transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (835) hide show
  1. transformers/__init__.py +49 -3
  2. transformers/activations.py +1 -1
  3. transformers/audio_utils.py +0 -1
  4. transformers/cache_utils.py +17 -15
  5. transformers/cli/serve.py +47 -17
  6. transformers/configuration_utils.py +114 -70
  7. transformers/conversion_mapping.py +83 -7
  8. transformers/convert_slow_tokenizer.py +225 -10
  9. transformers/core_model_loading.py +374 -147
  10. transformers/data/data_collator.py +12 -4
  11. transformers/dependency_versions_table.py +2 -3
  12. transformers/dynamic_module_utils.py +1 -2
  13. transformers/feature_extraction_utils.py +55 -24
  14. transformers/file_utils.py +0 -1
  15. transformers/generation/__init__.py +11 -1
  16. transformers/generation/candidate_generator.py +79 -31
  17. transformers/generation/configuration_utils.py +165 -124
  18. transformers/generation/continuous_batching/__init__.py +4 -0
  19. transformers/generation/continuous_batching/cache.py +47 -18
  20. transformers/generation/continuous_batching/cache_manager.py +131 -34
  21. transformers/generation/continuous_batching/continuous_api.py +228 -136
  22. transformers/generation/continuous_batching/requests.py +28 -1
  23. transformers/generation/continuous_batching/scheduler.py +11 -4
  24. transformers/generation/stopping_criteria.py +1 -1
  25. transformers/generation/utils.py +108 -110
  26. transformers/generation/watermarking.py +8 -5
  27. transformers/image_processing_base.py +3 -14
  28. transformers/image_processing_utils_fast.py +15 -4
  29. transformers/initialization.py +37 -0
  30. transformers/integrations/__init__.py +16 -2
  31. transformers/integrations/accelerate.py +58 -113
  32. transformers/integrations/aqlm.py +36 -66
  33. transformers/integrations/awq.py +46 -515
  34. transformers/integrations/bitnet.py +47 -105
  35. transformers/integrations/bitsandbytes.py +91 -202
  36. transformers/integrations/deepspeed.py +18 -2
  37. transformers/integrations/eetq.py +84 -81
  38. transformers/integrations/fbgemm_fp8.py +191 -145
  39. transformers/integrations/finegrained_fp8.py +241 -208
  40. transformers/integrations/flash_attention.py +2 -2
  41. transformers/integrations/fp_quant.py +92 -0
  42. transformers/integrations/ggml.py +11 -1
  43. transformers/integrations/higgs.py +37 -62
  44. transformers/integrations/hub_kernels.py +65 -8
  45. transformers/integrations/integration_utils.py +45 -0
  46. transformers/integrations/mistral.py +12 -0
  47. transformers/integrations/moe.py +240 -0
  48. transformers/integrations/mxfp4.py +28 -74
  49. transformers/integrations/peft.py +12 -29
  50. transformers/integrations/quanto.py +77 -56
  51. transformers/integrations/quark.py +55 -0
  52. transformers/integrations/spqr.py +42 -90
  53. transformers/integrations/tensor_parallel.py +167 -221
  54. transformers/integrations/torchao.py +32 -38
  55. transformers/integrations/vptq.py +40 -59
  56. transformers/modelcard.py +1 -2
  57. transformers/modeling_gguf_pytorch_utils.py +74 -19
  58. transformers/modeling_rope_utils.py +107 -86
  59. transformers/modeling_utils.py +611 -527
  60. transformers/models/__init__.py +22 -0
  61. transformers/models/afmoe/modeling_afmoe.py +10 -19
  62. transformers/models/afmoe/modular_afmoe.py +5 -13
  63. transformers/models/aimv2/modeling_aimv2.py +4 -0
  64. transformers/models/aimv2/modular_aimv2.py +4 -0
  65. transformers/models/albert/modeling_albert.py +3 -0
  66. transformers/models/albert/tokenization_albert.py +6 -12
  67. transformers/models/align/modeling_align.py +14 -6
  68. transformers/models/altclip/modeling_altclip.py +11 -3
  69. transformers/models/apertus/modeling_apertus.py +8 -6
  70. transformers/models/apertus/modular_apertus.py +4 -1
  71. transformers/models/arcee/modeling_arcee.py +5 -5
  72. transformers/models/aria/modeling_aria.py +12 -8
  73. transformers/models/aria/modular_aria.py +7 -3
  74. transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
  75. transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
  76. transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
  77. transformers/models/auto/auto_factory.py +1 -1
  78. transformers/models/auto/configuration_auto.py +38 -0
  79. transformers/models/auto/feature_extraction_auto.py +9 -3
  80. transformers/models/auto/image_processing_auto.py +5 -2
  81. transformers/models/auto/modeling_auto.py +37 -0
  82. transformers/models/auto/processing_auto.py +22 -10
  83. transformers/models/auto/tokenization_auto.py +147 -566
  84. transformers/models/auto/video_processing_auto.py +5 -2
  85. transformers/models/autoformer/modeling_autoformer.py +4 -0
  86. transformers/models/aya_vision/modeling_aya_vision.py +7 -3
  87. transformers/models/bamba/modeling_bamba.py +21 -21
  88. transformers/models/bamba/modular_bamba.py +17 -16
  89. transformers/models/bark/modeling_bark.py +11 -0
  90. transformers/models/bart/configuration_bart.py +0 -1
  91. transformers/models/bart/modeling_bart.py +14 -0
  92. transformers/models/barthez/tokenization_barthez.py +5 -10
  93. transformers/models/beit/image_processing_beit_fast.py +0 -1
  94. transformers/models/beit/modeling_beit.py +6 -1
  95. transformers/models/bert/modeling_bert.py +3 -0
  96. transformers/models/bert/tokenization_bert.py +8 -21
  97. transformers/models/bert_generation/modeling_bert_generation.py +2 -0
  98. transformers/models/big_bird/modeling_big_bird.py +9 -0
  99. transformers/models/big_bird/tokenization_big_bird.py +18 -42
  100. transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +15 -2
  101. transformers/models/biogpt/modeling_biogpt.py +2 -0
  102. transformers/models/biogpt/modular_biogpt.py +2 -0
  103. transformers/models/bit/modeling_bit.py +16 -3
  104. transformers/models/bitnet/modeling_bitnet.py +5 -5
  105. transformers/models/blenderbot/modeling_blenderbot.py +12 -0
  106. transformers/models/blenderbot/tokenization_blenderbot.py +18 -23
  107. transformers/models/blenderbot_small/modeling_blenderbot_small.py +12 -0
  108. transformers/models/blip/modeling_blip.py +2 -0
  109. transformers/models/blip/modeling_blip_text.py +10 -0
  110. transformers/models/blip_2/modeling_blip_2.py +4 -1
  111. transformers/models/bloom/modeling_bloom.py +17 -44
  112. transformers/models/blt/modeling_blt.py +164 -4
  113. transformers/models/blt/modular_blt.py +170 -5
  114. transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
  115. transformers/models/bridgetower/modeling_bridgetower.py +11 -1
  116. transformers/models/bros/modeling_bros.py +12 -0
  117. transformers/models/camembert/modeling_camembert.py +109 -106
  118. transformers/models/camembert/tokenization_camembert.py +8 -12
  119. transformers/models/canine/modeling_canine.py +11 -0
  120. transformers/models/canine/tokenization_canine.py +2 -0
  121. transformers/models/chameleon/modeling_chameleon.py +11 -5
  122. transformers/models/chinese_clip/modeling_chinese_clip.py +9 -3
  123. transformers/models/clap/feature_extraction_clap.py +2 -2
  124. transformers/models/clap/modeling_clap.py +30 -15
  125. transformers/models/clip/modeling_clip.py +2 -0
  126. transformers/models/clip/tokenization_clip.py +22 -44
  127. transformers/models/clipseg/modeling_clipseg.py +9 -0
  128. transformers/models/clvp/modeling_clvp.py +19 -3
  129. transformers/models/clvp/tokenization_clvp.py +1 -63
  130. transformers/models/code_llama/tokenization_code_llama.py +20 -43
  131. transformers/models/codegen/modeling_codegen.py +13 -4
  132. transformers/models/codegen/tokenization_codegen.py +14 -43
  133. transformers/models/cohere/modeling_cohere.py +5 -4
  134. transformers/models/cohere/modular_cohere.py +2 -1
  135. transformers/models/cohere/tokenization_cohere.py +12 -42
  136. transformers/models/cohere2/modeling_cohere2.py +8 -7
  137. transformers/models/cohere2/modular_cohere2.py +5 -5
  138. transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -4
  139. transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
  140. transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
  141. transformers/models/colqwen2/modeling_colqwen2.py +1 -0
  142. transformers/models/colqwen2/modular_colqwen2.py +1 -0
  143. transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
  144. transformers/models/conditional_detr/modeling_conditional_detr.py +9 -1
  145. transformers/models/convbert/modeling_convbert.py +9 -0
  146. transformers/models/convnext/image_processing_convnext.py +2 -2
  147. transformers/models/convnext/image_processing_convnext_fast.py +9 -13
  148. transformers/models/convnext/modeling_convnext.py +2 -4
  149. transformers/models/convnextv2/modeling_convnextv2.py +2 -4
  150. transformers/models/csm/generation_csm.py +19 -22
  151. transformers/models/csm/modeling_csm.py +7 -4
  152. transformers/models/csm/modular_csm.py +2 -0
  153. transformers/models/ctrl/modeling_ctrl.py +15 -2
  154. transformers/models/cvt/modeling_cvt.py +7 -1
  155. transformers/models/cwm/modeling_cwm.py +5 -5
  156. transformers/models/d_fine/configuration_d_fine.py +3 -4
  157. transformers/models/d_fine/modeling_d_fine.py +48 -39
  158. transformers/models/d_fine/modular_d_fine.py +16 -4
  159. transformers/models/dab_detr/configuration_dab_detr.py +2 -2
  160. transformers/models/dab_detr/modeling_dab_detr.py +5 -1
  161. transformers/models/dac/modeling_dac.py +6 -6
  162. transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
  163. transformers/models/data2vec/modeling_data2vec_text.py +7 -0
  164. transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
  165. transformers/models/data2vec/modular_data2vec_text.py +7 -0
  166. transformers/models/dbrx/configuration_dbrx.py +9 -1
  167. transformers/models/dbrx/modeling_dbrx.py +3 -3
  168. transformers/models/deberta/modeling_deberta.py +7 -0
  169. transformers/models/deberta/tokenization_deberta.py +11 -20
  170. transformers/models/deberta_v2/modeling_deberta_v2.py +8 -0
  171. transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
  172. transformers/models/decision_transformer/modeling_decision_transformer.py +12 -6
  173. transformers/models/deepseek_v2/modeling_deepseek_v2.py +9 -7
  174. transformers/models/deepseek_v2/modular_deepseek_v2.py +6 -4
  175. transformers/models/deepseek_v3/modeling_deepseek_v3.py +12 -7
  176. transformers/models/deepseek_v3/modular_deepseek_v3.py +7 -2
  177. transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
  178. transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
  179. transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
  180. transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
  181. transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
  182. transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
  183. transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
  184. transformers/models/deformable_detr/modeling_deformable_detr.py +5 -1
  185. transformers/models/depth_anything/configuration_depth_anything.py +2 -3
  186. transformers/models/depth_anything/modeling_depth_anything.py +1 -0
  187. transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
  188. transformers/models/depth_pro/modeling_depth_pro.py +2 -0
  189. transformers/models/detr/configuration_detr.py +1 -1
  190. transformers/models/detr/modeling_detr.py +13 -1
  191. transformers/models/dia/generation_dia.py +3 -10
  192. transformers/models/dia/modeling_dia.py +16 -4
  193. transformers/models/dia/modular_dia.py +11 -1
  194. transformers/models/dia/processing_dia.py +1 -1
  195. transformers/models/diffllama/modeling_diffllama.py +5 -5
  196. transformers/models/diffllama/modular_diffllama.py +2 -2
  197. transformers/models/dinat/modeling_dinat.py +3 -0
  198. transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
  199. transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
  200. transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -2
  201. transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -2
  202. transformers/models/distilbert/modeling_distilbert.py +11 -9
  203. transformers/models/distilbert/tokenization_distilbert.py +13 -0
  204. transformers/models/doge/modeling_doge.py +3 -4
  205. transformers/models/doge/modular_doge.py +0 -1
  206. transformers/models/donut/image_processing_donut_fast.py +0 -1
  207. transformers/models/donut/modeling_donut_swin.py +18 -12
  208. transformers/models/dots1/modeling_dots1.py +23 -11
  209. transformers/models/dots1/modular_dots1.py +5 -3
  210. transformers/models/dpr/modeling_dpr.py +5 -0
  211. transformers/models/dpr/tokenization_dpr.py +12 -0
  212. transformers/models/dpt/configuration_dpt.py +1 -1
  213. transformers/models/dpt/image_processing_dpt_fast.py +1 -2
  214. transformers/models/dpt/modular_dpt.py +1 -2
  215. transformers/models/edgetam/configuration_edgetam.py +1 -1
  216. transformers/models/edgetam/modeling_edgetam.py +6 -3
  217. transformers/models/edgetam/modular_edgetam.py +15 -14
  218. transformers/models/edgetam_video/modeling_edgetam_video.py +56 -43
  219. transformers/models/edgetam_video/modular_edgetam_video.py +14 -19
  220. transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
  221. transformers/models/efficientloftr/modeling_efficientloftr.py +16 -3
  222. transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
  223. transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
  224. transformers/models/efficientnet/modeling_efficientnet.py +7 -1
  225. transformers/models/electra/modeling_electra.py +7 -0
  226. transformers/models/emu3/modeling_emu3.py +12 -6
  227. transformers/models/emu3/modular_emu3.py +7 -1
  228. transformers/models/encodec/modeling_encodec.py +14 -0
  229. transformers/models/eomt/image_processing_eomt.py +13 -1
  230. transformers/models/eomt/image_processing_eomt_fast.py +60 -16
  231. transformers/models/eomt/modeling_eomt.py +7 -0
  232. transformers/models/eomt/modular_eomt.py +7 -0
  233. transformers/models/ernie/modeling_ernie.py +6 -0
  234. transformers/models/ernie/modular_ernie.py +6 -0
  235. transformers/models/ernie4_5/modeling_ernie4_5.py +5 -5
  236. transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
  237. transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +20 -17
  238. transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +11 -37
  239. transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
  240. transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
  241. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
  242. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
  243. transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
  244. transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
  245. transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
  246. transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
  247. transformers/models/esm/modeling_esm.py +6 -0
  248. transformers/models/esm/modeling_esmfold.py +11 -5
  249. transformers/models/evolla/modeling_evolla.py +13 -5
  250. transformers/models/evolla/modular_evolla.py +8 -0
  251. transformers/models/exaone4/modeling_exaone4.py +3 -3
  252. transformers/models/exaone4/modular_exaone4.py +0 -1
  253. transformers/models/falcon/modeling_falcon.py +9 -4
  254. transformers/models/falcon_h1/modeling_falcon_h1.py +32 -26
  255. transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
  256. transformers/models/falcon_mamba/modeling_falcon_mamba.py +31 -37
  257. transformers/models/falcon_mamba/modular_falcon_mamba.py +19 -33
  258. transformers/models/fast_vlm/__init__.py +27 -0
  259. transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
  260. transformers/models/fast_vlm/modeling_fast_vlm.py +459 -0
  261. transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
  262. transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +31 -13
  263. transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
  264. transformers/models/flaubert/modeling_flaubert.py +21 -15
  265. transformers/models/flava/image_processing_flava_fast.py +0 -2
  266. transformers/models/flava/modeling_flava.py +10 -2
  267. transformers/models/flex_olmo/modeling_flex_olmo.py +10 -8
  268. transformers/models/florence2/modeling_florence2.py +22 -4
  269. transformers/models/florence2/modular_florence2.py +15 -1
  270. transformers/models/fnet/modeling_fnet.py +14 -0
  271. transformers/models/focalnet/modeling_focalnet.py +4 -0
  272. transformers/models/fsmt/modeling_fsmt.py +2 -0
  273. transformers/models/funnel/modeling_funnel.py +8 -0
  274. transformers/models/funnel/tokenization_funnel.py +17 -24
  275. transformers/models/fuyu/image_processing_fuyu.py +1 -1
  276. transformers/models/fuyu/modeling_fuyu.py +3 -1
  277. transformers/models/fuyu/processing_fuyu.py +19 -3
  278. transformers/models/gemma/modeling_gemma.py +14 -16
  279. transformers/models/gemma/modular_gemma.py +9 -11
  280. transformers/models/gemma/tokenization_gemma.py +10 -27
  281. transformers/models/gemma2/modeling_gemma2.py +5 -5
  282. transformers/models/gemma2/modular_gemma2.py +3 -2
  283. transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
  284. transformers/models/gemma3/modeling_gemma3.py +42 -91
  285. transformers/models/gemma3/modular_gemma3.py +38 -87
  286. transformers/models/gemma3n/configuration_gemma3n.py +3 -0
  287. transformers/models/gemma3n/modeling_gemma3n.py +65 -218
  288. transformers/models/gemma3n/modular_gemma3n.py +68 -68
  289. transformers/models/git/modeling_git.py +183 -126
  290. transformers/models/glm/modeling_glm.py +5 -5
  291. transformers/models/glm4/modeling_glm4.py +5 -5
  292. transformers/models/glm46v/image_processing_glm46v.py +0 -4
  293. transformers/models/glm46v/modeling_glm46v.py +3 -1
  294. transformers/models/glm46v/modular_glm46v.py +3 -0
  295. transformers/models/glm4_moe/modeling_glm4_moe.py +13 -7
  296. transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
  297. transformers/models/glm4v/configuration_glm4v.py +3 -1
  298. transformers/models/glm4v/image_processing_glm4v.py +0 -4
  299. transformers/models/glm4v/modeling_glm4v.py +18 -8
  300. transformers/models/glm4v/modular_glm4v.py +17 -7
  301. transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
  302. transformers/models/glm4v_moe/modeling_glm4v_moe.py +44 -27
  303. transformers/models/glm4v_moe/modular_glm4v_moe.py +13 -1
  304. transformers/models/glmasr/__init__.py +30 -0
  305. transformers/models/glmasr/configuration_glmasr.py +197 -0
  306. transformers/models/glmasr/modeling_glmasr.py +512 -0
  307. transformers/models/glmasr/modular_glmasr.py +433 -0
  308. transformers/models/glmasr/processing_glmasr.py +332 -0
  309. transformers/models/glpn/image_processing_glpn_fast.py +0 -1
  310. transformers/models/glpn/modeling_glpn.py +2 -0
  311. transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
  312. transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
  313. transformers/models/gpt2/modeling_gpt2.py +13 -6
  314. transformers/models/gpt2/tokenization_gpt2.py +16 -44
  315. transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +4 -8
  316. transformers/models/gpt_neo/modeling_gpt_neo.py +19 -3
  317. transformers/models/gpt_neox/modeling_gpt_neox.py +6 -3
  318. transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
  319. transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
  320. transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +4 -2
  321. transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
  322. transformers/models/gpt_oss/modeling_gpt_oss.py +10 -14
  323. transformers/models/gpt_oss/modular_gpt_oss.py +8 -12
  324. transformers/models/gptj/modeling_gptj.py +18 -6
  325. transformers/models/granite/modeling_granite.py +5 -5
  326. transformers/models/granite_speech/modeling_granite_speech.py +15 -1
  327. transformers/models/granitemoe/modeling_granitemoe.py +6 -9
  328. transformers/models/granitemoe/modular_granitemoe.py +1 -4
  329. transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
  330. transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +36 -28
  331. transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
  332. transformers/models/granitemoeshared/modeling_granitemoeshared.py +6 -9
  333. transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
  334. transformers/models/grounding_dino/modeling_grounding_dino.py +8 -4
  335. transformers/models/groupvit/modeling_groupvit.py +9 -1
  336. transformers/models/helium/modeling_helium.py +5 -4
  337. transformers/models/herbert/tokenization_herbert.py +9 -25
  338. transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -1
  339. transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -1
  340. transformers/models/hiera/modeling_hiera.py +4 -0
  341. transformers/models/hubert/modeling_hubert.py +7 -0
  342. transformers/models/hubert/modular_hubert.py +5 -0
  343. transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +5 -5
  344. transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
  345. transformers/models/hunyuan_v1_moe/__init__.py +1 -1
  346. transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +15 -7
  347. transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
  348. transformers/models/ibert/modeling_ibert.py +22 -0
  349. transformers/models/idefics/modeling_idefics.py +15 -21
  350. transformers/models/idefics2/modeling_idefics2.py +7 -1
  351. transformers/models/idefics3/modeling_idefics3.py +5 -1
  352. transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
  353. transformers/models/imagegpt/modeling_imagegpt.py +11 -3
  354. transformers/models/informer/modeling_informer.py +4 -0
  355. transformers/models/informer/modular_informer.py +1 -0
  356. transformers/models/instructblip/modeling_instructblip.py +2 -0
  357. transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
  358. transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
  359. transformers/models/internvl/modeling_internvl.py +13 -12
  360. transformers/models/internvl/modular_internvl.py +7 -13
  361. transformers/models/internvl/video_processing_internvl.py +0 -1
  362. transformers/models/jais2/__init__.py +27 -0
  363. transformers/models/jais2/configuration_jais2.py +152 -0
  364. transformers/models/jais2/modeling_jais2.py +486 -0
  365. transformers/models/jais2/modular_jais2.py +196 -0
  366. transformers/models/jamba/modeling_jamba.py +25 -20
  367. transformers/models/jamba/modular_jamba.py +17 -17
  368. transformers/models/janus/image_processing_janus_fast.py +0 -1
  369. transformers/models/janus/modeling_janus.py +16 -7
  370. transformers/models/janus/modular_janus.py +17 -7
  371. transformers/models/jetmoe/modeling_jetmoe.py +4 -4
  372. transformers/models/jetmoe/modular_jetmoe.py +1 -0
  373. transformers/models/kosmos2/modeling_kosmos2.py +15 -2
  374. transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
  375. transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
  376. transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +12 -4
  377. transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
  378. transformers/models/lasr/__init__.py +29 -0
  379. transformers/models/lasr/configuration_lasr.py +248 -0
  380. transformers/models/lasr/feature_extraction_lasr.py +277 -0
  381. transformers/models/lasr/modeling_lasr.py +730 -0
  382. transformers/models/lasr/modular_lasr.py +576 -0
  383. transformers/models/lasr/processing_lasr.py +94 -0
  384. transformers/models/lasr/tokenization_lasr.py +186 -0
  385. transformers/models/layoutlm/modeling_layoutlm.py +10 -3
  386. transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
  387. transformers/models/layoutlmv2/modeling_layoutlmv2.py +16 -0
  388. transformers/models/layoutlmv2/tokenization_layoutlmv2.py +11 -53
  389. transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
  390. transformers/models/layoutlmv3/modeling_layoutlmv3.py +33 -5
  391. transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
  392. transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
  393. transformers/models/led/modeling_led.py +12 -0
  394. transformers/models/levit/modeling_levit.py +21 -0
  395. transformers/models/lfm2/modeling_lfm2.py +5 -6
  396. transformers/models/lfm2/modular_lfm2.py +0 -1
  397. transformers/models/lfm2_moe/modeling_lfm2_moe.py +17 -8
  398. transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
  399. transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
  400. transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
  401. transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
  402. transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
  403. transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
  404. transformers/models/lightglue/modeling_lightglue.py +3 -1
  405. transformers/models/lightglue/modular_lightglue.py +1 -0
  406. transformers/models/lilt/modeling_lilt.py +23 -15
  407. transformers/models/llama/modeling_llama.py +5 -5
  408. transformers/models/llama/tokenization_llama.py +15 -43
  409. transformers/models/llama4/image_processing_llama4_fast.py +1 -2
  410. transformers/models/llama4/modeling_llama4.py +11 -6
  411. transformers/models/llava/image_processing_llava_fast.py +0 -1
  412. transformers/models/llava/modeling_llava.py +12 -7
  413. transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
  414. transformers/models/llava_next/modeling_llava_next.py +7 -3
  415. transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
  416. transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
  417. transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
  418. transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
  419. transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
  420. transformers/models/longcat_flash/modeling_longcat_flash.py +6 -5
  421. transformers/models/longcat_flash/modular_longcat_flash.py +3 -2
  422. transformers/models/longformer/modeling_longformer.py +6 -0
  423. transformers/models/longt5/modeling_longt5.py +4 -4
  424. transformers/models/luke/modeling_luke.py +9 -0
  425. transformers/models/luke/tokenization_luke.py +11 -38
  426. transformers/models/lxmert/modeling_lxmert.py +2 -0
  427. transformers/models/m2m_100/modeling_m2m_100.py +14 -0
  428. transformers/models/mamba/modeling_mamba.py +16 -23
  429. transformers/models/mamba2/modeling_mamba2.py +24 -23
  430. transformers/models/marian/configuration_marian.py +1 -1
  431. transformers/models/marian/modeling_marian.py +8 -0
  432. transformers/models/markuplm/modeling_markuplm.py +9 -8
  433. transformers/models/markuplm/tokenization_markuplm.py +28 -61
  434. transformers/models/mask2former/configuration_mask2former.py +3 -3
  435. transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
  436. transformers/models/mask2former/modeling_mask2former.py +11 -0
  437. transformers/models/maskformer/configuration_maskformer.py +3 -3
  438. transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
  439. transformers/models/maskformer/modeling_maskformer.py +11 -1
  440. transformers/models/maskformer/modeling_maskformer_swin.py +21 -15
  441. transformers/models/mbart/configuration_mbart.py +1 -0
  442. transformers/models/mbart/modeling_mbart.py +14 -0
  443. transformers/models/mbart/tokenization_mbart.py +11 -52
  444. transformers/models/mbart50/tokenization_mbart50.py +7 -10
  445. transformers/models/megatron_bert/modeling_megatron_bert.py +9 -0
  446. transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
  447. transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
  448. transformers/models/mgp_str/modeling_mgp_str.py +2 -0
  449. transformers/models/mimi/modeling_mimi.py +28 -5
  450. transformers/models/minimax/modeling_minimax.py +19 -6
  451. transformers/models/minimax/modular_minimax.py +12 -1
  452. transformers/models/ministral/modeling_ministral.py +5 -5
  453. transformers/models/ministral3/configuration_ministral3.py +1 -1
  454. transformers/models/ministral3/modeling_ministral3.py +5 -4
  455. transformers/models/mistral/modeling_mistral.py +5 -4
  456. transformers/models/mistral3/modeling_mistral3.py +10 -4
  457. transformers/models/mistral3/modular_mistral3.py +3 -1
  458. transformers/models/mixtral/modeling_mixtral.py +15 -7
  459. transformers/models/mixtral/modular_mixtral.py +6 -2
  460. transformers/models/mlcd/modeling_mlcd.py +6 -0
  461. transformers/models/mlcd/modular_mlcd.py +4 -0
  462. transformers/models/mllama/modeling_mllama.py +15 -4
  463. transformers/models/mluke/tokenization_mluke.py +6 -6
  464. transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
  465. transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +8 -4
  466. transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
  467. transformers/models/mobilebert/modeling_mobilebert.py +2 -0
  468. transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
  469. transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
  470. transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
  471. transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
  472. transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
  473. transformers/models/mobilevit/modeling_mobilevit.py +7 -0
  474. transformers/models/mobilevitv2/modeling_mobilevitv2.py +7 -0
  475. transformers/models/modernbert/modeling_modernbert.py +16 -2
  476. transformers/models/modernbert/modular_modernbert.py +14 -1
  477. transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +17 -10
  478. transformers/models/modernbert_decoder/modular_modernbert_decoder.py +15 -8
  479. transformers/models/moonshine/modeling_moonshine.py +5 -3
  480. transformers/models/moshi/modeling_moshi.py +26 -53
  481. transformers/models/mpnet/modeling_mpnet.py +7 -0
  482. transformers/models/mpnet/tokenization_mpnet.py +5 -13
  483. transformers/models/mpt/modeling_mpt.py +2 -0
  484. transformers/models/mra/modeling_mra.py +10 -1
  485. transformers/models/mt5/configuration_mt5.py +2 -3
  486. transformers/models/mt5/modeling_mt5.py +7 -10
  487. transformers/models/musicgen/modeling_musicgen.py +7 -9
  488. transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -0
  489. transformers/models/mvp/modeling_mvp.py +14 -0
  490. transformers/models/nanochat/modeling_nanochat.py +5 -5
  491. transformers/models/nemotron/modeling_nemotron.py +7 -5
  492. transformers/models/nllb/tokenization_nllb.py +8 -22
  493. transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
  494. transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
  495. transformers/models/nougat/image_processing_nougat_fast.py +0 -1
  496. transformers/models/nougat/tokenization_nougat.py +15 -68
  497. transformers/models/nystromformer/modeling_nystromformer.py +13 -0
  498. transformers/models/olmo/modeling_olmo.py +5 -5
  499. transformers/models/olmo/modular_olmo.py +2 -2
  500. transformers/models/olmo2/modeling_olmo2.py +5 -6
  501. transformers/models/olmo2/modular_olmo2.py +0 -1
  502. transformers/models/olmo3/modeling_olmo3.py +5 -5
  503. transformers/models/olmoe/modeling_olmoe.py +15 -7
  504. transformers/models/olmoe/modular_olmoe.py +4 -2
  505. transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
  506. transformers/models/omdet_turbo/modeling_omdet_turbo.py +6 -0
  507. transformers/models/oneformer/configuration_oneformer.py +3 -3
  508. transformers/models/oneformer/modeling_oneformer.py +11 -39
  509. transformers/models/openai/modeling_openai.py +15 -0
  510. transformers/models/openai/tokenization_openai.py +10 -46
  511. transformers/models/opt/modeling_opt.py +2 -0
  512. transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
  513. transformers/models/ovis2/modeling_ovis2.py +15 -3
  514. transformers/models/ovis2/modular_ovis2.py +8 -0
  515. transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
  516. transformers/models/owlv2/modeling_owlv2.py +11 -3
  517. transformers/models/owlv2/modular_owlv2.py +0 -2
  518. transformers/models/owlvit/modeling_owlvit.py +11 -3
  519. transformers/models/paddleocr_vl/__init__.py +32 -0
  520. transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
  521. transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +504 -0
  522. transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
  523. transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1682 -0
  524. transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1359 -0
  525. transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
  526. transformers/models/paligemma/modeling_paligemma.py +25 -17
  527. transformers/models/parakeet/configuration_parakeet.py +4 -6
  528. transformers/models/parakeet/modeling_parakeet.py +14 -6
  529. transformers/models/parakeet/modular_parakeet.py +7 -2
  530. transformers/models/parakeet/processing_parakeet.py +1 -0
  531. transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
  532. transformers/models/patchtsmixer/modeling_patchtsmixer.py +10 -0
  533. transformers/models/patchtst/modeling_patchtst.py +25 -6
  534. transformers/models/pe_audio/__init__.py +30 -0
  535. transformers/models/pe_audio/configuration_pe_audio.py +206 -0
  536. transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
  537. transformers/models/pe_audio/modeling_pe_audio.py +820 -0
  538. transformers/models/pe_audio/modular_pe_audio.py +299 -0
  539. transformers/{kernels/falcon_mamba/__init__.py → models/pe_audio/processing_pe_audio.py} +11 -2
  540. transformers/models/pe_audio_video/__init__.py +29 -0
  541. transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
  542. transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
  543. transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
  544. transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
  545. transformers/models/pe_video/__init__.py +30 -0
  546. transformers/models/pe_video/configuration_pe_video.py +211 -0
  547. transformers/models/pe_video/modeling_pe_video.py +636 -0
  548. transformers/models/pe_video/modular_pe_video.py +219 -0
  549. transformers/models/pe_video/processing_pe_video.py +10 -0
  550. transformers/models/pe_video/video_processing_pe_video.py +66 -0
  551. transformers/models/pegasus/configuration_pegasus.py +1 -0
  552. transformers/models/pegasus/modeling_pegasus.py +8 -0
  553. transformers/models/pegasus/tokenization_pegasus.py +17 -44
  554. transformers/models/pegasus_x/modeling_pegasus_x.py +5 -0
  555. transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
  556. transformers/models/perceiver/modeling_perceiver.py +13 -1
  557. transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
  558. transformers/models/perception_lm/modeling_perception_lm.py +7 -3
  559. transformers/models/perception_lm/modular_perception_lm.py +7 -3
  560. transformers/models/persimmon/modeling_persimmon.py +3 -2
  561. transformers/models/phi/modeling_phi.py +5 -6
  562. transformers/models/phi/modular_phi.py +0 -1
  563. transformers/models/phi3/modeling_phi3.py +3 -2
  564. transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +9 -6
  565. transformers/models/phi4_multimodal/modular_phi4_multimodal.py +7 -4
  566. transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
  567. transformers/models/phimoe/modeling_phimoe.py +15 -7
  568. transformers/models/phimoe/modular_phimoe.py +3 -3
  569. transformers/models/pix2struct/modeling_pix2struct.py +2 -0
  570. transformers/models/pix2struct/processing_pix2struct.py +0 -4
  571. transformers/models/pixio/__init__.py +30 -0
  572. transformers/models/pixio/configuration_pixio.py +151 -0
  573. transformers/models/pixio/modeling_pixio.py +507 -0
  574. transformers/models/pixio/modular_pixio.py +404 -0
  575. transformers/models/pixtral/modeling_pixtral.py +3 -2
  576. transformers/models/pixtral/processing_pixtral.py +3 -1
  577. transformers/models/plbart/configuration_plbart.py +1 -0
  578. transformers/models/plbart/modeling_plbart.py +13 -0
  579. transformers/models/plbart/modular_plbart.py +8 -0
  580. transformers/models/plbart/tokenization_plbart.py +0 -2
  581. transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
  582. transformers/models/poolformer/modeling_poolformer.py +13 -1
  583. transformers/models/pop2piano/configuration_pop2piano.py +0 -1
  584. transformers/models/pop2piano/modeling_pop2piano.py +2 -0
  585. transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
  586. transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
  587. transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
  588. transformers/models/prophetnet/modeling_prophetnet.py +5 -1
  589. transformers/models/pvt/modeling_pvt.py +2 -0
  590. transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
  591. transformers/models/qwen2/modeling_qwen2.py +5 -5
  592. transformers/models/qwen2/tokenization_qwen2.py +14 -18
  593. transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
  594. transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +116 -79
  595. transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +71 -33
  596. transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
  597. transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +23 -11
  598. transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +29 -27
  599. transformers/models/qwen2_audio/modeling_qwen2_audio.py +4 -2
  600. transformers/models/qwen2_moe/modeling_qwen2_moe.py +15 -7
  601. transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
  602. transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
  603. transformers/models/qwen2_vl/modeling_qwen2_vl.py +23 -20
  604. transformers/models/qwen3/modeling_qwen3.py +5 -5
  605. transformers/models/qwen3_moe/modeling_qwen3_moe.py +15 -7
  606. transformers/models/qwen3_next/modeling_qwen3_next.py +7 -8
  607. transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
  608. transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +112 -68
  609. transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +62 -20
  610. transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
  611. transformers/models/qwen3_vl/modeling_qwen3_vl.py +57 -42
  612. transformers/models/qwen3_vl/modular_qwen3_vl.py +59 -46
  613. transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
  614. transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +132 -148
  615. transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +36 -82
  616. transformers/models/rag/configuration_rag.py +0 -8
  617. transformers/models/rag/modeling_rag.py +8 -9
  618. transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +18 -3
  619. transformers/models/reformer/modeling_reformer.py +13 -1
  620. transformers/models/reformer/tokenization_reformer.py +11 -28
  621. transformers/models/regnet/modeling_regnet.py +10 -1
  622. transformers/models/rembert/modeling_rembert.py +13 -1
  623. transformers/models/rembert/tokenization_rembert.py +3 -10
  624. transformers/models/resnet/modeling_resnet.py +19 -5
  625. transformers/models/roberta/modeling_roberta.py +3 -0
  626. transformers/models/roberta/modular_roberta.py +3 -0
  627. transformers/models/roberta/tokenization_roberta.py +18 -27
  628. transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
  629. transformers/models/roc_bert/modeling_roc_bert.py +3 -0
  630. transformers/models/roformer/modeling_roformer.py +6 -0
  631. transformers/models/roformer/tokenization_roformer.py +77 -412
  632. transformers/models/rt_detr/configuration_rt_detr.py +1 -1
  633. transformers/models/rt_detr/modeling_rt_detr.py +6 -0
  634. transformers/models/rt_detr/modeling_rt_detr_resnet.py +13 -4
  635. transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
  636. transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +9 -0
  637. transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
  638. transformers/models/rwkv/modeling_rwkv.py +2 -1
  639. transformers/models/sam/configuration_sam.py +1 -0
  640. transformers/models/sam/image_processing_sam_fast.py +0 -1
  641. transformers/models/sam/modeling_sam.py +4 -1
  642. transformers/models/sam2/configuration_sam2.py +1 -1
  643. transformers/models/sam2/modeling_sam2.py +7 -3
  644. transformers/models/sam2/modular_sam2.py +7 -3
  645. transformers/models/sam2_video/modeling_sam2_video.py +52 -43
  646. transformers/models/sam2_video/modular_sam2_video.py +32 -18
  647. transformers/models/sam3/configuration_sam3.py +21 -1
  648. transformers/models/sam3/modeling_sam3.py +100 -80
  649. transformers/models/sam3_tracker/modeling_sam3_tracker.py +8 -1
  650. transformers/models/sam3_tracker/modular_sam3_tracker.py +8 -1
  651. transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
  652. transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +27 -15
  653. transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
  654. transformers/models/sam3_video/configuration_sam3_video.py +14 -0
  655. transformers/models/sam3_video/modeling_sam3_video.py +4 -3
  656. transformers/models/sam3_video/processing_sam3_video.py +1 -1
  657. transformers/models/sam_hq/configuration_sam_hq.py +1 -0
  658. transformers/models/sam_hq/modeling_sam_hq.py +26 -23
  659. transformers/models/seamless_m4t/modeling_seamless_m4t.py +32 -12
  660. transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
  661. transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +11 -1
  662. transformers/models/seed_oss/modeling_seed_oss.py +3 -3
  663. transformers/models/segformer/image_processing_segformer_fast.py +0 -1
  664. transformers/models/segformer/modeling_segformer.py +6 -3
  665. transformers/models/segformer/modular_segformer.py +0 -1
  666. transformers/models/seggpt/modeling_seggpt.py +2 -0
  667. transformers/models/sew/modeling_sew.py +3 -0
  668. transformers/models/sew/modular_sew.py +1 -0
  669. transformers/models/sew_d/modeling_sew_d.py +3 -0
  670. transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
  671. transformers/models/siglip/modeling_siglip.py +24 -2
  672. transformers/models/siglip2/modeling_siglip2.py +67 -41
  673. transformers/models/siglip2/modular_siglip2.py +4 -0
  674. transformers/models/smollm3/modeling_smollm3.py +5 -5
  675. transformers/models/smolvlm/modeling_smolvlm.py +5 -1
  676. transformers/models/smolvlm/processing_smolvlm.py +0 -7
  677. transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
  678. transformers/models/speech_to_text/modeling_speech_to_text.py +14 -0
  679. transformers/models/speecht5/modeling_speecht5.py +41 -1
  680. transformers/models/splinter/modeling_splinter.py +12 -3
  681. transformers/models/splinter/tokenization_splinter.py +9 -28
  682. transformers/models/squeezebert/modeling_squeezebert.py +8 -0
  683. transformers/models/stablelm/modeling_stablelm.py +4 -2
  684. transformers/models/starcoder2/modeling_starcoder2.py +5 -4
  685. transformers/models/superglue/image_processing_superglue_fast.py +1 -2
  686. transformers/models/superglue/modeling_superglue.py +1 -0
  687. transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
  688. transformers/models/superpoint/modeling_superpoint.py +1 -0
  689. transformers/models/swiftformer/modeling_swiftformer.py +6 -0
  690. transformers/models/swin/modeling_swin.py +20 -12
  691. transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
  692. transformers/models/swin2sr/modeling_swin2sr.py +51 -33
  693. transformers/models/swinv2/modeling_swinv2.py +45 -33
  694. transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
  695. transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
  696. transformers/models/t5/configuration_t5.py +7 -1
  697. transformers/models/t5/modeling_t5.py +8 -7
  698. transformers/models/t5/tokenization_t5.py +4 -8
  699. transformers/models/t5gemma/modeling_t5gemma.py +6 -6
  700. transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
  701. transformers/models/t5gemma2/modeling_t5gemma2.py +19 -10
  702. transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
  703. transformers/models/table_transformer/configuration_table_transformer.py +1 -1
  704. transformers/models/table_transformer/modeling_table_transformer.py +5 -1
  705. transformers/models/tapas/modeling_tapas.py +3 -0
  706. transformers/models/textnet/image_processing_textnet_fast.py +0 -1
  707. transformers/models/textnet/modeling_textnet.py +11 -2
  708. transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
  709. transformers/models/timesfm/modeling_timesfm.py +14 -0
  710. transformers/models/timesfm/modular_timesfm.py +14 -0
  711. transformers/models/timesformer/modeling_timesformer.py +2 -0
  712. transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
  713. transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
  714. transformers/models/timm_wrapper/modeling_timm_wrapper.py +20 -14
  715. transformers/models/trocr/modeling_trocr.py +3 -2
  716. transformers/models/tvp/configuration_tvp.py +5 -1
  717. transformers/models/tvp/modeling_tvp.py +6 -4
  718. transformers/models/udop/configuration_udop.py +1 -0
  719. transformers/models/udop/modeling_udop.py +7 -7
  720. transformers/models/udop/tokenization_udop.py +5 -13
  721. transformers/models/umt5/configuration_umt5.py +2 -2
  722. transformers/models/umt5/modeling_umt5.py +7 -6
  723. transformers/models/unispeech/modeling_unispeech.py +4 -0
  724. transformers/models/unispeech/modular_unispeech.py +2 -0
  725. transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
  726. transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
  727. transformers/models/univnet/modeling_univnet.py +1 -0
  728. transformers/models/upernet/modeling_upernet.py +1 -0
  729. transformers/models/vaultgemma/modeling_vaultgemma.py +5 -5
  730. transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
  731. transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
  732. transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
  733. transformers/models/video_llava/modeling_video_llava.py +7 -3
  734. transformers/models/vilt/configuration_vilt.py +2 -2
  735. transformers/models/vilt/modeling_vilt.py +13 -0
  736. transformers/models/vipllava/modeling_vipllava.py +7 -3
  737. transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
  738. transformers/models/visual_bert/modeling_visual_bert.py +8 -0
  739. transformers/models/vitdet/modeling_vitdet.py +2 -0
  740. transformers/models/vitmatte/configuration_vitmatte.py +1 -1
  741. transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
  742. transformers/models/vitmatte/modeling_vitmatte.py +5 -0
  743. transformers/models/vitpose/configuration_vitpose.py +1 -1
  744. transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
  745. transformers/models/vits/modeling_vits.py +1 -0
  746. transformers/models/vjepa2/modeling_vjepa2.py +1 -0
  747. transformers/models/voxtral/modeling_voxtral.py +2 -2
  748. transformers/models/voxtral/modular_voxtral.py +2 -2
  749. transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
  750. transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +21 -10
  751. transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +12 -0
  752. transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +27 -11
  753. transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
  754. transformers/models/wavlm/modeling_wavlm.py +5 -0
  755. transformers/models/whisper/generation_whisper.py +1 -0
  756. transformers/models/whisper/modeling_whisper.py +11 -3
  757. transformers/models/whisper/tokenization_whisper.py +4 -15
  758. transformers/models/x_clip/modeling_x_clip.py +5 -0
  759. transformers/models/xcodec/modeling_xcodec.py +5 -0
  760. transformers/models/xglm/modeling_xglm.py +11 -0
  761. transformers/models/xglm/tokenization_xglm.py +4 -9
  762. transformers/models/xlm/modeling_xlm.py +18 -14
  763. transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
  764. transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
  765. transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
  766. transformers/models/xlnet/modeling_xlnet.py +3 -1
  767. transformers/models/xlnet/tokenization_xlnet.py +3 -7
  768. transformers/models/xmod/modeling_xmod.py +3 -0
  769. transformers/models/yoso/modeling_yoso.py +10 -1
  770. transformers/models/zamba/modeling_zamba.py +4 -1
  771. transformers/models/zamba2/modeling_zamba2.py +7 -4
  772. transformers/models/zamba2/modular_zamba2.py +1 -1
  773. transformers/models/zoedepth/configuration_zoedepth.py +1 -1
  774. transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
  775. transformers/models/zoedepth/modeling_zoedepth.py +8 -0
  776. transformers/pipelines/__init__.py +11 -9
  777. transformers/pipelines/automatic_speech_recognition.py +20 -12
  778. transformers/pipelines/base.py +2 -10
  779. transformers/pipelines/document_question_answering.py +4 -2
  780. transformers/pipelines/question_answering.py +1 -1
  781. transformers/pipelines/text_generation.py +1 -1
  782. transformers/pipelines/text_to_audio.py +2 -2
  783. transformers/processing_utils.py +133 -50
  784. transformers/quantizers/auto.py +2 -4
  785. transformers/quantizers/base.py +44 -174
  786. transformers/quantizers/quantizer_aqlm.py +2 -23
  787. transformers/quantizers/quantizer_auto_round.py +2 -12
  788. transformers/quantizers/quantizer_awq.py +20 -89
  789. transformers/quantizers/quantizer_bitnet.py +4 -14
  790. transformers/quantizers/quantizer_bnb_4bit.py +18 -155
  791. transformers/quantizers/quantizer_bnb_8bit.py +24 -110
  792. transformers/quantizers/quantizer_compressed_tensors.py +2 -9
  793. transformers/quantizers/quantizer_eetq.py +16 -74
  794. transformers/quantizers/quantizer_fbgemm_fp8.py +38 -138
  795. transformers/quantizers/quantizer_finegrained_fp8.py +26 -113
  796. transformers/quantizers/quantizer_fp_quant.py +52 -82
  797. transformers/quantizers/quantizer_gptq.py +8 -28
  798. transformers/quantizers/quantizer_higgs.py +42 -60
  799. transformers/quantizers/quantizer_hqq.py +144 -153
  800. transformers/quantizers/quantizer_mxfp4.py +14 -194
  801. transformers/quantizers/quantizer_quanto.py +35 -79
  802. transformers/quantizers/quantizer_quark.py +36 -17
  803. transformers/quantizers/quantizer_spqr.py +4 -12
  804. transformers/quantizers/quantizer_torchao.py +50 -325
  805. transformers/quantizers/quantizer_vptq.py +4 -27
  806. transformers/quantizers/quantizers_utils.py +20 -0
  807. transformers/testing_utils.py +324 -47
  808. transformers/tokenization_mistral_common.py +7 -2
  809. transformers/tokenization_utils_base.py +116 -224
  810. transformers/tokenization_utils_tokenizers.py +190 -106
  811. transformers/trainer.py +51 -32
  812. transformers/trainer_callback.py +8 -0
  813. transformers/trainer_jit_checkpoint.py +126 -0
  814. transformers/trainer_seq2seq.py +4 -0
  815. transformers/trainer_utils.py +1 -1
  816. transformers/training_args.py +74 -38
  817. transformers/utils/__init__.py +7 -4
  818. transformers/utils/attention_visualizer.py +4 -4
  819. transformers/utils/auto_docstring.py +35 -25
  820. transformers/utils/generic.py +47 -1
  821. transformers/utils/hub.py +5 -15
  822. transformers/utils/import_utils.py +112 -25
  823. transformers/utils/kernel_config.py +74 -19
  824. transformers/utils/loading_report.py +19 -10
  825. transformers/utils/quantization_config.py +78 -245
  826. transformers/video_processing_utils.py +17 -14
  827. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +275 -229
  828. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +832 -777
  829. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +1 -1
  830. transformers/kernels/__init__.py +0 -0
  831. transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
  832. transformers/models/roformer/tokenization_roformer_fast.py +0 -160
  833. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
  834. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info/licenses}/LICENSE +0 -0
  835. {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1904 @@
1
+ # coding=utf-8
2
+ # Copyright 2025 Baidu and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch Ernie4.5-VL model."""
16
+
17
+ import itertools
18
+ from collections.abc import Callable
19
+ from typing import Optional, Union
20
+
21
+ import numpy as np
22
+ import torch
23
+ import torch.nn as nn
24
+ import torch.nn.functional as F
25
+
26
+ from ... import initialization as init
27
+ from ...cache_utils import Cache, DynamicCache
28
+ from ...configuration_utils import PreTrainedConfig, layer_type_validation
29
+ from ...generation import GenerationMixin
30
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature
31
+ from ...image_processing_utils_fast import (
32
+ group_images_by_shape,
33
+ reorder_images,
34
+ )
35
+ from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format
36
+ from ...image_utils import (
37
+ OPENAI_CLIP_MEAN,
38
+ OPENAI_CLIP_STD,
39
+ ChannelDimension,
40
+ ImageInput,
41
+ PILImageResampling,
42
+ SizeDict,
43
+ get_image_size,
44
+ infer_channel_dimension_format,
45
+ is_scaled_image,
46
+ make_list_of_images,
47
+ to_numpy_array,
48
+ )
49
+ from ...masking_utils import create_causal_mask
50
+ from ...modeling_flash_attention_utils import FlashAttentionKwargs
51
+ from ...modeling_layers import GradientCheckpointingLayer
52
+ from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
53
+ from ...modeling_rope_utils import dynamic_rope_update
54
+ from ...modeling_utils import PreTrainedModel
55
+ from ...processing_utils import Unpack
56
+ from ...utils import (
57
+ TensorType,
58
+ TransformersKwargs,
59
+ auto_docstring,
60
+ can_return_tuple,
61
+ is_torchdynamo_compiling,
62
+ logging,
63
+ )
64
+ from ...utils.generic import OutputRecorder, check_model_inputs, maybe_autocast
65
+ from ..ernie4_5_moe.configuration_ernie4_5_moe import Ernie4_5_MoeConfig
66
+ from ..ernie4_5_moe.modeling_ernie4_5_moe import (
67
+ Ernie4_5_MoeAttention,
68
+ Ernie4_5_MoeExperts,
69
+ Ernie4_5_MoeMLP,
70
+ Ernie4_5_MoeModel,
71
+ Ernie4_5_MoeRMSNorm,
72
+ Ernie4_5_MoeStatics,
73
+ Ernie4_5_MoeTopKRouter,
74
+ )
75
+ from ..glm4v.image_processing_glm4v import Glm4vImageProcessor, Glm4vImageProcessorKwargs
76
+ from ..glm4v.image_processing_glm4v_fast import Glm4vImageProcessorFast
77
+ from ..glm4v.modeling_glm4v import Glm4vForConditionalGeneration
78
+ from ..mixtral.modeling_mixtral import load_balancing_loss_func
79
+ from ..qwen2_5_vl.modeling_qwen2_5_vl import (
80
+ Qwen2_5_VisionPatchEmbed,
81
+ Qwen2_5_VisionRotaryEmbedding,
82
+ Qwen2_5_VLModel,
83
+ Qwen2_5_VLPreTrainedModel,
84
+ Qwen2_5_VLVisionBlock,
85
+ )
86
+ from ..qwen2_vl.configuration_qwen2_vl import Qwen2VLVisionConfig
87
+ from ..qwen2_vl.image_processing_qwen2_vl import smart_resize
88
+ from ..qwen2_vl.modeling_qwen2_vl import Qwen2VisionTransformerPretrainedModel, VisionMlp
89
+
90
+
91
+ logger = logging.get_logger(__name__)
92
+
93
+
94
+ class Ernie4_5_VL_MoeVisionConfig(Qwen2VLVisionConfig):
95
+ r"""
96
+ This is the configuration class to store the configuration of the [`Ernie4_5_VL_MoeVisionTransformerPretrainedModel`].
97
+ It is used to instantiate the vision models portion of the complete Ernie4.5-VL Moe model according to the specified
98
+ arguments, defining the model architecture.
99
+
100
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
101
+ documentation from [`PretrainedConfig`] for more information.
102
+
103
+ Args:
104
+ depth (`int`, *optional*, defaults to 32):
105
+ Number of layers (depth) in the model.
106
+ hidden_size (`int`, *optional*, defaults to 1280):
107
+ Dimensionality of the encoder layers and the pooler layer.
108
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
109
+ The non-linear activation function (function or string) in the encoder and pooler.
110
+ intermediate_size (`int`, *optional*, defaults to 5120):
111
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
112
+ num_heads (`int`, *optional*, defaults to 16):
113
+ Number of attention heads for each attention layer in the Transformer encoder.
114
+ in_channels (`int`, *optional*, defaults to 3):
115
+ The number of input channels.
116
+ patch_size (`int`, *optional*, defaults to 14):
117
+ The size (resolution) of each patch.
118
+ spatial_merge_size (`int`, *optional*, defaults to 2):
119
+ The size used for merging spatial dimensions.
120
+ temporal_merge_size (`int`, *optional*, defaults to 2):
121
+ The size used for merge along the temporal dimension.
122
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
123
+ The epsilon used by the rms normalization layers.
124
+ initializer_range (`float`, *optional*, defaults to 0.02):
125
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
126
+ """
127
+
128
+ model_type = "ernie4_5_vl_moe_vision"
129
+
130
+ base_model_tp_plan = {
131
+ "blocks.*.attn.qkv": "colwise",
132
+ "blocks.*.attn.proj": "rowwise",
133
+ "blocks.*.mlp.fc1": "colwise",
134
+ "blocks.*.mlp.fc2": "rowwise",
135
+ }
136
+
137
+ def __init__(
138
+ self,
139
+ depth=32,
140
+ hidden_size=1280,
141
+ hidden_act="quick_gelu",
142
+ intermediate_size=4 * 1280,
143
+ num_heads=16,
144
+ in_channels=3,
145
+ patch_size=14,
146
+ spatial_merge_size=2,
147
+ temporal_merge_size=2,
148
+ rms_norm_eps=1e-6,
149
+ initializer_range=0.02,
150
+ **kwargs,
151
+ ):
152
+ super().__init__(
153
+ depth=depth,
154
+ hidden_size=hidden_size,
155
+ hidden_act=hidden_act,
156
+ intermediate_size=intermediate_size,
157
+ num_heads=num_heads,
158
+ in_channels=in_channels,
159
+ patch_size=patch_size,
160
+ spatial_merge_size=spatial_merge_size,
161
+ temporal_merge_size=temporal_merge_size,
162
+ rms_norm_eps=rms_norm_eps,
163
+ initializer_range=initializer_range,
164
+ **kwargs,
165
+ )
166
+
167
+ del self.embed_dim # noqa: F821
168
+ del self.mlp_ratio # noqa: F821
169
+ del self.temporal_patch_size # noqa: F821
170
+
171
+ self.intermediate_size = intermediate_size
172
+ self.temporal_merge_size = temporal_merge_size
173
+ self.rms_norm_eps = rms_norm_eps
174
+
175
+
176
+ class Ernie4_5_VL_MoeTextConfig(Ernie4_5_MoeConfig, PreTrainedConfig):
177
+ r"""
178
+ This is the configuration class to store the configuration of a [`Ernie4_5_VL_MoeTextModel`]. It is used to instantiate a
179
+ the text model portion of the complete Ernie4.5-VL Moe model according to the specified arguments, defining the model architecture.
180
+
181
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
182
+ documentation from [`PretrainedConfig`] for more information.
183
+
184
+ Args:
185
+ vocab_size (`int`, *optional*, defaults to 103424):
186
+ Vocabulary size of the Ernie 4.5 VL model. Defines the number of different tokens that can be represented by the
187
+ `inputs_ids` passed when calling [`Ernie4_5_VL_MoeTextModel`]
188
+ hidden_size (`int`, *optional*, defaults to 2560):
189
+ Dimension of the hidden representations.
190
+ intermediate_size (`int`, *optional*, defaults to 12288):
191
+ Dimension of the MLP representations.
192
+ num_hidden_layers (`int`, *optional*, defaults to 28):
193
+ Number of hidden layers in the Transformer encoder.
194
+ num_attention_heads (`int`, *optional*, defaults to 20):
195
+ Number of attention heads for each attention layer in the Transformer encoder.
196
+ num_key_value_heads (`int`, *optional*, defaults to 4):
197
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
198
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
199
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
200
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
201
+ by meanpooling all the original heads within that group. For more details, check out [this
202
+ paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `4`.
203
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
204
+ The non-linear activation function (function or string) in the decoder.
205
+ max_position_embeddings (`int`, *optional*, defaults to 131072):
206
+ The maximum sequence length that this model might ever be used with.
207
+ initializer_range (`float`, *optional*, defaults to 0.02):
208
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
209
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
210
+ The epsilon used by the rms normalization layers.
211
+ use_cache (`bool`, *optional*, defaults to `True`):
212
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
213
+ relevant if `config.is_decoder=True`.
214
+ use_bias (`bool`, *optional*, defaults to `False`):
215
+ Whether to use a bias in any of the projections including mlp and attention for example.
216
+ tie_word_embeddings (`bool`, *optional*, defaults to `True`):
217
+ Whether the model's input and output word embeddings should be tied.
218
+ rope_parameters (`RopeParameters`, *optional*):
219
+ Dictionary containing the configuration parameters for the RoPE embeddings. The dictionaty should contain
220
+ a value for `rope_theta` and optionally parameters used for scaling in case you want to use RoPE
221
+ with longer `max_position_embeddings`.
222
+ mlp_layer_types (`list`, *optional*):
223
+ MLP (Moe vs Dense) pattern for each layer.
224
+ moe_intermediate_size (`list[int]`, *optional*, defaults to `[1536, 512]`):
225
+ Intermediate size of the routed experts; differs between text (first) and image (second) experts.
226
+ moe_k (`int`, *optional*, defaults to 6):
227
+ Number of selected experts.
228
+ moe_num_experts (`int`, *optional*, defaults to 64):
229
+ Number of routed experts.
230
+ moe_num_shared_experts (`int`, *optional*, defaults to 2):
231
+ The number of experts that are shared for all MoE forwards.
232
+ moe_norm_min (`float`, *optional*, defaults to 1e-12):
233
+ Minimum division value during routing normalization.
234
+ output_router_logits (`bool`, *optional*, defaults to `False`):
235
+ Whether or not the router logits should be returned by the model. Enabling this will also
236
+ allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
237
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
238
+ The aux loss factor for the total loss.
239
+ """
240
+
241
+ model_type = "ernie4_5_vl_moe_text"
242
+ base_config_key = "text_config"
243
+
244
+ base_model_tp_plan = {
245
+ "layers.*.self_attn.q_proj": "colwise",
246
+ "layers.*.self_attn.k_proj": "colwise",
247
+ "layers.*.self_attn.v_proj": "colwise",
248
+ "layers.*.self_attn.o_proj": "rowwise",
249
+ "layers.*.mlp.shared_experts.gate_proj": "colwise",
250
+ "layers.*.mlp.shared_experts.up_proj": "colwise",
251
+ "layers.*.mlp.shared_experts.down_proj": "rowwise",
252
+ "layers.*.mlp.gate_proj": "colwise",
253
+ "layers.*.mlp.up_proj": "colwise",
254
+ "layers.*.mlp.down_proj": "rowwise",
255
+ }
256
+
257
+ def __init__(
258
+ self,
259
+ vocab_size=103424,
260
+ hidden_size=2560,
261
+ intermediate_size=12288,
262
+ num_hidden_layers=28,
263
+ num_attention_heads=20,
264
+ num_key_value_heads=4,
265
+ hidden_act="silu",
266
+ max_position_embeddings=131072,
267
+ initializer_range=0.02,
268
+ rms_norm_eps=1e-5,
269
+ use_cache=True,
270
+ use_bias=False,
271
+ tie_word_embeddings=True,
272
+ rope_parameters=None,
273
+ mlp_layer_types=None,
274
+ moe_intermediate_size=None,
275
+ moe_k=6,
276
+ moe_num_experts=64,
277
+ moe_num_shared_experts=2,
278
+ moe_norm_min=1e-12,
279
+ output_router_logits=False,
280
+ router_aux_loss_coef=0.001,
281
+ **kwargs,
282
+ ):
283
+ self.vocab_size = vocab_size
284
+ self.hidden_size = hidden_size
285
+ self.intermediate_size = intermediate_size
286
+ self.num_hidden_layers = num_hidden_layers
287
+ self.num_attention_heads = num_attention_heads
288
+ self.num_key_value_heads = num_key_value_heads
289
+ self.hidden_act = hidden_act
290
+ self.max_position_embeddings = max_position_embeddings
291
+ self.initializer_range = initializer_range
292
+ self.rms_norm_eps = rms_norm_eps
293
+ self.use_cache = use_cache
294
+ self.use_bias = use_bias
295
+ self.rope_parameters = rope_parameters
296
+
297
+ # Default to MoE from the second layer and on
298
+ self.mlp_layer_types = mlp_layer_types
299
+ if self.mlp_layer_types is None:
300
+ self.mlp_layer_types = ["dense"] + ["sparse"] * (self.num_hidden_layers - 1)
301
+ layer_type_validation(self.mlp_layer_types, self.num_hidden_layers, attention=False)
302
+
303
+ self.moe_intermediate_size = moe_intermediate_size
304
+ if self.moe_intermediate_size is None:
305
+ self.moe_intermediate_size = [1536, 512]
306
+ self.moe_k = moe_k
307
+ self.moe_num_experts = moe_num_experts
308
+ self.moe_num_shared_experts = moe_num_shared_experts
309
+ self.moe_norm_min = moe_norm_min
310
+ self.output_router_logits = output_router_logits
311
+ self.router_aux_loss_coef = router_aux_loss_coef
312
+
313
+ PreTrainedConfig.__init__(
314
+ tie_word_embeddings=tie_word_embeddings, ignore_keys_at_rope_validation={"mrope_section"}, **kwargs
315
+ )
316
+
317
+
318
+ class Ernie4_5_VL_MoeConfig(PreTrainedConfig):
319
+ r"""
320
+ This is the configuration class to store the configuration of a [`Ernie4_5_VL_MoeModel`]. It is used to instantiate a
321
+ Ernie4.5-VL MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
322
+ with the defaults will yield a similar configuration to that of
323
+ Ernie 4.5 VL 28B A3B [baidu/ERNIE-4.5-VL-28B-A3B-PT](https://huggingface.co/baidu/ERNIE-4.5-VL-28B-A3B-PT).
324
+
325
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
326
+ documentation from [`PretrainedConfig`] for more information.
327
+
328
+ Args:
329
+ text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Ernie4_5_VL_MoeTextConfig`):
330
+ The config object or dictionary of the text backbone.
331
+ vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Ernie4_5_VL_MoeVisionConfig`):
332
+ The config object or dictionary of the vision backbone.
333
+ image_start_token_id (`int`, *optional*, defaults to 101304):
334
+ The image token index to encode the start of image.
335
+ image_end_token_id (`int`, *optional*, defaults to 101305):
336
+ The image token index to encode the end of image.
337
+ image_token_id (`int`, *optional*, defaults to 100295):
338
+ The image token index to encode the image prompt.
339
+ video_start_token_id (`int`, *optional*, defaults to 101306):
340
+ The video token index to encode the start of video.
341
+ video_end_token_id (`int`, *optional*, defaults to 101307):
342
+ The video token index to encode the end of video.
343
+ video_token_id (`int`, *optional*, defaults to 103367):
344
+ The video token index to encode the video prompt.
345
+
346
+ ```python
347
+ >>> from transformers import Ernie4_5_VL_MoeForConditionalGeneration, Ernie4_5_VL_MoeConfig
348
+
349
+ >>> # Initializing a Ernie4_5_VL_Moe style configuration
350
+ >>> configuration = Ernie4_5_VL_MoeConfig()
351
+
352
+ >>> # Initializing a model from the Ernie 4.5 VL 28B A3B configuration
353
+ >>> model = Ernie4_5_VL_MoeForConditionalGeneration(configuration)
354
+
355
+ >>> # Accessing the model configuration
356
+ >>> configuration = model.config
357
+ ```"""
358
+
359
+ model_type = "ernie4_5_vl_moe"
360
+ sub_configs = {"vision_config": Ernie4_5_VL_MoeVisionConfig, "text_config": Ernie4_5_VL_MoeTextConfig}
361
+ keys_to_ignore_at_inference = ["past_key_values"]
362
+
363
+ def __init__(
364
+ self,
365
+ text_config=None,
366
+ vision_config=None,
367
+ image_start_token_id=101304,
368
+ image_end_token_id=101305,
369
+ image_token_id=100295,
370
+ video_start_token_id=101306,
371
+ video_end_token_id=101307,
372
+ video_token_id=103367,
373
+ **kwargs,
374
+ ):
375
+ if isinstance(vision_config, dict):
376
+ self.vision_config = self.sub_configs["vision_config"](**vision_config)
377
+ elif isinstance(vision_config, Ernie4_5_VL_MoeVisionConfig):
378
+ self.vision_config = vision_config
379
+ elif vision_config is None:
380
+ self.vision_config = self.sub_configs["vision_config"]()
381
+
382
+ if isinstance(text_config, dict):
383
+ self.text_config = self.sub_configs["text_config"](**text_config)
384
+ elif isinstance(text_config, Ernie4_5_VL_MoeTextConfig):
385
+ self.text_config = text_config
386
+ elif text_config is None:
387
+ self.text_config = self.sub_configs["text_config"](**kwargs)
388
+
389
+ self.image_start_token_id = image_start_token_id
390
+ self.image_end_token_id = image_end_token_id
391
+ self.image_token_id = image_token_id
392
+ self.video_start_token_id = video_start_token_id
393
+ self.video_end_token_id = video_end_token_id
394
+ self.video_token_id = video_token_id
395
+
396
+ super().__init__(**kwargs)
397
+
398
+
399
+ class Ernie4_5_VL_MoeTextRotaryEmbedding(nn.Module):
400
+ inv_freq: torch.Tensor # fix linting for `register_buffer`
401
+
402
+ def __init__(self, config, device=None):
403
+ super().__init__()
404
+ self.max_seq_len_cached = config.max_position_embeddings
405
+ self.original_max_seq_len = config.max_position_embeddings
406
+
407
+ self.config = config
408
+
409
+ self.rope_type = self.config.rope_parameters["rope_type"]
410
+ rope_init_fn: Callable = self.compute_default_rope_parameters
411
+ if self.rope_type != "default":
412
+ raise ValueError(f"Ernie 4.5 VL requires the `default` rope type, but found {self.rope_type} instead.")
413
+ inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
414
+
415
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
416
+ self.original_inv_freq = inv_freq
417
+
418
+ self.mrope_section = config.rope_parameters.get("mrope_section", [22, 22, 20])
419
+
420
+ @staticmethod
421
+ def compute_default_rope_parameters(
422
+ config: Optional[Ernie4_5_VL_MoeTextConfig] = None,
423
+ device: Optional["torch.device"] = None,
424
+ seq_len: Optional[int] = None,
425
+ ) -> tuple["torch.Tensor", float]:
426
+ """
427
+ Computes the inverse frequencies according to the original RoPE implementation
428
+ Args:
429
+ config ([`~transformers.PreTrainedConfig`]):
430
+ The model configuration.
431
+ device (`torch.device`):
432
+ The device to use for initialization of the inverse frequencies.
433
+ seq_len (`int`, *optional*):
434
+ The current sequence length. Unused for this type of RoPE.
435
+ Returns:
436
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
437
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
438
+ """
439
+ base = config.rope_parameters["rope_theta"]
440
+ dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
441
+
442
+ attention_factor = 1.0 # Unused in this type of RoPE
443
+
444
+ # Compute the inverse frequencies
445
+ inv_freq = 1.0 / (
446
+ base ** (torch.arange(0, dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / dim)
447
+ )
448
+
449
+ # Special to ernie, we prerotate on the hw dim
450
+ mrope_section = config.rope_parameters.get("mrope_section", [22, 22, 20])
451
+ hw_dim = mrope_section[0] + mrope_section[1]
452
+ t_dim = mrope_section[2]
453
+
454
+ inv_freq_3d = torch.empty_like(inv_freq)
455
+ # (Pre-)Rotate to avoid another rotation during the forward
456
+ inv_freq_3d[:hw_dim] = torch.cat([inv_freq[:-t_dim][0::2], inv_freq[:-t_dim][1::2]])
457
+ inv_freq_3d[-t_dim:] = inv_freq[-t_dim:]
458
+
459
+ return inv_freq_3d, attention_factor
460
+
461
+ @torch.no_grad()
462
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
463
+ def forward(self, x, position_ids):
464
+ inv_freq_expanded = (
465
+ self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1).to(x.device)
466
+ )
467
+ position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
468
+
469
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
470
+ with maybe_autocast(device_type=device_type, enabled=False): # Force float32
471
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
472
+ cos = freqs.cos() * self.attention_scaling
473
+ sin = freqs.sin() * self.attention_scaling
474
+
475
+ sin = self.recomposition_to_3d(sin)
476
+ cos = self.recomposition_to_3d(cos)
477
+
478
+ return cos, sin
479
+
480
+ def recomposition_to_3d(self, freq):
481
+ freq_h, freq_w, freq_t = (m[(i + 1) % 3] for i, m in enumerate(freq.split([*self.mrope_section], dim=-1)))
482
+ freq_hw = torch.stack([freq_h, freq_w], dim=-1).flatten(-2)
483
+ freq_hwt = torch.cat([freq_hw, freq_t], dim=-1)
484
+ return freq_hwt.repeat_interleave(2, dim=-1)
485
+
486
+
487
+ def rotate_half_text(x):
488
+ """Rotates half the hidden dims of the input."""
489
+ x1 = x[..., 0::2]
490
+ x2 = x[..., 1::2]
491
+ return torch.stack((-x2, x1), dim=-1).flatten(-2)
492
+
493
+
494
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
495
+ """Applies Rotary Position Embedding to the query and key tensors.
496
+
497
+ Args:
498
+ q (`torch.Tensor`): The query tensor.
499
+ k (`torch.Tensor`): The key tensor.
500
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
501
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
502
+ position_ids (`torch.Tensor`, *optional*):
503
+ Deprecated and unused.
504
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
505
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
506
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
507
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
508
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
509
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
510
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
511
+ Returns:
512
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
513
+ """
514
+ original_dtype = q.dtype
515
+
516
+ cos = cos.unsqueeze(unsqueeze_dim)
517
+ sin = sin.unsqueeze(unsqueeze_dim)
518
+
519
+ q_embed = (q.float() * cos) + (rotate_half_text(q).float() * sin)
520
+ k_embed = (k.float() * cos) + (rotate_half_text(k).float() * sin)
521
+
522
+ return q_embed.to(original_dtype), k_embed.to(original_dtype)
523
+
524
+
525
+ class Ernie4_5_VL_MoeTextAttention(Ernie4_5_MoeAttention):
526
+ pass
527
+
528
+
529
+ class Ernie4_5_VL_MoeRMSNorm(Ernie4_5_MoeRMSNorm):
530
+ pass
531
+
532
+
533
+ class Ernie4_5_VL_MoeMLP(Ernie4_5_MoeMLP):
534
+ pass
535
+
536
+
537
+ class Ernie4_5_VL_MoeMoeStatics(Ernie4_5_MoeStatics):
538
+ pass
539
+
540
+
541
+ class Ernie4_5_VL_MoeMoeTopKRouter(Ernie4_5_MoeTopKRouter):
542
+ def __init__(self, config):
543
+ super().__init__(config)
544
+ self.moe_statics = Ernie4_5_VL_MoeMoeStatics(config)
545
+
546
+
547
+ class Ernie4_5_VL_MoeMoeExperts(Ernie4_5_MoeExperts):
548
+ def __init__(self, config, intermediate_size=None):
549
+ super().__init__(config)
550
+ self.intermediate_dim = config.moe_intermediate_size if intermediate_size is None else intermediate_size
551
+
552
+
553
+ class Ernie4_5_VL_MoeSparseMoeBlock(nn.Module):
554
+ def __init__(self, config, intermediate_size):
555
+ super().__init__()
556
+ self.hidden_dim = config.hidden_size
557
+ self.num_experts = config.moe_num_experts
558
+ self.top_k = config.moe_k
559
+ self.gate = Ernie4_5_VL_MoeMoeTopKRouter(config)
560
+ self.experts = Ernie4_5_VL_MoeMoeExperts(config, intermediate_size)
561
+
562
+ def forward(
563
+ self,
564
+ hidden_states: torch.Tensor,
565
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
566
+ hidden_states = hidden_states.view(-1, self.hidden_dim)
567
+
568
+ router_logits, top_k_index, top_k_weights = self.gate(hidden_states)
569
+ final_hidden_states = self.experts(hidden_states, top_k_index, top_k_weights)
570
+
571
+ # moe results are changed to a flattened shape to ease the modality isolated assigning of results
572
+ return final_hidden_states.flatten(), router_logits.flatten()
573
+
574
+
575
+ class Ernie4_5_VL_MoeMoeBlock(nn.Module):
576
+ """
577
+ Similar to `Ernie4_5_Moe` where we have modality isolated experts:
578
+ - A set of text experts that are only run on text tokens
579
+ - A set of vision experts that are only run on vision (image/video) tokens
580
+
581
+ This modality isolation is unique to the Ernie 4.5 VL Moe models.
582
+ """
583
+
584
+ def __init__(self, config):
585
+ super().__init__()
586
+ self.num_experts = config.moe_num_experts
587
+
588
+ self.text_moe = Ernie4_5_VL_MoeSparseMoeBlock(config, intermediate_size=config.moe_intermediate_size[0])
589
+ self.vision_moe = Ernie4_5_VL_MoeSparseMoeBlock(config, intermediate_size=config.moe_intermediate_size[1])
590
+
591
+ self.shared_experts = None
592
+ if config.moe_num_shared_experts > 0:
593
+ self.shared_experts = Ernie4_5_VL_MoeMLP(
594
+ config, config.moe_intermediate_size[0] * config.moe_num_shared_experts
595
+ )
596
+
597
+ def forward(
598
+ self,
599
+ hidden_states: torch.Tensor,
600
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
601
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
602
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
603
+
604
+ # (Optional) shared experts
605
+ if self.shared_experts is not None:
606
+ shared_output = self.shared_experts(hidden_states)
607
+
608
+ if moe_mm_token_type_ids is not None and moe_mm_token_type_ids.any():
609
+ final_hidden_states = torch.zeros_like(hidden_states)
610
+ router_logits = torch.zeros(
611
+ size=(batch_size * sequence_length, self.num_experts),
612
+ device=final_hidden_states.device,
613
+ dtype=torch.float,
614
+ )
615
+
616
+ # True (1 or 2) == vision, False (0) == text tokens
617
+ moe_mm_token_type_ids = moe_mm_token_type_ids.bool()
618
+ token_type_ids_router = moe_mm_token_type_ids.reshape(-1)[:, None].expand(-1, self.num_experts)
619
+ token_type_ids_states = moe_mm_token_type_ids[..., None].expand(-1, -1, hidden_dim)
620
+
621
+ # Run moe on each modality and assign their results to the original token positions
622
+ final_hidden_states[~token_type_ids_states], router_logits[~token_type_ids_router] = self.text_moe(
623
+ hidden_states[~token_type_ids_states]
624
+ )
625
+ final_hidden_states[token_type_ids_states], router_logits[token_type_ids_router] = self.vision_moe(
626
+ hidden_states[token_type_ids_states]
627
+ )
628
+ else:
629
+ final_hidden_states, router_logits = self.text_moe(hidden_states)
630
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
631
+ router_logits = router_logits.reshape(-1, self.num_experts)
632
+
633
+ # Add (optional) shared experts to the result
634
+ if self.shared_experts is not None:
635
+ final_hidden_states = final_hidden_states + shared_output
636
+
637
+ return final_hidden_states, router_logits
638
+
639
+
640
+ class Ernie4_5_VL_MoeDecoderLayer(GradientCheckpointingLayer):
641
+ def __init__(self, config, layer_idx):
642
+ super().__init__()
643
+ self.hidden_size = config.hidden_size
644
+
645
+ self.self_attn = Ernie4_5_VL_MoeTextAttention(config, layer_idx)
646
+
647
+ if config.mlp_layer_types[layer_idx] == "sparse":
648
+ self.mlp = Ernie4_5_VL_MoeMoeBlock(config)
649
+ else:
650
+ self.mlp = Ernie4_5_VL_MoeMLP(config)
651
+
652
+ self.input_layernorm = Ernie4_5_VL_MoeRMSNorm(config.hidden_size, config.rms_norm_eps)
653
+ self.post_attention_layernorm = Ernie4_5_VL_MoeRMSNorm(config.hidden_size, config.rms_norm_eps)
654
+
655
+ def forward(
656
+ self,
657
+ hidden_states: torch.Tensor,
658
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
659
+ attention_mask: Optional[torch.Tensor] = None,
660
+ position_ids: Optional[torch.Tensor] = None,
661
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
662
+ past_key_values: Optional[Cache] = None,
663
+ cache_position: Optional[torch.LongTensor] = None,
664
+ **kwargs: Unpack[FlashAttentionKwargs],
665
+ ) -> tuple[torch.Tensor, Optional[tuple[torch.Tensor, torch.Tensor]]]:
666
+ residual = hidden_states
667
+
668
+ hidden_states = self.input_layernorm(hidden_states)
669
+
670
+ # Self Attention
671
+ hidden_states, _ = self.self_attn(
672
+ hidden_states=hidden_states,
673
+ position_embeddings=position_embeddings,
674
+ attention_mask=attention_mask,
675
+ position_ids=position_ids,
676
+ past_key_values=past_key_values,
677
+ cache_position=cache_position,
678
+ **kwargs,
679
+ )
680
+ hidden_states = hidden_states + residual
681
+
682
+ # Fully Connected
683
+ residual = hidden_states
684
+ hidden_states = self.post_attention_layernorm(hidden_states)
685
+ if isinstance(self.mlp, Ernie4_5_VL_MoeMoeBlock):
686
+ hidden_states, _ = self.mlp(hidden_states, moe_mm_token_type_ids)
687
+ else:
688
+ hidden_states = self.mlp(hidden_states)
689
+ hidden_states = hidden_states + residual
690
+
691
+ return hidden_states
692
+
693
+
694
+ class Ernie4_5_VL_MoePreTrainedModel(Qwen2_5_VLPreTrainedModel):
695
+ _can_compile_fullgraph = False
696
+
697
+ _can_record_outputs = {
698
+ "router_logits": OutputRecorder(Ernie4_5_VL_MoeMoeBlock, index=1),
699
+ "hidden_states": Ernie4_5_VL_MoeDecoderLayer,
700
+ "attentions": Ernie4_5_VL_MoeTextAttention,
701
+ }
702
+ _keep_in_fp32_modules_strict = ["gate.weight", "moe_statics"]
703
+
704
+ def _init_weights(self, module):
705
+ PreTrainedModel._init_weights(self, module)
706
+ if isinstance(module, Ernie4_5_VL_MoeMoeTopKRouter):
707
+ init.zeros_(module.moe_statics.e_score_correction_bias)
708
+ init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
709
+ elif isinstance(module, Ernie4_5_VL_MoeMoeExperts):
710
+ init.normal_(module.gate_up_proj, mean=0.0, std=self.config.initializer_range)
711
+ init.normal_(module.down_proj, mean=0.0, std=self.config.initializer_range)
712
+ elif isinstance(module, Ernie4_5_VL_MoeVisionRotaryEmbedding):
713
+ inv_freq = 1.0 / (module.theta ** (torch.arange(0, module.dim, 2, dtype=torch.float) / module.dim))
714
+ init.copy_(module.inv_freq, inv_freq)
715
+
716
+
717
+ class Ernie4_5_VL_MoeTextModel(Ernie4_5_MoeModel):
718
+ config: Ernie4_5_VL_MoeTextConfig
719
+
720
+ def __init__(self, config: Ernie4_5_VL_MoeTextConfig):
721
+ super().__init__(config)
722
+ self.rotary_emb = Ernie4_5_VL_MoeTextRotaryEmbedding(config=config)
723
+
724
+ @check_model_inputs
725
+ @auto_docstring
726
+ def forward(
727
+ self,
728
+ input_ids: Optional[torch.LongTensor] = None,
729
+ attention_mask: Optional[torch.Tensor] = None,
730
+ position_ids: Optional[torch.LongTensor] = None,
731
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
732
+ past_key_values: Optional[Cache] = None,
733
+ inputs_embeds: Optional[torch.FloatTensor] = None,
734
+ use_cache: Optional[bool] = None,
735
+ cache_position: Optional[torch.LongTensor] = None,
736
+ **kwargs: Unpack[FlashAttentionKwargs],
737
+ ) -> MoeModelOutputWithPast:
738
+ r"""
739
+ moe_mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
740
+ The same as `mm_token_type_ids` while additionally considering start/end image/video tokens as respective vision tokens.
741
+ """
742
+ if (input_ids is None) ^ (inputs_embeds is not None):
743
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
744
+
745
+ if use_cache and past_key_values is None:
746
+ past_key_values = DynamicCache(config=self.config)
747
+
748
+ if inputs_embeds is None:
749
+ inputs_embeds = self.embed_tokens(input_ids)
750
+
751
+ if cache_position is None:
752
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
753
+ cache_position = torch.arange(
754
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
755
+ )
756
+
757
+ # the hard coded `3` is for temporal, height and width.
758
+ if position_ids is None:
759
+ position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
760
+ elif position_ids.ndim == 2:
761
+ position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
762
+
763
+ # NOTE: we need to pass text position ids for packing. Ernie 4.5 VL uses 3D positions
764
+ # where each dim indicates visual spatial positions for temporal/height/width grids.
765
+ # There are is only one scenario when FA2-like packed masking might be activated.
766
+ # 1. User specifically passed packed `position_ids` and no attention mask.
767
+ # In this case we expect the useer to create correct position ids for all 3 grids
768
+ # and prepend text-only position ids to it. The final tensor will be [4, bs, seq-len]
769
+ if position_ids.ndim == 3 and position_ids.shape[0] == 4:
770
+ text_position_ids = position_ids[0]
771
+ position_ids = position_ids[1:]
772
+ else:
773
+ # If inputs are not packed (usual 3D positions), do not prepare mask from position_ids
774
+ text_position_ids = None
775
+
776
+ attention_mask = create_causal_mask(
777
+ config=self.config,
778
+ input_embeds=inputs_embeds,
779
+ attention_mask=attention_mask,
780
+ cache_position=cache_position,
781
+ past_key_values=past_key_values,
782
+ position_ids=text_position_ids,
783
+ )
784
+
785
+ hidden_states = inputs_embeds
786
+
787
+ # create position embeddings to be shared across the decoder layers
788
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
789
+
790
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
791
+ hidden_states = decoder_layer(
792
+ hidden_states,
793
+ position_embeddings=position_embeddings,
794
+ attention_mask=attention_mask,
795
+ position_ids=position_ids,
796
+ moe_mm_token_type_ids=moe_mm_token_type_ids,
797
+ past_key_values=past_key_values,
798
+ cache_position=cache_position,
799
+ **kwargs,
800
+ )
801
+
802
+ hidden_states = self.norm(hidden_states)
803
+
804
+ return MoeModelOutputWithPast(
805
+ last_hidden_state=hidden_states,
806
+ past_key_values=past_key_values,
807
+ )
808
+
809
+
810
+ class Ernie4_5VLVisionMLP(VisionMlp):
811
+ pass
812
+
813
+
814
+ class Ernie4_5_VL_MoePatchEmbed(Qwen2_5_VisionPatchEmbed):
815
+ def __init__(
816
+ self,
817
+ patch_size: int = 14,
818
+ in_channels: int = 3,
819
+ embed_dim: int = 1152,
820
+ ) -> None:
821
+ super().__init__(patch_size, in_channels, embed_dim)
822
+
823
+ del self.temporal_patch_size
824
+ del kernel_size # noqa: F821
825
+ self.proj = nn.Linear(in_channels * patch_size * patch_size, embed_dim, bias=False)
826
+
827
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
828
+ target_dtype = self.proj.weight.dtype
829
+ return self.proj(hidden_states.to(target_dtype))
830
+
831
+
832
+ class Ernie4_5_VL_MoeVisionRotaryEmbedding(Qwen2_5_VisionRotaryEmbedding):
833
+ pass
834
+
835
+
836
+ class Ernie4_5_VL_MoeVisionBlock(Qwen2_5_VLVisionBlock):
837
+ def __init__(self, config) -> None:
838
+ super().__init__(config, None)
839
+
840
+ self.norm1 = nn.LayerNorm(config.hidden_size, config.rms_norm_eps)
841
+ self.norm2 = nn.LayerNorm(config.hidden_size, config.rms_norm_eps)
842
+ self.mlp = Ernie4_5VLVisionMLP(
843
+ dim=config.hidden_size,
844
+ hidden_dim=config.intermediate_size,
845
+ hidden_act=config.hidden_act,
846
+ )
847
+
848
+
849
+ class Ernie4_5_VL_MoeVisionTransformerPretrainedModel(Qwen2VisionTransformerPretrainedModel):
850
+ def __init__(self, config) -> None:
851
+ super().__init__(config)
852
+
853
+ del self.merger
854
+
855
+ self.patch_embed = Ernie4_5_VL_MoePatchEmbed(
856
+ patch_size=config.patch_size,
857
+ in_channels=config.in_channels,
858
+ embed_dim=config.hidden_size,
859
+ )
860
+
861
+ head_dim = config.hidden_size // config.num_heads
862
+ self.rotary_pos_emb = Ernie4_5_VL_MoeVisionRotaryEmbedding(head_dim // 2)
863
+
864
+ self.ln = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
865
+
866
+ def get_dtype(self):
867
+ raise AttributeError("Ernie 4.5 VL Moe does not need this!")
868
+
869
+ def get_device(self):
870
+ raise AttributeError("Ernie 4.5 VL Moe does not need this!")
871
+
872
+ def forward(
873
+ self,
874
+ hidden_states: torch.Tensor,
875
+ grid_thw: torch.Tensor,
876
+ **kwargs,
877
+ ) -> torch.Tensor:
878
+ hidden_states = self.patch_embed(hidden_states)
879
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
880
+ emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
881
+ position_embeddings = (emb.cos(), emb.sin())
882
+
883
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
884
+ dim=0,
885
+ # Select dtype based on the following factors:
886
+ # - FA2 requires that cu_seqlens_q must have dtype int32
887
+ # - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
888
+ # See https://github.com/huggingface/transformers/pull/34852 for more information
889
+ dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
890
+ )
891
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
892
+
893
+ for block in self.blocks:
894
+ hidden_states = block(
895
+ hidden_states,
896
+ cu_seqlens=cu_seqlens,
897
+ position_embeddings=position_embeddings,
898
+ **kwargs,
899
+ )
900
+ hidden_states = self.ln(hidden_states)
901
+ return hidden_states
902
+
903
+
904
+ class Ernie4_5_VL_MoeVisionMLP(nn.Module):
905
+ def __init__(self, config, in_dim, out_dim):
906
+ super().__init__()
907
+
908
+ self.fc1 = nn.Linear(in_dim, out_dim)
909
+ self.act_fn = nn.GELU()
910
+ self.fc2 = nn.Linear(out_dim, out_dim)
911
+ self.ln = nn.LayerNorm(out_dim, eps=config.vision_config.rms_norm_eps)
912
+
913
+ def forward(self, hidden_states):
914
+ hidden_states = self.fc1(hidden_states)
915
+ hidden_states = self.act_fn(hidden_states)
916
+ hidden_states = self.fc2(hidden_states)
917
+ hidden_states = self.ln(hidden_states)
918
+ return hidden_states
919
+
920
+
921
+ class Ernie4_5_VL_MoeVariableResolutionResamplerModel(nn.Module):
922
+ def __init__(self, config: Ernie4_5_VL_MoeConfig):
923
+ super().__init__()
924
+ self.config = config
925
+
926
+ self.in_dim = config.vision_config.hidden_size
927
+ self.out_dim = config.text_config.hidden_size
928
+ self.spatial_merge_size = config.vision_config.spatial_merge_size
929
+ self.temporal_merge_size = config.vision_config.temporal_merge_size
930
+
931
+ # compress 2d conv(picture) to 1d
932
+ self.spatial_dim = self.in_dim * self.spatial_merge_size**2
933
+ # compress 3d conv(video) to 1d
934
+ self.temporal_dim = self.in_dim * self.spatial_merge_size**2 * self.temporal_merge_size
935
+
936
+ self.spatial_linear = Ernie4_5_VL_MoeVisionMLP(config, self.spatial_dim, self.spatial_dim)
937
+ self.temporal_linear = Ernie4_5_VL_MoeVisionMLP(config, self.temporal_dim, self.spatial_dim)
938
+
939
+ self.mlp = nn.Linear(self.spatial_dim, self.out_dim)
940
+ self.after_norm = Ernie4_5_VL_MoeRMSNorm(self.out_dim, config.text_config.rms_norm_eps)
941
+
942
+ def _temporal_slicing(self, hidden_states, grid_thw):
943
+ """
944
+ Slices along the temporal dimension in even/odd patterns (usually if we have a video input)
945
+ or duplicates along temporal dimension (usually if we have an image input).
946
+
947
+ Example:
948
+ Video input with temporal pattern of [1, -1, 2, -2, 3, -3]
949
+ > Even input [1, 2, 3], odd input [-1, -2, -3]
950
+ > Reorderd via slices to [1, 2, 3, -1, -2, -3]
951
+ Image input with temporal pattern [1]
952
+ > Duplicate input [1], [1]
953
+ > Reordered to [1, 1]
954
+
955
+ NOTE: This is hard-coded for `temporal_merge_size == 2` and won't work otherwise.
956
+ """
957
+ # Calculating offsets on spatial dim (based on flattened tensors)
958
+ grid_t, grid_hw = grid_thw[:, 0], grid_thw[:, 1:]
959
+ grid_hw_after_conv = grid_hw.prod(-1) // (self.spatial_merge_size**2)
960
+
961
+ # Calculating offsets on batch dim (based on flattened tensors)
962
+ tokens_per_img_or_vid = (grid_thw.prod(-1) // (self.spatial_merge_size**2)).flatten()
963
+ batch_offsets = torch.empty(tokens_per_img_or_vid.size(), dtype=tokens_per_img_or_vid.dtype)
964
+ batch_offsets[0] = 0
965
+ batch_offsets[1:] = tokens_per_img_or_vid.cumsum(dim=0)[:-1]
966
+
967
+ first_slice_offsets = []
968
+ second_slice_offsets = []
969
+ for temporal_size, spatial_size, batch_offset in zip(grid_t, grid_hw_after_conv, batch_offsets):
970
+ # Depending on temporal, we may interleave:
971
+ # - Images have temporal == 1 --> same offsets (duplicate "frame" image)
972
+ # - Videos have temporal > 1 --> different offsets (even, odd)
973
+ first_offset_range = range(0, temporal_size, 2)
974
+ second_offset_range = range(1 if temporal_size > 1 else 0, temporal_size, 2)
975
+
976
+ for temporal_offset_even, temporal_offset_odd in zip(first_offset_range, second_offset_range):
977
+ first_slice_offsets.append(
978
+ torch.arange(
979
+ batch_offset + (temporal_offset_even) * spatial_size,
980
+ batch_offset + (temporal_offset_even + 1) * spatial_size,
981
+ )
982
+ )
983
+ second_slice_offsets.append(
984
+ torch.arange(
985
+ batch_offset + (temporal_offset_odd) * spatial_size,
986
+ batch_offset + (temporal_offset_odd + 1) * spatial_size,
987
+ )
988
+ )
989
+
990
+ # Input: [1, -1, 2, -2, 3, -3] or [1]
991
+ # Indices: [0, 2, 4] (even) or [0] (duplicate)
992
+ first_slice_offsets = torch.cat(first_slice_offsets, dim=-1).to(hidden_states.device)
993
+ # Indices: [1, 3, 5] (odd) or [0] (duplicate)
994
+ second_slice_offsets = torch.cat(second_slice_offsets, dim=-1).to(hidden_states.device)
995
+
996
+ # Output: [1, 2, 3, -1, -2, -3] or [1, 1]
997
+ return torch.concat(
998
+ [
999
+ torch.index_select(hidden_states, dim=0, index=first_slice_offsets),
1000
+ torch.index_select(hidden_states, dim=0, index=second_slice_offsets),
1001
+ ],
1002
+ dim=-1,
1003
+ )
1004
+
1005
+ def forward(self, hidden_states, grid_thw):
1006
+ # image spatial
1007
+ # reshape imitates convolution via linear projection
1008
+ hidden_states = hidden_states.reshape([-1, hidden_states.shape[-1] * (self.spatial_merge_size**2)])
1009
+ hidden_states = self.spatial_linear(hidden_states)
1010
+
1011
+ # video temporal
1012
+ hidden_states = self._temporal_slicing(hidden_states, grid_thw)
1013
+ hidden_states = self.temporal_linear(hidden_states)
1014
+
1015
+ # final mlp
1016
+ hidden_states = self.mlp(hidden_states)
1017
+ hidden_states = self.after_norm(hidden_states)
1018
+
1019
+ return hidden_states
1020
+
1021
+
1022
+ class Ernie4_5_VL_MoeModel(Qwen2_5_VLModel):
1023
+ _checkpoint_conversion_mapping = {"^norm": "language_model.norm"}
1024
+
1025
+ def __init__(self, config: Ernie4_5_VL_MoeConfig):
1026
+ super().__init__(config)
1027
+
1028
+ del self.visual
1029
+ self.vision_tower = Ernie4_5_VL_MoeVisionTransformerPretrainedModel._from_config(config.vision_config)
1030
+ self.resampler_model = Ernie4_5_VL_MoeVariableResolutionResamplerModel(config)
1031
+
1032
+ # TODO: Should be moved to generation loop instead in the future
1033
+ # Relevant PR(s): https://github.com/huggingface/transformers/pull/42088
1034
+ def get_position_ids(
1035
+ self,
1036
+ input_ids: torch.LongTensor = None,
1037
+ attention_mask: Optional[torch.Tensor] = None,
1038
+ past_key_values: Optional[Cache] = None,
1039
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1040
+ image_grid_thw: Optional[torch.LongTensor] = None,
1041
+ video_grid_thw: Optional[torch.LongTensor] = None,
1042
+ cache_position: Optional[torch.LongTensor] = None,
1043
+ mm_token_type_ids: Optional[torch.IntTensor] = None,
1044
+ ):
1045
+ """
1046
+ Calculating the 3D position ids with a custom mechanism / caching
1047
+ - First forward calculates the initial positions and the respective
1048
+ deltas (offset) for subsequent positions. See `get_rope_index` for
1049
+ more details.
1050
+ - Second and on (generation), uses the cache position combined with the
1051
+ cached deltas to determine the current position.
1052
+
1053
+ NOTE: We assume that the position ids are `None` and recalculate them here in any case.
1054
+ """
1055
+ # Calculate RoPE index once per generation in the pre-fill stage only.
1056
+ # When compiling, we can't check tensor values thus we check only input length
1057
+ # It is safe to assume that `length!=1` means we're in pre-fill because compiled
1058
+ # models currently cannot do asssisted decoding
1059
+ prefill_compiled_stage = is_torchdynamo_compiling() and (
1060
+ (input_ids is not None and input_ids.shape[1] != 1)
1061
+ or (inputs_embeds is not None and inputs_embeds.shape[1] != 1)
1062
+ )
1063
+ prefill_noncompiled_stage = not is_torchdynamo_compiling() and (
1064
+ (cache_position is not None and cache_position[0] == 0)
1065
+ or (past_key_values is None or past_key_values.get_seq_length() == 0)
1066
+ )
1067
+ if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None:
1068
+ position_ids, rope_deltas = self.get_rope_index(
1069
+ input_ids,
1070
+ image_grid_thw,
1071
+ video_grid_thw,
1072
+ attention_mask=attention_mask,
1073
+ mm_token_type_ids=mm_token_type_ids,
1074
+ )
1075
+ self.rope_deltas = rope_deltas
1076
+ # then use the prev pre-calculated rope-deltas to get the correct position ids
1077
+ else:
1078
+ if input_ids is not None:
1079
+ batch_size, seq_length, device = input_ids.shape[0], 1, input_ids.device
1080
+ elif inputs_embeds is not None:
1081
+ batch_size, seq_length, device = inputs_embeds.shape[0], 1, inputs_embeds.device
1082
+ else:
1083
+ raise ValueError(
1084
+ "Cannot calculate position ids without any input to the model. "
1085
+ "Need either `input_ids` or `inputs_embeds`!"
1086
+ )
1087
+
1088
+ delta = (cache_position[0] + self.rope_deltas).to(device) if cache_position is not None else 0
1089
+ position_ids = torch.arange(seq_length, device=device)
1090
+ position_ids = position_ids.view(1, -1).expand(batch_size, -1)
1091
+ if cache_position is not None: # otherwise `deltas` is an int `0`
1092
+ delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
1093
+ position_ids = position_ids.add(delta)
1094
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
1095
+
1096
+ return position_ids
1097
+
1098
+ def get_rope_index(
1099
+ self,
1100
+ input_ids: Optional[torch.LongTensor] = None,
1101
+ image_grid_thw: Optional[torch.LongTensor] = None,
1102
+ video_grid_thw: Optional[torch.LongTensor] = None,
1103
+ attention_mask: Optional[torch.Tensor] = None,
1104
+ mm_token_type_ids: Optional[torch.IntTensor] = None,
1105
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1106
+ """
1107
+ Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
1108
+
1109
+ Explanation:
1110
+ Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
1111
+
1112
+ For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
1113
+ Examples:
1114
+ input_ids: [T T T T T], here T is for text.
1115
+ temporal position_ids: [0, 1, 2, 3, 4]
1116
+ height position_ids: [0, 1, 2, 3, 4]
1117
+ width position_ids: [0, 1, 2, 3, 4]
1118
+
1119
+ For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
1120
+ and 1D rotary position embedding for text part.
1121
+ Examples:
1122
+ Temporal (Time): 3 patches, representing different segments of the video in time.
1123
+ Height: 2 patches, dividing each frame vertically.
1124
+ Width: 2 patches, dividing each frame horizontally.
1125
+ We also have some important parameters:
1126
+ fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
1127
+ tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
1128
+ temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
1129
+ interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
1130
+ input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
1131
+ vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
1132
+ vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
1133
+ vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
1134
+ text temporal position_ids: [101, 102, 103, 104, 105]
1135
+ text height position_ids: [101, 102, 103, 104, 105]
1136
+ text width position_ids: [101, 102, 103, 104, 105]
1137
+ Here we calculate the text start position_ids as the max vision position_ids plus 1.
1138
+
1139
+ Args:
1140
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1141
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1142
+ it.
1143
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1144
+ The temporal, height and width of feature shape of each image in LLM.
1145
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1146
+ The temporal, height and width of feature shape of each video in LLM.
1147
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1148
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1149
+
1150
+ - 1 for tokens that are **not masked**,
1151
+ - 0 for tokens that are **masked**.
1152
+ mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1153
+ Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2).
1154
+
1155
+ Returns:
1156
+ position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
1157
+ mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
1158
+ """
1159
+
1160
+ temporal_merge_size = self.config.vision_config.temporal_merge_size
1161
+ spatial_merge_size = self.config.vision_config.spatial_merge_size
1162
+
1163
+ mrope_position_deltas = []
1164
+ if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
1165
+ total_input_ids = input_ids
1166
+ if attention_mask is None:
1167
+ attention_mask = torch.ones_like(total_input_ids)
1168
+ position_ids = torch.ones(
1169
+ 3,
1170
+ input_ids.shape[0],
1171
+ input_ids.shape[1],
1172
+ dtype=input_ids.dtype,
1173
+ device=input_ids.device,
1174
+ )
1175
+ image_index, video_index = 0, 0
1176
+ attention_mask = attention_mask.to(total_input_ids.device)
1177
+ for i, input_ids in enumerate(total_input_ids):
1178
+ # If we don't have `mm_token_type_ids`, then we have text tokens only (== 0)
1179
+ if mm_token_type_ids is None:
1180
+ input_token_type = torch.zeros_like(input_ids)[attention_mask[i] == 1].tolist()
1181
+ else:
1182
+ input_token_type = mm_token_type_ids[i, attention_mask[i] == 1].tolist()
1183
+
1184
+ input_type_group = []
1185
+ for key, group in itertools.groupby(enumerate(input_token_type), lambda x: x[1]):
1186
+ group = list(group)
1187
+ start_index = group[0][0]
1188
+ end_index = group[-1][0] + 1
1189
+ input_type_group.append((key, start_index, end_index))
1190
+
1191
+ llm_pos_ids_list = []
1192
+ for modality_type, start_idx, end_idx in input_type_group:
1193
+ st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
1194
+
1195
+ # text == 0
1196
+ if modality_type == 0:
1197
+ text_len = end_idx - start_idx
1198
+ llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
1199
+
1200
+ # image == 1, video == 2
1201
+ else:
1202
+ grid_thw = image_grid_thw if modality_type == 1 else video_grid_thw
1203
+ mm_index = image_index if modality_type == 1 else video_index
1204
+ t_merge_size = 1 if modality_type == 1 else temporal_merge_size
1205
+
1206
+ t, h, w = (
1207
+ grid_thw[mm_index][0],
1208
+ grid_thw[mm_index][1],
1209
+ grid_thw[mm_index][2],
1210
+ )
1211
+ llm_grid_t, llm_grid_h, llm_grid_w = (
1212
+ t.item() // t_merge_size,
1213
+ h.item() // spatial_merge_size,
1214
+ w.item() // spatial_merge_size,
1215
+ )
1216
+
1217
+ for t_idx in range(llm_grid_t):
1218
+ t_index = torch.tensor(t_idx).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
1219
+ h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(1, -1, llm_grid_w).flatten()
1220
+ w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(1, llm_grid_h, -1).flatten()
1221
+ llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + st_idx)
1222
+
1223
+ if modality_type == 1:
1224
+ image_index += 1
1225
+ else:
1226
+ video_index += 1
1227
+
1228
+ llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
1229
+ position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
1230
+ mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
1231
+ mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
1232
+ return position_ids, mrope_position_deltas
1233
+ else:
1234
+ if attention_mask is not None:
1235
+ position_ids = attention_mask.long().cumsum(-1) - 1
1236
+ position_ids.masked_fill_(attention_mask == 0, 1)
1237
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
1238
+ max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
1239
+ mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
1240
+ else:
1241
+ position_ids = (
1242
+ torch.arange(input_ids.shape[1], device=input_ids.device)
1243
+ .view(1, 1, -1)
1244
+ .expand(3, input_ids.shape[0], -1)
1245
+ )
1246
+ mrope_position_deltas = torch.zeros(
1247
+ [input_ids.shape[0], 1],
1248
+ device=input_ids.device,
1249
+ dtype=input_ids.dtype,
1250
+ )
1251
+
1252
+ return position_ids, mrope_position_deltas
1253
+
1254
+ def get_video_features(
1255
+ self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
1256
+ ):
1257
+ """
1258
+ Encodes videos into continuous embeddings that can be forwarded to the language model.
1259
+
1260
+ Args:
1261
+ pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
1262
+ The tensors corresponding to the input videos.
1263
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1264
+ The temporal, height and width of feature shape of each video in LLM.
1265
+ """
1266
+ video_embeds = self.vision_tower(pixel_values_videos, video_grid_thw)
1267
+ video_embeds = self.resampler_model(video_embeds, video_grid_thw)
1268
+ split_sizes = (
1269
+ video_grid_thw.prod(-1)
1270
+ // self.vision_tower.spatial_merge_size**2
1271
+ // self.resampler_model.temporal_merge_size
1272
+ ).tolist()
1273
+ video_embeds = torch.split(video_embeds, split_sizes)
1274
+ return video_embeds
1275
+
1276
+ def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
1277
+ """
1278
+ Encodes images into continuous embeddings that can be forwarded to the language model.
1279
+
1280
+ Args:
1281
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
1282
+ The tensors corresponding to the input images.
1283
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1284
+ The temporal, height and width of feature shape of each image in LLM.
1285
+ """
1286
+ image_embeds = self.vision_tower(pixel_values, image_grid_thw)
1287
+ image_embeds = self.resampler_model(image_embeds, image_grid_thw)
1288
+ split_sizes = (image_grid_thw.prod(-1) // self.vision_tower.spatial_merge_size**2).tolist()
1289
+ image_embeds = torch.split(image_embeds, split_sizes)
1290
+ return image_embeds
1291
+
1292
+ @auto_docstring
1293
+ @can_return_tuple
1294
+ def forward(
1295
+ self,
1296
+ input_ids: torch.LongTensor = None,
1297
+ attention_mask: Optional[torch.Tensor] = None,
1298
+ position_ids: Optional[torch.LongTensor] = None,
1299
+ mm_token_type_ids: Optional[torch.IntTensor] = None,
1300
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
1301
+ past_key_values: Optional[Cache] = None,
1302
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1303
+ use_cache: Optional[bool] = None,
1304
+ pixel_values: Optional[torch.Tensor] = None,
1305
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
1306
+ image_grid_thw: Optional[torch.LongTensor] = None,
1307
+ video_grid_thw: Optional[torch.LongTensor] = None,
1308
+ rope_deltas: Optional[torch.LongTensor] = None,
1309
+ cache_position: Optional[torch.LongTensor] = None,
1310
+ **kwargs: Unpack[TransformersKwargs],
1311
+ ) -> Union[tuple, MoeModelOutputWithPast]:
1312
+ r"""
1313
+ mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1314
+ Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2).
1315
+ moe_mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1316
+ The same as `mm_token_type_ids` while additionally considering start/end image/video tokens as respective vision tokens.
1317
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1318
+ The temporal, height and width of feature shape of each image in LLM.
1319
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1320
+ The temporal, height and width of feature shape of each video in LLM.
1321
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
1322
+ The rope index difference between sequence length and multimodal rope.
1323
+ """
1324
+ if inputs_embeds is None:
1325
+ inputs_embeds = self.get_input_embeddings()(input_ids)
1326
+
1327
+ if pixel_values is not None:
1328
+ image_embeds = self.get_image_features(pixel_values, image_grid_thw)
1329
+ image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
1330
+ image_mask, _ = self.get_placeholder_mask(
1331
+ input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
1332
+ )
1333
+ inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
1334
+
1335
+ if pixel_values_videos is not None:
1336
+ video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw)
1337
+ video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
1338
+ _, video_mask = self.get_placeholder_mask(
1339
+ input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds
1340
+ )
1341
+ inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
1342
+
1343
+ if position_ids is None:
1344
+ position_ids = self.get_position_ids(
1345
+ input_ids=input_ids,
1346
+ attention_mask=attention_mask,
1347
+ past_key_values=past_key_values,
1348
+ inputs_embeds=inputs_embeds,
1349
+ image_grid_thw=image_grid_thw,
1350
+ video_grid_thw=video_grid_thw,
1351
+ cache_position=cache_position,
1352
+ mm_token_type_ids=mm_token_type_ids,
1353
+ )
1354
+
1355
+ outputs = self.language_model(
1356
+ input_ids=None,
1357
+ position_ids=position_ids,
1358
+ moe_mm_token_type_ids=moe_mm_token_type_ids,
1359
+ attention_mask=attention_mask,
1360
+ use_cache=use_cache,
1361
+ past_key_values=past_key_values,
1362
+ inputs_embeds=inputs_embeds,
1363
+ return_dict=True,
1364
+ cache_position=cache_position,
1365
+ **kwargs,
1366
+ )
1367
+
1368
+ return MoeModelOutputWithPast(
1369
+ last_hidden_state=outputs.last_hidden_state,
1370
+ past_key_values=outputs.past_key_values,
1371
+ hidden_states=outputs.hidden_states,
1372
+ attentions=outputs.attentions,
1373
+ router_logits=outputs.router_logits,
1374
+ )
1375
+
1376
+
1377
+ class Ernie4_5_VL_MoeForConditionalGeneration(Glm4vForConditionalGeneration, GenerationMixin):
1378
+ _checkpoint_conversion_mapping = {"^model.norm": "model.language_model.norm"}
1379
+
1380
+ def __init__(self, config):
1381
+ super().__init__(config)
1382
+
1383
+ self.router_aux_loss_coef = config.text_config.router_aux_loss_coef
1384
+ self.num_experts = config.text_config.moe_num_experts
1385
+ self.num_experts_per_tok = config.text_config.moe_k
1386
+
1387
+ def prepare_inputs_for_generation(
1388
+ self,
1389
+ input_ids,
1390
+ inputs_embeds=None,
1391
+ attention_mask=None,
1392
+ cache_position=None,
1393
+ past_key_values=None,
1394
+ image_grid_thw=None,
1395
+ video_grid_thw=None,
1396
+ use_cache=True,
1397
+ is_first_iteration=False,
1398
+ # Intentionally ignore position ids to force custom cache logic
1399
+ position_ids=None,
1400
+ **kwargs,
1401
+ ):
1402
+ model_inputs = super().prepare_inputs_for_generation(
1403
+ input_ids,
1404
+ inputs_embeds=inputs_embeds,
1405
+ attention_mask=attention_mask,
1406
+ cache_position=cache_position,
1407
+ past_key_values=past_key_values,
1408
+ image_grid_thw=image_grid_thw,
1409
+ video_grid_thw=video_grid_thw,
1410
+ use_cache=use_cache,
1411
+ is_first_iteration=is_first_iteration,
1412
+ **kwargs,
1413
+ )
1414
+
1415
+ # Using our own caching with rope delta
1416
+ model_inputs["position_ids"] = self.model.get_position_ids(
1417
+ input_ids=model_inputs.get("input_ids"),
1418
+ attention_mask=model_inputs.get("attention_mask"),
1419
+ past_key_values=model_inputs.get("past_key_values"),
1420
+ inputs_embeds=model_inputs.get("inputs_embeds"),
1421
+ image_grid_thw=model_inputs.get("image_grid_thw"),
1422
+ video_grid_thw=model_inputs.get("video_grid_thw"),
1423
+ cache_position=model_inputs.get("cache_position"),
1424
+ mm_token_type_ids=model_inputs.get("mm_token_type_ids"),
1425
+ )
1426
+
1427
+ if not is_first_iteration and use_cache:
1428
+ model_inputs["pixel_values"] = None
1429
+ model_inputs["pixel_values_videos"] = None
1430
+ model_inputs["mm_token_type_ids"] = None
1431
+ model_inputs["moe_mm_token_type_ids"] = None
1432
+
1433
+ return model_inputs
1434
+
1435
+ @auto_docstring
1436
+ @can_return_tuple
1437
+ def forward(
1438
+ self,
1439
+ input_ids: torch.LongTensor = None,
1440
+ attention_mask: Optional[torch.Tensor] = None,
1441
+ position_ids: Optional[torch.LongTensor] = None,
1442
+ mm_token_type_ids: Optional[torch.IntTensor] = None,
1443
+ moe_mm_token_type_ids: Optional[torch.IntTensor] = None,
1444
+ past_key_values: Optional[Cache] = None,
1445
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1446
+ labels: Optional[torch.LongTensor] = None,
1447
+ use_cache: Optional[bool] = None,
1448
+ output_router_logits: Optional[bool] = None,
1449
+ pixel_values: Optional[torch.Tensor] = None,
1450
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
1451
+ image_grid_thw: Optional[torch.LongTensor] = None,
1452
+ video_grid_thw: Optional[torch.LongTensor] = None,
1453
+ rope_deltas: Optional[torch.LongTensor] = None,
1454
+ cache_position: Optional[torch.LongTensor] = None,
1455
+ logits_to_keep: Union[int, torch.Tensor] = 0,
1456
+ **kwargs: Unpack[TransformersKwargs],
1457
+ ) -> Union[tuple, MoeCausalLMOutputWithPast]:
1458
+ r"""
1459
+ mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1460
+ Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2).
1461
+ moe_mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1462
+ The same as `mm_token_type_ids` while additionally considering start/end image/video tokens as respective vision tokens.
1463
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1464
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1465
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1466
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1467
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1468
+ The temporal, height and width of feature shape of each image in LLM.
1469
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1470
+ The temporal, height and width of feature shape of each video in LLM.
1471
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
1472
+ The rope index difference between sequence length and multimodal rope.
1473
+ """
1474
+ output_router_logits = (
1475
+ output_router_logits if output_router_logits is not None else self.config.text_config.output_router_logits
1476
+ )
1477
+
1478
+ outputs = self.model(
1479
+ input_ids=input_ids,
1480
+ attention_mask=attention_mask,
1481
+ position_ids=position_ids,
1482
+ mm_token_type_ids=mm_token_type_ids,
1483
+ moe_mm_token_type_ids=moe_mm_token_type_ids,
1484
+ past_key_values=past_key_values,
1485
+ inputs_embeds=inputs_embeds,
1486
+ use_cache=use_cache,
1487
+ output_router_logits=output_router_logits,
1488
+ return_dict=True,
1489
+ pixel_values=pixel_values,
1490
+ pixel_values_videos=pixel_values_videos,
1491
+ image_grid_thw=image_grid_thw,
1492
+ video_grid_thw=video_grid_thw,
1493
+ rope_deltas=rope_deltas,
1494
+ cache_position=cache_position,
1495
+ **kwargs,
1496
+ )
1497
+
1498
+ hidden_states = outputs.last_hidden_state
1499
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1500
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
1501
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
1502
+
1503
+ loss = None
1504
+ if labels is not None:
1505
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
1506
+
1507
+ aux_loss = None
1508
+ if output_router_logits:
1509
+ aux_loss = load_balancing_loss_func(
1510
+ outputs.router_logits,
1511
+ self.num_experts,
1512
+ self.num_experts_per_tok,
1513
+ attention_mask,
1514
+ )
1515
+ if labels is not None:
1516
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
1517
+
1518
+ return MoeCausalLMOutputWithPast(
1519
+ loss=loss,
1520
+ aux_loss=aux_loss,
1521
+ logits=logits,
1522
+ past_key_values=outputs.past_key_values,
1523
+ hidden_states=outputs.hidden_states,
1524
+ attentions=outputs.attentions,
1525
+ router_logits=outputs.router_logits,
1526
+ )
1527
+
1528
+
1529
+ class Ernie4_5_VL_MoeImageProcessorKwargs(Glm4vImageProcessorKwargs):
1530
+ r"""
1531
+ patch_size (`int`, *optional*, defaults to 14):
1532
+ The spatial patch size of the vision encoder.
1533
+ temporal_patch_size (`int`, *optional*):
1534
+ The temporal patch size of the vision encoder. Unused in the image processor, only used for videos.
1535
+ merge_size (`int`, *optional*, defaults to 2):
1536
+ The merge size of the vision encoder to llm encoder.
1537
+ """
1538
+
1539
+
1540
+ class Ernie4_5_VL_MoeImageProcessor(Glm4vImageProcessor):
1541
+ r"""
1542
+ Constructs a Ernie 4.5 VL image processor that dynamically resizes images based on the original images.
1543
+
1544
+ Args:
1545
+ do_resize (`bool`, *optional*, defaults to `True`):
1546
+ Whether to resize the image's (height, width) dimensions.
1547
+ size (`dict[str, int]`, *optional*, defaults to `{"shortest_edge": 56 * 56, "longest_edge": 28 * 28 * 6177}`):
1548
+ Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
1549
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
1550
+ Resampling filter to use when resizing the image.
1551
+ do_rescale (`bool`, *optional*, defaults to `True`):
1552
+ Whether to rescale the image by the specified scale `rescale_factor`.
1553
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
1554
+ Scale factor to use if rescaling the image.
1555
+ do_normalize (`bool`, *optional*, defaults to `True`):
1556
+ Whether to normalize the image.
1557
+ image_mean (`float` or `list[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
1558
+ Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
1559
+ image_std (`float` or `list[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
1560
+ Standard deviation to use if normalizing the image. This is a float or list of floats for each channel
1561
+ in the image.
1562
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
1563
+ Whether to convert the image to RGB.
1564
+ patch_size (`int`, *optional*, defaults to 14):
1565
+ The spatial patch size of the vision encoder.
1566
+ temporal_patch_size (`int`, *optional*):
1567
+ The temporal patch size of the vision encoder. Unused in the image processor, only used for videos.
1568
+ merge_size (`int`, *optional*, defaults to 2):
1569
+ The merge size of the vision encoder to llm encoder.
1570
+ """
1571
+
1572
+ def __init__(
1573
+ self,
1574
+ do_resize: bool = True,
1575
+ size: Optional[dict[str, int]] = None,
1576
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
1577
+ do_rescale: bool = True,
1578
+ rescale_factor: Union[int, float] = 1 / 255,
1579
+ do_normalize: bool = True,
1580
+ image_mean: Optional[Union[float, list[float]]] = None,
1581
+ image_std: Optional[Union[float, list[float]]] = None,
1582
+ do_convert_rgb: bool = True,
1583
+ patch_size: int = 14,
1584
+ temporal_patch_size: Optional[int] = None,
1585
+ merge_size: int = 2,
1586
+ **kwargs,
1587
+ ) -> None:
1588
+ BaseImageProcessor.__init__(**kwargs)
1589
+ if size is not None:
1590
+ if "shortest_edge" not in size or "longest_edge" not in size:
1591
+ raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.")
1592
+ size = {"shortest_edge": size["shortest_edge"], "longest_edge": size["longest_edge"]}
1593
+ else:
1594
+ size = {"shortest_edge": 56 * 56, "longest_edge": 6177 * 28 * 28}
1595
+ self.size = size
1596
+
1597
+ self.do_resize = do_resize
1598
+ self.resample = resample
1599
+ self.do_rescale = do_rescale
1600
+ self.rescale_factor = rescale_factor
1601
+ self.do_normalize = do_normalize
1602
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
1603
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
1604
+
1605
+ self.patch_size = patch_size
1606
+ self.temporal_patch_size = temporal_patch_size
1607
+ self.merge_size = merge_size
1608
+ self.do_convert_rgb = do_convert_rgb
1609
+
1610
+ def _preprocess(
1611
+ self,
1612
+ images: ImageInput,
1613
+ do_resize: Optional[bool] = None,
1614
+ size: Optional[dict[str, int]] = None,
1615
+ resample: PILImageResampling = None,
1616
+ do_rescale: Optional[bool] = None,
1617
+ rescale_factor: Optional[float] = None,
1618
+ do_normalize: Optional[bool] = None,
1619
+ image_mean: Optional[Union[float, list[float]]] = None,
1620
+ image_std: Optional[Union[float, list[float]]] = None,
1621
+ patch_size: Optional[int] = None,
1622
+ temporal_patch_size: Optional[int] = None,
1623
+ merge_size: Optional[int] = None,
1624
+ do_convert_rgb: Optional[bool] = None,
1625
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
1626
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
1627
+ ):
1628
+ """
1629
+ Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
1630
+
1631
+ Args:
1632
+ images (`ImageInput`):
1633
+ Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
1634
+ vision_info (`list[Dict]`, *optional*):
1635
+ Optional list of dictionaries containing additional information about vision inputs.
1636
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
1637
+ Whether to resize the image.
1638
+ size (`dict[str, int]`, *optional*, defaults to `self.size`):
1639
+ Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
1640
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
1641
+ Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
1642
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
1643
+ Whether to rescale the image.
1644
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
1645
+ Scale factor to use if rescaling the image.
1646
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
1647
+ Whether to normalize the image.
1648
+ image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
1649
+ Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
1650
+ image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
1651
+ Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
1652
+ patch_size (`int`, *optional*, defaults to `self.patch_size`):
1653
+ The spatial patch size of the vision encoder.
1654
+ temporal_patch_size (`int`, *optional*):
1655
+ The temporal patch size of the vision encoder. Unused in the image processor, only used for videos.
1656
+ merge_size (`int`, *optional*, defaults to `self.merge_size`):
1657
+ The merge size of the vision encoder to llm encoder.
1658
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
1659
+ Whether to convert the image to RGB.
1660
+ data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
1661
+ The channel dimension format for the output image. Can be one of:
1662
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
1663
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
1664
+ - Unset: Use the channel dimension format of the input image.
1665
+ input_data_format (`ChannelDimension` or `str`, *optional*):
1666
+ The channel dimension format for the input image. Can be one of:
1667
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
1668
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
1669
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
1670
+ """
1671
+ images = make_list_of_images(images)
1672
+
1673
+ if do_convert_rgb:
1674
+ images = [convert_to_rgb(image) for image in images]
1675
+
1676
+ # All transformations expect numpy arrays.
1677
+ images = [to_numpy_array(image) for image in images]
1678
+
1679
+ if do_rescale and is_scaled_image(images[0]):
1680
+ logger.warning_once(
1681
+ "It looks like you are trying to rescale already rescaled images. If the input"
1682
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
1683
+ )
1684
+ if input_data_format is None:
1685
+ # We assume that all images have the same channel dimension format.
1686
+ input_data_format = infer_channel_dimension_format(images[0])
1687
+
1688
+ height, width = get_image_size(images[0], channel_dim=input_data_format)
1689
+ resized_height, resized_width = height, width
1690
+ processed_images = []
1691
+ for image in images:
1692
+ if do_resize:
1693
+ resized_height, resized_width = smart_resize(
1694
+ height,
1695
+ width,
1696
+ factor=patch_size * merge_size,
1697
+ min_pixels=size["shortest_edge"],
1698
+ max_pixels=size["longest_edge"],
1699
+ )
1700
+ image = resize(
1701
+ image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
1702
+ )
1703
+
1704
+ if do_rescale:
1705
+ image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
1706
+
1707
+ if do_normalize:
1708
+ image = self.normalize(
1709
+ image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
1710
+ )
1711
+
1712
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
1713
+ processed_images.append(image)
1714
+
1715
+ patches = np.array(processed_images)
1716
+ if data_format == ChannelDimension.LAST:
1717
+ patches = patches.transpose([0, 3, 1, 2])
1718
+
1719
+ # Main difference to Qwen2 VL - no temporal patches
1720
+ channel = patches.shape[1]
1721
+ grid_t = patches.shape[0]
1722
+ grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
1723
+ patches = patches.reshape(
1724
+ [
1725
+ grid_t,
1726
+ channel,
1727
+ grid_h // merge_size,
1728
+ merge_size,
1729
+ patch_size,
1730
+ grid_w // merge_size,
1731
+ merge_size,
1732
+ patch_size,
1733
+ ]
1734
+ )
1735
+ # [grid_t, grid_h/merge, grid_w/merge, merge, merge, channel, patch, patch]
1736
+ patches = patches.transpose([0, 2, 5, 3, 6, 1, 4, 7])
1737
+ flatten_patches = patches.reshape(grid_t * grid_h * grid_w, channel * patch_size * patch_size)
1738
+
1739
+ return flatten_patches, (grid_t, grid_h, grid_w)
1740
+
1741
+ def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
1742
+ """
1743
+ A utility that returns number of image patches for a given image size.
1744
+
1745
+ Args:
1746
+ height (`int`):
1747
+ Height of the input image.
1748
+ width (`int`):
1749
+ Width of the input image.
1750
+ images_kwargs (`dict`, *optional*)
1751
+ Any kwargs to override defaults of the image processor.
1752
+ Returns:
1753
+ `int`: Number of image patches per image.
1754
+ """
1755
+ min_pixels = self.size["shortest_edge"]
1756
+ max_pixels = self.size["longest_edge"]
1757
+ patch_size = images_kwargs.get("patch_size", self.patch_size)
1758
+ merge_size = images_kwargs.get("merge_size", self.merge_size)
1759
+
1760
+ factor = patch_size * merge_size
1761
+ resized_height, resized_width = smart_resize(
1762
+ height, width, factor, min_pixels=min_pixels, max_pixels=max_pixels
1763
+ )
1764
+ grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
1765
+ return grid_h * grid_w
1766
+
1767
+
1768
+ class Ernie4_5_VL_MoeImageProcessorFast(Glm4vImageProcessorFast):
1769
+ size = {"shortest_edge": 56 * 56, "longest_edge": 28 * 28 * 6177}
1770
+ temporal_patch_size = None # Unused
1771
+
1772
+ def _preprocess(
1773
+ self,
1774
+ images: list["torch.Tensor"],
1775
+ do_resize: bool,
1776
+ size: SizeDict,
1777
+ interpolation: Optional["F.InterpolationMode"],
1778
+ do_rescale: bool,
1779
+ rescale_factor: float,
1780
+ do_normalize: bool,
1781
+ image_mean: Optional[Union[float, list[float]]],
1782
+ image_std: Optional[Union[float, list[float]]],
1783
+ patch_size: int,
1784
+ merge_size: int,
1785
+ disable_grouping: Optional[bool],
1786
+ return_tensors: Optional[Union[str, TensorType]],
1787
+ **kwargs,
1788
+ ):
1789
+ # Group images by size for batched resizing
1790
+ grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping)
1791
+ resized_images_grouped = {}
1792
+ for shape, stacked_images in grouped_images.items():
1793
+ height, width = stacked_images.shape[-2:]
1794
+ if do_resize:
1795
+ resized_height, resized_width = smart_resize(
1796
+ height,
1797
+ width,
1798
+ factor=patch_size * merge_size,
1799
+ min_pixels=size["shortest_edge"],
1800
+ max_pixels=size["longest_edge"],
1801
+ )
1802
+ stacked_images = self.resize(
1803
+ image=stacked_images,
1804
+ size=SizeDict(height=resized_height, width=resized_width),
1805
+ interpolation=interpolation,
1806
+ )
1807
+ resized_images_grouped[shape] = stacked_images
1808
+ resized_images = reorder_images(resized_images_grouped, grouped_images_index)
1809
+
1810
+ # Group images by size for further processing
1811
+ # Needed in case do_resize is False, or resize returns images with different sizes
1812
+ grouped_images, grouped_images_index = group_images_by_shape(resized_images, disable_grouping=disable_grouping)
1813
+ processed_images_grouped = {}
1814
+ processed_grids = {}
1815
+ for shape, stacked_images in grouped_images.items():
1816
+ resized_height, resized_width = stacked_images.shape[-2:]
1817
+ # Fused rescale and normalize
1818
+ patches = self.rescale_and_normalize(
1819
+ stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std
1820
+ )
1821
+ if patches.ndim == 4:
1822
+ # add a temporal dimension if we have images
1823
+ patches = patches.unsqueeze(1)
1824
+
1825
+ # Main difference to Qwen2 VL - no temporal patches
1826
+ batch_size, grid_t, channel = patches.shape[:3]
1827
+ grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
1828
+
1829
+ patches = patches.view(
1830
+ batch_size,
1831
+ grid_t,
1832
+ channel,
1833
+ grid_h // merge_size,
1834
+ merge_size,
1835
+ patch_size,
1836
+ grid_w // merge_size,
1837
+ merge_size,
1838
+ patch_size,
1839
+ )
1840
+ # Reorder dimensions to group grid and patch information for subsequent flattening.
1841
+ # [batch, grid_t, grid_h/merge, grid_w/merge, merge, merge, channel, patch, patch]
1842
+ patches = patches.permute(0, 1, 3, 6, 4, 7, 2, 5, 8)
1843
+
1844
+ flatten_patches = patches.reshape(
1845
+ batch_size,
1846
+ grid_t * grid_h * grid_w,
1847
+ channel * patch_size * patch_size,
1848
+ )
1849
+
1850
+ processed_images_grouped[shape] = flatten_patches
1851
+ processed_grids[shape] = [[grid_t, grid_h, grid_w]] * batch_size
1852
+
1853
+ processed_images = reorder_images(processed_images_grouped, grouped_images_index)
1854
+ processed_grids = reorder_images(processed_grids, grouped_images_index)
1855
+ pixel_values = torch.cat(processed_images, dim=0)
1856
+ image_grid_thw = torch.tensor(processed_grids)
1857
+
1858
+ return BatchFeature(
1859
+ data={"pixel_values": pixel_values, "image_grid_thw": image_grid_thw}, tensor_type=return_tensors
1860
+ )
1861
+
1862
+ def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
1863
+ """
1864
+ A utility that returns number of image patches for a given image size.
1865
+
1866
+ Note: Do not remove this method! It is used by vLLM to infer the number of patches and placeholders
1867
+ without an image input.
1868
+
1869
+ Args:
1870
+ height (`int`):
1871
+ Height of the input image.
1872
+ width (`int`):
1873
+ Width of the input image.
1874
+ images_kwargs (`dict`, *optional*)
1875
+ Any kwargs to override defaults of the image processor.
1876
+ Returns:
1877
+ `int`: Number of image patches per image.
1878
+ """
1879
+ min_pixels = self.size["shortest_edge"]
1880
+ max_pixels = self.size["longest_edge"]
1881
+ patch_size = images_kwargs.get("patch_size", self.patch_size)
1882
+ merge_size = images_kwargs.get("merge_size", self.merge_size)
1883
+
1884
+ factor = patch_size * merge_size
1885
+ resized_height, resized_width = smart_resize(
1886
+ height, width, factor, min_pixels=min_pixels, max_pixels=max_pixels
1887
+ )
1888
+ grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
1889
+ return grid_h * grid_w
1890
+
1891
+
1892
+ __all__ = [
1893
+ "Ernie4_5_VL_MoeConfig",
1894
+ "Ernie4_5_VL_MoeTextConfig",
1895
+ "Ernie4_5_VL_MoeVisionConfig",
1896
+ "Ernie4_5_VL_MoePreTrainedModel",
1897
+ "Ernie4_5_VL_MoeForConditionalGeneration",
1898
+ "Ernie4_5_VL_MoeModel",
1899
+ "Ernie4_5_VL_MoeTextModel",
1900
+ "Ernie4_5_VL_MoeVisionTransformerPretrainedModel",
1901
+ "Ernie4_5_VL_MoeVariableResolutionResamplerModel",
1902
+ "Ernie4_5_VL_MoeImageProcessor",
1903
+ "Ernie4_5_VL_MoeImageProcessorFast",
1904
+ ]