transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +49 -3
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/cli/serve.py +47 -17
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +83 -7
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +374 -147
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +2 -3
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +55 -24
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +165 -124
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +228 -136
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +3 -14
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +16 -2
- transformers/integrations/accelerate.py +58 -113
- transformers/integrations/aqlm.py +36 -66
- transformers/integrations/awq.py +46 -515
- transformers/integrations/bitnet.py +47 -105
- transformers/integrations/bitsandbytes.py +91 -202
- transformers/integrations/deepspeed.py +18 -2
- transformers/integrations/eetq.py +84 -81
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +241 -208
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +37 -62
- transformers/integrations/hub_kernels.py +65 -8
- transformers/integrations/integration_utils.py +45 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +28 -74
- transformers/integrations/peft.py +12 -29
- transformers/integrations/quanto.py +77 -56
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +42 -90
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +40 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +74 -19
- transformers/modeling_rope_utils.py +107 -86
- transformers/modeling_utils.py +611 -527
- transformers/models/__init__.py +22 -0
- transformers/models/afmoe/modeling_afmoe.py +10 -19
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +14 -6
- transformers/models/altclip/modeling_altclip.py +11 -3
- transformers/models/apertus/modeling_apertus.py +8 -6
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +5 -5
- transformers/models/aria/modeling_aria.py +12 -8
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +38 -0
- transformers/models/auto/feature_extraction_auto.py +9 -3
- transformers/models/auto/image_processing_auto.py +5 -2
- transformers/models/auto/modeling_auto.py +37 -0
- transformers/models/auto/processing_auto.py +22 -10
- transformers/models/auto/tokenization_auto.py +147 -566
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +21 -21
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +11 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +14 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +9 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +15 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +16 -3
- transformers/models/bitnet/modeling_bitnet.py +5 -5
- transformers/models/blenderbot/modeling_blenderbot.py +12 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +18 -23
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +12 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +10 -0
- transformers/models/blip_2/modeling_blip_2.py +4 -1
- transformers/models/bloom/modeling_bloom.py +17 -44
- transformers/models/blt/modeling_blt.py +164 -4
- transformers/models/blt/modular_blt.py +170 -5
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +11 -1
- transformers/models/bros/modeling_bros.py +12 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +11 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +11 -5
- transformers/models/chinese_clip/modeling_chinese_clip.py +9 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +30 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +9 -0
- transformers/models/clvp/modeling_clvp.py +19 -3
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +5 -4
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +8 -7
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -4
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +9 -1
- transformers/models/convbert/modeling_convbert.py +9 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +7 -4
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +15 -2
- transformers/models/cvt/modeling_cvt.py +7 -1
- transformers/models/cwm/modeling_cwm.py +5 -5
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +48 -39
- transformers/models/d_fine/modular_d_fine.py +16 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +5 -1
- transformers/models/dac/modeling_dac.py +6 -6
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +3 -3
- transformers/models/deberta/modeling_deberta.py +7 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +8 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +12 -6
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +9 -7
- transformers/models/deepseek_v2/modular_deepseek_v2.py +6 -4
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +12 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +7 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +5 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +13 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +16 -4
- transformers/models/dia/modular_dia.py +11 -1
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +5 -5
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -2
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +3 -4
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +18 -12
- transformers/models/dots1/modeling_dots1.py +23 -11
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +6 -3
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +56 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +14 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +16 -3
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +7 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +12 -6
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +60 -16
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +5 -5
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +20 -17
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +11 -37
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +11 -5
- transformers/models/evolla/modeling_evolla.py +13 -5
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +3 -3
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +9 -4
- transformers/models/falcon_h1/modeling_falcon_h1.py +32 -26
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +31 -37
- transformers/models/falcon_mamba/modular_falcon_mamba.py +19 -33
- transformers/models/fast_vlm/__init__.py +27 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +459 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +31 -13
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +21 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +10 -2
- transformers/models/flex_olmo/modeling_flex_olmo.py +10 -8
- transformers/models/florence2/modeling_florence2.py +22 -4
- transformers/models/florence2/modular_florence2.py +15 -1
- transformers/models/fnet/modeling_fnet.py +14 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +19 -3
- transformers/models/gemma/modeling_gemma.py +14 -16
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +5 -5
- transformers/models/gemma2/modular_gemma2.py +3 -2
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +42 -91
- transformers/models/gemma3/modular_gemma3.py +38 -87
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +65 -218
- transformers/models/gemma3n/modular_gemma3n.py +68 -68
- transformers/models/git/modeling_git.py +183 -126
- transformers/models/glm/modeling_glm.py +5 -5
- transformers/models/glm4/modeling_glm4.py +5 -5
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +13 -7
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +18 -8
- transformers/models/glm4v/modular_glm4v.py +17 -7
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +44 -27
- transformers/models/glm4v_moe/modular_glm4v_moe.py +13 -1
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +13 -6
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +4 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +19 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +6 -3
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +4 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +10 -14
- transformers/models/gpt_oss/modular_gpt_oss.py +8 -12
- transformers/models/gptj/modeling_gptj.py +18 -6
- transformers/models/granite/modeling_granite.py +5 -5
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +6 -9
- transformers/models/granitemoe/modular_granitemoe.py +1 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +36 -28
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +6 -9
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +8 -4
- transformers/models/groupvit/modeling_groupvit.py +9 -1
- transformers/models/helium/modeling_helium.py +5 -4
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +7 -0
- transformers/models/hubert/modular_hubert.py +5 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +5 -5
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +15 -7
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +22 -0
- transformers/models/idefics/modeling_idefics.py +15 -21
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +11 -3
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +13 -12
- transformers/models/internvl/modular_internvl.py +7 -13
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +25 -20
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +16 -7
- transformers/models/janus/modular_janus.py +17 -7
- transformers/models/jetmoe/modeling_jetmoe.py +4 -4
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +15 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +12 -4
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +248 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +730 -0
- transformers/models/lasr/modular_lasr.py +576 -0
- transformers/models/lasr/processing_lasr.py +94 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +10 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +16 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +11 -53
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +33 -5
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +12 -0
- transformers/models/levit/modeling_levit.py +21 -0
- transformers/models/lfm2/modeling_lfm2.py +5 -6
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +17 -8
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +23 -15
- transformers/models/llama/modeling_llama.py +5 -5
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +11 -6
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +6 -5
- transformers/models/longcat_flash/modular_longcat_flash.py +3 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -4
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +14 -0
- transformers/models/mamba/modeling_mamba.py +16 -23
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +8 -0
- transformers/models/markuplm/modeling_markuplm.py +9 -8
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +11 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +11 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +21 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +14 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +9 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +28 -5
- transformers/models/minimax/modeling_minimax.py +19 -6
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +5 -5
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +5 -4
- transformers/models/mistral/modeling_mistral.py +5 -4
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +15 -7
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +15 -4
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +8 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +7 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +7 -0
- transformers/models/modernbert/modeling_modernbert.py +16 -2
- transformers/models/modernbert/modular_modernbert.py +14 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +17 -10
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +15 -8
- transformers/models/moonshine/modeling_moonshine.py +5 -3
- transformers/models/moshi/modeling_moshi.py +26 -53
- transformers/models/mpnet/modeling_mpnet.py +7 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +10 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +7 -10
- transformers/models/musicgen/modeling_musicgen.py +7 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -0
- transformers/models/mvp/modeling_mvp.py +14 -0
- transformers/models/nanochat/modeling_nanochat.py +5 -5
- transformers/models/nemotron/modeling_nemotron.py +7 -5
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +15 -68
- transformers/models/nystromformer/modeling_nystromformer.py +13 -0
- transformers/models/olmo/modeling_olmo.py +5 -5
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +5 -6
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +5 -5
- transformers/models/olmoe/modeling_olmoe.py +15 -7
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +6 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +11 -39
- transformers/models/openai/modeling_openai.py +15 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +11 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +11 -3
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +504 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1682 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1359 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +14 -6
- transformers/models/parakeet/modular_parakeet.py +7 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +10 -0
- transformers/models/patchtst/modeling_patchtst.py +25 -6
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/{kernels/falcon_mamba/__init__.py → models/pe_audio/processing_pe_audio.py} +11 -2
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +8 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +5 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +13 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +3 -2
- transformers/models/phi/modeling_phi.py +5 -6
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +3 -2
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +9 -6
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +7 -4
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +15 -7
- transformers/models/phimoe/modular_phimoe.py +3 -3
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +3 -2
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +13 -0
- transformers/models/plbart/modular_plbart.py +8 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +13 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +5 -1
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +5 -5
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +116 -79
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +71 -33
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +23 -11
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +29 -27
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +4 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +15 -7
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +23 -20
- transformers/models/qwen3/modeling_qwen3.py +5 -5
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +15 -7
- transformers/models/qwen3_next/modeling_qwen3_next.py +7 -8
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +112 -68
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +62 -20
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +57 -42
- transformers/models/qwen3_vl/modular_qwen3_vl.py +59 -46
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +132 -148
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +36 -82
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +8 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +18 -3
- transformers/models/reformer/modeling_reformer.py +13 -1
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +10 -1
- transformers/models/rembert/modeling_rembert.py +13 -1
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +19 -5
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +6 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +13 -4
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +9 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +2 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +7 -3
- transformers/models/sam2/modular_sam2.py +7 -3
- transformers/models/sam2_video/modeling_sam2_video.py +52 -43
- transformers/models/sam2_video/modular_sam2_video.py +32 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +100 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +27 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +4 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +32 -12
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +11 -1
- transformers/models/seed_oss/modeling_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +6 -3
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +67 -41
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +5 -5
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +14 -0
- transformers/models/speecht5/modeling_speecht5.py +41 -1
- transformers/models/splinter/modeling_splinter.py +12 -3
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +8 -0
- transformers/models/stablelm/modeling_stablelm.py +4 -2
- transformers/models/starcoder2/modeling_starcoder2.py +5 -4
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +6 -0
- transformers/models/swin/modeling_swin.py +20 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +51 -33
- transformers/models/swinv2/modeling_swinv2.py +45 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +8 -7
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +6 -6
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +19 -10
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +5 -1
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +14 -0
- transformers/models/timesfm/modular_timesfm.py +14 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +20 -14
- transformers/models/trocr/modeling_trocr.py +3 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +6 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +7 -7
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +7 -6
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +5 -5
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +13 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +8 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +5 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +21 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +12 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +27 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +11 -3
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +5 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +11 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +18 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +10 -1
- transformers/models/zamba/modeling_zamba.py +4 -1
- transformers/models/zamba2/modeling_zamba2.py +7 -4
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +8 -0
- transformers/pipelines/__init__.py +11 -9
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +2 -10
- transformers/pipelines/document_question_answering.py +4 -2
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +133 -50
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +44 -174
- transformers/quantizers/quantizer_aqlm.py +2 -23
- transformers/quantizers/quantizer_auto_round.py +2 -12
- transformers/quantizers/quantizer_awq.py +20 -89
- transformers/quantizers/quantizer_bitnet.py +4 -14
- transformers/quantizers/quantizer_bnb_4bit.py +18 -155
- transformers/quantizers/quantizer_bnb_8bit.py +24 -110
- transformers/quantizers/quantizer_compressed_tensors.py +2 -9
- transformers/quantizers/quantizer_eetq.py +16 -74
- transformers/quantizers/quantizer_fbgemm_fp8.py +38 -138
- transformers/quantizers/quantizer_finegrained_fp8.py +26 -113
- transformers/quantizers/quantizer_fp_quant.py +52 -82
- transformers/quantizers/quantizer_gptq.py +8 -28
- transformers/quantizers/quantizer_higgs.py +42 -60
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +14 -194
- transformers/quantizers/quantizer_quanto.py +35 -79
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +4 -12
- transformers/quantizers/quantizer_torchao.py +50 -325
- transformers/quantizers/quantizer_vptq.py +4 -27
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +324 -47
- transformers/tokenization_mistral_common.py +7 -2
- transformers/tokenization_utils_base.py +116 -224
- transformers/tokenization_utils_tokenizers.py +190 -106
- transformers/trainer.py +51 -32
- transformers/trainer_callback.py +8 -0
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +74 -38
- transformers/utils/__init__.py +7 -4
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +35 -25
- transformers/utils/generic.py +47 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +112 -25
- transformers/utils/kernel_config.py +74 -19
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +78 -245
- transformers/video_processing_utils.py +17 -14
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +275 -229
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +832 -777
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -693,6 +693,7 @@ class RoFormerModel(RoFormerPreTrainedModel):
|
|
|
693
693
|
output_hidden_states: Optional[bool] = None,
|
|
694
694
|
return_dict: Optional[bool] = None,
|
|
695
695
|
cache_position: Optional[torch.Tensor] = None,
|
|
696
|
+
**kwargs,
|
|
696
697
|
) -> Union[BaseModelOutputWithPastAndCrossAttentions, tuple[torch.Tensor]]:
|
|
697
698
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
698
699
|
output_hidden_states = (
|
|
@@ -821,6 +822,7 @@ class RoFormerForMaskedLM(RoFormerPreTrainedModel):
|
|
|
821
822
|
output_attentions: Optional[bool] = None,
|
|
822
823
|
output_hidden_states: Optional[bool] = None,
|
|
823
824
|
return_dict: Optional[bool] = None,
|
|
825
|
+
**kwargs,
|
|
824
826
|
) -> Union[MaskedLMOutput, tuple[torch.Tensor]]:
|
|
825
827
|
r"""
|
|
826
828
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -1035,6 +1037,7 @@ class RoFormerForSequenceClassification(RoFormerPreTrainedModel):
|
|
|
1035
1037
|
output_attentions: Optional[bool] = None,
|
|
1036
1038
|
output_hidden_states: Optional[bool] = None,
|
|
1037
1039
|
return_dict: Optional[bool] = None,
|
|
1040
|
+
**kwargs,
|
|
1038
1041
|
) -> Union[SequenceClassifierOutput, tuple[torch.Tensor]]:
|
|
1039
1042
|
r"""
|
|
1040
1043
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -1114,6 +1117,7 @@ class RoFormerForMultipleChoice(RoFormerPreTrainedModel):
|
|
|
1114
1117
|
output_attentions: Optional[bool] = None,
|
|
1115
1118
|
output_hidden_states: Optional[bool] = None,
|
|
1116
1119
|
return_dict: Optional[bool] = None,
|
|
1120
|
+
**kwargs,
|
|
1117
1121
|
) -> Union[MultipleChoiceModelOutput, tuple[torch.Tensor]]:
|
|
1118
1122
|
r"""
|
|
1119
1123
|
input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
|
|
@@ -1210,6 +1214,7 @@ class RoFormerForTokenClassification(RoFormerPreTrainedModel):
|
|
|
1210
1214
|
output_attentions: Optional[bool] = None,
|
|
1211
1215
|
output_hidden_states: Optional[bool] = None,
|
|
1212
1216
|
return_dict: Optional[bool] = None,
|
|
1217
|
+
**kwargs,
|
|
1213
1218
|
) -> Union[TokenClassifierOutput, tuple[torch.Tensor]]:
|
|
1214
1219
|
r"""
|
|
1215
1220
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -1275,6 +1280,7 @@ class RoFormerForQuestionAnswering(RoFormerPreTrainedModel):
|
|
|
1275
1280
|
output_attentions: Optional[bool] = None,
|
|
1276
1281
|
output_hidden_states: Optional[bool] = None,
|
|
1277
1282
|
return_dict: Optional[bool] = None,
|
|
1283
|
+
**kwargs,
|
|
1278
1284
|
) -> Union[QuestionAnsweringModelOutput, tuple[torch.Tensor]]:
|
|
1279
1285
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
1280
1286
|
|
|
@@ -12,300 +12,29 @@
|
|
|
12
12
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
13
|
# See the License for the specific language governing permissions and
|
|
14
14
|
# limitations under the License.
|
|
15
|
-
"""Tokenization
|
|
15
|
+
"""Tokenization class for RoFormer backed by 🤗 Tokenizers."""
|
|
16
16
|
|
|
17
|
-
import collections
|
|
18
|
-
import os
|
|
19
|
-
import unicodedata
|
|
20
17
|
from typing import Optional
|
|
21
18
|
|
|
22
|
-
from
|
|
19
|
+
from tokenizers import Tokenizer, decoders, models, normalizers, pre_tokenizers, processors
|
|
20
|
+
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
|
|
21
|
+
|
|
22
|
+
from ...tokenization_utils_tokenizers import PreTrainedTokenizerFast
|
|
23
23
|
from ...utils import logging
|
|
24
|
+
from .tokenization_utils import JiebaPreTokenizer
|
|
24
25
|
|
|
25
26
|
|
|
26
27
|
logger = logging.get_logger(__name__)
|
|
27
28
|
|
|
28
|
-
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
def load_vocab(vocab_file):
|
|
32
|
-
"""Loads a vocabulary file into a dictionary."""
|
|
33
|
-
vocab = collections.OrderedDict()
|
|
34
|
-
with open(vocab_file, "r", encoding="utf-8") as reader:
|
|
35
|
-
tokens = reader.readlines()
|
|
36
|
-
for index, token in enumerate(tokens):
|
|
37
|
-
token = token.rstrip("\n")
|
|
38
|
-
vocab[token] = index
|
|
39
|
-
return vocab
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
def whitespace_tokenize(text):
|
|
43
|
-
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
|
44
|
-
text = text.strip()
|
|
45
|
-
if not text:
|
|
46
|
-
return []
|
|
47
|
-
tokens = text.split()
|
|
48
|
-
return tokens
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
class BasicTokenizer:
|
|
52
|
-
"""
|
|
53
|
-
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
|
54
|
-
|
|
55
|
-
Args:
|
|
56
|
-
do_lower_case (`bool`, *optional*, defaults to `True`):
|
|
57
|
-
Whether or not to lowercase the input when tokenizing.
|
|
58
|
-
never_split (`Iterable`, *optional*):
|
|
59
|
-
Collection of tokens which will never be split during tokenization. Only has an effect when
|
|
60
|
-
`do_basic_tokenize=True`
|
|
61
|
-
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
|
62
|
-
Whether or not to tokenize Chinese characters.
|
|
63
|
-
|
|
64
|
-
This should likely be deactivated for Japanese (see this
|
|
65
|
-
[issue](https://github.com/huggingface/transformers/issues/328)).
|
|
66
|
-
strip_accents (`bool`, *optional*):
|
|
67
|
-
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
|
68
|
-
value for `lowercase` (as in the original BERT).
|
|
69
|
-
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
|
70
|
-
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
|
71
|
-
the full context of the words, such as contractions.
|
|
72
|
-
"""
|
|
73
|
-
|
|
74
|
-
def __init__(
|
|
75
|
-
self,
|
|
76
|
-
do_lower_case=True,
|
|
77
|
-
never_split=None,
|
|
78
|
-
tokenize_chinese_chars=True,
|
|
79
|
-
strip_accents=None,
|
|
80
|
-
do_split_on_punc=True,
|
|
81
|
-
):
|
|
82
|
-
if never_split is None:
|
|
83
|
-
never_split = []
|
|
84
|
-
self.do_lower_case = do_lower_case
|
|
85
|
-
self.never_split = set(never_split)
|
|
86
|
-
self.tokenize_chinese_chars = tokenize_chinese_chars
|
|
87
|
-
self.strip_accents = strip_accents
|
|
88
|
-
self.do_split_on_punc = do_split_on_punc
|
|
89
|
-
|
|
90
|
-
def tokenize(self, text, never_split=None):
|
|
91
|
-
"""
|
|
92
|
-
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
|
93
|
-
|
|
94
|
-
Args:
|
|
95
|
-
never_split (`List[str]`, *optional*)
|
|
96
|
-
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
|
97
|
-
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
|
98
|
-
"""
|
|
99
|
-
# union() returns a new set by concatenating the two sets.
|
|
100
|
-
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
|
101
|
-
text = self._clean_text(text)
|
|
102
|
-
|
|
103
|
-
# This was added on November 1st, 2018 for the multilingual and Chinese
|
|
104
|
-
# models. This is also applied to the English models now, but it doesn't
|
|
105
|
-
# matter since the English models were not trained on any Chinese data
|
|
106
|
-
# and generally don't have any Chinese data in them (there are Chinese
|
|
107
|
-
# characters in the vocabulary because Wikipedia does have some Chinese
|
|
108
|
-
# words in the English Wikipedia.).
|
|
109
|
-
if self.tokenize_chinese_chars:
|
|
110
|
-
text = self._tokenize_chinese_chars(text)
|
|
111
|
-
# prevents treating the same character with different unicode codepoints as different characters
|
|
112
|
-
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
|
113
|
-
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
|
114
|
-
split_tokens = []
|
|
115
|
-
for token in orig_tokens:
|
|
116
|
-
if token not in never_split:
|
|
117
|
-
if self.do_lower_case:
|
|
118
|
-
token = token.lower()
|
|
119
|
-
if self.strip_accents is not False:
|
|
120
|
-
token = self._run_strip_accents(token)
|
|
121
|
-
elif self.strip_accents:
|
|
122
|
-
token = self._run_strip_accents(token)
|
|
123
|
-
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
|
124
|
-
|
|
125
|
-
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
|
126
|
-
return output_tokens
|
|
127
|
-
|
|
128
|
-
def _run_strip_accents(self, text):
|
|
129
|
-
"""Strips accents from a piece of text."""
|
|
130
|
-
text = unicodedata.normalize("NFD", text)
|
|
131
|
-
output = []
|
|
132
|
-
for char in text:
|
|
133
|
-
cat = unicodedata.category(char)
|
|
134
|
-
if cat == "Mn":
|
|
135
|
-
continue
|
|
136
|
-
output.append(char)
|
|
137
|
-
return "".join(output)
|
|
138
|
-
|
|
139
|
-
def _run_split_on_punc(self, text, never_split=None):
|
|
140
|
-
"""Splits punctuation on a piece of text."""
|
|
141
|
-
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
|
142
|
-
return [text]
|
|
143
|
-
chars = list(text)
|
|
144
|
-
i = 0
|
|
145
|
-
start_new_word = True
|
|
146
|
-
output = []
|
|
147
|
-
while i < len(chars):
|
|
148
|
-
char = chars[i]
|
|
149
|
-
if _is_punctuation(char):
|
|
150
|
-
output.append([char])
|
|
151
|
-
start_new_word = True
|
|
152
|
-
else:
|
|
153
|
-
if start_new_word:
|
|
154
|
-
output.append([])
|
|
155
|
-
start_new_word = False
|
|
156
|
-
output[-1].append(char)
|
|
157
|
-
i += 1
|
|
158
|
-
|
|
159
|
-
return ["".join(x) for x in output]
|
|
160
|
-
|
|
161
|
-
def _tokenize_chinese_chars(self, text):
|
|
162
|
-
"""Adds whitespace around any CJK character."""
|
|
163
|
-
output = []
|
|
164
|
-
for char in text:
|
|
165
|
-
cp = ord(char)
|
|
166
|
-
if self._is_chinese_char(cp):
|
|
167
|
-
output.append(" ")
|
|
168
|
-
output.append(char)
|
|
169
|
-
output.append(" ")
|
|
170
|
-
else:
|
|
171
|
-
output.append(char)
|
|
172
|
-
return "".join(output)
|
|
173
|
-
|
|
174
|
-
def _is_chinese_char(self, cp):
|
|
175
|
-
"""Checks whether CP is the codepoint of a CJK character."""
|
|
176
|
-
# This defines a "chinese character" as anything in the CJK Unicode block:
|
|
177
|
-
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
|
178
|
-
#
|
|
179
|
-
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
|
180
|
-
# despite its name. The modern Korean Hangul alphabet is a different block,
|
|
181
|
-
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
|
182
|
-
# space-separated words, so they are not treated specially and handled
|
|
183
|
-
# like the all of the other languages.
|
|
184
|
-
if (
|
|
185
|
-
(cp >= 0x4E00 and cp <= 0x9FFF)
|
|
186
|
-
or (cp >= 0x3400 and cp <= 0x4DBF)
|
|
187
|
-
or (cp >= 0x20000 and cp <= 0x2A6DF)
|
|
188
|
-
or (cp >= 0x2A700 and cp <= 0x2B73F)
|
|
189
|
-
or (cp >= 0x2B740 and cp <= 0x2B81F)
|
|
190
|
-
or (cp >= 0x2B820 and cp <= 0x2CEAF)
|
|
191
|
-
or (cp >= 0xF900 and cp <= 0xFAFF)
|
|
192
|
-
or (cp >= 0x2F800 and cp <= 0x2FA1F)
|
|
193
|
-
):
|
|
194
|
-
return True
|
|
195
|
-
|
|
196
|
-
return False
|
|
197
|
-
|
|
198
|
-
def _clean_text(self, text):
|
|
199
|
-
"""Performs invalid character removal and whitespace cleanup on text."""
|
|
200
|
-
output = []
|
|
201
|
-
for char in text:
|
|
202
|
-
cp = ord(char)
|
|
203
|
-
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
|
204
|
-
continue
|
|
205
|
-
if _is_whitespace(char):
|
|
206
|
-
output.append(" ")
|
|
207
|
-
else:
|
|
208
|
-
output.append(char)
|
|
209
|
-
return "".join(output)
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
class WordpieceTokenizer:
|
|
213
|
-
"""Runs WordPiece tokenization."""
|
|
214
|
-
|
|
215
|
-
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
|
216
|
-
self.vocab = vocab
|
|
217
|
-
self.unk_token = unk_token
|
|
218
|
-
self.max_input_chars_per_word = max_input_chars_per_word
|
|
219
|
-
|
|
220
|
-
def tokenize(self, text):
|
|
221
|
-
"""
|
|
222
|
-
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
|
223
|
-
tokenization using the given vocabulary.
|
|
224
|
-
|
|
225
|
-
For example, `input = "unaffable"` will return as output `["un", "##aff", "##able"]`.
|
|
29
|
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
|
226
30
|
|
|
227
|
-
Args:
|
|
228
|
-
text: A single token or whitespace separated tokens. This should have
|
|
229
|
-
already been passed through *BasicTokenizer*.
|
|
230
31
|
|
|
231
|
-
|
|
232
|
-
A list of wordpiece tokens.
|
|
233
|
-
"""
|
|
234
|
-
|
|
235
|
-
output_tokens = []
|
|
236
|
-
for token in whitespace_tokenize(text):
|
|
237
|
-
chars = list(token)
|
|
238
|
-
if len(chars) > self.max_input_chars_per_word:
|
|
239
|
-
output_tokens.append(self.unk_token)
|
|
240
|
-
continue
|
|
241
|
-
|
|
242
|
-
is_bad = False
|
|
243
|
-
start = 0
|
|
244
|
-
sub_tokens = []
|
|
245
|
-
while start < len(chars):
|
|
246
|
-
end = len(chars)
|
|
247
|
-
cur_substr = None
|
|
248
|
-
while start < end:
|
|
249
|
-
substr = "".join(chars[start:end])
|
|
250
|
-
if start > 0:
|
|
251
|
-
substr = "##" + substr
|
|
252
|
-
if substr in self.vocab:
|
|
253
|
-
cur_substr = substr
|
|
254
|
-
break
|
|
255
|
-
end -= 1
|
|
256
|
-
if cur_substr is None:
|
|
257
|
-
is_bad = True
|
|
258
|
-
break
|
|
259
|
-
sub_tokens.append(cur_substr)
|
|
260
|
-
start = end
|
|
261
|
-
|
|
262
|
-
if is_bad:
|
|
263
|
-
output_tokens.append(self.unk_token)
|
|
264
|
-
else:
|
|
265
|
-
output_tokens.extend(sub_tokens)
|
|
266
|
-
return output_tokens
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
class RoFormerTokenizer(PreTrainedTokenizer):
|
|
32
|
+
class RoFormerTokenizer(PreTrainedTokenizerFast):
|
|
270
33
|
r"""
|
|
271
34
|
Construct a RoFormer tokenizer. Based on [Rust Jieba](https://pypi.org/project/rjieba/).
|
|
272
35
|
|
|
273
|
-
This tokenizer inherits from [`
|
|
274
|
-
this superclass for more information regarding those methods.
|
|
275
|
-
|
|
276
|
-
Args:
|
|
277
|
-
vocab_file (`str`):
|
|
278
|
-
File containing the vocabulary.
|
|
279
|
-
do_lower_case (`bool`, *optional*, defaults to `True`):
|
|
280
|
-
Whether or not to lowercase the input when tokenizing.
|
|
281
|
-
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
|
282
|
-
Whether or not to do basic tokenization before WordPiece.
|
|
283
|
-
never_split (`Iterable`, *optional*):
|
|
284
|
-
Collection of tokens which will never be split during tokenization. Only has an effect when
|
|
285
|
-
`do_basic_tokenize=True`
|
|
286
|
-
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
|
287
|
-
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
288
|
-
token instead.
|
|
289
|
-
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
|
290
|
-
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
|
291
|
-
sequence classification or for a text and a question for question answering. It is also used as the last
|
|
292
|
-
token of a sequence built with special tokens.
|
|
293
|
-
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
|
294
|
-
The token used for padding, for example when batching sequences of different lengths.
|
|
295
|
-
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
|
296
|
-
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
|
297
|
-
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
|
298
|
-
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
|
299
|
-
The token used for masking values. This is the token used when training this model with masked language
|
|
300
|
-
modeling. This is the token which the model will try to predict.
|
|
301
|
-
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
|
302
|
-
Whether or not to tokenize Chinese characters.
|
|
303
|
-
|
|
304
|
-
This should likely be deactivated for Japanese (see this
|
|
305
|
-
[issue](https://github.com/huggingface/transformers/issues/328)).
|
|
306
|
-
strip_accents (`bool`, *optional*):
|
|
307
|
-
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
|
308
|
-
value for `lowercase` (as in the original BERT).
|
|
36
|
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
|
37
|
+
refer to this superclass for more information regarding those methods.
|
|
309
38
|
|
|
310
39
|
Example:
|
|
311
40
|
|
|
@@ -315,16 +44,15 @@ class RoFormerTokenizer(PreTrainedTokenizer):
|
|
|
315
44
|
>>> tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base")
|
|
316
45
|
>>> tokenizer.tokenize("今天天气非常好。")
|
|
317
46
|
['今', '天', '天', '气', '非常', '好', '。']
|
|
318
|
-
```
|
|
47
|
+
```
|
|
48
|
+
"""
|
|
319
49
|
|
|
320
50
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
321
51
|
|
|
322
52
|
def __init__(
|
|
323
53
|
self,
|
|
324
|
-
|
|
54
|
+
vocab: Optional[dict[str, int]] = None,
|
|
325
55
|
do_lower_case=True,
|
|
326
|
-
do_basic_tokenize=True,
|
|
327
|
-
never_split=None,
|
|
328
56
|
unk_token="[UNK]",
|
|
329
57
|
sep_token="[SEP]",
|
|
330
58
|
pad_token="[PAD]",
|
|
@@ -334,35 +62,19 @@ class RoFormerTokenizer(PreTrainedTokenizer):
|
|
|
334
62
|
strip_accents=None,
|
|
335
63
|
**kwargs,
|
|
336
64
|
):
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
if do_basic_tokenize:
|
|
346
|
-
self.basic_tokenizer = BasicTokenizer(
|
|
347
|
-
do_lower_case=do_lower_case,
|
|
348
|
-
never_split=never_split,
|
|
349
|
-
tokenize_chinese_chars=tokenize_chinese_chars,
|
|
350
|
-
strip_accents=strip_accents,
|
|
351
|
-
)
|
|
352
|
-
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
|
353
|
-
try:
|
|
354
|
-
import rjieba
|
|
355
|
-
except ImportError:
|
|
356
|
-
raise ImportError(
|
|
357
|
-
"You need to install rjieba to use RoFormerTokenizer. "
|
|
358
|
-
"See https://pypi.org/project/rjieba/ for installation."
|
|
359
|
-
)
|
|
360
|
-
self.jieba = rjieba
|
|
65
|
+
tokenizer = Tokenizer(models.WordPiece(vocab, unk_token=str(unk_token)))
|
|
66
|
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
|
67
|
+
clean_text=True,
|
|
68
|
+
handle_chinese_chars=False,
|
|
69
|
+
strip_accents=strip_accents,
|
|
70
|
+
lowercase=do_lower_case,
|
|
71
|
+
)
|
|
72
|
+
tokenizer.pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JiebaPreTokenizer(vocab))
|
|
361
73
|
|
|
74
|
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
|
75
|
+
self._tokenizer = tokenizer
|
|
362
76
|
super().__init__(
|
|
363
77
|
do_lower_case=do_lower_case,
|
|
364
|
-
do_basic_tokenize=do_basic_tokenize,
|
|
365
|
-
never_split=never_split,
|
|
366
78
|
unk_token=unk_token,
|
|
367
79
|
sep_token=sep_token,
|
|
368
80
|
pad_token=pad_token,
|
|
@@ -372,67 +84,30 @@ class RoFormerTokenizer(PreTrainedTokenizer):
|
|
|
372
84
|
strip_accents=strip_accents,
|
|
373
85
|
**kwargs,
|
|
374
86
|
)
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
87
|
+
cls_ = str(cls_token)
|
|
88
|
+
sep_ = str(sep_token)
|
|
89
|
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
|
90
|
+
single=f"{cls_}:0 $A:0 {sep_}:0",
|
|
91
|
+
pair=f"{cls_}:0 $A:0 {sep_}:0 $B:1 {sep_}:1",
|
|
92
|
+
special_tokens=[
|
|
93
|
+
(cls_, self.cls_token_id),
|
|
94
|
+
(sep_, self.sep_token_id),
|
|
95
|
+
],
|
|
96
|
+
)
|
|
383
97
|
|
|
384
98
|
def __getstate__(self):
|
|
385
99
|
state = self.__dict__.copy()
|
|
386
|
-
state["
|
|
100
|
+
tokenizer_copy = Tokenizer.from_str(state["_tokenizer"].to_str())
|
|
101
|
+
tokenizer_copy.pre_tokenizer = BertPreTokenizer()
|
|
102
|
+
state["_tokenizer"] = tokenizer_copy
|
|
387
103
|
return state
|
|
388
104
|
|
|
389
105
|
def __setstate__(self, d):
|
|
390
106
|
self.__dict__ = d
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
def get_vocab(self):
|
|
396
|
-
return dict(self.vocab, **self.added_tokens_encoder)
|
|
397
|
-
|
|
398
|
-
def _tokenize(self, text, use_jieba=True):
|
|
399
|
-
split_tokens = []
|
|
400
|
-
if use_jieba:
|
|
401
|
-
for wholword in self.jieba.cut(text, False):
|
|
402
|
-
if wholword in self.vocab:
|
|
403
|
-
split_tokens.append(wholword)
|
|
404
|
-
else:
|
|
405
|
-
# use bert tokenizer to _tokenize
|
|
406
|
-
char_list = self._tokenize(wholword, use_jieba=False)
|
|
407
|
-
split_tokens.extend(char_list)
|
|
408
|
-
else:
|
|
409
|
-
if self.do_basic_tokenize:
|
|
410
|
-
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
|
411
|
-
# If the token is part of the never_split set
|
|
412
|
-
if token in self.basic_tokenizer.never_split:
|
|
413
|
-
split_tokens.append(token)
|
|
414
|
-
else:
|
|
415
|
-
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
|
416
|
-
else:
|
|
417
|
-
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
|
418
|
-
return split_tokens
|
|
419
|
-
|
|
420
|
-
def _convert_token_to_id(self, token):
|
|
421
|
-
"""Converts a token (str) in an id using the vocab."""
|
|
422
|
-
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
|
423
|
-
|
|
424
|
-
def _convert_id_to_token(self, index):
|
|
425
|
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
426
|
-
return self.ids_to_tokens.get(index, self.unk_token)
|
|
427
|
-
|
|
428
|
-
def convert_tokens_to_string(self, tokens):
|
|
429
|
-
"""Converts a sequence of tokens (string) in a single string."""
|
|
430
|
-
out_string = " ".join(tokens).replace(" ##", "").strip()
|
|
431
|
-
return out_string
|
|
432
|
-
|
|
433
|
-
def build_inputs_with_special_tokens(
|
|
434
|
-
self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None
|
|
435
|
-
) -> list[int]:
|
|
107
|
+
vocab = self.__dict__["_tokenizer"].get_vocab()
|
|
108
|
+
self.__dict__["_tokenizer"].pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
|
|
109
|
+
|
|
110
|
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
|
436
111
|
"""
|
|
437
112
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|
438
113
|
adding special tokens. A RoFormer sequence has the following format:
|
|
@@ -449,59 +124,49 @@ class RoFormerTokenizer(PreTrainedTokenizer):
|
|
|
449
124
|
Returns:
|
|
450
125
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|
451
126
|
"""
|
|
452
|
-
|
|
453
|
-
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
|
454
|
-
cls = [self.cls_token_id]
|
|
455
|
-
sep = [self.sep_token_id]
|
|
456
|
-
return cls + token_ids_0 + sep + token_ids_1 + sep
|
|
127
|
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
|
457
128
|
|
|
458
|
-
|
|
459
|
-
|
|
129
|
+
if token_ids_1 is not None:
|
|
130
|
+
output += token_ids_1 + [self.sep_token_id]
|
|
131
|
+
|
|
132
|
+
return output
|
|
133
|
+
|
|
134
|
+
def create_token_type_ids_from_sequences(
|
|
135
|
+
self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None
|
|
460
136
|
) -> list[int]:
|
|
461
137
|
"""
|
|
462
|
-
|
|
463
|
-
special tokens using the tokenizer `prepare_for_model` method.
|
|
138
|
+
Create token type IDs for RoFormer sequence pairs.
|
|
464
139
|
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
List of IDs.
|
|
468
|
-
token_ids_1 (`List[int]`, *optional*):
|
|
469
|
-
Optional second list of IDs for sequence pairs.
|
|
470
|
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|
471
|
-
Whether or not the token list is already formatted with special tokens for the model.
|
|
472
|
-
|
|
473
|
-
Returns:
|
|
474
|
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
140
|
+
The first sequence and associated special tokens are mapped to 0, while the second sequence (if provided) and
|
|
141
|
+
its trailing separator are mapped to 1.
|
|
475
142
|
"""
|
|
143
|
+
sep = [self.sep_token_id]
|
|
144
|
+
cls = [self.cls_token_id]
|
|
476
145
|
|
|
477
|
-
if
|
|
478
|
-
return
|
|
479
|
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|
480
|
-
)
|
|
146
|
+
if token_ids_1 is None:
|
|
147
|
+
return len(cls + token_ids_0 + sep) * [0]
|
|
481
148
|
|
|
482
|
-
|
|
483
|
-
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
|
484
|
-
return [1] + ([0] * len(token_ids_0)) + [1]
|
|
149
|
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
|
485
150
|
|
|
486
151
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]:
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
__all__ = ["RoFormerTokenizer"]
|
|
152
|
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
|
153
|
+
return tuple(files)
|
|
154
|
+
|
|
155
|
+
def save_pretrained(
|
|
156
|
+
self,
|
|
157
|
+
save_directory,
|
|
158
|
+
legacy_format=None,
|
|
159
|
+
filename_prefix=None,
|
|
160
|
+
push_to_hub=False,
|
|
161
|
+
**kwargs,
|
|
162
|
+
):
|
|
163
|
+
self.backend_tokenizer.pre_tokenizer = BertPreTokenizer()
|
|
164
|
+
result = super().save_pretrained(save_directory, legacy_format, filename_prefix, push_to_hub, **kwargs)
|
|
165
|
+
vocab = self.backend_tokenizer.get_vocab()
|
|
166
|
+
self.backend_tokenizer.pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab))
|
|
167
|
+
return result
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
RoFormerTokenizerFast = RoFormerTokenizer
|
|
171
|
+
|
|
172
|
+
__all__ = ["RoFormerTokenizer", "RoFormerTokenizerFast"]
|
|
@@ -44,7 +44,7 @@ class RTDetrConfig(PreTrainedConfig):
|
|
|
44
44
|
The epsilon used by the layer normalization layers.
|
|
45
45
|
batch_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
46
46
|
The epsilon used by the batch normalization layers.
|
|
47
|
-
backbone_config (`
|
|
47
|
+
backbone_config (`Union[dict, "PreTrainedConfig"]`, *optional*, defaults to `RTDetrResNetConfig()`):
|
|
48
48
|
The configuration of the backbone model.
|
|
49
49
|
backbone (`str`, *optional*):
|
|
50
50
|
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
|
|
@@ -1059,6 +1059,10 @@ class RTDetrPreTrainedModel(PreTrainedModel):
|
|
|
1059
1059
|
init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
|
1060
1060
|
if module.bias is not None:
|
|
1061
1061
|
init.zeros_(module.bias)
|
|
1062
|
+
if getattr(module, "running_mean", None) is not None:
|
|
1063
|
+
init.zeros_(module.running_mean)
|
|
1064
|
+
init.ones_(module.running_var)
|
|
1065
|
+
init.zeros_(module.num_batches_tracked)
|
|
1062
1066
|
|
|
1063
1067
|
elif isinstance(module, nn.LayerNorm):
|
|
1064
1068
|
init.ones_(module.weight)
|
|
@@ -1311,6 +1315,7 @@ class RTDetrDecoder(RTDetrPreTrainedModel):
|
|
|
1311
1315
|
output_attentions=None,
|
|
1312
1316
|
output_hidden_states=None,
|
|
1313
1317
|
return_dict=None,
|
|
1318
|
+
**kwargs,
|
|
1314
1319
|
):
|
|
1315
1320
|
r"""
|
|
1316
1321
|
Args:
|
|
@@ -1592,6 +1597,7 @@ class RTDetrModel(RTDetrPreTrainedModel):
|
|
|
1592
1597
|
output_attentions: Optional[bool] = None,
|
|
1593
1598
|
output_hidden_states: Optional[bool] = None,
|
|
1594
1599
|
return_dict: Optional[bool] = None,
|
|
1600
|
+
**kwargs,
|
|
1595
1601
|
) -> Union[tuple[torch.FloatTensor], RTDetrModelOutput]:
|
|
1596
1602
|
r"""
|
|
1597
1603
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
@@ -316,9 +316,14 @@ class RTDetrResNetPreTrainedModel(PreTrainedModel):
|
|
|
316
316
|
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(module.weight)
|
|
317
317
|
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
|
|
318
318
|
init.uniform_(module.bias, -bound, bound)
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
init.
|
|
319
|
+
# We need to check it like that as some Detr models replace the BatchNorm2d by their own
|
|
320
|
+
elif "BatchNorm" in module.__class__.__name__:
|
|
321
|
+
init.ones_(module.weight)
|
|
322
|
+
init.zeros_(module.bias)
|
|
323
|
+
init.zeros_(module.running_mean)
|
|
324
|
+
init.ones_(module.running_var)
|
|
325
|
+
if getattr(module, "num_batches_tracked", None) is not None:
|
|
326
|
+
init.zeros_(module.num_batches_tracked)
|
|
322
327
|
|
|
323
328
|
|
|
324
329
|
@auto_docstring(
|
|
@@ -342,7 +347,11 @@ class RTDetrResNetBackbone(RTDetrResNetPreTrainedModel, BackboneMixin):
|
|
|
342
347
|
|
|
343
348
|
@auto_docstring
|
|
344
349
|
def forward(
|
|
345
|
-
self,
|
|
350
|
+
self,
|
|
351
|
+
pixel_values: Tensor,
|
|
352
|
+
output_hidden_states: Optional[bool] = None,
|
|
353
|
+
return_dict: Optional[bool] = None,
|
|
354
|
+
**kwargs,
|
|
346
355
|
) -> BackboneOutput:
|
|
347
356
|
r"""
|
|
348
357
|
Examples:
|