transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +49 -3
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/cli/serve.py +47 -17
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +83 -7
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +374 -147
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +2 -3
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +55 -24
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +165 -124
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +228 -136
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +3 -14
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +16 -2
- transformers/integrations/accelerate.py +58 -113
- transformers/integrations/aqlm.py +36 -66
- transformers/integrations/awq.py +46 -515
- transformers/integrations/bitnet.py +47 -105
- transformers/integrations/bitsandbytes.py +91 -202
- transformers/integrations/deepspeed.py +18 -2
- transformers/integrations/eetq.py +84 -81
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +241 -208
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +37 -62
- transformers/integrations/hub_kernels.py +65 -8
- transformers/integrations/integration_utils.py +45 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +28 -74
- transformers/integrations/peft.py +12 -29
- transformers/integrations/quanto.py +77 -56
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +42 -90
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +40 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +74 -19
- transformers/modeling_rope_utils.py +107 -86
- transformers/modeling_utils.py +611 -527
- transformers/models/__init__.py +22 -0
- transformers/models/afmoe/modeling_afmoe.py +10 -19
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +14 -6
- transformers/models/altclip/modeling_altclip.py +11 -3
- transformers/models/apertus/modeling_apertus.py +8 -6
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +5 -5
- transformers/models/aria/modeling_aria.py +12 -8
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +38 -0
- transformers/models/auto/feature_extraction_auto.py +9 -3
- transformers/models/auto/image_processing_auto.py +5 -2
- transformers/models/auto/modeling_auto.py +37 -0
- transformers/models/auto/processing_auto.py +22 -10
- transformers/models/auto/tokenization_auto.py +147 -566
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +21 -21
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +11 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +14 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +9 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +15 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +16 -3
- transformers/models/bitnet/modeling_bitnet.py +5 -5
- transformers/models/blenderbot/modeling_blenderbot.py +12 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +18 -23
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +12 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +10 -0
- transformers/models/blip_2/modeling_blip_2.py +4 -1
- transformers/models/bloom/modeling_bloom.py +17 -44
- transformers/models/blt/modeling_blt.py +164 -4
- transformers/models/blt/modular_blt.py +170 -5
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +11 -1
- transformers/models/bros/modeling_bros.py +12 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +11 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +11 -5
- transformers/models/chinese_clip/modeling_chinese_clip.py +9 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +30 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +9 -0
- transformers/models/clvp/modeling_clvp.py +19 -3
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +5 -4
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +8 -7
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -4
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +9 -1
- transformers/models/convbert/modeling_convbert.py +9 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +7 -4
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +15 -2
- transformers/models/cvt/modeling_cvt.py +7 -1
- transformers/models/cwm/modeling_cwm.py +5 -5
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +48 -39
- transformers/models/d_fine/modular_d_fine.py +16 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +5 -1
- transformers/models/dac/modeling_dac.py +6 -6
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +3 -3
- transformers/models/deberta/modeling_deberta.py +7 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +8 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +12 -6
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +9 -7
- transformers/models/deepseek_v2/modular_deepseek_v2.py +6 -4
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +12 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +7 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +5 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +13 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +16 -4
- transformers/models/dia/modular_dia.py +11 -1
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +5 -5
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -2
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +3 -4
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +18 -12
- transformers/models/dots1/modeling_dots1.py +23 -11
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +6 -3
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +56 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +14 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +16 -3
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +7 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +12 -6
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +60 -16
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +5 -5
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +20 -17
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +11 -37
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +11 -5
- transformers/models/evolla/modeling_evolla.py +13 -5
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +3 -3
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +9 -4
- transformers/models/falcon_h1/modeling_falcon_h1.py +32 -26
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +31 -37
- transformers/models/falcon_mamba/modular_falcon_mamba.py +19 -33
- transformers/models/fast_vlm/__init__.py +27 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +459 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +31 -13
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +21 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +10 -2
- transformers/models/flex_olmo/modeling_flex_olmo.py +10 -8
- transformers/models/florence2/modeling_florence2.py +22 -4
- transformers/models/florence2/modular_florence2.py +15 -1
- transformers/models/fnet/modeling_fnet.py +14 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +19 -3
- transformers/models/gemma/modeling_gemma.py +14 -16
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +5 -5
- transformers/models/gemma2/modular_gemma2.py +3 -2
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +42 -91
- transformers/models/gemma3/modular_gemma3.py +38 -87
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +65 -218
- transformers/models/gemma3n/modular_gemma3n.py +68 -68
- transformers/models/git/modeling_git.py +183 -126
- transformers/models/glm/modeling_glm.py +5 -5
- transformers/models/glm4/modeling_glm4.py +5 -5
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +13 -7
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +18 -8
- transformers/models/glm4v/modular_glm4v.py +17 -7
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +44 -27
- transformers/models/glm4v_moe/modular_glm4v_moe.py +13 -1
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +13 -6
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +4 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +19 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +6 -3
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +4 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +10 -14
- transformers/models/gpt_oss/modular_gpt_oss.py +8 -12
- transformers/models/gptj/modeling_gptj.py +18 -6
- transformers/models/granite/modeling_granite.py +5 -5
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +6 -9
- transformers/models/granitemoe/modular_granitemoe.py +1 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +36 -28
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +6 -9
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +8 -4
- transformers/models/groupvit/modeling_groupvit.py +9 -1
- transformers/models/helium/modeling_helium.py +5 -4
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +7 -0
- transformers/models/hubert/modular_hubert.py +5 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +5 -5
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +15 -7
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +22 -0
- transformers/models/idefics/modeling_idefics.py +15 -21
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +11 -3
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +13 -12
- transformers/models/internvl/modular_internvl.py +7 -13
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +25 -20
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +16 -7
- transformers/models/janus/modular_janus.py +17 -7
- transformers/models/jetmoe/modeling_jetmoe.py +4 -4
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +15 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +12 -4
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +248 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +730 -0
- transformers/models/lasr/modular_lasr.py +576 -0
- transformers/models/lasr/processing_lasr.py +94 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +10 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +16 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +11 -53
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +33 -5
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +12 -0
- transformers/models/levit/modeling_levit.py +21 -0
- transformers/models/lfm2/modeling_lfm2.py +5 -6
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +17 -8
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +23 -15
- transformers/models/llama/modeling_llama.py +5 -5
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +11 -6
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +6 -5
- transformers/models/longcat_flash/modular_longcat_flash.py +3 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -4
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +14 -0
- transformers/models/mamba/modeling_mamba.py +16 -23
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +8 -0
- transformers/models/markuplm/modeling_markuplm.py +9 -8
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +11 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +11 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +21 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +14 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +9 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +28 -5
- transformers/models/minimax/modeling_minimax.py +19 -6
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +5 -5
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +5 -4
- transformers/models/mistral/modeling_mistral.py +5 -4
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +15 -7
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +15 -4
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +8 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +7 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +7 -0
- transformers/models/modernbert/modeling_modernbert.py +16 -2
- transformers/models/modernbert/modular_modernbert.py +14 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +17 -10
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +15 -8
- transformers/models/moonshine/modeling_moonshine.py +5 -3
- transformers/models/moshi/modeling_moshi.py +26 -53
- transformers/models/mpnet/modeling_mpnet.py +7 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +10 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +7 -10
- transformers/models/musicgen/modeling_musicgen.py +7 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -0
- transformers/models/mvp/modeling_mvp.py +14 -0
- transformers/models/nanochat/modeling_nanochat.py +5 -5
- transformers/models/nemotron/modeling_nemotron.py +7 -5
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +15 -68
- transformers/models/nystromformer/modeling_nystromformer.py +13 -0
- transformers/models/olmo/modeling_olmo.py +5 -5
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +5 -6
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +5 -5
- transformers/models/olmoe/modeling_olmoe.py +15 -7
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +6 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +11 -39
- transformers/models/openai/modeling_openai.py +15 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +11 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +11 -3
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +504 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1682 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1359 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +14 -6
- transformers/models/parakeet/modular_parakeet.py +7 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +10 -0
- transformers/models/patchtst/modeling_patchtst.py +25 -6
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/{kernels/falcon_mamba/__init__.py → models/pe_audio/processing_pe_audio.py} +11 -2
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +8 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +5 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +13 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +3 -2
- transformers/models/phi/modeling_phi.py +5 -6
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +3 -2
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +9 -6
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +7 -4
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +15 -7
- transformers/models/phimoe/modular_phimoe.py +3 -3
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +3 -2
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +13 -0
- transformers/models/plbart/modular_plbart.py +8 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +13 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +5 -1
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +5 -5
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +116 -79
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +71 -33
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +23 -11
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +29 -27
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +4 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +15 -7
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +23 -20
- transformers/models/qwen3/modeling_qwen3.py +5 -5
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +15 -7
- transformers/models/qwen3_next/modeling_qwen3_next.py +7 -8
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +112 -68
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +62 -20
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +57 -42
- transformers/models/qwen3_vl/modular_qwen3_vl.py +59 -46
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +132 -148
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +36 -82
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +8 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +18 -3
- transformers/models/reformer/modeling_reformer.py +13 -1
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +10 -1
- transformers/models/rembert/modeling_rembert.py +13 -1
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +19 -5
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +6 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +13 -4
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +9 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +2 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +7 -3
- transformers/models/sam2/modular_sam2.py +7 -3
- transformers/models/sam2_video/modeling_sam2_video.py +52 -43
- transformers/models/sam2_video/modular_sam2_video.py +32 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +100 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +27 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +4 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +32 -12
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +11 -1
- transformers/models/seed_oss/modeling_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +6 -3
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +67 -41
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +5 -5
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +14 -0
- transformers/models/speecht5/modeling_speecht5.py +41 -1
- transformers/models/splinter/modeling_splinter.py +12 -3
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +8 -0
- transformers/models/stablelm/modeling_stablelm.py +4 -2
- transformers/models/starcoder2/modeling_starcoder2.py +5 -4
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +6 -0
- transformers/models/swin/modeling_swin.py +20 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +51 -33
- transformers/models/swinv2/modeling_swinv2.py +45 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +8 -7
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +6 -6
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +19 -10
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +5 -1
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +14 -0
- transformers/models/timesfm/modular_timesfm.py +14 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +20 -14
- transformers/models/trocr/modeling_trocr.py +3 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +6 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +7 -7
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +7 -6
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +5 -5
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +13 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +8 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +5 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +21 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +12 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +27 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +11 -3
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +5 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +11 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +18 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +10 -1
- transformers/models/zamba/modeling_zamba.py +4 -1
- transformers/models/zamba2/modeling_zamba2.py +7 -4
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +8 -0
- transformers/pipelines/__init__.py +11 -9
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +2 -10
- transformers/pipelines/document_question_answering.py +4 -2
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +133 -50
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +44 -174
- transformers/quantizers/quantizer_aqlm.py +2 -23
- transformers/quantizers/quantizer_auto_round.py +2 -12
- transformers/quantizers/quantizer_awq.py +20 -89
- transformers/quantizers/quantizer_bitnet.py +4 -14
- transformers/quantizers/quantizer_bnb_4bit.py +18 -155
- transformers/quantizers/quantizer_bnb_8bit.py +24 -110
- transformers/quantizers/quantizer_compressed_tensors.py +2 -9
- transformers/quantizers/quantizer_eetq.py +16 -74
- transformers/quantizers/quantizer_fbgemm_fp8.py +38 -138
- transformers/quantizers/quantizer_finegrained_fp8.py +26 -113
- transformers/quantizers/quantizer_fp_quant.py +52 -82
- transformers/quantizers/quantizer_gptq.py +8 -28
- transformers/quantizers/quantizer_higgs.py +42 -60
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +14 -194
- transformers/quantizers/quantizer_quanto.py +35 -79
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +4 -12
- transformers/quantizers/quantizer_torchao.py +50 -325
- transformers/quantizers/quantizer_vptq.py +4 -27
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +324 -47
- transformers/tokenization_mistral_common.py +7 -2
- transformers/tokenization_utils_base.py +116 -224
- transformers/tokenization_utils_tokenizers.py +190 -106
- transformers/trainer.py +51 -32
- transformers/trainer_callback.py +8 -0
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +74 -38
- transformers/utils/__init__.py +7 -4
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +35 -25
- transformers/utils/generic.py +47 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +112 -25
- transformers/utils/kernel_config.py +74 -19
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +78 -245
- transformers/video_processing_utils.py +17 -14
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +275 -229
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +832 -777
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -19,6 +19,9 @@ import os
|
|
|
19
19
|
import re
|
|
20
20
|
from functools import partial, reduce
|
|
21
21
|
|
|
22
|
+
from ..distributed import DistributedConfig
|
|
23
|
+
from ..utils import is_torch_greater_or_equal, logging
|
|
24
|
+
from ..utils.generic import GeneralInterface
|
|
22
25
|
from ..utils.import_utils import is_torch_available
|
|
23
26
|
|
|
24
27
|
|
|
@@ -27,14 +30,6 @@ if is_torch_available():
|
|
|
27
30
|
import torch.distributed as dist
|
|
28
31
|
from torch import nn
|
|
29
32
|
|
|
30
|
-
from ..distributed import DistributedConfig
|
|
31
|
-
from ..utils import is_torch_greater_or_equal, logging
|
|
32
|
-
from ..utils.generic import GeneralInterface
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
logger = logging.get_logger(__name__)
|
|
36
|
-
|
|
37
|
-
if is_torch_available():
|
|
38
33
|
# Cache this result has it's a C FFI call which can be pretty time-consuming
|
|
39
34
|
_torch_distributed_available = torch.distributed.is_available()
|
|
40
35
|
|
|
@@ -42,6 +37,9 @@ if is_torch_available():
|
|
|
42
37
|
from torch.distributed.tensor import DTensor, Placement, Replicate, Shard
|
|
43
38
|
|
|
44
39
|
|
|
40
|
+
logger = logging.get_logger(__name__)
|
|
41
|
+
|
|
42
|
+
|
|
45
43
|
def initialize_tensor_parallelism(
|
|
46
44
|
tp_plan: str | dict[str, str] | None, tp_size: int | None = None, device_mesh=None, device_map=None
|
|
47
45
|
):
|
|
@@ -470,7 +468,12 @@ class TensorParallelLayer:
|
|
|
470
468
|
@staticmethod
|
|
471
469
|
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh): ...
|
|
472
470
|
|
|
473
|
-
def
|
|
471
|
+
def shard_tensor(
|
|
472
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
473
|
+
) -> torch.Tensor:
|
|
474
|
+
raise NotImplementedError
|
|
475
|
+
|
|
476
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
474
477
|
raise NotImplementedError
|
|
475
478
|
|
|
476
479
|
def prepare_module_tp(self, module: nn.Module, device_mesh) -> nn.Module:
|
|
@@ -519,19 +522,10 @@ class GatherParallel(TensorParallelLayer):
|
|
|
519
522
|
return outputs
|
|
520
523
|
|
|
521
524
|
def shard_tensor(
|
|
522
|
-
self,
|
|
523
|
-
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
to_contiguous=None,
|
|
527
|
-
rank=None,
|
|
528
|
-
device_mesh=None,
|
|
529
|
-
tensor_idx=None,
|
|
530
|
-
):
|
|
531
|
-
shard = [Replicate()]
|
|
532
|
-
parameter = param[...].to(param_casting_dtype)
|
|
533
|
-
self.shard = shard
|
|
534
|
-
return parameter, shard
|
|
525
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
526
|
+
) -> torch.Tensor:
|
|
527
|
+
self.shard = [Replicate()]
|
|
528
|
+
return param[...].to(device=device, dtype=dtype)
|
|
535
529
|
|
|
536
530
|
def prepare_module_tp(self, module: nn.Module, device_mesh) -> nn.Module:
|
|
537
531
|
distribute_module(
|
|
@@ -562,29 +556,20 @@ class IsolatedParallel(TensorParallelLayer):
|
|
|
562
556
|
return outputs
|
|
563
557
|
|
|
564
558
|
def shard_tensor(
|
|
565
|
-
self,
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
|
|
569
|
-
|
|
570
|
-
rank=None,
|
|
571
|
-
device_mesh=None,
|
|
572
|
-
tensor_idx=None,
|
|
573
|
-
):
|
|
574
|
-
mesh = device_mesh or self.device_mesh
|
|
575
|
-
parameter = param[...].to(param_casting_dtype)
|
|
576
|
-
if mesh is not None:
|
|
577
|
-
parameter = parameter / mesh.size()
|
|
559
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
560
|
+
) -> torch.Tensor:
|
|
561
|
+
parameter = param[...].to(device=device, dtype=dtype)
|
|
562
|
+
if self.device_mesh is not None:
|
|
563
|
+
parameter = parameter / self.device_mesh.size()
|
|
578
564
|
self.shard = None
|
|
579
|
-
return parameter
|
|
565
|
+
return parameter
|
|
580
566
|
|
|
581
|
-
def partition_tensor(self, param
|
|
582
|
-
|
|
567
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
568
|
+
parameter = self.shard_tensor(param, dtype=dtype)
|
|
583
569
|
if to_contiguous:
|
|
584
|
-
|
|
585
|
-
param = param / device_mesh.size() # TODO should be optionable
|
|
570
|
+
parameter = parameter.contiguous()
|
|
586
571
|
# TODO: assumes parent module will allreduce the output afterwards (e.g rowlinear bias is IsolatedParallel and parent module is GatherParallel)
|
|
587
|
-
return
|
|
572
|
+
return parameter
|
|
588
573
|
|
|
589
574
|
def prepare_module_tp(self, module: nn.Module, device_mesh) -> nn.Module:
|
|
590
575
|
distribute_module(
|
|
@@ -623,31 +608,15 @@ class ReplicateParallel(TensorParallelLayer):
|
|
|
623
608
|
return outputs.to_local() if use_local_output and isinstance(outputs, DTensor) else outputs
|
|
624
609
|
|
|
625
610
|
def shard_tensor(
|
|
626
|
-
self,
|
|
627
|
-
|
|
628
|
-
|
|
629
|
-
|
|
630
|
-
|
|
631
|
-
|
|
632
|
-
|
|
633
|
-
tensor_idx=None,
|
|
634
|
-
):
|
|
635
|
-
parameter = param[...].to(param_casting_dtype)
|
|
636
|
-
shard = [Replicate()]
|
|
637
|
-
self.shard = shard
|
|
638
|
-
return parameter, shard
|
|
639
|
-
|
|
640
|
-
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
|
|
641
|
-
parameter, shard = self.shard_tensor(
|
|
642
|
-
param,
|
|
643
|
-
param_type=param_type,
|
|
644
|
-
param_casting_dtype=param_casting_dtype,
|
|
645
|
-
to_contiguous=to_contiguous,
|
|
646
|
-
rank=rank,
|
|
647
|
-
device_mesh=device_mesh,
|
|
648
|
-
)
|
|
611
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
612
|
+
) -> torch.Tensor:
|
|
613
|
+
self.shard = [Replicate()]
|
|
614
|
+
return param[...].to(device=device, dtype=dtype)
|
|
615
|
+
|
|
616
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
617
|
+
parameter = self.shard_tensor(param, dtype=dtype)
|
|
649
618
|
if self.use_dtensor:
|
|
650
|
-
parameter = DTensor.from_local(parameter, device_mesh, shard, run_check=False)
|
|
619
|
+
parameter = DTensor.from_local(parameter, self.device_mesh, self.shard, run_check=False)
|
|
651
620
|
return parameter
|
|
652
621
|
|
|
653
622
|
|
|
@@ -685,38 +654,34 @@ class ColwiseParallel(TensorParallelLayer):
|
|
|
685
654
|
return input_tensor
|
|
686
655
|
|
|
687
656
|
def shard_tensor(
|
|
688
|
-
self,
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
|
|
692
|
-
|
|
693
|
-
|
|
694
|
-
device_mesh=None,
|
|
695
|
-
tensor_idx=None,
|
|
696
|
-
):
|
|
697
|
-
device_mesh = self.device_mesh
|
|
698
|
-
empty_param = self.empty_param
|
|
699
|
-
rank = self.rank
|
|
700
|
-
if param_type == "bias":
|
|
701
|
-
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -1, tensor_idx)
|
|
657
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
658
|
+
) -> torch.Tensor:
|
|
659
|
+
# If only 1 dim, shard this one (usually it's a `bias`)
|
|
660
|
+
dim = param.dim() if isinstance(param, torch.Tensor) else len(param.get_shape())
|
|
661
|
+
if dim == 1:
|
|
662
|
+
parameter = get_tensor_shard(param, self.empty_param, self.device_mesh, self.rank, -1, tensor_idx)
|
|
702
663
|
shard = [Shard(-1)]
|
|
703
664
|
else:
|
|
704
665
|
shard = [Shard(-2)]
|
|
705
|
-
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -2, tensor_idx)
|
|
706
|
-
parameter = parameter.to(param_casting_dtype)
|
|
666
|
+
parameter = get_tensor_shard(param, self.empty_param, self.device_mesh, self.rank, -2, tensor_idx)
|
|
707
667
|
self.shard = shard
|
|
708
|
-
return parameter,
|
|
668
|
+
return parameter.to(device=device, dtype=dtype)
|
|
709
669
|
|
|
710
|
-
def partition_tensor(self, param
|
|
670
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
711
671
|
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
|
|
712
672
|
# means Colwise as Linear is input * weight^T + bias, where
|
|
713
673
|
# weight would become Shard(1)
|
|
714
|
-
parameter
|
|
674
|
+
parameter = self.shard_tensor(param, dtype=dtype)
|
|
715
675
|
if to_contiguous:
|
|
716
676
|
parameter = parameter.contiguous()
|
|
717
677
|
if self.use_dtensor:
|
|
718
678
|
parameter = DTensor.from_local(
|
|
719
|
-
parameter,
|
|
679
|
+
parameter,
|
|
680
|
+
self.device_mesh,
|
|
681
|
+
self.shard,
|
|
682
|
+
run_check=False,
|
|
683
|
+
shape=self.empty_param.size(),
|
|
684
|
+
stride=self.empty_param.stride(),
|
|
720
685
|
)
|
|
721
686
|
return nn.Parameter(parameter, requires_grad=parameter.is_floating_point())
|
|
722
687
|
|
|
@@ -731,33 +696,41 @@ class ColwiseParallel(TensorParallelLayer):
|
|
|
731
696
|
|
|
732
697
|
class PackedColwiseParallel(ColwiseParallel):
|
|
733
698
|
def shard_tensor(
|
|
734
|
-
self,
|
|
735
|
-
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
to_contiguous=None,
|
|
739
|
-
rank=None,
|
|
740
|
-
device_mesh=None,
|
|
741
|
-
tensor_idx=None,
|
|
742
|
-
):
|
|
743
|
-
device_mesh = device_mesh or self.device_mesh
|
|
744
|
-
empty_param = self.empty_param
|
|
745
|
-
rank = rank if rank is not None else self.rank
|
|
746
|
-
return get_packed_weights(param, empty_param, device_mesh, rank, -2).to(param_casting_dtype), [Shard(-2)]
|
|
699
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
700
|
+
) -> torch.Tensor:
|
|
701
|
+
parameter = get_packed_weights(param, self.empty_param, self.device_mesh, self.rank, -2)
|
|
702
|
+
return parameter.to(device=device, dtype=dtype)
|
|
747
703
|
|
|
748
|
-
def partition_tensor(self, param
|
|
704
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
749
705
|
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
|
|
750
706
|
# means Colwise as Linear is input * weight^T + bias, where
|
|
751
707
|
# weight would become Shard(1)
|
|
752
|
-
parameter =
|
|
753
|
-
parameter = parameter.to(param_casting_dtype)
|
|
708
|
+
parameter = self.shard_tensor(param, dtype=dtype)
|
|
754
709
|
if to_contiguous:
|
|
755
710
|
parameter = parameter.contiguous()
|
|
756
711
|
if self.use_dtensor:
|
|
757
|
-
parameter = DTensor.from_local(parameter, device_mesh, [Shard(-2)], run_check=False)
|
|
712
|
+
parameter = DTensor.from_local(parameter, self.device_mesh, [Shard(-2)], run_check=False)
|
|
758
713
|
return nn.Parameter(parameter, requires_grad=parameter.is_floating_point())
|
|
759
714
|
|
|
760
715
|
|
|
716
|
+
class LocalColwiseParallel(ColwiseParallel):
|
|
717
|
+
"""
|
|
718
|
+
Colwise parallel with use_dtensor=False for local tensor operations.
|
|
719
|
+
"""
|
|
720
|
+
|
|
721
|
+
def __init__(self, **kwargs):
|
|
722
|
+
super().__init__(use_dtensor=False, **kwargs)
|
|
723
|
+
|
|
724
|
+
|
|
725
|
+
class ColwiseParallelReplicate(ColwiseParallel):
|
|
726
|
+
"""
|
|
727
|
+
Colwise parallel with output layouts replicated.
|
|
728
|
+
"""
|
|
729
|
+
|
|
730
|
+
def __init__(self, **kwargs):
|
|
731
|
+
super().__init__(output_layouts=Replicate(), **kwargs)
|
|
732
|
+
|
|
733
|
+
|
|
761
734
|
class RowwiseParallel(TensorParallelLayer):
|
|
762
735
|
"""
|
|
763
736
|
Partition a compatible nn.Module in a row-wise fashion. Currently supports nn.Linear and nn.Embedding.
|
|
@@ -782,7 +755,7 @@ class RowwiseParallel(TensorParallelLayer):
|
|
|
782
755
|
input_layouts: Placement | None = None,
|
|
783
756
|
output_layouts: Placement | None = None,
|
|
784
757
|
use_local_output: bool = True,
|
|
785
|
-
use_dtensor=True,
|
|
758
|
+
use_dtensor: bool = True,
|
|
786
759
|
**kwargs,
|
|
787
760
|
):
|
|
788
761
|
super().__init__(**kwargs)
|
|
@@ -792,45 +765,36 @@ class RowwiseParallel(TensorParallelLayer):
|
|
|
792
765
|
self.use_dtensor = use_dtensor
|
|
793
766
|
|
|
794
767
|
def shard_tensor(
|
|
795
|
-
self,
|
|
796
|
-
|
|
797
|
-
|
|
798
|
-
|
|
799
|
-
|
|
800
|
-
rank=None,
|
|
801
|
-
device_mesh=None,
|
|
802
|
-
tensor_idx=None,
|
|
803
|
-
):
|
|
804
|
-
device_mesh = device_mesh or self.device_mesh
|
|
805
|
-
empty_param = self.empty_param
|
|
806
|
-
rank = rank if rank is not None else self.rank
|
|
807
|
-
if param_type == "bias":
|
|
768
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
769
|
+
) -> torch.Tensor:
|
|
770
|
+
# If only 1 dim, it should not be sharded (usually it's a `bias`)
|
|
771
|
+
dim = param.dim() if isinstance(param, torch.Tensor) else len(param.get_shape())
|
|
772
|
+
if dim == 1:
|
|
808
773
|
shard = [Replicate()]
|
|
809
774
|
parameter = param[...]
|
|
810
775
|
else:
|
|
811
|
-
parameter = get_tensor_shard(
|
|
776
|
+
parameter = get_tensor_shard(
|
|
777
|
+
param, self.empty_param, self.device_mesh, self.rank, -1, tensor_idx=tensor_idx
|
|
778
|
+
)
|
|
812
779
|
shard = [Shard(-1)]
|
|
813
|
-
parameter = parameter.to(param_casting_dtype)
|
|
814
780
|
self.shard = shard
|
|
815
|
-
return parameter,
|
|
781
|
+
return parameter.to(device=device, dtype=dtype)
|
|
816
782
|
|
|
817
|
-
def partition_tensor(self, param
|
|
783
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
818
784
|
# Rowwise shard weight to Shard(1), bias to Replicate(), weight be Shard(1)
|
|
819
785
|
# means Rowwise as nn.Linear is input * weight^T + bias, where
|
|
820
786
|
# weight would become Shard(0)
|
|
821
|
-
|
|
822
|
-
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -1)
|
|
823
|
-
shard = [Shard(-1)]
|
|
824
|
-
else:
|
|
825
|
-
shard = [Replicate()]
|
|
826
|
-
parameter = param[:]
|
|
827
|
-
|
|
828
|
-
parameter = parameter.to(param_casting_dtype)
|
|
787
|
+
parameter = self.shard_tensor(param, dtype=dtype)
|
|
829
788
|
if to_contiguous:
|
|
830
789
|
parameter = parameter.contiguous()
|
|
831
790
|
if self.use_dtensor:
|
|
832
791
|
parameter = DTensor.from_local(
|
|
833
|
-
parameter,
|
|
792
|
+
parameter,
|
|
793
|
+
self.device_mesh,
|
|
794
|
+
self.shard,
|
|
795
|
+
run_check=False,
|
|
796
|
+
shape=self.empty_param.size(),
|
|
797
|
+
stride=self.empty_param.stride(),
|
|
834
798
|
)
|
|
835
799
|
return nn.Parameter(parameter, requires_grad=parameter.is_floating_point())
|
|
836
800
|
|
|
@@ -886,33 +850,50 @@ class RowwiseParallel(TensorParallelLayer):
|
|
|
886
850
|
|
|
887
851
|
class PackedRowwiseParallel(RowwiseParallel):
|
|
888
852
|
def shard_tensor(
|
|
889
|
-
self,
|
|
890
|
-
|
|
891
|
-
|
|
892
|
-
|
|
893
|
-
to_contiguous=None,
|
|
894
|
-
rank=None,
|
|
895
|
-
device_mesh=None,
|
|
896
|
-
tensor_idx=None,
|
|
897
|
-
):
|
|
898
|
-
device_mesh = device_mesh or self.device_mesh
|
|
899
|
-
empty_param = self.empty_param
|
|
900
|
-
rank = rank if rank is not None else self.rank
|
|
901
|
-
return get_packed_weights(param, empty_param, device_mesh, rank, -1), [Shard(-1)]
|
|
853
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
854
|
+
) -> torch.Tensor:
|
|
855
|
+
parameter = get_packed_weights(param, self.empty_param, self.device_mesh, self.rank, -1)
|
|
856
|
+
return parameter.to(device=device, dtype=dtype)
|
|
902
857
|
|
|
903
|
-
def partition_tensor(self, param
|
|
858
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
904
859
|
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
|
|
905
860
|
# means Colwise as Linear is input * weight^T + bias, where
|
|
906
861
|
# weight would become Shard(1)
|
|
907
|
-
parameter =
|
|
908
|
-
parameter = parameter.to(param_casting_dtype)
|
|
862
|
+
parameter = self.shard_tensor(param, dtype=dtype)
|
|
909
863
|
if to_contiguous:
|
|
910
864
|
parameter = parameter.contiguous()
|
|
911
865
|
if self.use_dtensor:
|
|
912
|
-
parameter = DTensor.from_local(parameter, device_mesh, [Shard(-1)], run_check=False)
|
|
866
|
+
parameter = DTensor.from_local(parameter, self.device_mesh, [Shard(-1)], run_check=False)
|
|
913
867
|
return nn.Parameter(parameter, requires_grad=parameter.is_floating_point())
|
|
914
868
|
|
|
915
869
|
|
|
870
|
+
class LocalRowwiseParallel(RowwiseParallel):
|
|
871
|
+
"""
|
|
872
|
+
Rowwise parallel with use_dtensor=False for local tensor operations.
|
|
873
|
+
"""
|
|
874
|
+
|
|
875
|
+
def __init__(self, **kwargs):
|
|
876
|
+
super().__init__(use_dtensor=False, **kwargs)
|
|
877
|
+
|
|
878
|
+
|
|
879
|
+
class LocalPackedRowwiseParallel(PackedRowwiseParallel):
|
|
880
|
+
"""
|
|
881
|
+
Packed rowwise parallel with use_dtensor=False for local tensor operations.
|
|
882
|
+
"""
|
|
883
|
+
|
|
884
|
+
def __init__(self, **kwargs):
|
|
885
|
+
super().__init__(use_dtensor=False, **kwargs)
|
|
886
|
+
|
|
887
|
+
|
|
888
|
+
class RowwiseParallelReplicate(RowwiseParallel):
|
|
889
|
+
"""
|
|
890
|
+
Rowwise parallel with input layouts replicated.
|
|
891
|
+
"""
|
|
892
|
+
|
|
893
|
+
def __init__(self, **kwargs):
|
|
894
|
+
super().__init__(input_layouts=Replicate(), **kwargs)
|
|
895
|
+
|
|
896
|
+
|
|
916
897
|
class SequenceParallel(TensorParallelLayer):
|
|
917
898
|
"""
|
|
918
899
|
SequenceParallel replicates a compatible ``nn.Module`` parameters and runs the sharded computation with
|
|
@@ -970,18 +951,13 @@ class SequenceParallel(TensorParallelLayer):
|
|
|
970
951
|
|
|
971
952
|
def shard_tensor(
|
|
972
953
|
self,
|
|
973
|
-
param,
|
|
974
|
-
param_type=None,
|
|
975
|
-
param_casting_dtype=None,
|
|
976
|
-
to_contiguous=None,
|
|
977
|
-
rank=None,
|
|
978
|
-
device_mesh=None,
|
|
954
|
+
param: torch.Tensor,
|
|
979
955
|
tensor_idx=None,
|
|
980
|
-
|
|
981
|
-
|
|
982
|
-
|
|
983
|
-
self.shard =
|
|
984
|
-
return
|
|
956
|
+
device=None,
|
|
957
|
+
dtype=None,
|
|
958
|
+
) -> torch.Tensor:
|
|
959
|
+
self.shard = [Replicate()]
|
|
960
|
+
return param[...].to(device=device, dtype=dtype)
|
|
985
961
|
|
|
986
962
|
@staticmethod
|
|
987
963
|
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
|
|
@@ -999,16 +975,15 @@ class SequenceParallel(TensorParallelLayer):
|
|
|
999
975
|
) # maybe we have to replicate ? because next layer is not sharded
|
|
1000
976
|
return outputs.to_local() # if use_local_output else outputs
|
|
1001
977
|
|
|
1002
|
-
def partition_tensor(self, param
|
|
978
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
1003
979
|
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
|
|
1004
980
|
# means Colwise as Linear is input * weight^T + bias, where
|
|
1005
981
|
# weight would become Shard(1)
|
|
1006
|
-
parameter = param
|
|
1007
|
-
parameter = parameter.to(param_casting_dtype)
|
|
982
|
+
parameter = self.shard_tensor(param, dtype=dtype)
|
|
1008
983
|
if to_contiguous:
|
|
1009
984
|
parameter = parameter.contiguous()
|
|
1010
985
|
if self.use_dtensor:
|
|
1011
|
-
parameter = DTensor.from_local(parameter, device_mesh, [Replicate()], run_check=False)
|
|
986
|
+
parameter = DTensor.from_local(parameter, self.device_mesh, [Replicate()], run_check=False)
|
|
1012
987
|
return nn.Parameter(parameter, requires_grad=parameter.is_floating_point())
|
|
1013
988
|
|
|
1014
989
|
|
|
@@ -1022,41 +997,23 @@ class GroupedGemmParallel(TensorParallelLayer):
|
|
|
1022
997
|
self.use_dtensor = False
|
|
1023
998
|
|
|
1024
999
|
def shard_tensor(
|
|
1025
|
-
self,
|
|
1026
|
-
|
|
1027
|
-
|
|
1028
|
-
|
|
1029
|
-
to_contiguous=None,
|
|
1030
|
-
rank=None,
|
|
1031
|
-
device_mesh=None,
|
|
1032
|
-
tensor_idx=None,
|
|
1033
|
-
):
|
|
1034
|
-
empty_param = self.empty_param
|
|
1035
|
-
ep_rank = self.rank
|
|
1036
|
-
device_mesh = self.device_mesh
|
|
1037
|
-
|
|
1038
|
-
global_num_experts = empty_param.shape[0]
|
|
1039
|
-
if global_num_experts % device_mesh.size() != 0:
|
|
1000
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
1001
|
+
) -> torch.Tensor:
|
|
1002
|
+
global_num_experts = self.empty_param.shape[0]
|
|
1003
|
+
if global_num_experts % self.device_mesh.size() != 0:
|
|
1040
1004
|
raise ValueError(
|
|
1041
|
-
f"Global number of experts must be divisible by number of devices: {global_num_experts} % {device_mesh.size()} != 0"
|
|
1005
|
+
f"Global number of experts must be divisible by number of devices: {global_num_experts} % {self.device_mesh.size()} != 0"
|
|
1042
1006
|
)
|
|
1043
|
-
local_num_experts = global_num_experts // device_mesh.size()
|
|
1044
|
-
parameter = param[
|
|
1007
|
+
local_num_experts = global_num_experts // self.device_mesh.size()
|
|
1008
|
+
parameter = param[self.rank * local_num_experts : (self.rank + 1) * local_num_experts]
|
|
1045
1009
|
self.shard = None
|
|
1046
|
-
return parameter,
|
|
1010
|
+
return parameter.to(device=device, dtype=dtype)
|
|
1047
1011
|
|
|
1048
|
-
def partition_tensor(self, param
|
|
1049
|
-
|
|
1050
|
-
global_num_experts = empty_param.shape[0]
|
|
1051
|
-
if global_num_experts % device_mesh.size() != 0:
|
|
1052
|
-
raise ValueError(
|
|
1053
|
-
f"Global number of experts must be divisible by number of devices: {global_num_experts} % {device_mesh.size()} != 0"
|
|
1054
|
-
)
|
|
1055
|
-
local_num_experts = global_num_experts // device_mesh.size()
|
|
1056
|
-
param = param[ep_rank * local_num_experts : (ep_rank + 1) * local_num_experts].to(param_casting_dtype)
|
|
1012
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
1013
|
+
parameter = self.shard_tensor(param, dtype=dtype)
|
|
1057
1014
|
if to_contiguous:
|
|
1058
|
-
|
|
1059
|
-
return
|
|
1015
|
+
parameter = parameter.contiguous()
|
|
1016
|
+
return parameter
|
|
1060
1017
|
|
|
1061
1018
|
|
|
1062
1019
|
class RouterParallel(TensorParallelLayer):
|
|
@@ -1064,10 +1021,10 @@ class RouterParallel(TensorParallelLayer):
|
|
|
1064
1021
|
Allows to reshape the router scores to support running expert parallel.
|
|
1065
1022
|
"""
|
|
1066
1023
|
|
|
1067
|
-
def __init__(self, *args, **kwargs):
|
|
1024
|
+
def __init__(self, use_dtensor: bool = False, *args, **kwargs):
|
|
1068
1025
|
super().__init__(**kwargs)
|
|
1069
1026
|
self.args = args
|
|
1070
|
-
self.use_dtensor =
|
|
1027
|
+
self.use_dtensor = use_dtensor
|
|
1071
1028
|
|
|
1072
1029
|
@staticmethod
|
|
1073
1030
|
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
|
|
@@ -1118,7 +1075,7 @@ class RouterParallel(TensorParallelLayer):
|
|
|
1118
1075
|
f"The number of experts must be divisible by number of ep_size: {mod.num_experts} % {ep_size} != 0"
|
|
1119
1076
|
)
|
|
1120
1077
|
num_local_experts = mod.num_experts // ep_size
|
|
1121
|
-
router_scores, router_indices = outputs
|
|
1078
|
+
router_logits, router_scores, router_indices = outputs
|
|
1122
1079
|
router_scores = router_scores[:, ep_rank * num_local_experts : (ep_rank + 1) * num_local_experts]
|
|
1123
1080
|
router_indices = router_indices.masked_fill((router_indices // num_local_experts) != ep_rank, -1)
|
|
1124
1081
|
# As -1 % 1 is 0, we can only use mask fill when num_local_experts is 1
|
|
@@ -1129,28 +1086,20 @@ class RouterParallel(TensorParallelLayer):
|
|
|
1129
1086
|
router_indices = router_indices.masked_fill(
|
|
1130
1087
|
router_indices == -1, num_local_experts
|
|
1131
1088
|
) # masking class for one hot
|
|
1132
|
-
return router_scores, router_indices
|
|
1089
|
+
return router_logits, router_scores, router_indices
|
|
1133
1090
|
|
|
1134
1091
|
def shard_tensor(
|
|
1135
|
-
self,
|
|
1136
|
-
|
|
1137
|
-
param_type=None,
|
|
1138
|
-
param_casting_dtype=None,
|
|
1139
|
-
to_contiguous=None,
|
|
1140
|
-
rank=None,
|
|
1141
|
-
device_mesh=None,
|
|
1142
|
-
tensor_idx=None,
|
|
1143
|
-
):
|
|
1144
|
-
parameter = param[...].to(param_casting_dtype)
|
|
1092
|
+
self, param: torch.Tensor, tensor_idx: int | None = None, device=None, dtype=None
|
|
1093
|
+
) -> torch.Tensor:
|
|
1145
1094
|
self.shard = None
|
|
1146
|
-
return
|
|
1095
|
+
return param[...].to(device=device, dtype=dtype)
|
|
1147
1096
|
|
|
1148
|
-
def partition_tensor(self, param
|
|
1097
|
+
def partition_tensor(self, param: torch.Tensor, dtype, to_contiguous: bool):
|
|
1149
1098
|
# TODO: i'd like for this to be the default
|
|
1150
|
-
|
|
1099
|
+
parameter = self.shard_tensor(param, dtype=dtype)
|
|
1151
1100
|
if to_contiguous:
|
|
1152
|
-
|
|
1153
|
-
return
|
|
1101
|
+
parameter = parameter.contiguous()
|
|
1102
|
+
return parameter
|
|
1154
1103
|
|
|
1155
1104
|
def prepare_module_tp(self, module: nn.Module, device_mesh) -> nn.Module:
|
|
1156
1105
|
# TODO: need an abstract Parallel class that is different from TensorParallelLayer
|
|
@@ -1169,13 +1118,13 @@ class ParallelInterface(GeneralInterface):
|
|
|
1169
1118
|
{
|
|
1170
1119
|
"colwise": ColwiseParallel(),
|
|
1171
1120
|
"rowwise": RowwiseParallel(),
|
|
1172
|
-
"colwise_rep":
|
|
1173
|
-
"rowwise_rep":
|
|
1174
|
-
"local_colwise":
|
|
1175
|
-
"local_rowwise":
|
|
1121
|
+
"colwise_rep": ColwiseParallelReplicate(),
|
|
1122
|
+
"rowwise_rep": RowwiseParallelReplicate(),
|
|
1123
|
+
"local_colwise": LocalColwiseParallel(),
|
|
1124
|
+
"local_rowwise": LocalRowwiseParallel(),
|
|
1176
1125
|
"local": IsolatedParallel(),
|
|
1177
1126
|
"gather": GatherParallel(),
|
|
1178
|
-
"local_packed_rowwise":
|
|
1127
|
+
"local_packed_rowwise": LocalPackedRowwiseParallel(),
|
|
1179
1128
|
"sequence_parallel": SequenceParallel(),
|
|
1180
1129
|
"replicate": ReplicateParallel(),
|
|
1181
1130
|
"grouped_gemm": GroupedGemmParallel(),
|
|
@@ -1286,13 +1235,10 @@ def shard_and_distribute_module(
|
|
|
1286
1235
|
|
|
1287
1236
|
if current_shard_plan is not None:
|
|
1288
1237
|
try:
|
|
1289
|
-
tp_layer = ALL_PARALLEL_STYLES[current_shard_plan]
|
|
1290
|
-
|
|
1291
|
-
tp_layer.device_mesh = device_mesh
|
|
1292
|
-
tp_layer.rank = rank
|
|
1293
|
-
param = tp_layer.partition_tensor(
|
|
1294
|
-
param, empty_param, param_type, param_casting_dtype, is_contiguous, rank, device_mesh
|
|
1238
|
+
tp_layer = ALL_PARALLEL_STYLES[current_shard_plan](
|
|
1239
|
+
empty_param=empty_param, device_mesh=device_mesh, rank=rank
|
|
1295
1240
|
)
|
|
1241
|
+
param = tp_layer.partition_tensor(param, param_casting_dtype, is_contiguous)
|
|
1296
1242
|
except NotImplementedError as e:
|
|
1297
1243
|
print(
|
|
1298
1244
|
f"Trying to prepare {parameter_name}, but it's not supported. Corresponding module: {module_to_tp} Fix it's TP plan, current layer: {tp_layer} : {e}"
|