transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +49 -3
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/cli/serve.py +47 -17
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +83 -7
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +374 -147
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +2 -3
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +55 -24
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +165 -124
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +228 -136
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +3 -14
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +16 -2
- transformers/integrations/accelerate.py +58 -113
- transformers/integrations/aqlm.py +36 -66
- transformers/integrations/awq.py +46 -515
- transformers/integrations/bitnet.py +47 -105
- transformers/integrations/bitsandbytes.py +91 -202
- transformers/integrations/deepspeed.py +18 -2
- transformers/integrations/eetq.py +84 -81
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +241 -208
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +37 -62
- transformers/integrations/hub_kernels.py +65 -8
- transformers/integrations/integration_utils.py +45 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +28 -74
- transformers/integrations/peft.py +12 -29
- transformers/integrations/quanto.py +77 -56
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +42 -90
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +40 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +74 -19
- transformers/modeling_rope_utils.py +107 -86
- transformers/modeling_utils.py +611 -527
- transformers/models/__init__.py +22 -0
- transformers/models/afmoe/modeling_afmoe.py +10 -19
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +14 -6
- transformers/models/altclip/modeling_altclip.py +11 -3
- transformers/models/apertus/modeling_apertus.py +8 -6
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +5 -5
- transformers/models/aria/modeling_aria.py +12 -8
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +38 -0
- transformers/models/auto/feature_extraction_auto.py +9 -3
- transformers/models/auto/image_processing_auto.py +5 -2
- transformers/models/auto/modeling_auto.py +37 -0
- transformers/models/auto/processing_auto.py +22 -10
- transformers/models/auto/tokenization_auto.py +147 -566
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +21 -21
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +11 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +14 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +9 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +15 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +16 -3
- transformers/models/bitnet/modeling_bitnet.py +5 -5
- transformers/models/blenderbot/modeling_blenderbot.py +12 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +18 -23
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +12 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +10 -0
- transformers/models/blip_2/modeling_blip_2.py +4 -1
- transformers/models/bloom/modeling_bloom.py +17 -44
- transformers/models/blt/modeling_blt.py +164 -4
- transformers/models/blt/modular_blt.py +170 -5
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +11 -1
- transformers/models/bros/modeling_bros.py +12 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +11 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +11 -5
- transformers/models/chinese_clip/modeling_chinese_clip.py +9 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +30 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +9 -0
- transformers/models/clvp/modeling_clvp.py +19 -3
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +5 -4
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +8 -7
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -4
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +9 -1
- transformers/models/convbert/modeling_convbert.py +9 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +7 -4
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +15 -2
- transformers/models/cvt/modeling_cvt.py +7 -1
- transformers/models/cwm/modeling_cwm.py +5 -5
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +48 -39
- transformers/models/d_fine/modular_d_fine.py +16 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +5 -1
- transformers/models/dac/modeling_dac.py +6 -6
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +3 -3
- transformers/models/deberta/modeling_deberta.py +7 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +8 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +12 -6
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +9 -7
- transformers/models/deepseek_v2/modular_deepseek_v2.py +6 -4
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +12 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +7 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +5 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +13 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +16 -4
- transformers/models/dia/modular_dia.py +11 -1
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +5 -5
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -2
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +3 -4
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +18 -12
- transformers/models/dots1/modeling_dots1.py +23 -11
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +6 -3
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +56 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +14 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +16 -3
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +7 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +12 -6
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +60 -16
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +5 -5
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +20 -17
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +11 -37
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +11 -5
- transformers/models/evolla/modeling_evolla.py +13 -5
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +3 -3
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +9 -4
- transformers/models/falcon_h1/modeling_falcon_h1.py +32 -26
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +31 -37
- transformers/models/falcon_mamba/modular_falcon_mamba.py +19 -33
- transformers/models/fast_vlm/__init__.py +27 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +459 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +31 -13
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +21 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +10 -2
- transformers/models/flex_olmo/modeling_flex_olmo.py +10 -8
- transformers/models/florence2/modeling_florence2.py +22 -4
- transformers/models/florence2/modular_florence2.py +15 -1
- transformers/models/fnet/modeling_fnet.py +14 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +19 -3
- transformers/models/gemma/modeling_gemma.py +14 -16
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +5 -5
- transformers/models/gemma2/modular_gemma2.py +3 -2
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +42 -91
- transformers/models/gemma3/modular_gemma3.py +38 -87
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +65 -218
- transformers/models/gemma3n/modular_gemma3n.py +68 -68
- transformers/models/git/modeling_git.py +183 -126
- transformers/models/glm/modeling_glm.py +5 -5
- transformers/models/glm4/modeling_glm4.py +5 -5
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +13 -7
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +18 -8
- transformers/models/glm4v/modular_glm4v.py +17 -7
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +44 -27
- transformers/models/glm4v_moe/modular_glm4v_moe.py +13 -1
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +13 -6
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +4 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +19 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +6 -3
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +4 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +10 -14
- transformers/models/gpt_oss/modular_gpt_oss.py +8 -12
- transformers/models/gptj/modeling_gptj.py +18 -6
- transformers/models/granite/modeling_granite.py +5 -5
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +6 -9
- transformers/models/granitemoe/modular_granitemoe.py +1 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +36 -28
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +6 -9
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +8 -4
- transformers/models/groupvit/modeling_groupvit.py +9 -1
- transformers/models/helium/modeling_helium.py +5 -4
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +7 -0
- transformers/models/hubert/modular_hubert.py +5 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +5 -5
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +15 -7
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +22 -0
- transformers/models/idefics/modeling_idefics.py +15 -21
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +11 -3
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +13 -12
- transformers/models/internvl/modular_internvl.py +7 -13
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +25 -20
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +16 -7
- transformers/models/janus/modular_janus.py +17 -7
- transformers/models/jetmoe/modeling_jetmoe.py +4 -4
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +15 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +12 -4
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +248 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +730 -0
- transformers/models/lasr/modular_lasr.py +576 -0
- transformers/models/lasr/processing_lasr.py +94 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +10 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +16 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +11 -53
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +33 -5
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +12 -0
- transformers/models/levit/modeling_levit.py +21 -0
- transformers/models/lfm2/modeling_lfm2.py +5 -6
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +17 -8
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +23 -15
- transformers/models/llama/modeling_llama.py +5 -5
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +11 -6
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +6 -5
- transformers/models/longcat_flash/modular_longcat_flash.py +3 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -4
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +14 -0
- transformers/models/mamba/modeling_mamba.py +16 -23
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +8 -0
- transformers/models/markuplm/modeling_markuplm.py +9 -8
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +11 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +11 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +21 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +14 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +9 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +28 -5
- transformers/models/minimax/modeling_minimax.py +19 -6
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +5 -5
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +5 -4
- transformers/models/mistral/modeling_mistral.py +5 -4
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +15 -7
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +15 -4
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +8 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +7 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +7 -0
- transformers/models/modernbert/modeling_modernbert.py +16 -2
- transformers/models/modernbert/modular_modernbert.py +14 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +17 -10
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +15 -8
- transformers/models/moonshine/modeling_moonshine.py +5 -3
- transformers/models/moshi/modeling_moshi.py +26 -53
- transformers/models/mpnet/modeling_mpnet.py +7 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +10 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +7 -10
- transformers/models/musicgen/modeling_musicgen.py +7 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -0
- transformers/models/mvp/modeling_mvp.py +14 -0
- transformers/models/nanochat/modeling_nanochat.py +5 -5
- transformers/models/nemotron/modeling_nemotron.py +7 -5
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +15 -68
- transformers/models/nystromformer/modeling_nystromformer.py +13 -0
- transformers/models/olmo/modeling_olmo.py +5 -5
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +5 -6
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +5 -5
- transformers/models/olmoe/modeling_olmoe.py +15 -7
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +6 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +11 -39
- transformers/models/openai/modeling_openai.py +15 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +11 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +11 -3
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +504 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1682 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1359 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +14 -6
- transformers/models/parakeet/modular_parakeet.py +7 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +10 -0
- transformers/models/patchtst/modeling_patchtst.py +25 -6
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/{kernels/falcon_mamba/__init__.py → models/pe_audio/processing_pe_audio.py} +11 -2
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +8 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +5 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +13 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +3 -2
- transformers/models/phi/modeling_phi.py +5 -6
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +3 -2
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +9 -6
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +7 -4
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +15 -7
- transformers/models/phimoe/modular_phimoe.py +3 -3
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +3 -2
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +13 -0
- transformers/models/plbart/modular_plbart.py +8 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +13 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +5 -1
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +5 -5
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +116 -79
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +71 -33
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +23 -11
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +29 -27
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +4 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +15 -7
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +23 -20
- transformers/models/qwen3/modeling_qwen3.py +5 -5
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +15 -7
- transformers/models/qwen3_next/modeling_qwen3_next.py +7 -8
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +112 -68
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +62 -20
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +57 -42
- transformers/models/qwen3_vl/modular_qwen3_vl.py +59 -46
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +132 -148
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +36 -82
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +8 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +18 -3
- transformers/models/reformer/modeling_reformer.py +13 -1
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +10 -1
- transformers/models/rembert/modeling_rembert.py +13 -1
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +19 -5
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +6 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +13 -4
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +9 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +2 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +7 -3
- transformers/models/sam2/modular_sam2.py +7 -3
- transformers/models/sam2_video/modeling_sam2_video.py +52 -43
- transformers/models/sam2_video/modular_sam2_video.py +32 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +100 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +27 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +4 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +32 -12
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +11 -1
- transformers/models/seed_oss/modeling_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +6 -3
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +67 -41
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +5 -5
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +14 -0
- transformers/models/speecht5/modeling_speecht5.py +41 -1
- transformers/models/splinter/modeling_splinter.py +12 -3
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +8 -0
- transformers/models/stablelm/modeling_stablelm.py +4 -2
- transformers/models/starcoder2/modeling_starcoder2.py +5 -4
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +6 -0
- transformers/models/swin/modeling_swin.py +20 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +51 -33
- transformers/models/swinv2/modeling_swinv2.py +45 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +8 -7
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +6 -6
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +19 -10
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +5 -1
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +14 -0
- transformers/models/timesfm/modular_timesfm.py +14 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +20 -14
- transformers/models/trocr/modeling_trocr.py +3 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +6 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +7 -7
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +7 -6
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +5 -5
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +13 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +8 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +5 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +21 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +12 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +27 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +11 -3
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +5 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +11 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +18 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +10 -1
- transformers/models/zamba/modeling_zamba.py +4 -1
- transformers/models/zamba2/modeling_zamba2.py +7 -4
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +8 -0
- transformers/pipelines/__init__.py +11 -9
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +2 -10
- transformers/pipelines/document_question_answering.py +4 -2
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +133 -50
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +44 -174
- transformers/quantizers/quantizer_aqlm.py +2 -23
- transformers/quantizers/quantizer_auto_round.py +2 -12
- transformers/quantizers/quantizer_awq.py +20 -89
- transformers/quantizers/quantizer_bitnet.py +4 -14
- transformers/quantizers/quantizer_bnb_4bit.py +18 -155
- transformers/quantizers/quantizer_bnb_8bit.py +24 -110
- transformers/quantizers/quantizer_compressed_tensors.py +2 -9
- transformers/quantizers/quantizer_eetq.py +16 -74
- transformers/quantizers/quantizer_fbgemm_fp8.py +38 -138
- transformers/quantizers/quantizer_finegrained_fp8.py +26 -113
- transformers/quantizers/quantizer_fp_quant.py +52 -82
- transformers/quantizers/quantizer_gptq.py +8 -28
- transformers/quantizers/quantizer_higgs.py +42 -60
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +14 -194
- transformers/quantizers/quantizer_quanto.py +35 -79
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +4 -12
- transformers/quantizers/quantizer_torchao.py +50 -325
- transformers/quantizers/quantizer_vptq.py +4 -27
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +324 -47
- transformers/tokenization_mistral_common.py +7 -2
- transformers/tokenization_utils_base.py +116 -224
- transformers/tokenization_utils_tokenizers.py +190 -106
- transformers/trainer.py +51 -32
- transformers/trainer_callback.py +8 -0
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +74 -38
- transformers/utils/__init__.py +7 -4
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +35 -25
- transformers/utils/generic.py +47 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +112 -25
- transformers/utils/kernel_config.py +74 -19
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +78 -245
- transformers/video_processing_utils.py +17 -14
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +275 -229
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +832 -777
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -215,6 +215,46 @@ class Siglip2VisionEmbeddings(nn.Module):
|
|
|
215
215
|
return embeddings
|
|
216
216
|
|
|
217
217
|
|
|
218
|
+
class Siglip2TextEmbeddings(nn.Module):
|
|
219
|
+
def __init__(self, config: Siglip2TextConfig):
|
|
220
|
+
super().__init__()
|
|
221
|
+
embed_dim = config.hidden_size
|
|
222
|
+
|
|
223
|
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
|
224
|
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
|
225
|
+
|
|
226
|
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
|
227
|
+
self.register_buffer(
|
|
228
|
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
def forward(
|
|
232
|
+
self,
|
|
233
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
234
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
235
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
236
|
+
) -> torch.Tensor:
|
|
237
|
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
|
238
|
+
max_position_embedding = self.position_embedding.weight.shape[0]
|
|
239
|
+
|
|
240
|
+
if seq_length > max_position_embedding:
|
|
241
|
+
raise ValueError(
|
|
242
|
+
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
|
|
243
|
+
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
|
|
244
|
+
)
|
|
245
|
+
|
|
246
|
+
if position_ids is None:
|
|
247
|
+
position_ids = self.position_ids[:, :seq_length]
|
|
248
|
+
|
|
249
|
+
if inputs_embeds is None:
|
|
250
|
+
inputs_embeds = self.token_embedding(input_ids)
|
|
251
|
+
|
|
252
|
+
position_embeddings = self.position_embedding(position_ids)
|
|
253
|
+
embeddings = inputs_embeds + position_embeddings
|
|
254
|
+
|
|
255
|
+
return embeddings
|
|
256
|
+
|
|
257
|
+
|
|
218
258
|
def eager_attention_forward(
|
|
219
259
|
module: nn.Module,
|
|
220
260
|
query: torch.Tensor,
|
|
@@ -412,6 +452,8 @@ class Siglip2PreTrainedModel(PreTrainedModel):
|
|
|
412
452
|
else self.config.hidden_size
|
|
413
453
|
)
|
|
414
454
|
init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
|
455
|
+
if hasattr(module, "position_ids"):
|
|
456
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
415
457
|
elif isinstance(module, nn.Embedding):
|
|
416
458
|
default_flax_embed_init(module.weight)
|
|
417
459
|
elif isinstance(module, Siglip2Attention):
|
|
@@ -447,6 +489,8 @@ class Siglip2PreTrainedModel(PreTrainedModel):
|
|
|
447
489
|
elif isinstance(module, nn.LayerNorm):
|
|
448
490
|
init.zeros_(module.bias)
|
|
449
491
|
init.ones_(module.weight)
|
|
492
|
+
elif isinstance(module, Siglip2TextEmbeddings):
|
|
493
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
450
494
|
|
|
451
495
|
|
|
452
496
|
class Siglip2Encoder(nn.Module):
|
|
@@ -484,6 +528,7 @@ class Siglip2Encoder(nn.Module):
|
|
|
484
528
|
|
|
485
529
|
|
|
486
530
|
class Siglip2VisionTransformer(Siglip2PreTrainedModel):
|
|
531
|
+
_input_embed_layer = "patch_embedding"
|
|
487
532
|
_can_record_outputs = {
|
|
488
533
|
"hidden_states": Siglip2EncoderLayer,
|
|
489
534
|
"attentions": Siglip2Attention,
|
|
@@ -501,6 +546,8 @@ class Siglip2VisionTransformer(Siglip2PreTrainedModel):
|
|
|
501
546
|
if self.use_head:
|
|
502
547
|
self.head = Siglip2MultiheadAttentionPoolingHead(config)
|
|
503
548
|
|
|
549
|
+
self.post_init()
|
|
550
|
+
|
|
504
551
|
@check_model_inputs(tie_last_hidden_states=False)
|
|
505
552
|
@auto_docstring
|
|
506
553
|
def forward(
|
|
@@ -510,6 +557,7 @@ class Siglip2VisionTransformer(Siglip2PreTrainedModel):
|
|
|
510
557
|
spatial_shapes: torch.LongTensor,
|
|
511
558
|
output_attentions: Optional[bool] = None,
|
|
512
559
|
output_hidden_states: Optional[bool] = None,
|
|
560
|
+
**kwargs,
|
|
513
561
|
) -> BaseModelOutputWithPooling:
|
|
514
562
|
r"""
|
|
515
563
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
|
|
@@ -548,49 +596,11 @@ class Siglip2VisionTransformer(Siglip2PreTrainedModel):
|
|
|
548
596
|
)
|
|
549
597
|
|
|
550
598
|
|
|
551
|
-
class
|
|
552
|
-
|
|
553
|
-
super().__init__()
|
|
554
|
-
embed_dim = config.hidden_size
|
|
599
|
+
class Siglip2TextTransformer(Siglip2PreTrainedModel):
|
|
600
|
+
_input_embed_layer = "token_embedding"
|
|
555
601
|
|
|
556
|
-
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
|
557
|
-
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
|
558
|
-
|
|
559
|
-
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
|
560
|
-
self.register_buffer(
|
|
561
|
-
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
|
562
|
-
)
|
|
563
|
-
|
|
564
|
-
def forward(
|
|
565
|
-
self,
|
|
566
|
-
input_ids: Optional[torch.LongTensor] = None,
|
|
567
|
-
position_ids: Optional[torch.LongTensor] = None,
|
|
568
|
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
569
|
-
) -> torch.Tensor:
|
|
570
|
-
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
|
571
|
-
max_position_embedding = self.position_embedding.weight.shape[0]
|
|
572
|
-
|
|
573
|
-
if seq_length > max_position_embedding:
|
|
574
|
-
raise ValueError(
|
|
575
|
-
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
|
|
576
|
-
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
|
|
577
|
-
)
|
|
578
|
-
|
|
579
|
-
if position_ids is None:
|
|
580
|
-
position_ids = self.position_ids[:, :seq_length]
|
|
581
|
-
|
|
582
|
-
if inputs_embeds is None:
|
|
583
|
-
inputs_embeds = self.token_embedding(input_ids)
|
|
584
|
-
|
|
585
|
-
position_embeddings = self.position_embedding(position_ids)
|
|
586
|
-
embeddings = inputs_embeds + position_embeddings
|
|
587
|
-
|
|
588
|
-
return embeddings
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
class Siglip2TextTransformer(nn.Module):
|
|
592
602
|
def __init__(self, config: Siglip2TextConfig):
|
|
593
|
-
super().__init__()
|
|
603
|
+
super().__init__(config)
|
|
594
604
|
self.config = config
|
|
595
605
|
embed_dim = config.hidden_size
|
|
596
606
|
self.embeddings = Siglip2TextEmbeddings(config)
|
|
@@ -598,6 +608,7 @@ class Siglip2TextTransformer(nn.Module):
|
|
|
598
608
|
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
599
609
|
|
|
600
610
|
self.head = nn.Linear(embed_dim, config.projection_size)
|
|
611
|
+
self.post_init()
|
|
601
612
|
|
|
602
613
|
@can_return_tuple
|
|
603
614
|
@auto_docstring
|
|
@@ -760,6 +771,7 @@ class Siglip2VisionModel(Siglip2PreTrainedModel):
|
|
|
760
771
|
spatial_shapes: torch.LongTensor,
|
|
761
772
|
output_attentions: Optional[bool] = None,
|
|
762
773
|
output_hidden_states: Optional[bool] = None,
|
|
774
|
+
**kwargs,
|
|
763
775
|
) -> BaseModelOutputWithPooling:
|
|
764
776
|
r"""
|
|
765
777
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
|
@@ -831,6 +843,12 @@ class Siglip2Model(Siglip2PreTrainedModel):
|
|
|
831
843
|
# Initialize weights and apply final processing
|
|
832
844
|
self.post_init()
|
|
833
845
|
|
|
846
|
+
def get_input_embeddings(self) -> nn.Module:
|
|
847
|
+
return self.text_model.embeddings.token_embedding
|
|
848
|
+
|
|
849
|
+
def set_input_embeddings(self, value: nn.Module):
|
|
850
|
+
self.text_model.embeddings.token_embedding = value
|
|
851
|
+
|
|
834
852
|
@filter_out_non_signature_kwargs()
|
|
835
853
|
@auto_docstring
|
|
836
854
|
def get_text_features(
|
|
@@ -927,6 +945,7 @@ class Siglip2Model(Siglip2PreTrainedModel):
|
|
|
927
945
|
return_loss: Optional[bool] = None,
|
|
928
946
|
output_attentions: Optional[bool] = None,
|
|
929
947
|
output_hidden_states: Optional[bool] = None,
|
|
948
|
+
**kwargs,
|
|
930
949
|
) -> Siglip2Output:
|
|
931
950
|
r"""
|
|
932
951
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
|
@@ -1048,6 +1067,12 @@ class Siglip2ForImageClassification(Siglip2PreTrainedModel):
|
|
|
1048
1067
|
# Initialize weights and apply final processing
|
|
1049
1068
|
self.post_init()
|
|
1050
1069
|
|
|
1070
|
+
def get_input_embeddings(self) -> nn.Module:
|
|
1071
|
+
return self.vision_model.embeddings.patch_embedding
|
|
1072
|
+
|
|
1073
|
+
def set_input_embeddings(self, value: nn.Module):
|
|
1074
|
+
self.vision_model.embeddings.patch_embedding = value
|
|
1075
|
+
|
|
1051
1076
|
@check_model_inputs
|
|
1052
1077
|
@auto_docstring
|
|
1053
1078
|
def forward(
|
|
@@ -1058,6 +1083,7 @@ class Siglip2ForImageClassification(Siglip2PreTrainedModel):
|
|
|
1058
1083
|
labels: Optional[torch.Tensor] = None,
|
|
1059
1084
|
output_attentions: Optional[bool] = None,
|
|
1060
1085
|
output_hidden_states: Optional[bool] = None,
|
|
1086
|
+
**kwargs,
|
|
1061
1087
|
) -> ImageClassifierOutput:
|
|
1062
1088
|
r"""
|
|
1063
1089
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
|
@@ -247,6 +247,7 @@ class Siglip2VisionTransformer(SiglipVisionTransformer):
|
|
|
247
247
|
spatial_shapes: torch.LongTensor,
|
|
248
248
|
output_attentions: Optional[bool] = None,
|
|
249
249
|
output_hidden_states: Optional[bool] = None,
|
|
250
|
+
**kwargs,
|
|
250
251
|
) -> BaseModelOutputWithPooling:
|
|
251
252
|
r"""
|
|
252
253
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
|
|
@@ -324,6 +325,7 @@ class Siglip2VisionModel(SiglipVisionModel):
|
|
|
324
325
|
spatial_shapes: torch.LongTensor,
|
|
325
326
|
output_attentions: Optional[bool] = None,
|
|
326
327
|
output_hidden_states: Optional[bool] = None,
|
|
328
|
+
**kwargs,
|
|
327
329
|
) -> BaseModelOutputWithPooling:
|
|
328
330
|
r"""
|
|
329
331
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
|
@@ -419,6 +421,7 @@ class Siglip2Model(SiglipModel):
|
|
|
419
421
|
return_loss: Optional[bool] = None,
|
|
420
422
|
output_attentions: Optional[bool] = None,
|
|
421
423
|
output_hidden_states: Optional[bool] = None,
|
|
424
|
+
**kwargs,
|
|
422
425
|
) -> Siglip2Output:
|
|
423
426
|
r"""
|
|
424
427
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
|
@@ -522,6 +525,7 @@ class Siglip2ForImageClassification(SiglipForImageClassification):
|
|
|
522
525
|
labels: Optional[torch.Tensor] = None,
|
|
523
526
|
output_attentions: Optional[bool] = None,
|
|
524
527
|
output_hidden_states: Optional[bool] = None,
|
|
528
|
+
**kwargs,
|
|
525
529
|
) -> ImageClassifierOutput:
|
|
526
530
|
r"""
|
|
527
531
|
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
|
@@ -28,7 +28,7 @@ from torch import nn
|
|
|
28
28
|
from ...activations import ACT2FN
|
|
29
29
|
from ...cache_utils import Cache, DynamicCache
|
|
30
30
|
from ...generation import GenerationMixin
|
|
31
|
-
from ...integrations import use_kernel_forward_from_hub, use_kernel_func_from_hub
|
|
31
|
+
from ...integrations import use_kernel_forward_from_hub, use_kernel_func_from_hub, use_kernelized_func
|
|
32
32
|
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
|
|
33
33
|
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
|
34
34
|
from ...modeling_layers import (
|
|
@@ -42,7 +42,7 @@ from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
|
42
42
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
43
43
|
from ...processing_utils import Unpack
|
|
44
44
|
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
|
|
45
|
-
from ...utils.generic import check_model_inputs
|
|
45
|
+
from ...utils.generic import check_model_inputs, maybe_autocast
|
|
46
46
|
from .configuration_smollm3 import SmolLM3Config
|
|
47
47
|
|
|
48
48
|
|
|
@@ -63,7 +63,7 @@ class SmolLM3RotaryEmbedding(nn.Module):
|
|
|
63
63
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
64
64
|
|
|
65
65
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
66
|
-
self.original_inv_freq =
|
|
66
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
67
67
|
|
|
68
68
|
@staticmethod
|
|
69
69
|
def compute_default_rope_parameters(
|
|
@@ -102,7 +102,7 @@ class SmolLM3RotaryEmbedding(nn.Module):
|
|
|
102
102
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
103
103
|
|
|
104
104
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
105
|
-
with
|
|
105
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
106
106
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
107
107
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
108
108
|
cos = emb.cos() * self.attention_scaling
|
|
@@ -184,6 +184,7 @@ def eager_attention_forward(
|
|
|
184
184
|
return attn_output, attn_weights
|
|
185
185
|
|
|
186
186
|
|
|
187
|
+
@use_kernelized_func(apply_rotary_pos_emb)
|
|
187
188
|
class SmolLM3Attention(nn.Module):
|
|
188
189
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
189
190
|
|
|
@@ -209,7 +210,6 @@ class SmolLM3Attention(nn.Module):
|
|
|
209
210
|
self.o_proj = nn.Linear(
|
|
210
211
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
|
211
212
|
)
|
|
212
|
-
self.rotary_fn = apply_rotary_pos_emb
|
|
213
213
|
|
|
214
214
|
self.use_rope = config.no_rope_layers[layer_idx]
|
|
215
215
|
self.sliding_window = (
|
|
@@ -330,6 +330,8 @@ class SmolVLMVisionTransformer(SmolVLMPreTrainedModel):
|
|
|
330
330
|
self.patch_size = config.patch_size
|
|
331
331
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
332
332
|
|
|
333
|
+
self.post_init()
|
|
334
|
+
|
|
333
335
|
def get_input_embeddings(self):
|
|
334
336
|
return self.embeddings
|
|
335
337
|
|
|
@@ -853,6 +855,7 @@ class SmolVLMForConditionalGeneration(SmolVLMPreTrainedModel, GenerationMixin):
|
|
|
853
855
|
pixel_attention_mask=None,
|
|
854
856
|
image_hidden_states=None,
|
|
855
857
|
logits_to_keep=None,
|
|
858
|
+
is_first_iteration=False,
|
|
856
859
|
**kwargs,
|
|
857
860
|
):
|
|
858
861
|
# Overwritten -- there are mutually exclusive inputs (if the logic to make `image_hidden_states` take
|
|
@@ -868,10 +871,11 @@ class SmolVLMForConditionalGeneration(SmolVLMPreTrainedModel, GenerationMixin):
|
|
|
868
871
|
pixel_attention_mask=pixel_attention_mask,
|
|
869
872
|
image_hidden_states=image_hidden_states,
|
|
870
873
|
logits_to_keep=logits_to_keep,
|
|
874
|
+
is_first_iteration=is_first_iteration,
|
|
871
875
|
**kwargs,
|
|
872
876
|
)
|
|
873
877
|
|
|
874
|
-
if image_hidden_states is not None or
|
|
878
|
+
if image_hidden_states is not None or not is_first_iteration:
|
|
875
879
|
model_inputs["pixel_values"] = None
|
|
876
880
|
model_inputs["pixel_attention_mask"] = None
|
|
877
881
|
|
|
@@ -27,13 +27,6 @@ from ...utils import is_num2words_available, is_vision_available, logging
|
|
|
27
27
|
from ...video_utils import VideoInput
|
|
28
28
|
|
|
29
29
|
|
|
30
|
-
if is_vision_available():
|
|
31
|
-
from .video_processing_smolvlm import (
|
|
32
|
-
DEFAULT_MEDIA_OUTTRO,
|
|
33
|
-
DEFAULT_VIDEO_INTRO,
|
|
34
|
-
FRAME_TIMESTAMP_MESSAGE,
|
|
35
|
-
)
|
|
36
|
-
|
|
37
30
|
if is_vision_available():
|
|
38
31
|
from .video_processing_smolvlm import (
|
|
39
32
|
DEFAULT_MEDIA_OUTTRO,
|
|
@@ -331,7 +331,6 @@ class SmolVLMVideoProcessor(BaseVideoProcessor):
|
|
|
331
331
|
processed_videos = reorder_videos(processed_videos_grouped, grouped_videos_index)
|
|
332
332
|
pixel_attention_mask = reorder_videos(processed_padded_mask_grouped, grouped_videos_index)
|
|
333
333
|
|
|
334
|
-
processed_videos = torch.stack(processed_videos, dim=0) if return_tensors else processed_videos
|
|
335
334
|
data = {"pixel_values": processed_videos}
|
|
336
335
|
|
|
337
336
|
if do_pad:
|
|
@@ -22,6 +22,7 @@ import torch
|
|
|
22
22
|
from torch import nn
|
|
23
23
|
from torch.nn import CrossEntropyLoss
|
|
24
24
|
|
|
25
|
+
from ... import initialization as init
|
|
25
26
|
from ...activations import ACT2FN
|
|
26
27
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
27
28
|
from ...generation import GenerationMixin
|
|
@@ -105,6 +106,7 @@ class Speech2TextSinusoidalPositionalEmbedding(nn.Module):
|
|
|
105
106
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
|
106
107
|
super().__init__()
|
|
107
108
|
self.offset = 2
|
|
109
|
+
self.num_positions = num_positions
|
|
108
110
|
self.embedding_dim = embedding_dim
|
|
109
111
|
self.padding_idx = padding_idx
|
|
110
112
|
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
|
@@ -495,6 +497,14 @@ class Speech2TextPreTrainedModel(PreTrainedModel):
|
|
|
495
497
|
_supports_sdpa = False
|
|
496
498
|
_supports_flex_attn = False
|
|
497
499
|
|
|
500
|
+
def _init_weights(self, module):
|
|
501
|
+
super()._init_weights(module)
|
|
502
|
+
if isinstance(module, Speech2TextSinusoidalPositionalEmbedding):
|
|
503
|
+
emb_weights = module.get_embedding(
|
|
504
|
+
module.num_positions + module.offset, module.embedding_dim, module.padding_idx
|
|
505
|
+
)
|
|
506
|
+
init.copy_(module.weights, emb_weights)
|
|
507
|
+
|
|
498
508
|
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
|
499
509
|
"""
|
|
500
510
|
Computes the output length of the convolutional layers
|
|
@@ -567,6 +577,7 @@ class Speech2TextEncoder(Speech2TextPreTrainedModel):
|
|
|
567
577
|
output_attentions=None,
|
|
568
578
|
output_hidden_states=None,
|
|
569
579
|
return_dict=None,
|
|
580
|
+
**kwargs,
|
|
570
581
|
):
|
|
571
582
|
r"""
|
|
572
583
|
Args:
|
|
@@ -707,6 +718,7 @@ class Speech2TextDecoder(Speech2TextPreTrainedModel):
|
|
|
707
718
|
output_hidden_states=None,
|
|
708
719
|
return_dict=None,
|
|
709
720
|
cache_position=None,
|
|
721
|
+
**kwargs,
|
|
710
722
|
):
|
|
711
723
|
r"""
|
|
712
724
|
Args:
|
|
@@ -899,6 +911,7 @@ class Speech2TextModel(Speech2TextPreTrainedModel):
|
|
|
899
911
|
output_hidden_states: Optional[bool] = None,
|
|
900
912
|
return_dict: Optional[bool] = None,
|
|
901
913
|
cache_position: Optional[torch.Tensor] = None,
|
|
914
|
+
**kwargs,
|
|
902
915
|
) -> Union[tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
|
903
916
|
r"""
|
|
904
917
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
@@ -1035,6 +1048,7 @@ class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel, Generation
|
|
|
1035
1048
|
output_hidden_states: Optional[bool] = None,
|
|
1036
1049
|
return_dict: Optional[bool] = None,
|
|
1037
1050
|
cache_position: Optional[torch.Tensor] = None,
|
|
1051
|
+
**kwargs,
|
|
1038
1052
|
) -> Union[tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
|
1039
1053
|
r"""
|
|
1040
1054
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
@@ -290,6 +290,7 @@ class SpeechT5SinusoidalPositionalEmbedding(nn.Module):
|
|
|
290
290
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
|
291
291
|
super().__init__()
|
|
292
292
|
self.offset = 2
|
|
293
|
+
self.num_positions = num_positions
|
|
293
294
|
self.embedding_dim = embedding_dim
|
|
294
295
|
self.padding_idx = padding_idx
|
|
295
296
|
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
|
@@ -414,6 +415,7 @@ class SpeechT5ScaledPositionalEncoding(nn.Module):
|
|
|
414
415
|
self.register_buffer("pe", pe, persistent=False)
|
|
415
416
|
self.dropout = nn.Dropout(p=dropout)
|
|
416
417
|
self.dim = dim
|
|
418
|
+
self.max_len = max_len
|
|
417
419
|
self.alpha = nn.Parameter(torch.tensor(1.0))
|
|
418
420
|
|
|
419
421
|
def forward(self, emb):
|
|
@@ -1184,6 +1186,14 @@ class SpeechT5PreTrainedModel(PreTrainedModel):
|
|
|
1184
1186
|
init.constant_(module.conv.bias, 0)
|
|
1185
1187
|
elif isinstance(module, SpeechT5ScaledPositionalEncoding):
|
|
1186
1188
|
init.ones_(module.alpha)
|
|
1189
|
+
dim, max_len = module.dim, module.max_len
|
|
1190
|
+
pe = torch.zeros(max_len, dim)
|
|
1191
|
+
position = torch.arange(0, max_len).unsqueeze(1)
|
|
1192
|
+
div_term = torch.exp(torch.arange(0, dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / dim))
|
|
1193
|
+
pe[:, 0::2] = torch.sin(position.float() * div_term)
|
|
1194
|
+
pe[:, 1::2] = torch.cos(position.float() * div_term)
|
|
1195
|
+
pe = pe.unsqueeze(0)
|
|
1196
|
+
init.copy_(module.pe, pe)
|
|
1187
1197
|
elif isinstance(module, SpeechT5FeatureProjection):
|
|
1188
1198
|
k = math.sqrt(1 / module.projection.in_features)
|
|
1189
1199
|
init.uniform_(module.projection.weight, a=-k, b=k)
|
|
@@ -1195,6 +1205,10 @@ class SpeechT5PreTrainedModel(PreTrainedModel):
|
|
|
1195
1205
|
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm1d)):
|
|
1196
1206
|
init.zeros_(module.bias)
|
|
1197
1207
|
init.ones_(module.weight)
|
|
1208
|
+
if getattr(module, "running_mean", None) is not None:
|
|
1209
|
+
init.zeros_(module.running_mean)
|
|
1210
|
+
init.ones_(module.running_var)
|
|
1211
|
+
init.zeros_(module.num_batches_tracked)
|
|
1198
1212
|
elif isinstance(module, nn.Conv1d):
|
|
1199
1213
|
init.kaiming_normal_(module.weight)
|
|
1200
1214
|
if module.bias is not None:
|
|
@@ -1205,6 +1219,14 @@ class SpeechT5PreTrainedModel(PreTrainedModel):
|
|
|
1205
1219
|
# Here we need the check explicitly, as we slice the weight in the `zeros_` call, so it looses the flag
|
|
1206
1220
|
if module.padding_idx is not None and not getattr(module.weight, "_is_hf_initialized", False):
|
|
1207
1221
|
init.zeros_(module.weight[module.padding_idx])
|
|
1222
|
+
elif isinstance(module, SpeechT5SinusoidalPositionalEmbedding):
|
|
1223
|
+
emb_weights = module.get_embedding(
|
|
1224
|
+
module.num_positions + module.offset, module.embedding_dim, module.padding_idx
|
|
1225
|
+
)
|
|
1226
|
+
init.copy_(module.weights, emb_weights)
|
|
1227
|
+
elif isinstance(module, SpeechT5HifiGan):
|
|
1228
|
+
init.zeros_(module.mean)
|
|
1229
|
+
init.ones_(module.scale)
|
|
1208
1230
|
|
|
1209
1231
|
if hasattr(module, "masked_spec_embed"):
|
|
1210
1232
|
init.uniform_(module.masked_spec_embed)
|
|
@@ -1239,6 +1261,7 @@ class SpeechT5Encoder(SpeechT5PreTrainedModel):
|
|
|
1239
1261
|
output_attentions: Optional[bool] = None,
|
|
1240
1262
|
output_hidden_states: Optional[bool] = None,
|
|
1241
1263
|
return_dict: Optional[bool] = None,
|
|
1264
|
+
**kwargs,
|
|
1242
1265
|
) -> Union[tuple, BaseModelOutput]:
|
|
1243
1266
|
"""
|
|
1244
1267
|
Args:
|
|
@@ -1342,6 +1365,7 @@ class SpeechT5EncoderWithSpeechPrenet(SpeechT5PreTrainedModel):
|
|
|
1342
1365
|
output_attentions: Optional[bool] = None,
|
|
1343
1366
|
output_hidden_states: Optional[bool] = None,
|
|
1344
1367
|
return_dict: Optional[bool] = None,
|
|
1368
|
+
**kwargs,
|
|
1345
1369
|
) -> Union[tuple, BaseModelOutput]:
|
|
1346
1370
|
hidden_states, attention_mask = self.prenet(input_values, attention_mask)
|
|
1347
1371
|
|
|
@@ -1382,6 +1406,7 @@ class SpeechT5EncoderWithTextPrenet(SpeechT5PreTrainedModel):
|
|
|
1382
1406
|
output_attentions: Optional[bool] = None,
|
|
1383
1407
|
output_hidden_states: Optional[bool] = None,
|
|
1384
1408
|
return_dict: Optional[bool] = None,
|
|
1409
|
+
**kwargs,
|
|
1385
1410
|
) -> Union[tuple, BaseModelOutput]:
|
|
1386
1411
|
hidden_states = self.prenet(input_values)
|
|
1387
1412
|
|
|
@@ -1416,6 +1441,7 @@ class SpeechT5EncoderWithoutPrenet(SpeechT5PreTrainedModel):
|
|
|
1416
1441
|
output_attentions: Optional[bool] = None,
|
|
1417
1442
|
output_hidden_states: Optional[bool] = None,
|
|
1418
1443
|
return_dict: Optional[bool] = None,
|
|
1444
|
+
**kwargs,
|
|
1419
1445
|
) -> Union[tuple, BaseModelOutput]:
|
|
1420
1446
|
return self.wrapped_encoder(
|
|
1421
1447
|
hidden_states=input_values,
|
|
@@ -1454,6 +1480,7 @@ class SpeechT5Decoder(SpeechT5PreTrainedModel):
|
|
|
1454
1480
|
output_hidden_states: Optional[bool] = None,
|
|
1455
1481
|
return_dict: Optional[bool] = None,
|
|
1456
1482
|
cache_position: Optional[torch.Tensor] = None,
|
|
1483
|
+
**kwargs,
|
|
1457
1484
|
) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
1458
1485
|
r"""
|
|
1459
1486
|
Args:
|
|
@@ -1613,6 +1640,7 @@ class SpeechT5DecoderWithSpeechPrenet(SpeechT5PreTrainedModel):
|
|
|
1613
1640
|
output_hidden_states: Optional[bool] = None,
|
|
1614
1641
|
return_dict: Optional[bool] = None,
|
|
1615
1642
|
cache_position: Optional[torch.Tensor] = None,
|
|
1643
|
+
**kwargs,
|
|
1616
1644
|
) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
1617
1645
|
decoder_hidden_states = self.prenet(input_values, speaker_embeddings)
|
|
1618
1646
|
|
|
@@ -1663,6 +1691,7 @@ class SpeechT5DecoderWithTextPrenet(SpeechT5PreTrainedModel):
|
|
|
1663
1691
|
output_hidden_states: Optional[bool] = None,
|
|
1664
1692
|
return_dict: Optional[bool] = None,
|
|
1665
1693
|
cache_position: Optional[torch.Tensor] = None,
|
|
1694
|
+
**kwargs,
|
|
1666
1695
|
) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
1667
1696
|
decoder_hidden_states, attention_mask = self.prenet(input_values, attention_mask, past_key_values)
|
|
1668
1697
|
|
|
@@ -1707,6 +1736,7 @@ class SpeechT5DecoderWithoutPrenet(SpeechT5PreTrainedModel):
|
|
|
1707
1736
|
output_hidden_states: Optional[bool] = None,
|
|
1708
1737
|
return_dict: Optional[bool] = None,
|
|
1709
1738
|
cache_position: Optional[torch.Tensor] = None,
|
|
1739
|
+
**kwargs,
|
|
1710
1740
|
) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
1711
1741
|
outputs = self.wrapped_decoder(
|
|
1712
1742
|
hidden_states=input_values,
|
|
@@ -1905,6 +1935,7 @@ class SpeechT5Model(SpeechT5PreTrainedModel):
|
|
|
1905
1935
|
output_hidden_states: Optional[bool] = None,
|
|
1906
1936
|
return_dict: Optional[bool] = None,
|
|
1907
1937
|
cache_position: Optional[torch.Tensor] = None,
|
|
1938
|
+
**kwargs,
|
|
1908
1939
|
) -> Union[tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
|
1909
1940
|
r"""
|
|
1910
1941
|
input_values (`torch.Tensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -2046,6 +2077,7 @@ class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel, GenerationMixin):
|
|
|
2046
2077
|
return_dict: Optional[bool] = None,
|
|
2047
2078
|
labels: Optional[torch.LongTensor] = None,
|
|
2048
2079
|
cache_position: Optional[torch.Tensor] = None,
|
|
2080
|
+
**kwargs,
|
|
2049
2081
|
) -> Union[tuple, Seq2SeqLMOutput]:
|
|
2050
2082
|
r"""
|
|
2051
2083
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -2356,6 +2388,7 @@ class SpeechT5ForTextToSpeech(SpeechT5PreTrainedModel):
|
|
|
2356
2388
|
labels: Optional[torch.FloatTensor] = None,
|
|
2357
2389
|
stop_labels: Optional[torch.Tensor] = None,
|
|
2358
2390
|
cache_position: Optional[torch.Tensor] = None,
|
|
2391
|
+
**kwargs,
|
|
2359
2392
|
) -> Union[tuple, Seq2SeqSpectrogramOutput]:
|
|
2360
2393
|
r"""
|
|
2361
2394
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -2694,6 +2727,7 @@ class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel):
|
|
|
2694
2727
|
labels: Optional[torch.FloatTensor] = None,
|
|
2695
2728
|
stop_labels: Optional[torch.Tensor] = None,
|
|
2696
2729
|
cache_position: Optional[torch.Tensor] = None,
|
|
2730
|
+
**kwargs,
|
|
2697
2731
|
) -> Union[tuple, Seq2SeqSpectrogramOutput]:
|
|
2698
2732
|
r"""
|
|
2699
2733
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -2996,6 +3030,12 @@ class SpeechT5HifiGan(PreTrainedModel):
|
|
|
2996
3030
|
# Initialize weights and apply final processing
|
|
2997
3031
|
self.post_init()
|
|
2998
3032
|
|
|
3033
|
+
def _init_weights(self, module):
|
|
3034
|
+
super()._init_weights(module)
|
|
3035
|
+
if isinstance(module, SpeechT5HifiGan):
|
|
3036
|
+
init.zeros_(module.mean)
|
|
3037
|
+
init.ones_(module.scale)
|
|
3038
|
+
|
|
2999
3039
|
def apply_weight_norm(self):
|
|
3000
3040
|
weight_norm = nn.utils.weight_norm
|
|
3001
3041
|
if hasattr(nn.utils.parametrizations, "weight_norm"):
|
|
@@ -3023,7 +3063,7 @@ class SpeechT5HifiGan(PreTrainedModel):
|
|
|
3023
3063
|
waveform.
|
|
3024
3064
|
"""
|
|
3025
3065
|
)
|
|
3026
|
-
def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor:
|
|
3066
|
+
def forward(self, spectrogram: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
|
|
3027
3067
|
r"""
|
|
3028
3068
|
spectrogram (`torch.FloatTensor`):
|
|
3029
3069
|
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
|
|
@@ -22,6 +22,7 @@ import torch
|
|
|
22
22
|
from torch import nn
|
|
23
23
|
from torch.nn import CrossEntropyLoss
|
|
24
24
|
|
|
25
|
+
from ... import initialization as init
|
|
25
26
|
from ...activations import ACT2FN
|
|
26
27
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
27
28
|
from ...modeling_outputs import BaseModelOutput, ModelOutput, QuestionAnsweringModelOutput
|
|
@@ -305,9 +306,9 @@ class SplinterEncoder(nn.Module):
|
|
|
305
306
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
306
307
|
|
|
307
308
|
layer_outputs = layer_module(
|
|
308
|
-
hidden_states
|
|
309
|
-
attention_mask
|
|
310
|
-
output_attentions
|
|
309
|
+
hidden_states,
|
|
310
|
+
attention_mask,
|
|
311
|
+
output_attentions,
|
|
311
312
|
**kwargs,
|
|
312
313
|
)
|
|
313
314
|
|
|
@@ -331,6 +332,11 @@ class SplinterPreTrainedModel(PreTrainedModel):
|
|
|
331
332
|
base_model_prefix = "splinter"
|
|
332
333
|
supports_gradient_checkpointing = True
|
|
333
334
|
|
|
335
|
+
def _init_weights(self, module):
|
|
336
|
+
super()._init_weights(module)
|
|
337
|
+
if isinstance(module, SplinterEmbeddings):
|
|
338
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
339
|
+
|
|
334
340
|
|
|
335
341
|
@auto_docstring
|
|
336
342
|
class SplinterModel(SplinterPreTrainedModel):
|
|
@@ -368,6 +374,7 @@ class SplinterModel(SplinterPreTrainedModel):
|
|
|
368
374
|
output_attentions: Optional[bool] = None,
|
|
369
375
|
output_hidden_states: Optional[bool] = None,
|
|
370
376
|
return_dict: Optional[bool] = None,
|
|
377
|
+
**kwargs,
|
|
371
378
|
) -> Union[tuple, BaseModelOutput]:
|
|
372
379
|
r"""
|
|
373
380
|
token_type_ids (`torch.LongTensor` of shape `batch_size, sequence_length`, *optional*):
|
|
@@ -516,6 +523,7 @@ class SplinterForQuestionAnswering(SplinterPreTrainedModel):
|
|
|
516
523
|
output_hidden_states: Optional[bool] = None,
|
|
517
524
|
return_dict: Optional[bool] = None,
|
|
518
525
|
question_positions: Optional[torch.LongTensor] = None,
|
|
526
|
+
**kwargs,
|
|
519
527
|
) -> Union[tuple, QuestionAnsweringModelOutput]:
|
|
520
528
|
r"""
|
|
521
529
|
token_type_ids (`torch.LongTensor` of shape `batch_size, sequence_length`, *optional*):
|
|
@@ -658,6 +666,7 @@ class SplinterForPreTraining(SplinterPreTrainedModel):
|
|
|
658
666
|
output_hidden_states: Optional[bool] = None,
|
|
659
667
|
return_dict: Optional[bool] = None,
|
|
660
668
|
question_positions: Optional[torch.LongTensor] = None,
|
|
669
|
+
**kwargs,
|
|
661
670
|
) -> Union[tuple, SplinterForPreTrainingOutput]:
|
|
662
671
|
r"""
|
|
663
672
|
input_ids (`torch.LongTensor` of shape `(batch_size, num_questions, sequence_length)`):
|