transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +49 -3
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/cli/serve.py +47 -17
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +83 -7
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +374 -147
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +2 -3
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +55 -24
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +165 -124
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +228 -136
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +3 -14
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +16 -2
- transformers/integrations/accelerate.py +58 -113
- transformers/integrations/aqlm.py +36 -66
- transformers/integrations/awq.py +46 -515
- transformers/integrations/bitnet.py +47 -105
- transformers/integrations/bitsandbytes.py +91 -202
- transformers/integrations/deepspeed.py +18 -2
- transformers/integrations/eetq.py +84 -81
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +241 -208
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +37 -62
- transformers/integrations/hub_kernels.py +65 -8
- transformers/integrations/integration_utils.py +45 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +28 -74
- transformers/integrations/peft.py +12 -29
- transformers/integrations/quanto.py +77 -56
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +42 -90
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +40 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +74 -19
- transformers/modeling_rope_utils.py +107 -86
- transformers/modeling_utils.py +611 -527
- transformers/models/__init__.py +22 -0
- transformers/models/afmoe/modeling_afmoe.py +10 -19
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +14 -6
- transformers/models/altclip/modeling_altclip.py +11 -3
- transformers/models/apertus/modeling_apertus.py +8 -6
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +5 -5
- transformers/models/aria/modeling_aria.py +12 -8
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +38 -0
- transformers/models/auto/feature_extraction_auto.py +9 -3
- transformers/models/auto/image_processing_auto.py +5 -2
- transformers/models/auto/modeling_auto.py +37 -0
- transformers/models/auto/processing_auto.py +22 -10
- transformers/models/auto/tokenization_auto.py +147 -566
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +21 -21
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +11 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +14 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +9 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +15 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +16 -3
- transformers/models/bitnet/modeling_bitnet.py +5 -5
- transformers/models/blenderbot/modeling_blenderbot.py +12 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +18 -23
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +12 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +10 -0
- transformers/models/blip_2/modeling_blip_2.py +4 -1
- transformers/models/bloom/modeling_bloom.py +17 -44
- transformers/models/blt/modeling_blt.py +164 -4
- transformers/models/blt/modular_blt.py +170 -5
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +11 -1
- transformers/models/bros/modeling_bros.py +12 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +11 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +11 -5
- transformers/models/chinese_clip/modeling_chinese_clip.py +9 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +30 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +9 -0
- transformers/models/clvp/modeling_clvp.py +19 -3
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +5 -4
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +8 -7
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -4
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +9 -1
- transformers/models/convbert/modeling_convbert.py +9 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +7 -4
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +15 -2
- transformers/models/cvt/modeling_cvt.py +7 -1
- transformers/models/cwm/modeling_cwm.py +5 -5
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +48 -39
- transformers/models/d_fine/modular_d_fine.py +16 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +5 -1
- transformers/models/dac/modeling_dac.py +6 -6
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +3 -3
- transformers/models/deberta/modeling_deberta.py +7 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +8 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +12 -6
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +9 -7
- transformers/models/deepseek_v2/modular_deepseek_v2.py +6 -4
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +12 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +7 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +5 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +13 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +16 -4
- transformers/models/dia/modular_dia.py +11 -1
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +5 -5
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -2
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +3 -4
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +18 -12
- transformers/models/dots1/modeling_dots1.py +23 -11
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +6 -3
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +56 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +14 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +16 -3
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +7 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +12 -6
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +60 -16
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +5 -5
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +20 -17
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +11 -37
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +11 -5
- transformers/models/evolla/modeling_evolla.py +13 -5
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +3 -3
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +9 -4
- transformers/models/falcon_h1/modeling_falcon_h1.py +32 -26
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +31 -37
- transformers/models/falcon_mamba/modular_falcon_mamba.py +19 -33
- transformers/models/fast_vlm/__init__.py +27 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +459 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +31 -13
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +21 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +10 -2
- transformers/models/flex_olmo/modeling_flex_olmo.py +10 -8
- transformers/models/florence2/modeling_florence2.py +22 -4
- transformers/models/florence2/modular_florence2.py +15 -1
- transformers/models/fnet/modeling_fnet.py +14 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +19 -3
- transformers/models/gemma/modeling_gemma.py +14 -16
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +5 -5
- transformers/models/gemma2/modular_gemma2.py +3 -2
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +42 -91
- transformers/models/gemma3/modular_gemma3.py +38 -87
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +65 -218
- transformers/models/gemma3n/modular_gemma3n.py +68 -68
- transformers/models/git/modeling_git.py +183 -126
- transformers/models/glm/modeling_glm.py +5 -5
- transformers/models/glm4/modeling_glm4.py +5 -5
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +13 -7
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +18 -8
- transformers/models/glm4v/modular_glm4v.py +17 -7
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +44 -27
- transformers/models/glm4v_moe/modular_glm4v_moe.py +13 -1
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +13 -6
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +4 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +19 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +6 -3
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +4 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +10 -14
- transformers/models/gpt_oss/modular_gpt_oss.py +8 -12
- transformers/models/gptj/modeling_gptj.py +18 -6
- transformers/models/granite/modeling_granite.py +5 -5
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +6 -9
- transformers/models/granitemoe/modular_granitemoe.py +1 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +36 -28
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +6 -9
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +8 -4
- transformers/models/groupvit/modeling_groupvit.py +9 -1
- transformers/models/helium/modeling_helium.py +5 -4
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +7 -0
- transformers/models/hubert/modular_hubert.py +5 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +5 -5
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +15 -7
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +22 -0
- transformers/models/idefics/modeling_idefics.py +15 -21
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +11 -3
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +13 -12
- transformers/models/internvl/modular_internvl.py +7 -13
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +25 -20
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +16 -7
- transformers/models/janus/modular_janus.py +17 -7
- transformers/models/jetmoe/modeling_jetmoe.py +4 -4
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +15 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +12 -4
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +248 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +730 -0
- transformers/models/lasr/modular_lasr.py +576 -0
- transformers/models/lasr/processing_lasr.py +94 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +10 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +16 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +11 -53
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +33 -5
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +12 -0
- transformers/models/levit/modeling_levit.py +21 -0
- transformers/models/lfm2/modeling_lfm2.py +5 -6
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +17 -8
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +23 -15
- transformers/models/llama/modeling_llama.py +5 -5
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +11 -6
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +6 -5
- transformers/models/longcat_flash/modular_longcat_flash.py +3 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -4
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +14 -0
- transformers/models/mamba/modeling_mamba.py +16 -23
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +8 -0
- transformers/models/markuplm/modeling_markuplm.py +9 -8
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +11 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +11 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +21 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +14 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +9 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +28 -5
- transformers/models/minimax/modeling_minimax.py +19 -6
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +5 -5
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +5 -4
- transformers/models/mistral/modeling_mistral.py +5 -4
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +15 -7
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +15 -4
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +8 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +7 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +7 -0
- transformers/models/modernbert/modeling_modernbert.py +16 -2
- transformers/models/modernbert/modular_modernbert.py +14 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +17 -10
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +15 -8
- transformers/models/moonshine/modeling_moonshine.py +5 -3
- transformers/models/moshi/modeling_moshi.py +26 -53
- transformers/models/mpnet/modeling_mpnet.py +7 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +10 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +7 -10
- transformers/models/musicgen/modeling_musicgen.py +7 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -0
- transformers/models/mvp/modeling_mvp.py +14 -0
- transformers/models/nanochat/modeling_nanochat.py +5 -5
- transformers/models/nemotron/modeling_nemotron.py +7 -5
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +15 -68
- transformers/models/nystromformer/modeling_nystromformer.py +13 -0
- transformers/models/olmo/modeling_olmo.py +5 -5
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +5 -6
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +5 -5
- transformers/models/olmoe/modeling_olmoe.py +15 -7
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +6 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +11 -39
- transformers/models/openai/modeling_openai.py +15 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +11 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +11 -3
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +504 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1682 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1359 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +14 -6
- transformers/models/parakeet/modular_parakeet.py +7 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +10 -0
- transformers/models/patchtst/modeling_patchtst.py +25 -6
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/{kernels/falcon_mamba/__init__.py → models/pe_audio/processing_pe_audio.py} +11 -2
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +8 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +5 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +13 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +3 -2
- transformers/models/phi/modeling_phi.py +5 -6
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +3 -2
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +9 -6
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +7 -4
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +15 -7
- transformers/models/phimoe/modular_phimoe.py +3 -3
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +3 -2
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +13 -0
- transformers/models/plbart/modular_plbart.py +8 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +13 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +5 -1
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +5 -5
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +116 -79
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +71 -33
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +23 -11
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +29 -27
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +4 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +15 -7
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +23 -20
- transformers/models/qwen3/modeling_qwen3.py +5 -5
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +15 -7
- transformers/models/qwen3_next/modeling_qwen3_next.py +7 -8
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +112 -68
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +62 -20
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +57 -42
- transformers/models/qwen3_vl/modular_qwen3_vl.py +59 -46
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +132 -148
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +36 -82
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +8 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +18 -3
- transformers/models/reformer/modeling_reformer.py +13 -1
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +10 -1
- transformers/models/rembert/modeling_rembert.py +13 -1
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +19 -5
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +6 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +13 -4
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +9 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +2 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +7 -3
- transformers/models/sam2/modular_sam2.py +7 -3
- transformers/models/sam2_video/modeling_sam2_video.py +52 -43
- transformers/models/sam2_video/modular_sam2_video.py +32 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +100 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +27 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +4 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +32 -12
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +11 -1
- transformers/models/seed_oss/modeling_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +6 -3
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +67 -41
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +5 -5
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +14 -0
- transformers/models/speecht5/modeling_speecht5.py +41 -1
- transformers/models/splinter/modeling_splinter.py +12 -3
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +8 -0
- transformers/models/stablelm/modeling_stablelm.py +4 -2
- transformers/models/starcoder2/modeling_starcoder2.py +5 -4
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +6 -0
- transformers/models/swin/modeling_swin.py +20 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +51 -33
- transformers/models/swinv2/modeling_swinv2.py +45 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +8 -7
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +6 -6
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +19 -10
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +5 -1
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +14 -0
- transformers/models/timesfm/modular_timesfm.py +14 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +20 -14
- transformers/models/trocr/modeling_trocr.py +3 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +6 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +7 -7
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +7 -6
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +5 -5
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +13 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +8 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +5 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +21 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +12 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +27 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +11 -3
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +5 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +11 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +18 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +10 -1
- transformers/models/zamba/modeling_zamba.py +4 -1
- transformers/models/zamba2/modeling_zamba2.py +7 -4
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +8 -0
- transformers/pipelines/__init__.py +11 -9
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +2 -10
- transformers/pipelines/document_question_answering.py +4 -2
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +133 -50
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +44 -174
- transformers/quantizers/quantizer_aqlm.py +2 -23
- transformers/quantizers/quantizer_auto_round.py +2 -12
- transformers/quantizers/quantizer_awq.py +20 -89
- transformers/quantizers/quantizer_bitnet.py +4 -14
- transformers/quantizers/quantizer_bnb_4bit.py +18 -155
- transformers/quantizers/quantizer_bnb_8bit.py +24 -110
- transformers/quantizers/quantizer_compressed_tensors.py +2 -9
- transformers/quantizers/quantizer_eetq.py +16 -74
- transformers/quantizers/quantizer_fbgemm_fp8.py +38 -138
- transformers/quantizers/quantizer_finegrained_fp8.py +26 -113
- transformers/quantizers/quantizer_fp_quant.py +52 -82
- transformers/quantizers/quantizer_gptq.py +8 -28
- transformers/quantizers/quantizer_higgs.py +42 -60
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +14 -194
- transformers/quantizers/quantizer_quanto.py +35 -79
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +4 -12
- transformers/quantizers/quantizer_torchao.py +50 -325
- transformers/quantizers/quantizer_vptq.py +4 -27
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +324 -47
- transformers/tokenization_mistral_common.py +7 -2
- transformers/tokenization_utils_base.py +116 -224
- transformers/tokenization_utils_tokenizers.py +190 -106
- transformers/trainer.py +51 -32
- transformers/trainer_callback.py +8 -0
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +74 -38
- transformers/utils/__init__.py +7 -4
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +35 -25
- transformers/utils/generic.py +47 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +112 -25
- transformers/utils/kernel_config.py +74 -19
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +78 -245
- transformers/video_processing_utils.py +17 -14
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +275 -229
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +832 -777
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -164,18 +164,17 @@ class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module):
|
|
|
164
164
|
super().__init__()
|
|
165
165
|
self.max_len = config.max_source_positions
|
|
166
166
|
self.d_model = config.hidden_size
|
|
167
|
-
self.pe =
|
|
168
|
-
self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
|
|
167
|
+
self.register_buffer("pe", self.extend_pe(torch.tensor(0.0).expand(1, self.max_len)), persistent=False)
|
|
169
168
|
|
|
170
|
-
def extend_pe(self, x):
|
|
169
|
+
def extend_pe(self, x, pe=None):
|
|
171
170
|
# Reset the positional encodings
|
|
172
|
-
if
|
|
171
|
+
if pe is not None:
|
|
173
172
|
# self.pe contains both positive and negative parts
|
|
174
173
|
# the length of self.pe is 2 * input_len - 1
|
|
175
|
-
if
|
|
176
|
-
if
|
|
177
|
-
|
|
178
|
-
return
|
|
174
|
+
if pe.size(1) >= x.size(1) * 2 - 1:
|
|
175
|
+
if pe.dtype != x.dtype or pe.device != x.device:
|
|
176
|
+
pe = pe.to(dtype=x.dtype, device=x.device)
|
|
177
|
+
return pe
|
|
179
178
|
# Suppose `i` is the position of query vector and `j` is the
|
|
180
179
|
# position of key vector. We use positive relative positions when keys
|
|
181
180
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
|
@@ -196,10 +195,10 @@ class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module):
|
|
|
196
195
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
|
197
196
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
|
198
197
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
|
199
|
-
|
|
198
|
+
return pe.to(device=x.device, dtype=x.dtype)
|
|
200
199
|
|
|
201
200
|
def forward(self, hidden_states: torch.Tensor):
|
|
202
|
-
self.extend_pe(hidden_states)
|
|
201
|
+
self.pe = self.extend_pe(hidden_states, self.pe)
|
|
203
202
|
start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1
|
|
204
203
|
end_idx = self.pe.size(1) // 2 + hidden_states.size(1)
|
|
205
204
|
relative_position_embeddings = self.pe[:, start_idx:end_idx]
|
|
@@ -885,15 +884,26 @@ class Wav2Vec2ConformerPreTrainedModel(PreTrainedModel):
|
|
|
885
884
|
|
|
886
885
|
if module.bias is not None:
|
|
887
886
|
init.zeros_(module.bias)
|
|
888
|
-
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
|
887
|
+
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm1d)):
|
|
889
888
|
init.zeros_(module.bias)
|
|
890
889
|
init.ones_(module.weight)
|
|
890
|
+
if getattr(module, "running_mean", None) is not None:
|
|
891
|
+
init.zeros_(module.running_mean)
|
|
892
|
+
init.ones_(module.running_var)
|
|
893
|
+
init.zeros_(module.num_batches_tracked)
|
|
891
894
|
elif isinstance(module, nn.Conv1d):
|
|
892
895
|
init.kaiming_normal_(module.weight)
|
|
893
896
|
|
|
894
897
|
if module.bias is not None:
|
|
895
898
|
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
|
896
899
|
init.uniform_(module.bias, a=-k, b=k)
|
|
900
|
+
elif isinstance(module, Wav2Vec2ConformerRotaryPositionalEmbedding):
|
|
901
|
+
dim = self.config.hidden_size // self.config.num_attention_heads
|
|
902
|
+
base = self.config.rotary_embedding_base
|
|
903
|
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
|
|
904
|
+
init.copy_(module.inv_freq, inv_freq)
|
|
905
|
+
elif isinstance(module, Wav2Vec2ConformerRelPositionalEmbedding):
|
|
906
|
+
init.copy_(module.pe, module.extend_pe(torch.tensor(0.0).expand(1, module.max_len)))
|
|
897
907
|
|
|
898
908
|
def _get_feat_extract_output_lengths(
|
|
899
909
|
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
|
|
@@ -1142,6 +1152,7 @@ class Wav2Vec2ConformerModel(Wav2Vec2ConformerPreTrainedModel):
|
|
|
1142
1152
|
output_attentions: Optional[bool] = None,
|
|
1143
1153
|
output_hidden_states: Optional[bool] = None,
|
|
1144
1154
|
return_dict: Optional[bool] = None,
|
|
1155
|
+
**kwargs,
|
|
1145
1156
|
) -> Union[tuple, Wav2Vec2ConformerBaseModelOutput]:
|
|
1146
1157
|
r"""
|
|
1147
1158
|
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -1255,6 +1266,7 @@ class Wav2Vec2ConformerForPreTraining(Wav2Vec2ConformerPreTrainedModel):
|
|
|
1255
1266
|
output_attentions: Optional[bool] = None,
|
|
1256
1267
|
output_hidden_states: Optional[bool] = None,
|
|
1257
1268
|
return_dict: Optional[bool] = None,
|
|
1269
|
+
**kwargs,
|
|
1258
1270
|
) -> Union[tuple, Wav2Vec2ConformerForPreTrainingOutput]:
|
|
1259
1271
|
r"""
|
|
1260
1272
|
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -1459,6 +1471,7 @@ class Wav2Vec2ConformerForCTC(Wav2Vec2ConformerPreTrainedModel):
|
|
|
1459
1471
|
output_hidden_states: Optional[bool] = None,
|
|
1460
1472
|
return_dict: Optional[bool] = None,
|
|
1461
1473
|
labels: Optional[torch.Tensor] = None,
|
|
1474
|
+
**kwargs,
|
|
1462
1475
|
) -> Union[tuple, CausalLMOutput]:
|
|
1463
1476
|
r"""
|
|
1464
1477
|
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
|
@@ -1570,6 +1583,7 @@ class Wav2Vec2ConformerForSequenceClassification(Wav2Vec2ConformerPreTrainedMode
|
|
|
1570
1583
|
output_hidden_states: Optional[bool] = None,
|
|
1571
1584
|
return_dict: Optional[bool] = None,
|
|
1572
1585
|
labels: Optional[torch.Tensor] = None,
|
|
1586
|
+
**kwargs,
|
|
1573
1587
|
) -> Union[tuple, SequenceClassifierOutput]:
|
|
1574
1588
|
r"""
|
|
1575
1589
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -1673,6 +1687,7 @@ class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedMo
|
|
|
1673
1687
|
output_attentions: Optional[bool] = None,
|
|
1674
1688
|
output_hidden_states: Optional[bool] = None,
|
|
1675
1689
|
return_dict: Optional[bool] = None,
|
|
1690
|
+
**kwargs,
|
|
1676
1691
|
) -> Union[tuple, TokenClassifierOutput]:
|
|
1677
1692
|
r"""
|
|
1678
1693
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -1844,6 +1859,7 @@ class Wav2Vec2ConformerForXVector(Wav2Vec2ConformerPreTrainedModel):
|
|
|
1844
1859
|
output_hidden_states: Optional[bool] = None,
|
|
1845
1860
|
return_dict: Optional[bool] = None,
|
|
1846
1861
|
labels: Optional[torch.Tensor] = None,
|
|
1862
|
+
**kwargs,
|
|
1847
1863
|
) -> Union[tuple, XVectorOutput]:
|
|
1848
1864
|
r"""
|
|
1849
1865
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -116,18 +116,17 @@ class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module):
|
|
|
116
116
|
super().__init__()
|
|
117
117
|
self.max_len = config.max_source_positions
|
|
118
118
|
self.d_model = config.hidden_size
|
|
119
|
-
self.pe =
|
|
120
|
-
self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
|
|
119
|
+
self.register_buffer("pe", self.extend_pe(torch.tensor(0.0).expand(1, self.max_len)), persistent=False)
|
|
121
120
|
|
|
122
|
-
def extend_pe(self, x):
|
|
121
|
+
def extend_pe(self, x, pe=None):
|
|
123
122
|
# Reset the positional encodings
|
|
124
|
-
if
|
|
123
|
+
if pe is not None:
|
|
125
124
|
# self.pe contains both positive and negative parts
|
|
126
125
|
# the length of self.pe is 2 * input_len - 1
|
|
127
|
-
if
|
|
128
|
-
if
|
|
129
|
-
|
|
130
|
-
return
|
|
126
|
+
if pe.size(1) >= x.size(1) * 2 - 1:
|
|
127
|
+
if pe.dtype != x.dtype or pe.device != x.device:
|
|
128
|
+
pe = pe.to(dtype=x.dtype, device=x.device)
|
|
129
|
+
return pe
|
|
131
130
|
# Suppose `i` is the position of query vector and `j` is the
|
|
132
131
|
# position of key vector. We use positive relative positions when keys
|
|
133
132
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
|
@@ -148,10 +147,10 @@ class Wav2Vec2ConformerRelPositionalEmbedding(nn.Module):
|
|
|
148
147
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
|
149
148
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
|
150
149
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
|
151
|
-
|
|
150
|
+
return pe.to(device=x.device, dtype=x.dtype)
|
|
152
151
|
|
|
153
152
|
def forward(self, hidden_states: torch.Tensor):
|
|
154
|
-
self.extend_pe(hidden_states)
|
|
153
|
+
self.pe = self.extend_pe(hidden_states, self.pe)
|
|
155
154
|
start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1
|
|
156
155
|
end_idx = self.pe.size(1) // 2 + hidden_states.size(1)
|
|
157
156
|
relative_position_embeddings = self.pe[:, start_idx:end_idx]
|
|
@@ -584,15 +583,26 @@ class Wav2Vec2ConformerPreTrainedModel(PreTrainedModel):
|
|
|
584
583
|
|
|
585
584
|
if module.bias is not None:
|
|
586
585
|
init.zeros_(module.bias)
|
|
587
|
-
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
|
586
|
+
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm1d)):
|
|
588
587
|
init.zeros_(module.bias)
|
|
589
588
|
init.ones_(module.weight)
|
|
589
|
+
if getattr(module, "running_mean", None) is not None:
|
|
590
|
+
init.zeros_(module.running_mean)
|
|
591
|
+
init.ones_(module.running_var)
|
|
592
|
+
init.zeros_(module.num_batches_tracked)
|
|
590
593
|
elif isinstance(module, nn.Conv1d):
|
|
591
594
|
init.kaiming_normal_(module.weight)
|
|
592
595
|
|
|
593
596
|
if module.bias is not None:
|
|
594
597
|
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
|
595
598
|
init.uniform_(module.bias, a=-k, b=k)
|
|
599
|
+
elif isinstance(module, Wav2Vec2ConformerRotaryPositionalEmbedding):
|
|
600
|
+
dim = self.config.hidden_size // self.config.num_attention_heads
|
|
601
|
+
base = self.config.rotary_embedding_base
|
|
602
|
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
|
|
603
|
+
init.copy_(module.inv_freq, inv_freq)
|
|
604
|
+
elif isinstance(module, Wav2Vec2ConformerRelPositionalEmbedding):
|
|
605
|
+
init.copy_(module.pe, module.extend_pe(torch.tensor(0.0).expand(1, module.max_len)))
|
|
596
606
|
|
|
597
607
|
def _get_feat_extract_output_lengths(
|
|
598
608
|
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
|
|
@@ -1047,6 +1047,7 @@ class WavLMModel(WavLMPreTrainedModel):
|
|
|
1047
1047
|
output_attentions: Optional[bool] = None,
|
|
1048
1048
|
output_hidden_states: Optional[bool] = None,
|
|
1049
1049
|
return_dict: Optional[bool] = None,
|
|
1050
|
+
**kwargs,
|
|
1050
1051
|
) -> Union[tuple, WavLMBaseModelOutput]:
|
|
1051
1052
|
r"""
|
|
1052
1053
|
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -1180,6 +1181,7 @@ class WavLMForCTC(WavLMPreTrainedModel):
|
|
|
1180
1181
|
output_hidden_states: Optional[bool] = None,
|
|
1181
1182
|
return_dict: Optional[bool] = None,
|
|
1182
1183
|
labels: Optional[torch.Tensor] = None,
|
|
1184
|
+
**kwargs,
|
|
1183
1185
|
) -> Union[tuple, CausalLMOutput]:
|
|
1184
1186
|
r"""
|
|
1185
1187
|
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
|
@@ -1291,6 +1293,7 @@ class WavLMForSequenceClassification(WavLMPreTrainedModel):
|
|
|
1291
1293
|
output_hidden_states: Optional[bool] = None,
|
|
1292
1294
|
return_dict: Optional[bool] = None,
|
|
1293
1295
|
labels: Optional[torch.Tensor] = None,
|
|
1296
|
+
**kwargs,
|
|
1294
1297
|
) -> Union[tuple, SequenceClassifierOutput]:
|
|
1295
1298
|
r"""
|
|
1296
1299
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -1394,6 +1397,7 @@ class WavLMForAudioFrameClassification(WavLMPreTrainedModel):
|
|
|
1394
1397
|
output_attentions: Optional[bool] = None,
|
|
1395
1398
|
output_hidden_states: Optional[bool] = None,
|
|
1396
1399
|
return_dict: Optional[bool] = None,
|
|
1400
|
+
**kwargs,
|
|
1397
1401
|
) -> Union[tuple, TokenClassifierOutput]:
|
|
1398
1402
|
r"""
|
|
1399
1403
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -1565,6 +1569,7 @@ class WavLMForXVector(WavLMPreTrainedModel):
|
|
|
1565
1569
|
output_hidden_states: Optional[bool] = None,
|
|
1566
1570
|
return_dict: Optional[bool] = None,
|
|
1567
1571
|
labels: Optional[torch.Tensor] = None,
|
|
1572
|
+
**kwargs,
|
|
1568
1573
|
) -> Union[tuple, XVectorOutput]:
|
|
1569
1574
|
r"""
|
|
1570
1575
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
|
@@ -658,6 +658,7 @@ class WhisperGenerationMixin(GenerationMixin):
|
|
|
658
658
|
)
|
|
659
659
|
|
|
660
660
|
# 1. prepare generation config
|
|
661
|
+
generation_config = self.generation_config if generation_config is None else generation_config
|
|
661
662
|
generation_config, kwargs = self._prepare_generation_config(generation_config, **kwargs)
|
|
662
663
|
|
|
663
664
|
# 2. set global generate variables
|
|
@@ -608,6 +608,7 @@ class WhisperEncoder(WhisperPreTrainedModel):
|
|
|
608
608
|
output_attentions=None,
|
|
609
609
|
output_hidden_states=None,
|
|
610
610
|
return_dict=None,
|
|
611
|
+
**kwargs,
|
|
611
612
|
):
|
|
612
613
|
r"""
|
|
613
614
|
Args:
|
|
@@ -669,7 +670,7 @@ class WhisperEncoder(WhisperPreTrainedModel):
|
|
|
669
670
|
else:
|
|
670
671
|
layer_outputs = encoder_layer(
|
|
671
672
|
hidden_states,
|
|
672
|
-
None,
|
|
673
|
+
attention_mask=None,
|
|
673
674
|
output_attentions=output_attentions,
|
|
674
675
|
)
|
|
675
676
|
|
|
@@ -734,6 +735,7 @@ class WhisperDecoder(WhisperPreTrainedModel):
|
|
|
734
735
|
output_hidden_states=None,
|
|
735
736
|
return_dict=None,
|
|
736
737
|
cache_position=None,
|
|
738
|
+
**kwargs,
|
|
737
739
|
):
|
|
738
740
|
r"""
|
|
739
741
|
Args:
|
|
@@ -864,8 +866,9 @@ class WhisperDecoder(WhisperPreTrainedModel):
|
|
|
864
866
|
|
|
865
867
|
layer_outputs = decoder_layer(
|
|
866
868
|
hidden_states,
|
|
867
|
-
|
|
868
|
-
encoder_hidden_states
|
|
869
|
+
causal_mask,
|
|
870
|
+
encoder_hidden_states,
|
|
871
|
+
encoder_attention_mask=None,
|
|
869
872
|
past_key_values=past_key_values if use_cache else None,
|
|
870
873
|
output_attentions=output_attentions,
|
|
871
874
|
use_cache=use_cache,
|
|
@@ -982,6 +985,7 @@ class WhisperModel(WhisperPreTrainedModel):
|
|
|
982
985
|
output_hidden_states: Optional[bool] = None,
|
|
983
986
|
return_dict: Optional[bool] = None,
|
|
984
987
|
cache_position: Optional[torch.LongTensor] = None,
|
|
988
|
+
**kwargs,
|
|
985
989
|
) -> Union[tuple[torch.Tensor], Seq2SeqModelOutput]:
|
|
986
990
|
r"""
|
|
987
991
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
@@ -1129,6 +1133,7 @@ class WhisperForConditionalGeneration(WhisperGenerationMixin, WhisperPreTrainedM
|
|
|
1129
1133
|
output_hidden_states: Optional[bool] = None,
|
|
1130
1134
|
return_dict: Optional[bool] = None,
|
|
1131
1135
|
cache_position: Optional[torch.LongTensor] = None,
|
|
1136
|
+
**kwargs,
|
|
1132
1137
|
) -> Union[tuple[torch.Tensor], Seq2SeqLMOutput]:
|
|
1133
1138
|
r"""
|
|
1134
1139
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
|
@@ -1243,6 +1248,7 @@ class WhisperDecoderWrapper(WhisperPreTrainedModel):
|
|
|
1243
1248
|
super().__init__(config)
|
|
1244
1249
|
config.is_encoder_decoder = False
|
|
1245
1250
|
self.decoder = WhisperDecoder(config)
|
|
1251
|
+
self.post_init()
|
|
1246
1252
|
|
|
1247
1253
|
def get_input_embeddings(self):
|
|
1248
1254
|
return self.decoder.embed_tokens
|
|
@@ -1299,6 +1305,7 @@ class WhisperForCausalLM(WhisperPreTrainedModel, GenerationMixin):
|
|
|
1299
1305
|
output_hidden_states: Optional[bool] = None,
|
|
1300
1306
|
return_dict: Optional[bool] = None,
|
|
1301
1307
|
cache_position: Optional[torch.LongTensor] = None,
|
|
1308
|
+
**kwargs,
|
|
1302
1309
|
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
|
|
1303
1310
|
r"""
|
|
1304
1311
|
encoder_outputs (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
@@ -1422,6 +1429,7 @@ class WhisperForAudioClassification(WhisperPreTrainedModel):
|
|
|
1422
1429
|
output_attentions: Optional[bool] = None,
|
|
1423
1430
|
output_hidden_states: Optional[bool] = None,
|
|
1424
1431
|
return_dict: Optional[bool] = None,
|
|
1432
|
+
**kwargs,
|
|
1425
1433
|
) -> Union[tuple[torch.Tensor], SequenceClassifierOutput]:
|
|
1426
1434
|
r"""
|
|
1427
1435
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -19,7 +19,7 @@ import os
|
|
|
19
19
|
import re
|
|
20
20
|
import warnings
|
|
21
21
|
from functools import lru_cache
|
|
22
|
-
from typing import Optional
|
|
22
|
+
from typing import Optional, Union
|
|
23
23
|
|
|
24
24
|
import numpy as np
|
|
25
25
|
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors
|
|
@@ -204,10 +204,11 @@ class WhisperTokenizer(TokenizersBackend):
|
|
|
204
204
|
|
|
205
205
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
206
206
|
model_input_names = ["input_ids", "attention_mask"]
|
|
207
|
+
model = BPE
|
|
207
208
|
|
|
208
209
|
def __init__(
|
|
209
210
|
self,
|
|
210
|
-
vocab=None,
|
|
211
|
+
vocab: Optional[Union[str, dict[str, int]]] = None,
|
|
211
212
|
merges=None,
|
|
212
213
|
normalizer_file=None,
|
|
213
214
|
unk_token="<|endoftext|>",
|
|
@@ -253,7 +254,6 @@ class WhisperTokenizer(TokenizersBackend):
|
|
|
253
254
|
self._tokenizer.decoder = decoders.ByteLevel()
|
|
254
255
|
|
|
255
256
|
super().__init__(
|
|
256
|
-
tokenizer_object=self._tokenizer,
|
|
257
257
|
unk_token=unk_token,
|
|
258
258
|
bos_token=bos_token,
|
|
259
259
|
eos_token=eos_token,
|
|
@@ -276,18 +276,7 @@ class WhisperTokenizer(TokenizersBackend):
|
|
|
276
276
|
self.language = language
|
|
277
277
|
self.task = task
|
|
278
278
|
self.predict_timestamps = predict_timestamps
|
|
279
|
-
|
|
280
|
-
self._post_init()
|
|
281
|
-
|
|
282
|
-
def _post_init(self):
|
|
283
|
-
"""Post-initialization hook to set up prefix tokens after the tokenizer is fully loaded."""
|
|
284
|
-
super()._post_init()
|
|
285
|
-
# Set up prefix tokens if language or task is specified (may be set from config in from_pretrained)
|
|
286
|
-
if hasattr(self, "language") and hasattr(self, "task") and hasattr(self, "predict_timestamps"):
|
|
287
|
-
if self.language is not None or self.task is not None:
|
|
288
|
-
self.set_prefix_tokens(
|
|
289
|
-
language=self.language, task=self.task, predict_timestamps=self.predict_timestamps
|
|
290
|
-
)
|
|
279
|
+
self.set_prefix_tokens()
|
|
291
280
|
|
|
292
281
|
# Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._decode_with_timestamps
|
|
293
282
|
def _decode_with_timestamps(
|
|
@@ -512,11 +512,13 @@ class XCLIPPreTrainedModel(PreTrainedModel):
|
|
|
512
512
|
if isinstance(module, XCLIPTextEmbeddings):
|
|
513
513
|
init.normal_(module.token_embedding.weight, mean=0.0, std=factor * 0.02)
|
|
514
514
|
init.normal_(module.position_embedding.weight, mean=0.0, std=factor * 0.02)
|
|
515
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
515
516
|
elif isinstance(module, XCLIPVisionEmbeddings):
|
|
516
517
|
factor = self.config.initializer_factor
|
|
517
518
|
init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
|
518
519
|
init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
|
519
520
|
init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
|
521
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
520
522
|
elif isinstance(module, XCLIPAttention):
|
|
521
523
|
factor = self.config.initializer_factor
|
|
522
524
|
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
|
@@ -737,6 +739,7 @@ class XCLIPTextModel(XCLIPPreTrainedModel):
|
|
|
737
739
|
output_attentions: Optional[bool] = None,
|
|
738
740
|
output_hidden_states: Optional[bool] = None,
|
|
739
741
|
return_dict: Optional[bool] = None,
|
|
742
|
+
**kwargs,
|
|
740
743
|
) -> Union[tuple, BaseModelOutputWithPooling]:
|
|
741
744
|
r"""
|
|
742
745
|
Examples:
|
|
@@ -927,6 +930,7 @@ class XCLIPVisionModel(XCLIPPreTrainedModel):
|
|
|
927
930
|
output_attentions: Optional[bool] = None,
|
|
928
931
|
output_hidden_states: Optional[bool] = None,
|
|
929
932
|
return_dict: Optional[bool] = None,
|
|
933
|
+
**kwargs,
|
|
930
934
|
) -> Union[tuple, BaseModelOutputWithPooling]:
|
|
931
935
|
r"""
|
|
932
936
|
Examples:
|
|
@@ -1340,6 +1344,7 @@ class XCLIPModel(XCLIPPreTrainedModel):
|
|
|
1340
1344
|
output_hidden_states: Optional[bool] = None,
|
|
1341
1345
|
interpolate_pos_encoding: bool = False,
|
|
1342
1346
|
return_dict: Optional[bool] = None,
|
|
1347
|
+
**kwargs,
|
|
1343
1348
|
) -> Union[tuple, XCLIPOutput]:
|
|
1344
1349
|
r"""
|
|
1345
1350
|
return_loss (`bool`, *optional*):
|
|
@@ -362,6 +362,11 @@ class XcodecPreTrainedModel(PreTrainedAudioTokenizerBase):
|
|
|
362
362
|
if isinstance(submodule, nn.Conv1d):
|
|
363
363
|
init.trunc_normal_(submodule.weight, std=0.02)
|
|
364
364
|
init.constant_(submodule.bias, 0)
|
|
365
|
+
elif isinstance(module, XcodecEuclideanCodebook):
|
|
366
|
+
init.copy_(module.inited, torch.Tensor([True]))
|
|
367
|
+
init.zeros_(module.cluster_size)
|
|
368
|
+
init.zeros_(module.embed)
|
|
369
|
+
init.zeros_(module.embed_avg)
|
|
365
370
|
|
|
366
371
|
def apply_weight_norm(self):
|
|
367
372
|
"""Apply weight norm in the acoustic encoder and decoder because the original checkpoint has weight norm applied."""
|
|
@@ -20,6 +20,7 @@ from typing import Optional, Union
|
|
|
20
20
|
import torch
|
|
21
21
|
from torch import nn
|
|
22
22
|
|
|
23
|
+
from ... import initialization as init
|
|
23
24
|
from ...activations import ACT2FN
|
|
24
25
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
25
26
|
from ...generation import GenerationMixin
|
|
@@ -54,6 +55,7 @@ class XGLMSinusoidalPositionalEmbedding(nn.Module):
|
|
|
54
55
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
|
55
56
|
super().__init__()
|
|
56
57
|
self.offset = 2
|
|
58
|
+
self.num_positions = num_positions
|
|
57
59
|
self.embedding_dim = embedding_dim
|
|
58
60
|
self.padding_idx = padding_idx
|
|
59
61
|
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
|
@@ -361,6 +363,14 @@ class XGLMPreTrainedModel(PreTrainedModel):
|
|
|
361
363
|
supports_gradient_checkpointing = True
|
|
362
364
|
_no_split_modules = ["XGLMDecoderLayer"]
|
|
363
365
|
|
|
366
|
+
def _init_weights(self, module):
|
|
367
|
+
super()._init_weights(module)
|
|
368
|
+
if isinstance(module, XGLMSinusoidalPositionalEmbedding):
|
|
369
|
+
emb_weights = module.get_embedding(
|
|
370
|
+
module.num_positions + module.offset, module.embedding_dim, module.padding_idx
|
|
371
|
+
)
|
|
372
|
+
init.copy_(module.weights, emb_weights)
|
|
373
|
+
|
|
364
374
|
|
|
365
375
|
@auto_docstring
|
|
366
376
|
class XGLMModel(XGLMPreTrainedModel):
|
|
@@ -407,6 +417,7 @@ class XGLMModel(XGLMPreTrainedModel):
|
|
|
407
417
|
output_hidden_states: Optional[bool] = None,
|
|
408
418
|
return_dict: Optional[bool] = None,
|
|
409
419
|
cache_position: Optional[torch.Tensor] = None,
|
|
420
|
+
**kwargs,
|
|
410
421
|
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
|
411
422
|
r"""
|
|
412
423
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
|
@@ -14,7 +14,7 @@
|
|
|
14
14
|
# limitations under the License.
|
|
15
15
|
"""Tokenization classes for XGLM."""
|
|
16
16
|
|
|
17
|
-
from typing import Optional
|
|
17
|
+
from typing import Optional, Union
|
|
18
18
|
|
|
19
19
|
from tokenizers import Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors
|
|
20
20
|
from tokenizers.models import Unigram
|
|
@@ -50,7 +50,7 @@ class XGLMTokenizer(TokenizersBackend):
|
|
|
50
50
|
The unknown token.
|
|
51
51
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
|
52
52
|
The token used for padding.
|
|
53
|
-
vocab (`dict`, *optional*):
|
|
53
|
+
vocab (`str`, `dict` or `list`, *optional*):
|
|
54
54
|
Custom vocabulary dictionary. If not provided, a minimal vocabulary is created.
|
|
55
55
|
merges (`list[tuple[str, str]]`, *optional*):
|
|
56
56
|
Custom merge rules for BPE. If not provided, merges are generated from the vocabulary.
|
|
@@ -60,18 +60,17 @@ class XGLMTokenizer(TokenizersBackend):
|
|
|
60
60
|
|
|
61
61
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
62
62
|
model_input_names = ["input_ids", "attention_mask"]
|
|
63
|
-
|
|
63
|
+
model = Unigram
|
|
64
64
|
|
|
65
65
|
def __init__(
|
|
66
66
|
self,
|
|
67
|
+
vocab: Optional[Union[str, list[tuple[str, float]]]] = None,
|
|
67
68
|
bos_token: str = "<s>",
|
|
68
69
|
eos_token: str = "</s>",
|
|
69
70
|
sep_token: str = "</s>",
|
|
70
71
|
cls_token: str = "<s>",
|
|
71
72
|
unk_token: str = "<unk>",
|
|
72
73
|
pad_token: str = "<pad>",
|
|
73
|
-
vocab: Optional[dict] = None,
|
|
74
|
-
merges: Optional[list[tuple[str, str]]] = None,
|
|
75
74
|
add_prefix_space: bool = True,
|
|
76
75
|
**kwargs,
|
|
77
76
|
):
|
|
@@ -106,11 +105,7 @@ class XGLMTokenizer(TokenizersBackend):
|
|
|
106
105
|
prepend_scheme = "always" if add_prefix_space else "never"
|
|
107
106
|
self._tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement="▁", prepend_scheme=prepend_scheme)
|
|
108
107
|
self._tokenizer.decoder = decoders.Metaspace(replacement="▁", prepend_scheme=prepend_scheme)
|
|
109
|
-
|
|
110
|
-
tokenizer_object = self._tokenizer
|
|
111
|
-
|
|
112
108
|
super().__init__(
|
|
113
|
-
tokenizer_object=tokenizer_object,
|
|
114
109
|
bos_token=bos_token,
|
|
115
110
|
eos_token=eos_token,
|
|
116
111
|
sep_token=sep_token,
|
|
@@ -603,9 +603,6 @@ class XLMPreTrainedModel(PreTrainedModel):
|
|
|
603
603
|
config: XLMConfig
|
|
604
604
|
base_model_prefix = "transformer"
|
|
605
605
|
|
|
606
|
-
def __init__(self, *inputs, **kwargs):
|
|
607
|
-
super().__init__(*inputs, **kwargs)
|
|
608
|
-
|
|
609
606
|
@property
|
|
610
607
|
def dummy_inputs(self):
|
|
611
608
|
inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
|
|
@@ -633,15 +630,17 @@ class XLMPreTrainedModel(PreTrainedModel):
|
|
|
633
630
|
if isinstance(module, nn.LayerNorm):
|
|
634
631
|
init.zeros_(module.bias)
|
|
635
632
|
init.ones_(module.weight)
|
|
636
|
-
if isinstance(module, XLMModel)
|
|
637
|
-
|
|
638
|
-
|
|
639
|
-
|
|
640
|
-
|
|
641
|
-
|
|
642
|
-
|
|
643
|
-
|
|
644
|
-
|
|
633
|
+
if isinstance(module, XLMModel):
|
|
634
|
+
if self.config.sinusoidal_embeddings:
|
|
635
|
+
init.copy_(
|
|
636
|
+
module.position_embeddings.weight,
|
|
637
|
+
create_sinusoidal_embeddings(
|
|
638
|
+
self.config.max_position_embeddings,
|
|
639
|
+
self.config.emb_dim,
|
|
640
|
+
out=torch.empty_like(module.position_embeddings.weight),
|
|
641
|
+
),
|
|
642
|
+
)
|
|
643
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
645
644
|
|
|
646
645
|
|
|
647
646
|
@dataclass
|
|
@@ -738,10 +737,10 @@ class XLMModel(XLMPreTrainedModel):
|
|
|
738
737
|
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
|
739
738
|
|
|
740
739
|
# Initialize weights and apply final processing
|
|
741
|
-
self.post_init()
|
|
742
740
|
self.register_buffer(
|
|
743
741
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
|
744
742
|
)
|
|
743
|
+
self.post_init()
|
|
745
744
|
|
|
746
745
|
def get_input_embeddings(self):
|
|
747
746
|
return self.embeddings
|
|
@@ -946,7 +945,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel, GenerationMixin):
|
|
|
946
945
|
def set_output_embeddings(self, new_embeddings):
|
|
947
946
|
self.pred_layer.proj = new_embeddings
|
|
948
947
|
|
|
949
|
-
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
|
948
|
+
def prepare_inputs_for_generation(self, input_ids, is_first_iteration=False, **kwargs):
|
|
950
949
|
# Overwritten -- this model uses config options to prepare inputs
|
|
951
950
|
|
|
952
951
|
mask_token_id = self.config.mask_token_id
|
|
@@ -1082,6 +1081,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
|
|
|
1082
1081
|
output_attentions: Optional[bool] = None,
|
|
1083
1082
|
output_hidden_states: Optional[bool] = None,
|
|
1084
1083
|
return_dict: Optional[bool] = None,
|
|
1084
|
+
**kwargs,
|
|
1085
1085
|
) -> Union[tuple, SequenceClassifierOutput]:
|
|
1086
1086
|
r"""
|
|
1087
1087
|
langs (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -1190,6 +1190,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
|
|
|
1190
1190
|
output_attentions: Optional[bool] = None,
|
|
1191
1191
|
output_hidden_states: Optional[bool] = None,
|
|
1192
1192
|
return_dict: Optional[bool] = None,
|
|
1193
|
+
**kwargs,
|
|
1193
1194
|
) -> Union[tuple, QuestionAnsweringModelOutput]:
|
|
1194
1195
|
r"""
|
|
1195
1196
|
langs (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -1291,6 +1292,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
|
|
|
1291
1292
|
output_attentions: Optional[bool] = None,
|
|
1292
1293
|
output_hidden_states: Optional[bool] = None,
|
|
1293
1294
|
return_dict: Optional[bool] = None,
|
|
1295
|
+
**kwargs,
|
|
1294
1296
|
) -> Union[tuple, XLMForQuestionAnsweringOutput]:
|
|
1295
1297
|
r"""
|
|
1296
1298
|
langs (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -1406,6 +1408,7 @@ class XLMForTokenClassification(XLMPreTrainedModel):
|
|
|
1406
1408
|
output_attentions: Optional[bool] = None,
|
|
1407
1409
|
output_hidden_states: Optional[bool] = None,
|
|
1408
1410
|
return_dict: Optional[bool] = None,
|
|
1411
|
+
**kwargs,
|
|
1409
1412
|
) -> Union[tuple, TokenClassifierOutput]:
|
|
1410
1413
|
r"""
|
|
1411
1414
|
langs (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -1491,6 +1494,7 @@ class XLMForMultipleChoice(XLMPreTrainedModel):
|
|
|
1491
1494
|
output_attentions: Optional[bool] = None,
|
|
1492
1495
|
output_hidden_states: Optional[bool] = None,
|
|
1493
1496
|
return_dict: Optional[bool] = None,
|
|
1497
|
+
**kwargs,
|
|
1494
1498
|
) -> Union[tuple, MultipleChoiceModelOutput]:
|
|
1495
1499
|
r"""
|
|
1496
1500
|
input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
|