attention(LlamaAttention):
|
|
|
233
233
|
attention_mask: Optional[torch.Tensor],
|
|
234
234
|
past_key_values: Optional[Lfm2HybridConvCache] = None,
|
|
235
235
|
cache_position: Optional[torch.LongTensor] = None,
|
|
236
|
-
position_ids: Optional[torch.LongTensor] = None,
|
|
237
236
|
**kwargs,
|
|
238
237
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
239
238
|
input_shape = hidden_states.shape[:-1]
|
|
@@ -27,7 +27,12 @@ from torch import nn
|
|
|
27
27
|
from ... import initialization as init
|
|
28
28
|
from ...cache_utils import Cache
|
|
29
29
|
from ...generation import GenerationMixin
|
|
30
|
-
from ...integrations import
|
|
30
|
+
from ...integrations import (
|
|
31
|
+
use_experts_implementation,
|
|
32
|
+
use_kernel_forward_from_hub,
|
|
33
|
+
use_kernel_func_from_hub,
|
|
34
|
+
use_kernelized_func,
|
|
35
|
+
)
|
|
31
36
|
from ...masking_utils import create_causal_mask
|
|
32
37
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
33
38
|
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, MoeModelOutputWithPast
|
|
@@ -35,7 +40,7 @@ from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
|
35
40
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
36
41
|
from ...processing_utils import Unpack
|
|
37
42
|
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
|
|
38
|
-
from ...utils.generic import check_model_inputs
|
|
43
|
+
from ...utils.generic import check_model_inputs, maybe_autocast
|
|
39
44
|
from ...utils.import_utils import is_causal_conv1d_available, is_torchdynamo_compiling
|
|
40
45
|
from .configuration_lfm2_moe import Lfm2MoeConfig
|
|
41
46
|
|
|
@@ -84,7 +89,7 @@ class Lfm2MoeRotaryEmbedding(nn.Module):
|
|
|
84
89
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
85
90
|
|
|
86
91
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
87
|
-
self.original_inv_freq =
|
|
92
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
88
93
|
|
|
89
94
|
@staticmethod
|
|
90
95
|
def compute_default_rope_parameters(
|
|
@@ -123,7 +128,7 @@ class Lfm2MoeRotaryEmbedding(nn.Module):
|
|
|
123
128
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
124
129
|
|
|
125
130
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
126
|
-
with
|
|
131
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
127
132
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
128
133
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
129
134
|
cos = emb.cos() * self.attention_scaling
|
|
@@ -145,6 +150,7 @@ class Lfm2MoeMLP(nn.Module):
|
|
|
145
150
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
146
151
|
|
|
147
152
|
|
|
153
|
+
@use_experts_implementation
|
|
148
154
|
class Lfm2MoeExperts(nn.Module):
|
|
149
155
|
"""Collection of expert weights stored as 3D tensors."""
|
|
150
156
|
|
|
@@ -155,6 +161,7 @@ class Lfm2MoeExperts(nn.Module):
|
|
|
155
161
|
self.intermediate_dim = config.moe_intermediate_size
|
|
156
162
|
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, 2 * self.intermediate_dim, self.hidden_dim))
|
|
157
163
|
self.down_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_dim, self.intermediate_dim))
|
|
164
|
+
self.act_fn = F.silu
|
|
158
165
|
|
|
159
166
|
def forward(
|
|
160
167
|
self,
|
|
@@ -175,7 +182,7 @@ class Lfm2MoeExperts(nn.Module):
|
|
|
175
182
|
top_k_pos, token_idx = torch.where(expert_mask[expert_idx])
|
|
176
183
|
current_state = hidden_states[token_idx]
|
|
177
184
|
gate, up = nn.functional.linear(current_state, self.gate_up_proj[expert_idx]).chunk(2, dim=-1)
|
|
178
|
-
current_hidden_states =
|
|
185
|
+
current_hidden_states = self.act_fn(gate) * up
|
|
179
186
|
current_hidden_states = nn.functional.linear(current_hidden_states, self.down_proj[expert_idx])
|
|
180
187
|
current_hidden_states = current_hidden_states * top_k_weights[token_idx, top_k_pos, None]
|
|
181
188
|
final_hidden_states.index_add_(0, token_idx, current_hidden_states.to(final_hidden_states.dtype))
|
|
@@ -426,6 +433,7 @@ def eager_attention_forward(
|
|
|
426
433
|
return attn_output, attn_weights
|
|
427
434
|
|
|
428
435
|
|
|
436
|
+
@use_kernelized_func(apply_rotary_pos_emb)
|
|
429
437
|
class Lfm2MoeAttention(nn.Module):
|
|
430
438
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
431
439
|
|
|
@@ -440,7 +448,6 @@ class Lfm2MoeAttention(nn.Module):
|
|
|
440
448
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
|
|
441
449
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
|
|
442
450
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
|
|
443
|
-
self.rotary_fn = apply_rotary_pos_emb
|
|
444
451
|
self.out_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
|
445
452
|
self.q_layernorm = Lfm2MoeRMSNorm(self.head_dim, eps=config.norm_eps)
|
|
446
453
|
self.k_layernorm = Lfm2MoeRMSNorm(self.head_dim, eps=config.norm_eps)
|
|
@@ -452,7 +459,6 @@ class Lfm2MoeAttention(nn.Module):
|
|
|
452
459
|
attention_mask: Optional[torch.Tensor],
|
|
453
460
|
past_key_values: Optional[Lfm2MoeHybridConvCache] = None,
|
|
454
461
|
cache_position: Optional[torch.LongTensor] = None,
|
|
455
|
-
position_ids: Optional[torch.LongTensor] = None,
|
|
456
462
|
**kwargs,
|
|
457
463
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
458
464
|
input_shape = hidden_states.shape[:-1]
|
|
@@ -672,7 +678,7 @@ class Lfm2MoePreTrainedModel(PreTrainedModel):
|
|
|
672
678
|
_supports_flash_attn = True
|
|
673
679
|
_supports_sdpa = True
|
|
674
680
|
_supports_flex_attn = True
|
|
675
|
-
_can_compile_fullgraph = False
|
|
681
|
+
_can_compile_fullgraph = False # uses a non-compilable custom cache class Lfm2MoeHybridConvCache
|
|
676
682
|
_supports_attention_backend = True
|
|
677
683
|
_can_record_outputs = {
|
|
678
684
|
"hidden_states": Lfm2MoeDecoderLayer,
|
|
@@ -685,6 +691,9 @@ class Lfm2MoePreTrainedModel(PreTrainedModel):
|
|
|
685
691
|
if isinstance(module, Lfm2MoeExperts):
|
|
686
692
|
init.normal_(module.gate_up_proj, mean=0.0, std=self.config.initializer_range)
|
|
687
693
|
init.normal_(module.down_proj, mean=0.0, std=self.config.initializer_range)
|
|
694
|
+
elif isinstance(module, Lfm2MoeSparseMoeBlock):
|
|
695
|
+
if module.use_expert_bias:
|
|
696
|
+
init.zeros_(module.expert_bias)
|
|
688
697
|
|
|
689
698
|
|
|
690
699
|
@auto_docstring
|
|
@@ -72,33 +72,7 @@ class Lfm2MoeMLP(Lfm2MLP):
|
|
|
72
72
|
class Lfm2MoeExperts(Qwen2MoeExperts):
|
|
73
73
|
def __init__(self, config):
|
|
74
74
|
super().__init__(config)
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
def forward(
|
|
78
|
-
self,
|
|
79
|
-
hidden_states: torch.Tensor,
|
|
80
|
-
top_k_index: torch.Tensor,
|
|
81
|
-
top_k_weights: torch.Tensor,
|
|
82
|
-
) -> torch.Tensor:
|
|
83
|
-
final_hidden_states = torch.zeros_like(hidden_states)
|
|
84
|
-
with torch.no_grad():
|
|
85
|
-
expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=self.num_experts)
|
|
86
|
-
expert_mask = expert_mask.permute(2, 1, 0)
|
|
87
|
-
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
|
|
88
|
-
|
|
89
|
-
for expert_idx in expert_hit:
|
|
90
|
-
expert_idx = expert_idx[0]
|
|
91
|
-
if expert_idx == self.num_experts:
|
|
92
|
-
continue
|
|
93
|
-
top_k_pos, token_idx = torch.where(expert_mask[expert_idx])
|
|
94
|
-
current_state = hidden_states[token_idx]
|
|
95
|
-
gate, up = nn.functional.linear(current_state, self.gate_up_proj[expert_idx]).chunk(2, dim=-1)
|
|
96
|
-
current_hidden_states = F.silu(gate) * up
|
|
97
|
-
current_hidden_states = nn.functional.linear(current_hidden_states, self.down_proj[expert_idx])
|
|
98
|
-
current_hidden_states = current_hidden_states * top_k_weights[token_idx, top_k_pos, None]
|
|
99
|
-
final_hidden_states.index_add_(0, token_idx, current_hidden_states.to(final_hidden_states.dtype))
|
|
100
|
-
|
|
101
|
-
return final_hidden_states
|
|
75
|
+
self.act_fn = F.silu
|
|
102
76
|
|
|
103
77
|
|
|
104
78
|
class Lfm2MoeSparseMoeBlock(nn.Module):
|
|
@@ -160,7 +134,7 @@ class Lfm2MoeDecoderLayer(Lfm2DecoderLayer):
|
|
|
160
134
|
|
|
161
135
|
|
|
162
136
|
class Lfm2MoePreTrainedModel(LlamaPreTrainedModel):
|
|
163
|
-
_can_compile_fullgraph = False
|
|
137
|
+
_can_compile_fullgraph = False # uses a non-compilable custom cache class Lfm2MoeHybridConvCache
|
|
164
138
|
|
|
165
139
|
@torch.no_grad()
|
|
166
140
|
def _init_weights(self, module):
|
|
@@ -168,6 +142,9 @@ class Lfm2MoePreTrainedModel(LlamaPreTrainedModel):
|
|
|
168
142
|
if isinstance(module, Lfm2MoeExperts):
|
|
169
143
|
init.normal_(module.gate_up_proj, mean=0.0, std=self.config.initializer_range)
|
|
170
144
|
init.normal_(module.down_proj, mean=0.0, std=self.config.initializer_range)
|
|
145
|
+
elif isinstance(module, Lfm2MoeSparseMoeBlock):
|
|
146
|
+
if module.use_expert_bias:
|
|
147
|
+
init.zeros_(module.expert_bias)
|
|
171
148
|
|
|
172
149
|
|
|
173
150
|
class Lfm2MoeModel(MixtralModel):
|
|
@@ -46,6 +46,8 @@ class Lfm2VlConfig(PreTrainedConfig):
|
|
|
46
46
|
The hidden size of the multimodal projector.
|
|
47
47
|
projector_bias (`bool`, *optional*, defaults to `True`):
|
|
48
48
|
Whether to use bias in the multimodal projector.
|
|
49
|
+
projector_use_layernorm (`bool`, *optional*, defaults to `True`):
|
|
50
|
+
Whether to use layernorm in the multimodal projector.
|
|
49
51
|
downsample_factor (`int`, *optional*, defaults to 2):
|
|
50
52
|
The downsample_factor factor of the vision backbone.
|
|
51
53
|
"""
|
|
@@ -61,6 +63,7 @@ class Lfm2VlConfig(PreTrainedConfig):
|
|
|
61
63
|
projector_hidden_act="gelu",
|
|
62
64
|
projector_hidden_size=2560,
|
|
63
65
|
projector_bias=True,
|
|
66
|
+
projector_use_layernorm=True,
|
|
64
67
|
downsample_factor=2,
|
|
65
68
|
**kwargs,
|
|
66
69
|
):
|
|
@@ -68,6 +71,7 @@ class Lfm2VlConfig(PreTrainedConfig):
|
|
|
68
71
|
self.projector_hidden_act = projector_hidden_act
|
|
69
72
|
self.projector_hidden_size = projector_hidden_size
|
|
70
73
|
self.projector_bias = projector_bias
|
|
74
|
+
self.projector_use_layernorm = projector_use_layernorm
|
|
71
75
|
self.downsample_factor = downsample_factor
|
|
72
76
|
|
|
73
77
|
if isinstance(vision_config, dict):
|
|
@@ -41,7 +41,8 @@ class Lfm2VlMultiModalProjector(nn.Module):
|
|
|
41
41
|
super().__init__()
|
|
42
42
|
in_channels = config.vision_config.hidden_size * (config.downsample_factor**2)
|
|
43
43
|
self.factor = config.downsample_factor
|
|
44
|
-
self.
|
|
44
|
+
self.use_layer_norm = config.projector_use_layernorm
|
|
45
|
+
self.layer_norm = nn.LayerNorm(in_channels) if config.projector_use_layernorm else None
|
|
45
46
|
self.linear_1 = nn.Linear(
|
|
46
47
|
in_channels,
|
|
47
48
|
config.projector_hidden_size,
|
|
@@ -56,7 +57,8 @@ class Lfm2VlMultiModalProjector(nn.Module):
|
|
|
56
57
|
|
|
57
58
|
def forward(self, image_features: torch.Tensor):
|
|
58
59
|
image_features = self.pixel_unshuffle(image_features)
|
|
59
|
-
|
|
60
|
+
if self.use_layer_norm:
|
|
61
|
+
image_features = self.layer_norm(image_features)
|
|
60
62
|
hidden_states = self.linear_1(image_features)
|
|
61
63
|
hidden_states = self.act(hidden_states)
|
|
62
64
|
hidden_states = self.linear_2(hidden_states)
|
|
@@ -448,6 +450,7 @@ class Lfm2VlForConditionalGeneration(Lfm2VlPreTrainedModel, GenerationMixin):
|
|
|
448
450
|
attention_mask=None,
|
|
449
451
|
cache_position=None,
|
|
450
452
|
logits_to_keep=None,
|
|
453
|
+
is_first_iteration=False,
|
|
451
454
|
**kwargs,
|
|
452
455
|
):
|
|
453
456
|
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
|
@@ -459,12 +462,15 @@ class Lfm2VlForConditionalGeneration(Lfm2VlPreTrainedModel, GenerationMixin):
|
|
|
459
462
|
attention_mask=attention_mask,
|
|
460
463
|
cache_position=cache_position,
|
|
461
464
|
logits_to_keep=logits_to_keep,
|
|
465
|
+
is_first_iteration=is_first_iteration,
|
|
462
466
|
**kwargs,
|
|
463
467
|
)
|
|
464
468
|
|
|
465
|
-
if
|
|
466
|
-
#
|
|
467
|
-
#
|
|
469
|
+
if is_first_iteration or not kwargs.get("use_cache", True):
|
|
470
|
+
# Pixel values are used only in the first iteration if available
|
|
471
|
+
# In subsquent iterations, they are already merged with text and cached
|
|
472
|
+
# NOTE: first iteration doesn't have to be prefill, it can be the first
|
|
473
|
+
# iteration with a question and cached system prompt (continue generate from cache)
|
|
468
474
|
model_inputs["pixel_values"] = pixel_values
|
|
469
475
|
|
|
470
476
|
return model_inputs
|
|
@@ -41,7 +41,8 @@ class Lfm2VlMultiModalProjector(nn.Module):
|
|
|
41
41
|
super().__init__()
|
|
42
42
|
in_channels = config.vision_config.hidden_size * (config.downsample_factor**2)
|
|
43
43
|
self.factor = config.downsample_factor
|
|
44
|
-
self.
|
|
44
|
+
self.use_layer_norm = config.projector_use_layernorm
|
|
45
|
+
self.layer_norm = nn.LayerNorm(in_channels) if config.projector_use_layernorm else None
|
|
45
46
|
self.linear_1 = nn.Linear(
|
|
46
47
|
in_channels,
|
|
47
48
|
config.projector_hidden_size,
|
|
@@ -56,7 +57,8 @@ class Lfm2VlMultiModalProjector(nn.Module):
|
|
|
56
57
|
|
|
57
58
|
def forward(self, image_features: torch.Tensor):
|
|
58
59
|
image_features = self.pixel_unshuffle(image_features)
|
|
59
|
-
|
|
60
|
+
if self.use_layer_norm:
|
|
61
|
+
image_features = self.layer_norm(image_features)
|
|
60
62
|
hidden_states = self.linear_1(image_features)
|
|
61
63
|
hidden_states = self.act(hidden_states)
|
|
62
64
|
hidden_states = self.linear_2(hidden_states)
|