transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +49 -3
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/cli/serve.py +47 -17
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +83 -7
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +374 -147
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +2 -3
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +55 -24
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +165 -124
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +228 -136
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +3 -14
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +16 -2
- transformers/integrations/accelerate.py +58 -113
- transformers/integrations/aqlm.py +36 -66
- transformers/integrations/awq.py +46 -515
- transformers/integrations/bitnet.py +47 -105
- transformers/integrations/bitsandbytes.py +91 -202
- transformers/integrations/deepspeed.py +18 -2
- transformers/integrations/eetq.py +84 -81
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +241 -208
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +37 -62
- transformers/integrations/hub_kernels.py +65 -8
- transformers/integrations/integration_utils.py +45 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +28 -74
- transformers/integrations/peft.py +12 -29
- transformers/integrations/quanto.py +77 -56
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +42 -90
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +40 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +74 -19
- transformers/modeling_rope_utils.py +107 -86
- transformers/modeling_utils.py +611 -527
- transformers/models/__init__.py +22 -0
- transformers/models/afmoe/modeling_afmoe.py +10 -19
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +14 -6
- transformers/models/altclip/modeling_altclip.py +11 -3
- transformers/models/apertus/modeling_apertus.py +8 -6
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +5 -5
- transformers/models/aria/modeling_aria.py +12 -8
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +38 -0
- transformers/models/auto/feature_extraction_auto.py +9 -3
- transformers/models/auto/image_processing_auto.py +5 -2
- transformers/models/auto/modeling_auto.py +37 -0
- transformers/models/auto/processing_auto.py +22 -10
- transformers/models/auto/tokenization_auto.py +147 -566
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +21 -21
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +11 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +14 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +9 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +15 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +16 -3
- transformers/models/bitnet/modeling_bitnet.py +5 -5
- transformers/models/blenderbot/modeling_blenderbot.py +12 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +18 -23
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +12 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +10 -0
- transformers/models/blip_2/modeling_blip_2.py +4 -1
- transformers/models/bloom/modeling_bloom.py +17 -44
- transformers/models/blt/modeling_blt.py +164 -4
- transformers/models/blt/modular_blt.py +170 -5
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +11 -1
- transformers/models/bros/modeling_bros.py +12 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +11 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +11 -5
- transformers/models/chinese_clip/modeling_chinese_clip.py +9 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +30 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +9 -0
- transformers/models/clvp/modeling_clvp.py +19 -3
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +5 -4
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +8 -7
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -4
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +9 -1
- transformers/models/convbert/modeling_convbert.py +9 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +7 -4
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +15 -2
- transformers/models/cvt/modeling_cvt.py +7 -1
- transformers/models/cwm/modeling_cwm.py +5 -5
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +48 -39
- transformers/models/d_fine/modular_d_fine.py +16 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +5 -1
- transformers/models/dac/modeling_dac.py +6 -6
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +3 -3
- transformers/models/deberta/modeling_deberta.py +7 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +8 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +12 -6
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +9 -7
- transformers/models/deepseek_v2/modular_deepseek_v2.py +6 -4
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +12 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +7 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +5 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +13 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +16 -4
- transformers/models/dia/modular_dia.py +11 -1
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +5 -5
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -2
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +3 -4
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +18 -12
- transformers/models/dots1/modeling_dots1.py +23 -11
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +6 -3
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +56 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +14 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +16 -3
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +7 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +12 -6
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +60 -16
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +5 -5
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +20 -17
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +11 -37
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +11 -5
- transformers/models/evolla/modeling_evolla.py +13 -5
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +3 -3
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +9 -4
- transformers/models/falcon_h1/modeling_falcon_h1.py +32 -26
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +31 -37
- transformers/models/falcon_mamba/modular_falcon_mamba.py +19 -33
- transformers/models/fast_vlm/__init__.py +27 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +459 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +31 -13
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +21 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +10 -2
- transformers/models/flex_olmo/modeling_flex_olmo.py +10 -8
- transformers/models/florence2/modeling_florence2.py +22 -4
- transformers/models/florence2/modular_florence2.py +15 -1
- transformers/models/fnet/modeling_fnet.py +14 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +19 -3
- transformers/models/gemma/modeling_gemma.py +14 -16
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +5 -5
- transformers/models/gemma2/modular_gemma2.py +3 -2
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +42 -91
- transformers/models/gemma3/modular_gemma3.py +38 -87
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +65 -218
- transformers/models/gemma3n/modular_gemma3n.py +68 -68
- transformers/models/git/modeling_git.py +183 -126
- transformers/models/glm/modeling_glm.py +5 -5
- transformers/models/glm4/modeling_glm4.py +5 -5
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +13 -7
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +18 -8
- transformers/models/glm4v/modular_glm4v.py +17 -7
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +44 -27
- transformers/models/glm4v_moe/modular_glm4v_moe.py +13 -1
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +13 -6
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +4 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +19 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +6 -3
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +4 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +10 -14
- transformers/models/gpt_oss/modular_gpt_oss.py +8 -12
- transformers/models/gptj/modeling_gptj.py +18 -6
- transformers/models/granite/modeling_granite.py +5 -5
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +6 -9
- transformers/models/granitemoe/modular_granitemoe.py +1 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +36 -28
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +6 -9
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +8 -4
- transformers/models/groupvit/modeling_groupvit.py +9 -1
- transformers/models/helium/modeling_helium.py +5 -4
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +7 -0
- transformers/models/hubert/modular_hubert.py +5 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +5 -5
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +15 -7
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +22 -0
- transformers/models/idefics/modeling_idefics.py +15 -21
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +11 -3
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +13 -12
- transformers/models/internvl/modular_internvl.py +7 -13
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +25 -20
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +16 -7
- transformers/models/janus/modular_janus.py +17 -7
- transformers/models/jetmoe/modeling_jetmoe.py +4 -4
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +15 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +12 -4
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +248 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +730 -0
- transformers/models/lasr/modular_lasr.py +576 -0
- transformers/models/lasr/processing_lasr.py +94 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +10 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +16 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +11 -53
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +33 -5
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +12 -0
- transformers/models/levit/modeling_levit.py +21 -0
- transformers/models/lfm2/modeling_lfm2.py +5 -6
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +17 -8
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +23 -15
- transformers/models/llama/modeling_llama.py +5 -5
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +11 -6
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +6 -5
- transformers/models/longcat_flash/modular_longcat_flash.py +3 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -4
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +14 -0
- transformers/models/mamba/modeling_mamba.py +16 -23
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +8 -0
- transformers/models/markuplm/modeling_markuplm.py +9 -8
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +11 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +11 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +21 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +14 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +9 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +28 -5
- transformers/models/minimax/modeling_minimax.py +19 -6
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +5 -5
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +5 -4
- transformers/models/mistral/modeling_mistral.py +5 -4
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +15 -7
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +15 -4
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +8 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +7 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +7 -0
- transformers/models/modernbert/modeling_modernbert.py +16 -2
- transformers/models/modernbert/modular_modernbert.py +14 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +17 -10
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +15 -8
- transformers/models/moonshine/modeling_moonshine.py +5 -3
- transformers/models/moshi/modeling_moshi.py +26 -53
- transformers/models/mpnet/modeling_mpnet.py +7 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +10 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +7 -10
- transformers/models/musicgen/modeling_musicgen.py +7 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -0
- transformers/models/mvp/modeling_mvp.py +14 -0
- transformers/models/nanochat/modeling_nanochat.py +5 -5
- transformers/models/nemotron/modeling_nemotron.py +7 -5
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +15 -68
- transformers/models/nystromformer/modeling_nystromformer.py +13 -0
- transformers/models/olmo/modeling_olmo.py +5 -5
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +5 -6
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +5 -5
- transformers/models/olmoe/modeling_olmoe.py +15 -7
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +6 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +11 -39
- transformers/models/openai/modeling_openai.py +15 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +11 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +11 -3
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +504 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1682 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1359 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +14 -6
- transformers/models/parakeet/modular_parakeet.py +7 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +10 -0
- transformers/models/patchtst/modeling_patchtst.py +25 -6
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/{kernels/falcon_mamba/__init__.py → models/pe_audio/processing_pe_audio.py} +11 -2
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +8 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +5 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +13 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +3 -2
- transformers/models/phi/modeling_phi.py +5 -6
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +3 -2
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +9 -6
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +7 -4
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +15 -7
- transformers/models/phimoe/modular_phimoe.py +3 -3
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +3 -2
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +13 -0
- transformers/models/plbart/modular_plbart.py +8 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +13 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +5 -1
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +5 -5
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +116 -79
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +71 -33
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +23 -11
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +29 -27
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +4 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +15 -7
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +23 -20
- transformers/models/qwen3/modeling_qwen3.py +5 -5
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +15 -7
- transformers/models/qwen3_next/modeling_qwen3_next.py +7 -8
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +112 -68
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +62 -20
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +57 -42
- transformers/models/qwen3_vl/modular_qwen3_vl.py +59 -46
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +132 -148
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +36 -82
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +8 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +18 -3
- transformers/models/reformer/modeling_reformer.py +13 -1
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +10 -1
- transformers/models/rembert/modeling_rembert.py +13 -1
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +19 -5
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +6 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +13 -4
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +9 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +2 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +7 -3
- transformers/models/sam2/modular_sam2.py +7 -3
- transformers/models/sam2_video/modeling_sam2_video.py +52 -43
- transformers/models/sam2_video/modular_sam2_video.py +32 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +100 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +27 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +4 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +32 -12
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +11 -1
- transformers/models/seed_oss/modeling_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +6 -3
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +67 -41
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +5 -5
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +14 -0
- transformers/models/speecht5/modeling_speecht5.py +41 -1
- transformers/models/splinter/modeling_splinter.py +12 -3
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +8 -0
- transformers/models/stablelm/modeling_stablelm.py +4 -2
- transformers/models/starcoder2/modeling_starcoder2.py +5 -4
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +6 -0
- transformers/models/swin/modeling_swin.py +20 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +51 -33
- transformers/models/swinv2/modeling_swinv2.py +45 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +8 -7
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +6 -6
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +19 -10
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +5 -1
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +14 -0
- transformers/models/timesfm/modular_timesfm.py +14 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +20 -14
- transformers/models/trocr/modeling_trocr.py +3 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +6 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +7 -7
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +7 -6
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +5 -5
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +13 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +8 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +5 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +21 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +12 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +27 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +11 -3
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +5 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +11 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +18 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +10 -1
- transformers/models/zamba/modeling_zamba.py +4 -1
- transformers/models/zamba2/modeling_zamba2.py +7 -4
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +8 -0
- transformers/pipelines/__init__.py +11 -9
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +2 -10
- transformers/pipelines/document_question_answering.py +4 -2
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +133 -50
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +44 -174
- transformers/quantizers/quantizer_aqlm.py +2 -23
- transformers/quantizers/quantizer_auto_round.py +2 -12
- transformers/quantizers/quantizer_awq.py +20 -89
- transformers/quantizers/quantizer_bitnet.py +4 -14
- transformers/quantizers/quantizer_bnb_4bit.py +18 -155
- transformers/quantizers/quantizer_bnb_8bit.py +24 -110
- transformers/quantizers/quantizer_compressed_tensors.py +2 -9
- transformers/quantizers/quantizer_eetq.py +16 -74
- transformers/quantizers/quantizer_fbgemm_fp8.py +38 -138
- transformers/quantizers/quantizer_finegrained_fp8.py +26 -113
- transformers/quantizers/quantizer_fp_quant.py +52 -82
- transformers/quantizers/quantizer_gptq.py +8 -28
- transformers/quantizers/quantizer_higgs.py +42 -60
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +14 -194
- transformers/quantizers/quantizer_quanto.py +35 -79
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +4 -12
- transformers/quantizers/quantizer_torchao.py +50 -325
- transformers/quantizers/quantizer_vptq.py +4 -27
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +324 -47
- transformers/tokenization_mistral_common.py +7 -2
- transformers/tokenization_utils_base.py +116 -224
- transformers/tokenization_utils_tokenizers.py +190 -106
- transformers/trainer.py +51 -32
- transformers/trainer_callback.py +8 -0
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +74 -38
- transformers/utils/__init__.py +7 -4
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +35 -25
- transformers/utils/generic.py +47 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +112 -25
- transformers/utils/kernel_config.py +74 -19
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +78 -245
- transformers/video_processing_utils.py +17 -14
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +275 -229
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +832 -777
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,730 @@
|
|
|
1
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
2
|
+
# This file was automatically generated from src/transformers/models/lasr/modular_lasr.py.
|
|
3
|
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
4
|
+
# the file from the modular. If any change should be done, please apply the change to the
|
|
5
|
+
# modular_lasr.py file directly. One of our CI enforces this.
|
|
6
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
7
|
+
# coding=utf-8
|
|
8
|
+
# Copyright 2025 The HuggingFace Inc. team and Google LLC. All rights reserved.
|
|
9
|
+
#
|
|
10
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
11
|
+
# you may not use this file except in compliance with the License.
|
|
12
|
+
# You may obtain a copy of the License at
|
|
13
|
+
#
|
|
14
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
15
|
+
#
|
|
16
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
17
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
18
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
19
|
+
# See the License for the specific language governing permissions and
|
|
20
|
+
# limitations under the License.
|
|
21
|
+
|
|
22
|
+
from collections.abc import Callable
|
|
23
|
+
from dataclasses import dataclass
|
|
24
|
+
from typing import Optional, Union
|
|
25
|
+
|
|
26
|
+
import torch
|
|
27
|
+
from torch import nn
|
|
28
|
+
|
|
29
|
+
from ...activations import ACT2FN
|
|
30
|
+
from ...integrations import use_kernel_func_from_hub, use_kernelized_func
|
|
31
|
+
from ...masking_utils import create_bidirectional_mask
|
|
32
|
+
from ...modeling_layers import GradientCheckpointingLayer
|
|
33
|
+
from ...modeling_outputs import BaseModelOutput, CausalLMOutput
|
|
34
|
+
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
35
|
+
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
36
|
+
from ...processing_utils import Unpack
|
|
37
|
+
from ...utils import ModelOutput, TransformersKwargs, auto_docstring, can_return_tuple
|
|
38
|
+
from ...utils.generic import check_model_inputs, maybe_autocast
|
|
39
|
+
from .configuration_lasr import LasrCTCConfig, LasrEncoderConfig
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class LasrEncoderSubsampling(nn.Module):
|
|
43
|
+
def __init__(self, config: LasrEncoderConfig):
|
|
44
|
+
super().__init__()
|
|
45
|
+
self.dense_0 = nn.Linear(config.num_mel_bins, config.hidden_size)
|
|
46
|
+
self.conv_0 = nn.Conv1d(
|
|
47
|
+
config.hidden_size,
|
|
48
|
+
config.hidden_size,
|
|
49
|
+
kernel_size=config.subsampling_conv_kernel_size,
|
|
50
|
+
stride=config.subsampling_conv_stride,
|
|
51
|
+
)
|
|
52
|
+
self.conv_1 = nn.Conv1d(
|
|
53
|
+
config.hidden_size,
|
|
54
|
+
config.subsampling_conv_channels,
|
|
55
|
+
kernel_size=config.subsampling_conv_kernel_size,
|
|
56
|
+
stride=config.subsampling_conv_stride,
|
|
57
|
+
)
|
|
58
|
+
self.dense_1 = nn.Linear(config.subsampling_conv_channels, config.hidden_size)
|
|
59
|
+
self.act_fn = nn.ReLU()
|
|
60
|
+
|
|
61
|
+
def forward(self, input_features: torch.Tensor) -> torch.Tensor:
|
|
62
|
+
hidden_states = self.act_fn(self.dense_0(input_features))
|
|
63
|
+
hidden_states = hidden_states.transpose(1, 2)
|
|
64
|
+
hidden_states = self.act_fn(self.conv_0(hidden_states))
|
|
65
|
+
hidden_states = self.act_fn(self.conv_1(hidden_states))
|
|
66
|
+
hidden_states = hidden_states.transpose(1, 2)
|
|
67
|
+
return self.dense_1(hidden_states)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
class LasrEncoderRotaryEmbedding(nn.Module):
|
|
71
|
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
|
72
|
+
|
|
73
|
+
def __init__(self, config: LasrEncoderConfig, device=None):
|
|
74
|
+
super().__init__()
|
|
75
|
+
self.max_seq_len_cached = config.max_position_embeddings
|
|
76
|
+
self.original_max_seq_len = config.max_position_embeddings
|
|
77
|
+
|
|
78
|
+
self.config = config
|
|
79
|
+
|
|
80
|
+
self.rope_type = self.config.rope_parameters["rope_type"]
|
|
81
|
+
rope_init_fn: Callable = self.compute_default_rope_parameters
|
|
82
|
+
if self.rope_type != "default":
|
|
83
|
+
rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
|
84
|
+
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
85
|
+
|
|
86
|
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
87
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
88
|
+
|
|
89
|
+
@staticmethod
|
|
90
|
+
def compute_default_rope_parameters(
|
|
91
|
+
config: Optional[LasrEncoderConfig] = None,
|
|
92
|
+
device: Optional["torch.device"] = None,
|
|
93
|
+
seq_len: Optional[int] = None,
|
|
94
|
+
) -> tuple["torch.Tensor", float]:
|
|
95
|
+
"""
|
|
96
|
+
Computes the inverse frequencies according to the original RoPE implementation
|
|
97
|
+
Args:
|
|
98
|
+
config ([`~transformers.PreTrainedConfig`]):
|
|
99
|
+
The model configuration.
|
|
100
|
+
device (`torch.device`):
|
|
101
|
+
The device to use for initialization of the inverse frequencies.
|
|
102
|
+
seq_len (`int`, *optional*):
|
|
103
|
+
The current sequence length. Unused for this type of RoPE.
|
|
104
|
+
Returns:
|
|
105
|
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
|
106
|
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
|
107
|
+
"""
|
|
108
|
+
base = config.rope_parameters["rope_theta"]
|
|
109
|
+
dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
|
|
110
|
+
|
|
111
|
+
attention_factor = 1.0 # Unused in this type of RoPE
|
|
112
|
+
|
|
113
|
+
# Compute the inverse frequencies
|
|
114
|
+
inv_freq = 1.0 / (
|
|
115
|
+
base ** (torch.arange(0, dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / dim)
|
|
116
|
+
)
|
|
117
|
+
return inv_freq, attention_factor
|
|
118
|
+
|
|
119
|
+
@torch.no_grad()
|
|
120
|
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
|
121
|
+
def forward(self, x, position_ids):
|
|
122
|
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
|
123
|
+
position_ids_expanded = position_ids[:, None, :].float()
|
|
124
|
+
|
|
125
|
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
126
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
127
|
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
128
|
+
emb = torch.cat((freqs, freqs), dim=-1)
|
|
129
|
+
cos = emb.cos() * self.attention_scaling
|
|
130
|
+
sin = emb.sin() * self.attention_scaling
|
|
131
|
+
|
|
132
|
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def rotate_half(x):
|
|
136
|
+
"""Rotates half the hidden dims of the input."""
|
|
137
|
+
x1 = x[..., : x.shape[-1] // 2]
|
|
138
|
+
x2 = x[..., x.shape[-1] // 2 :]
|
|
139
|
+
return torch.cat((-x2, x1), dim=-1)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
@use_kernel_func_from_hub("rotary_pos_emb")
|
|
143
|
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
144
|
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
145
|
+
|
|
146
|
+
Args:
|
|
147
|
+
q (`torch.Tensor`): The query tensor.
|
|
148
|
+
k (`torch.Tensor`): The key tensor.
|
|
149
|
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
150
|
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
151
|
+
position_ids (`torch.Tensor`, *optional*):
|
|
152
|
+
Deprecated and unused.
|
|
153
|
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
154
|
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
155
|
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
156
|
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
157
|
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
158
|
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
159
|
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
160
|
+
Returns:
|
|
161
|
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
162
|
+
"""
|
|
163
|
+
cos = cos.unsqueeze(unsqueeze_dim)
|
|
164
|
+
sin = sin.unsqueeze(unsqueeze_dim)
|
|
165
|
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
166
|
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
167
|
+
return q_embed, k_embed
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
171
|
+
"""
|
|
172
|
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
173
|
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
174
|
+
"""
|
|
175
|
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
176
|
+
if n_rep == 1:
|
|
177
|
+
return hidden_states
|
|
178
|
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
179
|
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
def eager_attention_forward(
|
|
183
|
+
module: nn.Module,
|
|
184
|
+
query: torch.Tensor,
|
|
185
|
+
key: torch.Tensor,
|
|
186
|
+
value: torch.Tensor,
|
|
187
|
+
attention_mask: Optional[torch.Tensor],
|
|
188
|
+
scaling: float,
|
|
189
|
+
dropout: float = 0.0,
|
|
190
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
191
|
+
):
|
|
192
|
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
|
193
|
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
|
194
|
+
|
|
195
|
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
|
196
|
+
if attention_mask is not None:
|
|
197
|
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
198
|
+
attn_weights = attn_weights + causal_mask
|
|
199
|
+
|
|
200
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
|
201
|
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
202
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
|
203
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
204
|
+
|
|
205
|
+
return attn_output, attn_weights
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
@use_kernelized_func(apply_rotary_pos_emb)
|
|
209
|
+
class LasrEncoderAttention(nn.Module):
|
|
210
|
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
211
|
+
|
|
212
|
+
def __init__(self, config: LasrEncoderConfig, layer_idx: int):
|
|
213
|
+
super().__init__()
|
|
214
|
+
self.config = config
|
|
215
|
+
self.layer_idx = layer_idx
|
|
216
|
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
|
217
|
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
|
218
|
+
self.scaling = self.head_dim**-0.5
|
|
219
|
+
self.attention_dropout = config.attention_dropout
|
|
220
|
+
self.is_causal = False
|
|
221
|
+
|
|
222
|
+
self.q_proj = nn.Linear(
|
|
223
|
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
|
224
|
+
)
|
|
225
|
+
self.k_proj = nn.Linear(
|
|
226
|
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
|
227
|
+
)
|
|
228
|
+
self.v_proj = nn.Linear(
|
|
229
|
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
|
230
|
+
)
|
|
231
|
+
self.o_proj = nn.Linear(
|
|
232
|
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
def forward(
|
|
236
|
+
self,
|
|
237
|
+
hidden_states: torch.Tensor,
|
|
238
|
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
|
239
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
240
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
241
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
242
|
+
input_shape = hidden_states.shape[:-1]
|
|
243
|
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
244
|
+
|
|
245
|
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
246
|
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
247
|
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
248
|
+
|
|
249
|
+
cos, sin = position_embeddings
|
|
250
|
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
251
|
+
|
|
252
|
+
attention_interface: Callable = eager_attention_forward
|
|
253
|
+
if self.config._attn_implementation != "eager":
|
|
254
|
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
255
|
+
|
|
256
|
+
attn_output, attn_weights = attention_interface(
|
|
257
|
+
self,
|
|
258
|
+
query_states,
|
|
259
|
+
key_states,
|
|
260
|
+
value_states,
|
|
261
|
+
attention_mask,
|
|
262
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
263
|
+
scaling=self.scaling,
|
|
264
|
+
**kwargs,
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
268
|
+
attn_output = self.o_proj(attn_output)
|
|
269
|
+
return attn_output, attn_weights
|
|
270
|
+
|
|
271
|
+
|
|
272
|
+
class LasrEncoderConvolutionModule(nn.Module):
|
|
273
|
+
def __init__(self, config: LasrEncoderConfig, module_config=None):
|
|
274
|
+
"""
|
|
275
|
+
Args:
|
|
276
|
+
config (LasrEncoderConfig): Configuration for the model.
|
|
277
|
+
module_config (dict): Configuration for the module (e.g., encoder or decoder).
|
|
278
|
+
"""
|
|
279
|
+
super().__init__()
|
|
280
|
+
channels = config.hidden_size
|
|
281
|
+
# kernel_size should be an odd number for 'SAME' padding
|
|
282
|
+
if module_config is None:
|
|
283
|
+
# e.g. using `LasrEncoderEncoderConfig` in src/transformers/models/lasr_encoder/configuration_lasr_encoder.py
|
|
284
|
+
kernel_size = config.conv_kernel_size
|
|
285
|
+
self.activation = ACT2FN[getattr(config, "hidden_act", "silu")]
|
|
286
|
+
else:
|
|
287
|
+
kernel_size = module_config["kernel_size"]
|
|
288
|
+
self.activation = ACT2FN[module_config.get("activation", "silu")]
|
|
289
|
+
self.padding = "same"
|
|
290
|
+
self.pointwise_conv1 = nn.Conv1d(
|
|
291
|
+
channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=config.convolution_bias
|
|
292
|
+
)
|
|
293
|
+
self.depthwise_conv = nn.Conv1d(
|
|
294
|
+
channels,
|
|
295
|
+
channels,
|
|
296
|
+
kernel_size,
|
|
297
|
+
stride=1,
|
|
298
|
+
padding=self.padding,
|
|
299
|
+
groups=channels,
|
|
300
|
+
bias=config.convolution_bias,
|
|
301
|
+
)
|
|
302
|
+
self.norm = nn.BatchNorm1d(config.hidden_size, momentum=config.batch_norm_momentum)
|
|
303
|
+
self.pointwise_conv2 = nn.Conv1d(
|
|
304
|
+
channels, channels, kernel_size=1, stride=1, padding=0, bias=config.convolution_bias
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
def forward(self, hidden_states, attention_mask=None):
|
|
308
|
+
"""
|
|
309
|
+
Compute convolution module.
|
|
310
|
+
|
|
311
|
+
Args:
|
|
312
|
+
hidden_states (`torch.Tensor` of shape `(batch, time, channels)`): Input tensor.
|
|
313
|
+
attention_mask (`torch.Tensor` of shape `(batch, 1, time, time)`): Attention mask.
|
|
314
|
+
|
|
315
|
+
Returns:
|
|
316
|
+
`torch.Tensor`: Output tensor of shape `(batch, time, channels)`.
|
|
317
|
+
|
|
318
|
+
"""
|
|
319
|
+
# exchange the temporal dimension and the feature dimension
|
|
320
|
+
hidden_states = hidden_states.transpose(1, 2)
|
|
321
|
+
|
|
322
|
+
# GLU mechanism, (batch_size, 2*channel, dim)
|
|
323
|
+
hidden_states = self.pointwise_conv1(hidden_states)
|
|
324
|
+
# (batch_size, channel, dim)
|
|
325
|
+
hidden_states = nn.functional.glu(hidden_states, dim=1)
|
|
326
|
+
|
|
327
|
+
# Apply padding mask before convolution
|
|
328
|
+
if attention_mask is not None:
|
|
329
|
+
if attention_mask.dtype == torch.bool:
|
|
330
|
+
all_masked_rows = torch.all(~attention_mask, dim=2)
|
|
331
|
+
else:
|
|
332
|
+
all_masked_rows = torch.all(~(attention_mask == 0.0), dim=2)
|
|
333
|
+
hidden_states = hidden_states.masked_fill(all_masked_rows, 0.0)
|
|
334
|
+
|
|
335
|
+
# 1D Depthwise Conv
|
|
336
|
+
hidden_states = self.depthwise_conv(hidden_states)
|
|
337
|
+
hidden_states = self.norm(hidden_states)
|
|
338
|
+
hidden_states = self.activation(hidden_states)
|
|
339
|
+
hidden_states = self.pointwise_conv2(hidden_states)
|
|
340
|
+
|
|
341
|
+
return hidden_states.transpose(1, 2)
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
class LasrEncoderFeedForward(nn.Module):
|
|
345
|
+
def __init__(self, config: LasrEncoderConfig):
|
|
346
|
+
super().__init__()
|
|
347
|
+
self.linear1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.attention_bias)
|
|
348
|
+
self.activation = ACT2FN[config.hidden_act]
|
|
349
|
+
self.linear2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.attention_bias)
|
|
350
|
+
self.activation_dropout = config.activation_dropout
|
|
351
|
+
|
|
352
|
+
def forward(self, hidden_states):
|
|
353
|
+
hidden_states = self.activation(self.linear1(hidden_states))
|
|
354
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
|
355
|
+
hidden_states = self.linear2(hidden_states)
|
|
356
|
+
return hidden_states
|
|
357
|
+
|
|
358
|
+
|
|
359
|
+
class LasrEncoderBlock(GradientCheckpointingLayer):
|
|
360
|
+
def __init__(self, config: LasrEncoderConfig, layer_idx: int):
|
|
361
|
+
super().__init__()
|
|
362
|
+
self.gradient_checkpointing = False
|
|
363
|
+
|
|
364
|
+
self.feed_forward1 = LasrEncoderFeedForward(config)
|
|
365
|
+
self.self_attn = LasrEncoderAttention(config, layer_idx)
|
|
366
|
+
self.conv = LasrEncoderConvolutionModule(config)
|
|
367
|
+
self.feed_forward2 = LasrEncoderFeedForward(config)
|
|
368
|
+
|
|
369
|
+
self.norm_feed_forward1 = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, bias=False)
|
|
370
|
+
self.norm_self_att = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, bias=False)
|
|
371
|
+
self.norm_conv = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, bias=False)
|
|
372
|
+
self.norm_feed_forward2 = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, bias=False)
|
|
373
|
+
self.norm_out = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, bias=False)
|
|
374
|
+
|
|
375
|
+
self.feed_forward_residual_weights = config.feed_forward_residual_weights
|
|
376
|
+
self.conv_residual_weights = config.conv_residual_weights
|
|
377
|
+
|
|
378
|
+
def forward(
|
|
379
|
+
self,
|
|
380
|
+
hidden_states: torch.Tensor,
|
|
381
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
382
|
+
position_embeddings: Optional[torch.Tensor] = None,
|
|
383
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
384
|
+
) -> torch.Tensor:
|
|
385
|
+
residual = hidden_states
|
|
386
|
+
hidden_states = self.feed_forward1(self.norm_feed_forward1(hidden_states))
|
|
387
|
+
hidden_states = (
|
|
388
|
+
self.feed_forward_residual_weights[0] * residual + self.feed_forward_residual_weights[1] * hidden_states
|
|
389
|
+
)
|
|
390
|
+
|
|
391
|
+
normalized_hidden_states = self.norm_self_att(hidden_states)
|
|
392
|
+
attn_output, _ = self.self_attn(
|
|
393
|
+
hidden_states=normalized_hidden_states,
|
|
394
|
+
attention_mask=attention_mask,
|
|
395
|
+
position_embeddings=position_embeddings,
|
|
396
|
+
**kwargs,
|
|
397
|
+
)
|
|
398
|
+
hidden_states = hidden_states + attn_output
|
|
399
|
+
|
|
400
|
+
conv_output = self.conv(self.norm_conv(hidden_states), attention_mask=attention_mask)
|
|
401
|
+
hidden_states = self.conv_residual_weights[0] * hidden_states + self.conv_residual_weights[1] * conv_output
|
|
402
|
+
|
|
403
|
+
residual = hidden_states
|
|
404
|
+
hidden_states = self.feed_forward2(self.norm_feed_forward2(hidden_states))
|
|
405
|
+
hidden_states = (
|
|
406
|
+
self.feed_forward_residual_weights[0] * residual + self.feed_forward_residual_weights[1] * hidden_states
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
hidden_states = self.norm_out(hidden_states)
|
|
410
|
+
|
|
411
|
+
return hidden_states
|
|
412
|
+
|
|
413
|
+
|
|
414
|
+
@auto_docstring
|
|
415
|
+
class LasrPreTrainedModel(PreTrainedModel):
|
|
416
|
+
config: LasrCTCConfig
|
|
417
|
+
base_model_prefix = "model"
|
|
418
|
+
main_input_name = "input_features"
|
|
419
|
+
input_modalities = "audio"
|
|
420
|
+
supports_gradient_checkpointing = True
|
|
421
|
+
_no_split_modules = ["LasrEncoderBlock"]
|
|
422
|
+
_supports_flat_attention_mask = True
|
|
423
|
+
_supports_sdpa = True
|
|
424
|
+
# padding is incompatible with flex attention as the resulting mask cannot be used to apply padding
|
|
425
|
+
_supports_flex_attn = False
|
|
426
|
+
|
|
427
|
+
# TODO: @eustlb, add support when flash attention supports custom attention bias
|
|
428
|
+
_supports_flash_attn = False
|
|
429
|
+
|
|
430
|
+
_can_compile_fullgraph = True
|
|
431
|
+
_supports_attention_backend = True
|
|
432
|
+
_can_record_outputs = {
|
|
433
|
+
"hidden_states": LasrEncoderBlock,
|
|
434
|
+
"attentions": LasrEncoderAttention,
|
|
435
|
+
}
|
|
436
|
+
|
|
437
|
+
@torch.no_grad()
|
|
438
|
+
def _init_weights(self, module):
|
|
439
|
+
super()._init_weights(module)
|
|
440
|
+
|
|
441
|
+
def _get_subsampling_output_length(self, input_lengths: torch.Tensor):
|
|
442
|
+
encoder_config = self.config.encoder_config if isinstance(self.config, LasrCTCConfig) else self.config
|
|
443
|
+
kernel_size = encoder_config.subsampling_conv_kernel_size
|
|
444
|
+
stride = encoder_config.subsampling_conv_stride
|
|
445
|
+
|
|
446
|
+
num_layers = 2
|
|
447
|
+
for _ in range(num_layers):
|
|
448
|
+
input_lengths = (input_lengths - kernel_size) // stride + 1
|
|
449
|
+
|
|
450
|
+
return input_lengths
|
|
451
|
+
|
|
452
|
+
def _get_output_attention_mask(self, attention_mask: torch.Tensor, target_length: Optional[int] = None):
|
|
453
|
+
"""
|
|
454
|
+
Convert the input attention mask to its subsampled form. `target_length` sets the desired output length, useful
|
|
455
|
+
when the attention mask length differs from `sum(-1).max()` (i.e., when the longest sequence in the batch is padded)
|
|
456
|
+
"""
|
|
457
|
+
output_lengths = self._get_subsampling_output_length(attention_mask.sum(-1))
|
|
458
|
+
# Use target_length if provided, otherwise use max length in batch
|
|
459
|
+
max_length = target_length if target_length is not None else output_lengths.max()
|
|
460
|
+
attention_mask = torch.arange(max_length, device=attention_mask.device) < output_lengths[:, None]
|
|
461
|
+
return attention_mask
|
|
462
|
+
|
|
463
|
+
|
|
464
|
+
@auto_docstring(
|
|
465
|
+
custom_intro="""
|
|
466
|
+
The LasrEncoder model, based on the Conformer architecture](https://arxiv.org/abs/2005.08100).
|
|
467
|
+
"""
|
|
468
|
+
)
|
|
469
|
+
class LasrEncoder(LasrPreTrainedModel):
|
|
470
|
+
config: LasrEncoderConfig
|
|
471
|
+
base_model_prefix = "encoder"
|
|
472
|
+
|
|
473
|
+
def __init__(self, config: LasrEncoderConfig):
|
|
474
|
+
super().__init__(config)
|
|
475
|
+
self.gradient_checkpointing = False
|
|
476
|
+
|
|
477
|
+
self.dropout = config.dropout
|
|
478
|
+
self.dropout_positions = config.dropout_positions
|
|
479
|
+
self.layerdrop = config.layerdrop
|
|
480
|
+
|
|
481
|
+
self.subsampler = LasrEncoderSubsampling(config)
|
|
482
|
+
self.rotary_emb = LasrEncoderRotaryEmbedding(config)
|
|
483
|
+
self.layers = nn.ModuleList(
|
|
484
|
+
[LasrEncoderBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
485
|
+
)
|
|
486
|
+
self.out_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, bias=False)
|
|
487
|
+
|
|
488
|
+
self.post_init()
|
|
489
|
+
|
|
490
|
+
@auto_docstring
|
|
491
|
+
@check_model_inputs()
|
|
492
|
+
@can_return_tuple
|
|
493
|
+
def forward(
|
|
494
|
+
self,
|
|
495
|
+
input_features: torch.Tensor,
|
|
496
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
497
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
498
|
+
) -> BaseModelOutput:
|
|
499
|
+
r"""
|
|
500
|
+
Example:
|
|
501
|
+
|
|
502
|
+
```python
|
|
503
|
+
>>> from transformers import AutoProcessor, LasrEncoder
|
|
504
|
+
>>> from datasets import load_dataset, Audio
|
|
505
|
+
|
|
506
|
+
>>> model_id = TODO
|
|
507
|
+
>>> processor = AutoProcessor.from_pretrained(model_id)
|
|
508
|
+
>>> encoder = ParakeetEncoder.from_pretrained(model_id)
|
|
509
|
+
|
|
510
|
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
511
|
+
>>> ds = ds.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate))
|
|
512
|
+
|
|
513
|
+
>>> inputs = processor(ds[0]["audio"]["array"])
|
|
514
|
+
>>> encoder_outputs = encoder(**inputs)
|
|
515
|
+
|
|
516
|
+
>>> print(encoder_outputs.last_hidden_state.shape)
|
|
517
|
+
```
|
|
518
|
+
"""
|
|
519
|
+
|
|
520
|
+
hidden_states = self.subsampler(input_features)
|
|
521
|
+
cos, sin = self.rotary_emb(
|
|
522
|
+
hidden_states, torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
|
|
523
|
+
)
|
|
524
|
+
|
|
525
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
526
|
+
cos = nn.functional.dropout(cos, p=self.dropout_positions, training=self.training)
|
|
527
|
+
sin = nn.functional.dropout(sin, p=self.dropout_positions, training=self.training)
|
|
528
|
+
|
|
529
|
+
if attention_mask is not None:
|
|
530
|
+
attention_mask = self._get_output_attention_mask(attention_mask, target_length=hidden_states.shape[1])
|
|
531
|
+
|
|
532
|
+
attention_mask = create_bidirectional_mask(
|
|
533
|
+
config=self.config,
|
|
534
|
+
input_embeds=hidden_states,
|
|
535
|
+
attention_mask=attention_mask,
|
|
536
|
+
)
|
|
537
|
+
|
|
538
|
+
for encoder_layer in self.layers:
|
|
539
|
+
# add LayerDrop (see https://huggingface.co/papers/1909.11556 for description)
|
|
540
|
+
to_drop = False
|
|
541
|
+
if self.training:
|
|
542
|
+
dropout_probability = torch.rand([])
|
|
543
|
+
if dropout_probability < self.layerdrop: # skip the layer
|
|
544
|
+
to_drop = True
|
|
545
|
+
|
|
546
|
+
if not to_drop:
|
|
547
|
+
hidden_states = encoder_layer(
|
|
548
|
+
hidden_states,
|
|
549
|
+
attention_mask=attention_mask,
|
|
550
|
+
position_embeddings=(cos, sin),
|
|
551
|
+
**kwargs,
|
|
552
|
+
)
|
|
553
|
+
|
|
554
|
+
hidden_states = self.out_norm(hidden_states)
|
|
555
|
+
|
|
556
|
+
return BaseModelOutput(last_hidden_state=hidden_states)
|
|
557
|
+
|
|
558
|
+
|
|
559
|
+
@dataclass
|
|
560
|
+
class LasrGenerateOutput(ModelOutput):
|
|
561
|
+
"""
|
|
562
|
+
Outputs of Lasr models.
|
|
563
|
+
|
|
564
|
+
Args:
|
|
565
|
+
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
566
|
+
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
|
|
567
|
+
if all batches finished early due to the `eos_token_id`.
|
|
568
|
+
logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`):
|
|
569
|
+
Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
|
|
570
|
+
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
|
|
571
|
+
each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
|
|
572
|
+
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
|
|
573
|
+
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
|
|
574
|
+
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
|
|
575
|
+
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`):
|
|
576
|
+
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
|
|
577
|
+
`torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
|
|
578
|
+
"""
|
|
579
|
+
|
|
580
|
+
sequences: torch.LongTensor
|
|
581
|
+
logits: Optional[tuple[torch.FloatTensor]] = None
|
|
582
|
+
attentions: Optional[tuple[tuple[torch.FloatTensor]]] = None
|
|
583
|
+
hidden_states: Optional[tuple[tuple[torch.FloatTensor]]] = None
|
|
584
|
+
|
|
585
|
+
|
|
586
|
+
@auto_docstring(
|
|
587
|
+
custom_intro="""
|
|
588
|
+
Lasr Encoder with a Connectionist Temporal Classification (CTC) head.
|
|
589
|
+
"""
|
|
590
|
+
)
|
|
591
|
+
class LasrForCTC(LasrPreTrainedModel):
|
|
592
|
+
config: LasrCTCConfig
|
|
593
|
+
|
|
594
|
+
def __init__(self, config: LasrCTCConfig):
|
|
595
|
+
super().__init__(config)
|
|
596
|
+
self.encoder = LasrEncoder(config.encoder_config)
|
|
597
|
+
# Conv rather than linear to be consistent with NeMO decoding layer
|
|
598
|
+
self.ctc_head = nn.Conv1d(config.encoder_config.hidden_size, config.vocab_size, kernel_size=1)
|
|
599
|
+
|
|
600
|
+
self.post_init()
|
|
601
|
+
|
|
602
|
+
@auto_docstring
|
|
603
|
+
@can_return_tuple
|
|
604
|
+
def forward(
|
|
605
|
+
self,
|
|
606
|
+
input_features: torch.Tensor,
|
|
607
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
608
|
+
labels: Optional[torch.Tensor] = None,
|
|
609
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
610
|
+
) -> CausalLMOutput:
|
|
611
|
+
r"""
|
|
612
|
+
Example:
|
|
613
|
+
|
|
614
|
+
```python
|
|
615
|
+
>>> from transformers import AutoProcessor, LasrForCTC
|
|
616
|
+
>>> from datasets import load_dataset, Audio
|
|
617
|
+
|
|
618
|
+
>>> model_id = "nvidia/lasr-ctc-1.1b"
|
|
619
|
+
>>> processor = AutoProcessor.from_pretrained(model_id)
|
|
620
|
+
>>> model = LasrForCTC.from_pretrained(model_id)
|
|
621
|
+
|
|
622
|
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
623
|
+
>>> ds = ds.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate))
|
|
624
|
+
|
|
625
|
+
>>> inputs = processor(ds[0]["audio"]["array"], text=ds[0]["text"])
|
|
626
|
+
>>> outputs = model(**inputs)
|
|
627
|
+
|
|
628
|
+
>>> print(outputs.loss)
|
|
629
|
+
```"""
|
|
630
|
+
|
|
631
|
+
encoder_outputs = self.encoder(
|
|
632
|
+
input_features=input_features,
|
|
633
|
+
attention_mask=attention_mask,
|
|
634
|
+
**kwargs,
|
|
635
|
+
)
|
|
636
|
+
|
|
637
|
+
hidden_states = encoder_outputs.last_hidden_state
|
|
638
|
+
logits = self.ctc_head(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
639
|
+
|
|
640
|
+
loss = None
|
|
641
|
+
if labels is not None:
|
|
642
|
+
# retrieve loss input_lengths from attention_mask
|
|
643
|
+
attention_mask = (
|
|
644
|
+
attention_mask if attention_mask is not None else torch.ones_like(input_features, dtype=torch.long)
|
|
645
|
+
)
|
|
646
|
+
input_lengths = self._get_subsampling_output_length(attention_mask.sum(-1))
|
|
647
|
+
|
|
648
|
+
# assuming that padded tokens are filled with -100
|
|
649
|
+
# when not being attended to
|
|
650
|
+
labels_mask = labels != self.config.pad_token_id
|
|
651
|
+
target_lengths = labels_mask.sum(-1)
|
|
652
|
+
flattened_targets = labels.masked_select(labels_mask)
|
|
653
|
+
|
|
654
|
+
# ctc_loss doesn't support fp16
|
|
655
|
+
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
|
|
656
|
+
|
|
657
|
+
with torch.backends.cudnn.flags(enabled=False):
|
|
658
|
+
loss = nn.functional.ctc_loss(
|
|
659
|
+
log_probs,
|
|
660
|
+
flattened_targets,
|
|
661
|
+
input_lengths,
|
|
662
|
+
target_lengths,
|
|
663
|
+
blank=self.config.pad_token_id,
|
|
664
|
+
reduction=self.config.ctc_loss_reduction,
|
|
665
|
+
zero_infinity=self.config.ctc_zero_infinity,
|
|
666
|
+
)
|
|
667
|
+
|
|
668
|
+
return CausalLMOutput(
|
|
669
|
+
loss=loss,
|
|
670
|
+
logits=logits,
|
|
671
|
+
hidden_states=encoder_outputs.hidden_states,
|
|
672
|
+
attentions=encoder_outputs.attentions,
|
|
673
|
+
)
|
|
674
|
+
|
|
675
|
+
@torch.no_grad()
|
|
676
|
+
def generate(
|
|
677
|
+
self,
|
|
678
|
+
input_features: torch.Tensor,
|
|
679
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
680
|
+
return_dict_in_generate: bool = False,
|
|
681
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
682
|
+
) -> Union[LasrGenerateOutput, torch.LongTensor]:
|
|
683
|
+
r"""
|
|
684
|
+
Example:
|
|
685
|
+
|
|
686
|
+
```python
|
|
687
|
+
>>> from transformers import AutoProcessor, LasrForCTC
|
|
688
|
+
>>> from datasets import load_dataset, Audio
|
|
689
|
+
|
|
690
|
+
>>> model_id = TODO
|
|
691
|
+
>>> processor = AutoProcessor.from_pretrained(model_id)
|
|
692
|
+
>>> model = LasrForCTC.from_pretrained(model_id)
|
|
693
|
+
|
|
694
|
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
695
|
+
>>> ds = ds.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate))
|
|
696
|
+
|
|
697
|
+
>>> inputs = processor(ds[0]["audio"]["array"], text=ds[0]["text"])
|
|
698
|
+
>>> predicted_ids = model.generate(**inputs)
|
|
699
|
+
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
|
700
|
+
|
|
701
|
+
>>> print(transcription)
|
|
702
|
+
```
|
|
703
|
+
"""
|
|
704
|
+
kwargs["return_dict"] = True
|
|
705
|
+
outputs: CausalLMOutput = self.forward(
|
|
706
|
+
input_features=input_features,
|
|
707
|
+
attention_mask=attention_mask,
|
|
708
|
+
**kwargs,
|
|
709
|
+
)
|
|
710
|
+
|
|
711
|
+
# greedy decoding
|
|
712
|
+
sequences = outputs.logits.argmax(dim=-1)
|
|
713
|
+
|
|
714
|
+
# mask out padded tokens
|
|
715
|
+
if attention_mask is not None:
|
|
716
|
+
attention_mask = self._get_output_attention_mask(attention_mask, target_length=sequences.shape[1])
|
|
717
|
+
sequences[~attention_mask] = self.config.pad_token_id
|
|
718
|
+
|
|
719
|
+
if return_dict_in_generate:
|
|
720
|
+
return LasrGenerateOutput(
|
|
721
|
+
sequences=sequences,
|
|
722
|
+
logits=outputs.logits,
|
|
723
|
+
attentions=outputs.attentions,
|
|
724
|
+
hidden_states=outputs.hidden_states,
|
|
725
|
+
)
|
|
726
|
+
|
|
727
|
+
return sequences
|
|
728
|
+
|
|
729
|
+
|
|
730
|
+
__all__ = ["LasrForCTC", "LasrEncoder", "LasrPreTrainedModel"]
|