transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +49 -3
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/cli/serve.py +47 -17
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +83 -7
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +374 -147
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +2 -3
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +55 -24
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +165 -124
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +228 -136
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +3 -14
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +16 -2
- transformers/integrations/accelerate.py +58 -113
- transformers/integrations/aqlm.py +36 -66
- transformers/integrations/awq.py +46 -515
- transformers/integrations/bitnet.py +47 -105
- transformers/integrations/bitsandbytes.py +91 -202
- transformers/integrations/deepspeed.py +18 -2
- transformers/integrations/eetq.py +84 -81
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +241 -208
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +37 -62
- transformers/integrations/hub_kernels.py +65 -8
- transformers/integrations/integration_utils.py +45 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +28 -74
- transformers/integrations/peft.py +12 -29
- transformers/integrations/quanto.py +77 -56
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +42 -90
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +40 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +74 -19
- transformers/modeling_rope_utils.py +107 -86
- transformers/modeling_utils.py +611 -527
- transformers/models/__init__.py +22 -0
- transformers/models/afmoe/modeling_afmoe.py +10 -19
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +14 -6
- transformers/models/altclip/modeling_altclip.py +11 -3
- transformers/models/apertus/modeling_apertus.py +8 -6
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +5 -5
- transformers/models/aria/modeling_aria.py +12 -8
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +38 -0
- transformers/models/auto/feature_extraction_auto.py +9 -3
- transformers/models/auto/image_processing_auto.py +5 -2
- transformers/models/auto/modeling_auto.py +37 -0
- transformers/models/auto/processing_auto.py +22 -10
- transformers/models/auto/tokenization_auto.py +147 -566
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +21 -21
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +11 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +14 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +9 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +15 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +16 -3
- transformers/models/bitnet/modeling_bitnet.py +5 -5
- transformers/models/blenderbot/modeling_blenderbot.py +12 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +18 -23
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +12 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +10 -0
- transformers/models/blip_2/modeling_blip_2.py +4 -1
- transformers/models/bloom/modeling_bloom.py +17 -44
- transformers/models/blt/modeling_blt.py +164 -4
- transformers/models/blt/modular_blt.py +170 -5
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +11 -1
- transformers/models/bros/modeling_bros.py +12 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +11 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +11 -5
- transformers/models/chinese_clip/modeling_chinese_clip.py +9 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +30 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +9 -0
- transformers/models/clvp/modeling_clvp.py +19 -3
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +5 -4
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +8 -7
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -4
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +9 -1
- transformers/models/convbert/modeling_convbert.py +9 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +7 -4
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +15 -2
- transformers/models/cvt/modeling_cvt.py +7 -1
- transformers/models/cwm/modeling_cwm.py +5 -5
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +48 -39
- transformers/models/d_fine/modular_d_fine.py +16 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +5 -1
- transformers/models/dac/modeling_dac.py +6 -6
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +3 -3
- transformers/models/deberta/modeling_deberta.py +7 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +8 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +12 -6
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +9 -7
- transformers/models/deepseek_v2/modular_deepseek_v2.py +6 -4
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +12 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +7 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +5 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +13 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +16 -4
- transformers/models/dia/modular_dia.py +11 -1
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +5 -5
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -2
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +3 -4
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +18 -12
- transformers/models/dots1/modeling_dots1.py +23 -11
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +6 -3
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +56 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +14 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +16 -3
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +7 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +12 -6
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +60 -16
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +5 -5
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +20 -17
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +11 -37
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +11 -5
- transformers/models/evolla/modeling_evolla.py +13 -5
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +3 -3
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +9 -4
- transformers/models/falcon_h1/modeling_falcon_h1.py +32 -26
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +31 -37
- transformers/models/falcon_mamba/modular_falcon_mamba.py +19 -33
- transformers/models/fast_vlm/__init__.py +27 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +459 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +31 -13
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +21 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +10 -2
- transformers/models/flex_olmo/modeling_flex_olmo.py +10 -8
- transformers/models/florence2/modeling_florence2.py +22 -4
- transformers/models/florence2/modular_florence2.py +15 -1
- transformers/models/fnet/modeling_fnet.py +14 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +19 -3
- transformers/models/gemma/modeling_gemma.py +14 -16
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +5 -5
- transformers/models/gemma2/modular_gemma2.py +3 -2
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +42 -91
- transformers/models/gemma3/modular_gemma3.py +38 -87
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +65 -218
- transformers/models/gemma3n/modular_gemma3n.py +68 -68
- transformers/models/git/modeling_git.py +183 -126
- transformers/models/glm/modeling_glm.py +5 -5
- transformers/models/glm4/modeling_glm4.py +5 -5
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +13 -7
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +18 -8
- transformers/models/glm4v/modular_glm4v.py +17 -7
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +44 -27
- transformers/models/glm4v_moe/modular_glm4v_moe.py +13 -1
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +13 -6
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +4 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +19 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +6 -3
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +4 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +10 -14
- transformers/models/gpt_oss/modular_gpt_oss.py +8 -12
- transformers/models/gptj/modeling_gptj.py +18 -6
- transformers/models/granite/modeling_granite.py +5 -5
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +6 -9
- transformers/models/granitemoe/modular_granitemoe.py +1 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +36 -28
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +6 -9
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +8 -4
- transformers/models/groupvit/modeling_groupvit.py +9 -1
- transformers/models/helium/modeling_helium.py +5 -4
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +7 -0
- transformers/models/hubert/modular_hubert.py +5 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +5 -5
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +15 -7
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +22 -0
- transformers/models/idefics/modeling_idefics.py +15 -21
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +11 -3
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +13 -12
- transformers/models/internvl/modular_internvl.py +7 -13
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +25 -20
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +16 -7
- transformers/models/janus/modular_janus.py +17 -7
- transformers/models/jetmoe/modeling_jetmoe.py +4 -4
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +15 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +12 -4
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +248 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +730 -0
- transformers/models/lasr/modular_lasr.py +576 -0
- transformers/models/lasr/processing_lasr.py +94 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +10 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +16 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +11 -53
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +33 -5
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +12 -0
- transformers/models/levit/modeling_levit.py +21 -0
- transformers/models/lfm2/modeling_lfm2.py +5 -6
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +17 -8
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +23 -15
- transformers/models/llama/modeling_llama.py +5 -5
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +11 -6
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +6 -5
- transformers/models/longcat_flash/modular_longcat_flash.py +3 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -4
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +14 -0
- transformers/models/mamba/modeling_mamba.py +16 -23
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +8 -0
- transformers/models/markuplm/modeling_markuplm.py +9 -8
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +11 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +11 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +21 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +14 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +9 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +28 -5
- transformers/models/minimax/modeling_minimax.py +19 -6
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +5 -5
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +5 -4
- transformers/models/mistral/modeling_mistral.py +5 -4
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +15 -7
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +15 -4
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +8 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +7 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +7 -0
- transformers/models/modernbert/modeling_modernbert.py +16 -2
- transformers/models/modernbert/modular_modernbert.py +14 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +17 -10
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +15 -8
- transformers/models/moonshine/modeling_moonshine.py +5 -3
- transformers/models/moshi/modeling_moshi.py +26 -53
- transformers/models/mpnet/modeling_mpnet.py +7 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +10 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +7 -10
- transformers/models/musicgen/modeling_musicgen.py +7 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -0
- transformers/models/mvp/modeling_mvp.py +14 -0
- transformers/models/nanochat/modeling_nanochat.py +5 -5
- transformers/models/nemotron/modeling_nemotron.py +7 -5
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +15 -68
- transformers/models/nystromformer/modeling_nystromformer.py +13 -0
- transformers/models/olmo/modeling_olmo.py +5 -5
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +5 -6
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +5 -5
- transformers/models/olmoe/modeling_olmoe.py +15 -7
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +6 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +11 -39
- transformers/models/openai/modeling_openai.py +15 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +11 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +11 -3
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +504 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1682 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1359 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +14 -6
- transformers/models/parakeet/modular_parakeet.py +7 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +10 -0
- transformers/models/patchtst/modeling_patchtst.py +25 -6
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/{kernels/falcon_mamba/__init__.py → models/pe_audio/processing_pe_audio.py} +11 -2
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +8 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +5 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +13 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +3 -2
- transformers/models/phi/modeling_phi.py +5 -6
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +3 -2
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +9 -6
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +7 -4
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +15 -7
- transformers/models/phimoe/modular_phimoe.py +3 -3
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +3 -2
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +13 -0
- transformers/models/plbart/modular_plbart.py +8 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +13 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +5 -1
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +5 -5
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +116 -79
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +71 -33
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +23 -11
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +29 -27
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +4 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +15 -7
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +23 -20
- transformers/models/qwen3/modeling_qwen3.py +5 -5
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +15 -7
- transformers/models/qwen3_next/modeling_qwen3_next.py +7 -8
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +112 -68
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +62 -20
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +57 -42
- transformers/models/qwen3_vl/modular_qwen3_vl.py +59 -46
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +132 -148
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +36 -82
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +8 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +18 -3
- transformers/models/reformer/modeling_reformer.py +13 -1
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +10 -1
- transformers/models/rembert/modeling_rembert.py +13 -1
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +19 -5
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +6 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +13 -4
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +9 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +2 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +7 -3
- transformers/models/sam2/modular_sam2.py +7 -3
- transformers/models/sam2_video/modeling_sam2_video.py +52 -43
- transformers/models/sam2_video/modular_sam2_video.py +32 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +100 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +27 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +4 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +32 -12
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +11 -1
- transformers/models/seed_oss/modeling_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +6 -3
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +67 -41
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +5 -5
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +14 -0
- transformers/models/speecht5/modeling_speecht5.py +41 -1
- transformers/models/splinter/modeling_splinter.py +12 -3
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +8 -0
- transformers/models/stablelm/modeling_stablelm.py +4 -2
- transformers/models/starcoder2/modeling_starcoder2.py +5 -4
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +6 -0
- transformers/models/swin/modeling_swin.py +20 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +51 -33
- transformers/models/swinv2/modeling_swinv2.py +45 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +8 -7
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +6 -6
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +19 -10
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +5 -1
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +14 -0
- transformers/models/timesfm/modular_timesfm.py +14 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +20 -14
- transformers/models/trocr/modeling_trocr.py +3 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +6 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +7 -7
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +7 -6
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +5 -5
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +13 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +8 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +5 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +21 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +12 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +27 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +11 -3
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +5 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +11 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +18 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +10 -1
- transformers/models/zamba/modeling_zamba.py +4 -1
- transformers/models/zamba2/modeling_zamba2.py +7 -4
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +8 -0
- transformers/pipelines/__init__.py +11 -9
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +2 -10
- transformers/pipelines/document_question_answering.py +4 -2
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +133 -50
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +44 -174
- transformers/quantizers/quantizer_aqlm.py +2 -23
- transformers/quantizers/quantizer_auto_round.py +2 -12
- transformers/quantizers/quantizer_awq.py +20 -89
- transformers/quantizers/quantizer_bitnet.py +4 -14
- transformers/quantizers/quantizer_bnb_4bit.py +18 -155
- transformers/quantizers/quantizer_bnb_8bit.py +24 -110
- transformers/quantizers/quantizer_compressed_tensors.py +2 -9
- transformers/quantizers/quantizer_eetq.py +16 -74
- transformers/quantizers/quantizer_fbgemm_fp8.py +38 -138
- transformers/quantizers/quantizer_finegrained_fp8.py +26 -113
- transformers/quantizers/quantizer_fp_quant.py +52 -82
- transformers/quantizers/quantizer_gptq.py +8 -28
- transformers/quantizers/quantizer_higgs.py +42 -60
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +14 -194
- transformers/quantizers/quantizer_quanto.py +35 -79
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +4 -12
- transformers/quantizers/quantizer_torchao.py +50 -325
- transformers/quantizers/quantizer_vptq.py +4 -27
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +324 -47
- transformers/tokenization_mistral_common.py +7 -2
- transformers/tokenization_utils_base.py +116 -224
- transformers/tokenization_utils_tokenizers.py +190 -106
- transformers/trainer.py +51 -32
- transformers/trainer_callback.py +8 -0
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +74 -38
- transformers/utils/__init__.py +7 -4
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +35 -25
- transformers/utils/generic.py +47 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +112 -25
- transformers/utils/kernel_config.py +74 -19
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +78 -245
- transformers/video_processing_utils.py +17 -14
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +275 -229
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +832 -777
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -21,6 +21,7 @@ import torch
|
|
|
21
21
|
from torch import Tensor, device, nn
|
|
22
22
|
from torch.nn import CrossEntropyLoss
|
|
23
23
|
|
|
24
|
+
from ... import initialization as init
|
|
24
25
|
from ...activations import ACT2FN
|
|
25
26
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
26
27
|
from ...generation import GenerationMixin
|
|
@@ -504,6 +505,11 @@ class BlipTextPreTrainedModel(PreTrainedModel):
|
|
|
504
505
|
base_model_prefix = "bert"
|
|
505
506
|
_no_split_modules = []
|
|
506
507
|
|
|
508
|
+
def _init_weights(self, module):
|
|
509
|
+
super()._init_weights(module)
|
|
510
|
+
if isinstance(module, BlipTextEmbeddings):
|
|
511
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
512
|
+
|
|
507
513
|
|
|
508
514
|
# Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571
|
|
509
515
|
class BlipTextModel(BlipTextPreTrainedModel):
|
|
@@ -609,6 +615,7 @@ class BlipTextModel(BlipTextPreTrainedModel):
|
|
|
609
615
|
return_dict: Optional[bool] = None,
|
|
610
616
|
is_decoder: Optional[bool] = False,
|
|
611
617
|
cache_position: Optional[torch.Tensor] = None,
|
|
618
|
+
**kwargs,
|
|
612
619
|
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
|
613
620
|
r"""
|
|
614
621
|
encoder_hidden_states (`torch.FloatTensor`, *optional*):
|
|
@@ -739,6 +746,8 @@ class BlipTextLMHeadModel(BlipTextPreTrainedModel, GenerationMixin):
|
|
|
739
746
|
self.cls = BlipTextOnlyMLMHead(config)
|
|
740
747
|
self.label_smoothing = config.label_smoothing
|
|
741
748
|
|
|
749
|
+
self.post_init()
|
|
750
|
+
|
|
742
751
|
def get_input_embeddings(self):
|
|
743
752
|
return self.bert.get_input_embeddings()
|
|
744
753
|
|
|
@@ -771,6 +780,7 @@ class BlipTextLMHeadModel(BlipTextPreTrainedModel, GenerationMixin):
|
|
|
771
780
|
reduction: Optional[str] = "mean",
|
|
772
781
|
cache_position: Optional[torch.Tensor] = None,
|
|
773
782
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
783
|
+
**kwargs,
|
|
774
784
|
) -> Union[tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
|
775
785
|
r"""
|
|
776
786
|
encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of
|
|
@@ -428,6 +428,8 @@ class Blip2PreTrainedModel(PreTrainedModel):
|
|
|
428
428
|
),
|
|
429
429
|
):
|
|
430
430
|
init.zeros_(module.query_tokens)
|
|
431
|
+
elif isinstance(module, Blip2TextEmbeddings):
|
|
432
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
431
433
|
|
|
432
434
|
|
|
433
435
|
# Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->Blip2
|
|
@@ -603,7 +605,7 @@ class Blip2QFormerMultiHeadAttention(nn.Module):
|
|
|
603
605
|
|
|
604
606
|
# This is actually dropping out entire tokens to attend to, which might
|
|
605
607
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
606
|
-
attention_probs_dropped = self.dropout(attention_probs)
|
|
608
|
+
attention_probs_dropped = self.dropout(attention_probs).to(value_layer.dtype)
|
|
607
609
|
|
|
608
610
|
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
|
609
611
|
|
|
@@ -1948,6 +1950,7 @@ class Blip2ForImageTextRetrieval(Blip2PreTrainedModel):
|
|
|
1948
1950
|
output_attentions: Optional[bool] = None,
|
|
1949
1951
|
output_hidden_states: Optional[bool] = None,
|
|
1950
1952
|
return_dict: Optional[bool] = None,
|
|
1953
|
+
**kwargs,
|
|
1951
1954
|
) -> Union[tuple, Blip2ImageTextMatchingModelOutput]:
|
|
1952
1955
|
r"""
|
|
1953
1956
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -465,6 +465,7 @@ class BloomModel(BloomPreTrainedModel):
|
|
|
465
465
|
output_hidden_states: Optional[bool] = None,
|
|
466
466
|
return_dict: Optional[bool] = None,
|
|
467
467
|
cache_position: Optional[torch.LongTensor] = None,
|
|
468
|
+
**kwargs,
|
|
468
469
|
) -> Union[tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
|
469
470
|
r"""
|
|
470
471
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
|
@@ -713,36 +714,21 @@ class BloomForCausalLM(BloomPreTrainedModel, GenerationMixin):
|
|
|
713
714
|
inputs_embeds=None,
|
|
714
715
|
cache_position=None,
|
|
715
716
|
use_cache=True,
|
|
717
|
+
is_first_iteration=False,
|
|
716
718
|
**kwargs,
|
|
717
719
|
):
|
|
718
720
|
# Overwritten because of the fixed-shape attention mask creation
|
|
719
721
|
|
|
720
|
-
|
|
721
|
-
|
|
722
|
-
|
|
723
|
-
|
|
724
|
-
|
|
725
|
-
|
|
726
|
-
|
|
727
|
-
|
|
728
|
-
|
|
729
|
-
|
|
730
|
-
elif (
|
|
731
|
-
inputs_embeds is not None # Exception 1
|
|
732
|
-
or cache_position[-1] >= input_ids.shape[1] # Exception 3
|
|
733
|
-
):
|
|
734
|
-
input_ids = input_ids[:, -cache_position.shape[0] :]
|
|
735
|
-
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
|
736
|
-
input_ids = input_ids[:, cache_position]
|
|
737
|
-
|
|
738
|
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
739
|
-
if inputs_embeds is not None and len(cache_position) == inputs_embeds.shape[1]:
|
|
740
|
-
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
|
741
|
-
else:
|
|
742
|
-
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the
|
|
743
|
-
# input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in
|
|
744
|
-
# the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
|
745
|
-
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
|
722
|
+
model_inputs = super().prepare_inputs_for_generation(
|
|
723
|
+
input_ids,
|
|
724
|
+
past_key_values=past_key_values,
|
|
725
|
+
attention_mask=attention_mask,
|
|
726
|
+
inputs_embeds=inputs_embeds,
|
|
727
|
+
cache_position=cache_position,
|
|
728
|
+
use_cache=use_cache,
|
|
729
|
+
is_first_iteration=is_first_iteration,
|
|
730
|
+
**kwargs,
|
|
731
|
+
)
|
|
746
732
|
|
|
747
733
|
# This part differs from other models because BLOOM needs a 2D mask to construct alibi tensor
|
|
748
734
|
# The only difference is the usage of 2D instead of 4D mask, but the shape will be static
|
|
@@ -752,24 +738,8 @@ class BloomForCausalLM(BloomPreTrainedModel, GenerationMixin):
|
|
|
752
738
|
diff = target_length - seq_length
|
|
753
739
|
|
|
754
740
|
new_attn_mask = torch.zeros(batch_size, diff, device=attention_mask.device, dtype=attention_mask.dtype)
|
|
755
|
-
attention_mask = torch.cat(
|
|
756
|
-
|
|
757
|
-
dim=-1,
|
|
758
|
-
)
|
|
759
|
-
|
|
760
|
-
model_inputs.update(
|
|
761
|
-
{
|
|
762
|
-
"cache_position": cache_position,
|
|
763
|
-
"past_key_values": past_key_values,
|
|
764
|
-
"use_cache": use_cache,
|
|
765
|
-
"attention_mask": attention_mask,
|
|
766
|
-
}
|
|
767
|
-
)
|
|
768
|
-
|
|
769
|
-
# Forward ALL kwargs that are uninitialized (e.g. `use_cache`).
|
|
770
|
-
for key, value in kwargs.items():
|
|
771
|
-
if key not in model_inputs:
|
|
772
|
-
model_inputs[key] = value
|
|
741
|
+
attention_mask = torch.cat([attention_mask, new_attn_mask], dim=-1)
|
|
742
|
+
model_inputs["attention_mask"] = attention_mask
|
|
773
743
|
|
|
774
744
|
return model_inputs
|
|
775
745
|
|
|
@@ -883,6 +853,7 @@ class BloomForSequenceClassification(BloomPreTrainedModel):
|
|
|
883
853
|
output_attentions: Optional[bool] = None,
|
|
884
854
|
output_hidden_states: Optional[bool] = None,
|
|
885
855
|
return_dict: Optional[bool] = None,
|
|
856
|
+
**kwargs,
|
|
886
857
|
) -> Union[tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
|
887
858
|
r"""
|
|
888
859
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
|
@@ -1006,6 +977,7 @@ class BloomForTokenClassification(BloomPreTrainedModel):
|
|
|
1006
977
|
output_attentions: Optional[bool] = None,
|
|
1007
978
|
output_hidden_states: Optional[bool] = None,
|
|
1008
979
|
return_dict: Optional[bool] = None,
|
|
980
|
+
**kwargs,
|
|
1009
981
|
) -> Union[tuple[torch.Tensor], TokenClassifierOutput]:
|
|
1010
982
|
r"""
|
|
1011
983
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
|
@@ -1084,6 +1056,7 @@ class BloomForQuestionAnswering(BloomPreTrainedModel):
|
|
|
1084
1056
|
output_attentions: Optional[bool] = None,
|
|
1085
1057
|
output_hidden_states: Optional[bool] = None,
|
|
1086
1058
|
return_dict: Optional[bool] = None,
|
|
1059
|
+
**kwargs,
|
|
1087
1060
|
) -> Union[tuple, QuestionAnsweringModelOutput]:
|
|
1088
1061
|
r"""
|
|
1089
1062
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
|
@@ -27,6 +27,7 @@ import torch.distributions
|
|
|
27
27
|
import torch.nn as nn
|
|
28
28
|
import torch.nn.functional as F
|
|
29
29
|
|
|
30
|
+
from ... import initialization as init
|
|
30
31
|
from ...activations import ACT2FN
|
|
31
32
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
32
33
|
from ...generation import GenerationMixin
|
|
@@ -38,7 +39,7 @@ from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
|
38
39
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
39
40
|
from ...processing_utils import Unpack
|
|
40
41
|
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
|
|
41
|
-
from ...utils.generic import OutputRecorder, check_model_inputs
|
|
42
|
+
from ...utils.generic import OutputRecorder, check_model_inputs, maybe_autocast
|
|
42
43
|
from .configuration_blt import (
|
|
43
44
|
BltConfig,
|
|
44
45
|
BltGlobalTransformerConfig,
|
|
@@ -102,7 +103,7 @@ class BltRotaryEmbedding(nn.Module):
|
|
|
102
103
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
103
104
|
|
|
104
105
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
105
|
-
self.original_inv_freq =
|
|
106
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
106
107
|
|
|
107
108
|
@staticmethod
|
|
108
109
|
def compute_default_rope_parameters(
|
|
@@ -141,7 +142,7 @@ class BltRotaryEmbedding(nn.Module):
|
|
|
141
142
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
142
143
|
|
|
143
144
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
144
|
-
with
|
|
145
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
145
146
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
146
147
|
emb = torch.repeat_interleave(freqs, 2, dim=-1) # diff from Llama: we interleave() instead of cat()
|
|
147
148
|
cos = emb.cos() * self.attention_scaling
|
|
@@ -444,6 +445,163 @@ class BltPreTrainedModel(PreTrainedModel):
|
|
|
444
445
|
"attentions": OutputRecorder(BltSelfAttention, index=1, layer_name="local_decoder"),
|
|
445
446
|
}
|
|
446
447
|
|
|
448
|
+
@torch.no_grad()
|
|
449
|
+
def _init_weights(self, module):
|
|
450
|
+
"""
|
|
451
|
+
Initialize BLT weights following the original ByteLatentTransformer:
|
|
452
|
+
|
|
453
|
+
- Most weights are drawn from a truncated normal.
|
|
454
|
+
- Scale is ~ 1 / sqrt(model_dim) (or 1 / sqrt(hidden_dim) for FFN outputs).
|
|
455
|
+
- Norm layers are set to weight = 1, bias = 0.
|
|
456
|
+
"""
|
|
457
|
+
class_name = module.__class__.__name__
|
|
458
|
+
|
|
459
|
+
# Norms: RMSNorm / LayerNorm
|
|
460
|
+
if isinstance(module, (BltRMSNorm, nn.LayerNorm)) or "RMSNorm" in class_name or "LayerNorm" in class_name:
|
|
461
|
+
if getattr(module, "weight", None) is not None:
|
|
462
|
+
init.ones_(module.weight)
|
|
463
|
+
if getattr(module, "bias", None) is not None:
|
|
464
|
+
init.zeros_(module.bias)
|
|
465
|
+
return
|
|
466
|
+
|
|
467
|
+
# Embeddings (encoder / patcher / hash embeddings)
|
|
468
|
+
if isinstance(module, nn.Embedding):
|
|
469
|
+
hidden_size = getattr(self.config, "hidden_size", None)
|
|
470
|
+
if hidden_size is None and hasattr(self.config, "encoder_config"):
|
|
471
|
+
hidden_size = getattr(self.config.encoder_config, "hidden_size", None)
|
|
472
|
+
if hidden_size is None:
|
|
473
|
+
hidden_size = module.embedding_dim
|
|
474
|
+
|
|
475
|
+
std = hidden_size**-0.5
|
|
476
|
+
init.trunc_normal_(
|
|
477
|
+
module.weight,
|
|
478
|
+
mean=0.0,
|
|
479
|
+
std=std,
|
|
480
|
+
a=-3 * std,
|
|
481
|
+
b=3 * std,
|
|
482
|
+
)
|
|
483
|
+
if module.padding_idx is not None:
|
|
484
|
+
init.zeros_(module.weight[module.padding_idx])
|
|
485
|
+
return
|
|
486
|
+
|
|
487
|
+
# Self-attention / cross-attention projections
|
|
488
|
+
if isinstance(module, (BltSelfAttention, BltCrossAttention)) or class_name in (
|
|
489
|
+
"MllamaTextSelfAttention",
|
|
490
|
+
"MllamaTextCrossAttention",
|
|
491
|
+
):
|
|
492
|
+
dim = getattr(self.config, "hidden_size", None)
|
|
493
|
+
if dim is None and hasattr(module, "hidden_size"):
|
|
494
|
+
dim = module.hidden_size
|
|
495
|
+
if dim is None:
|
|
496
|
+
for name in ("q_proj", "k_proj", "v_proj", "o_proj", "dense"):
|
|
497
|
+
proj = getattr(module, name, None)
|
|
498
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
499
|
+
dim = proj.weight.shape[-1]
|
|
500
|
+
break
|
|
501
|
+
if dim is None:
|
|
502
|
+
return
|
|
503
|
+
|
|
504
|
+
std = dim**-0.5
|
|
505
|
+
|
|
506
|
+
# Input projections (q, k, v)
|
|
507
|
+
for proj_name in ("q_proj", "k_proj", "v_proj"):
|
|
508
|
+
proj = getattr(module, proj_name, None)
|
|
509
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
510
|
+
init.trunc_normal_(
|
|
511
|
+
proj.weight,
|
|
512
|
+
mean=0.0,
|
|
513
|
+
std=std,
|
|
514
|
+
a=-3 * std,
|
|
515
|
+
b=3 * std,
|
|
516
|
+
)
|
|
517
|
+
if getattr(proj, "bias", None) is not None:
|
|
518
|
+
init.zeros_(proj.bias)
|
|
519
|
+
|
|
520
|
+
# Output projection: o_proj or dense
|
|
521
|
+
o_proj = getattr(module, "o_proj", getattr(module, "dense", None))
|
|
522
|
+
if o_proj is not None and hasattr(o_proj, "weight"):
|
|
523
|
+
init.trunc_normal_(
|
|
524
|
+
o_proj.weight,
|
|
525
|
+
mean=0.0,
|
|
526
|
+
std=std,
|
|
527
|
+
a=-3 * std,
|
|
528
|
+
b=3 * std,
|
|
529
|
+
)
|
|
530
|
+
if getattr(o_proj, "bias", None) is not None:
|
|
531
|
+
init.zeros_(o_proj.bias)
|
|
532
|
+
return
|
|
533
|
+
|
|
534
|
+
# MLP / FFN blocks
|
|
535
|
+
if isinstance(module, BltMLP) or class_name == "MllamaTextMLP":
|
|
536
|
+
hidden_size = getattr(self.config, "hidden_size", None)
|
|
537
|
+
if hidden_size is None and hasattr(self.config, "decoder_config"):
|
|
538
|
+
hidden_size = getattr(self.config.decoder_config, "hidden_size", None)
|
|
539
|
+
if hidden_size is None and hasattr(self.config, "encoder_config"):
|
|
540
|
+
hidden_size = getattr(self.config.encoder_config, "hidden_size", None)
|
|
541
|
+
|
|
542
|
+
# Input-side std
|
|
543
|
+
in_std = None
|
|
544
|
+
if hidden_size is not None:
|
|
545
|
+
in_std = hidden_size**-0.5
|
|
546
|
+
|
|
547
|
+
gate_proj = getattr(module, "gate_proj", getattr(module, "fc1", None))
|
|
548
|
+
up_proj = getattr(module, "up_proj", None)
|
|
549
|
+
down_proj = getattr(module, "down_proj", getattr(module, "fc2", None))
|
|
550
|
+
|
|
551
|
+
# gate / input projections
|
|
552
|
+
for proj in (gate_proj, up_proj):
|
|
553
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
554
|
+
std = in_std or (proj.weight.shape[1] ** -0.5)
|
|
555
|
+
init.trunc_normal_(
|
|
556
|
+
proj.weight,
|
|
557
|
+
mean=0.0,
|
|
558
|
+
std=std,
|
|
559
|
+
a=-3 * std,
|
|
560
|
+
b=3 * std,
|
|
561
|
+
)
|
|
562
|
+
if getattr(proj, "bias", None) is not None:
|
|
563
|
+
init.zeros_(proj.bias)
|
|
564
|
+
|
|
565
|
+
# output/ down projections
|
|
566
|
+
if down_proj is not None and hasattr(down_proj, "weight"):
|
|
567
|
+
hidden_dim = down_proj.weight.shape[1]
|
|
568
|
+
out_std = hidden_dim**-0.5
|
|
569
|
+
init.trunc_normal_(
|
|
570
|
+
down_proj.weight,
|
|
571
|
+
mean=0.0,
|
|
572
|
+
std=out_std,
|
|
573
|
+
a=-3 * out_std,
|
|
574
|
+
b=3 * out_std,
|
|
575
|
+
)
|
|
576
|
+
if getattr(down_proj, "bias", None) is not None:
|
|
577
|
+
init.zeros_(down_proj.bias)
|
|
578
|
+
return
|
|
579
|
+
|
|
580
|
+
# Generic Linear layers (projections, lm_head, etc.)
|
|
581
|
+
if isinstance(module, nn.Linear):
|
|
582
|
+
fan_in = module.in_features
|
|
583
|
+
std = fan_in**-0.5
|
|
584
|
+
init.trunc_normal_(
|
|
585
|
+
module.weight,
|
|
586
|
+
mean=0.0,
|
|
587
|
+
std=std,
|
|
588
|
+
a=-3 * std,
|
|
589
|
+
b=3 * std,
|
|
590
|
+
)
|
|
591
|
+
if module.bias is not None:
|
|
592
|
+
init.zeros_(module.bias)
|
|
593
|
+
return
|
|
594
|
+
|
|
595
|
+
if isinstance(module, BltRotaryEmbedding):
|
|
596
|
+
rope_fn = (
|
|
597
|
+
ROPE_INIT_FUNCTIONS[module.rope_type]
|
|
598
|
+
if module.rope_type != "default"
|
|
599
|
+
else module.compute_default_rope_parameters
|
|
600
|
+
)
|
|
601
|
+
buffer_value, _ = rope_fn(module.config)
|
|
602
|
+
init.copy_(module.inv_freq, buffer_value)
|
|
603
|
+
init.copy_(module.original_inv_freq, buffer_value)
|
|
604
|
+
|
|
447
605
|
|
|
448
606
|
class BltLocalEncoder(BltPreTrainedModel):
|
|
449
607
|
config: BltLocalEncoderConfig
|
|
@@ -753,6 +911,8 @@ class BltPatcher(BltPreTrainedModel):
|
|
|
753
911
|
bias=False,
|
|
754
912
|
)
|
|
755
913
|
|
|
914
|
+
self.post_init()
|
|
915
|
+
|
|
756
916
|
def forward(
|
|
757
917
|
self,
|
|
758
918
|
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -952,7 +1112,7 @@ def compute_hash_embeddings(
|
|
|
952
1112
|
hash_ids = byte_group_hash_function(local_encoder_tokens, group_size, prime, encoder_hash_byte_group_vocab)
|
|
953
1113
|
# Apply offset to get the correct slice of the fused embedding
|
|
954
1114
|
offset_hash_ids = hash_ids + embedding_idx * encoder_hash_byte_group_vocab
|
|
955
|
-
embeddings += encoder_hash_tok_embedding(offset_hash_ids)
|
|
1115
|
+
embeddings += encoder_hash_tok_embedding(offset_hash_ids).to(embeddings.device)
|
|
956
1116
|
embedding_idx += 1
|
|
957
1117
|
|
|
958
1118
|
return embeddings
|
|
@@ -22,14 +22,15 @@ import torch.distributions
|
|
|
22
22
|
import torch.nn as nn
|
|
23
23
|
import torch.nn.functional as F
|
|
24
24
|
|
|
25
|
+
from ... import initialization as init
|
|
25
26
|
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
|
26
27
|
from ...masking_utils import create_causal_mask
|
|
27
28
|
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
28
|
-
from ...modeling_rope_utils import dynamic_rope_update
|
|
29
|
+
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
29
30
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
|
30
31
|
from ...processing_utils import Unpack
|
|
31
32
|
from ...utils import TransformersKwargs, auto_docstring, logging
|
|
32
|
-
from ...utils.generic import OutputRecorder, check_model_inputs
|
|
33
|
+
from ...utils.generic import OutputRecorder, check_model_inputs, maybe_autocast
|
|
33
34
|
from ..cohere2.modeling_cohere2 import rotate_half # noqa: F401
|
|
34
35
|
from ..llama.modeling_llama import LlamaRotaryEmbedding
|
|
35
36
|
from ..mllama.modeling_mllama import (
|
|
@@ -133,7 +134,7 @@ def compute_hash_embeddings(
|
|
|
133
134
|
hash_ids = byte_group_hash_function(local_encoder_tokens, group_size, prime, encoder_hash_byte_group_vocab)
|
|
134
135
|
# Apply offset to get the correct slice of the fused embedding
|
|
135
136
|
offset_hash_ids = hash_ids + embedding_idx * encoder_hash_byte_group_vocab
|
|
136
|
-
embeddings += encoder_hash_tok_embedding(offset_hash_ids)
|
|
137
|
+
embeddings += encoder_hash_tok_embedding(offset_hash_ids).to(embeddings.device)
|
|
137
138
|
embedding_idx += 1
|
|
138
139
|
|
|
139
140
|
return embeddings
|
|
@@ -277,7 +278,7 @@ class BltRotaryEmbedding(LlamaRotaryEmbedding):
|
|
|
277
278
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
278
279
|
|
|
279
280
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
280
|
-
with
|
|
281
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
281
282
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
282
283
|
emb = torch.repeat_interleave(freqs, 2, dim=-1) # diff from Llama: we interleave() instead of cat()
|
|
283
284
|
cos = emb.cos() * self.attention_scaling
|
|
@@ -360,8 +361,170 @@ class BltPreTrainedModel(MllamaPreTrainedModel):
|
|
|
360
361
|
"attentions": OutputRecorder(BltSelfAttention, index=1, layer_name="local_decoder"),
|
|
361
362
|
}
|
|
362
363
|
|
|
364
|
+
# Weight initialization is adapted from:
|
|
365
|
+
# - https://github.com/facebookresearch/blt/blob/main/bytelatent/model/blt.py
|
|
366
|
+
# - https://github.com/pytorch/torchtitan/blob/main/torchtitan/experiments/transformers_modeling_backend/model/model.py
|
|
367
|
+
#
|
|
368
|
+
# Both implementations use truncated normal initialization with std ~ 1 / sqrt(d_model)
|
|
369
|
+
# (or 1 / sqrt(hidden_dim) for FFN outputs), and unit initialization for normalization layers.
|
|
370
|
+
# We follow the same scheme here, but expressed in the Transformers APIs.
|
|
371
|
+
|
|
372
|
+
@torch.no_grad()
|
|
363
373
|
def _init_weights(self, module):
|
|
364
|
-
|
|
374
|
+
"""
|
|
375
|
+
Initialize BLT weights following the original ByteLatentTransformer:
|
|
376
|
+
|
|
377
|
+
- Most weights are drawn from a truncated normal.
|
|
378
|
+
- Scale is ~ 1 / sqrt(model_dim) (or 1 / sqrt(hidden_dim) for FFN outputs).
|
|
379
|
+
- Norm layers are set to weight = 1, bias = 0.
|
|
380
|
+
"""
|
|
381
|
+
class_name = module.__class__.__name__
|
|
382
|
+
|
|
383
|
+
# Norms: RMSNorm / LayerNorm
|
|
384
|
+
if isinstance(module, (BltRMSNorm, nn.LayerNorm)) or "RMSNorm" in class_name or "LayerNorm" in class_name:
|
|
385
|
+
if getattr(module, "weight", None) is not None:
|
|
386
|
+
init.ones_(module.weight)
|
|
387
|
+
if getattr(module, "bias", None) is not None:
|
|
388
|
+
init.zeros_(module.bias)
|
|
389
|
+
return
|
|
390
|
+
|
|
391
|
+
# Embeddings (encoder / patcher / hash embeddings)
|
|
392
|
+
if isinstance(module, nn.Embedding):
|
|
393
|
+
hidden_size = getattr(self.config, "hidden_size", None)
|
|
394
|
+
if hidden_size is None and hasattr(self.config, "encoder_config"):
|
|
395
|
+
hidden_size = getattr(self.config.encoder_config, "hidden_size", None)
|
|
396
|
+
if hidden_size is None:
|
|
397
|
+
hidden_size = module.embedding_dim
|
|
398
|
+
|
|
399
|
+
std = hidden_size**-0.5
|
|
400
|
+
init.trunc_normal_(
|
|
401
|
+
module.weight,
|
|
402
|
+
mean=0.0,
|
|
403
|
+
std=std,
|
|
404
|
+
a=-3 * std,
|
|
405
|
+
b=3 * std,
|
|
406
|
+
)
|
|
407
|
+
if module.padding_idx is not None:
|
|
408
|
+
init.zeros_(module.weight[module.padding_idx])
|
|
409
|
+
return
|
|
410
|
+
|
|
411
|
+
# Self-attention / cross-attention projections
|
|
412
|
+
if isinstance(module, (BltSelfAttention, BltCrossAttention)) or class_name in (
|
|
413
|
+
"MllamaTextSelfAttention",
|
|
414
|
+
"MllamaTextCrossAttention",
|
|
415
|
+
):
|
|
416
|
+
dim = getattr(self.config, "hidden_size", None)
|
|
417
|
+
if dim is None and hasattr(module, "hidden_size"):
|
|
418
|
+
dim = module.hidden_size
|
|
419
|
+
if dim is None:
|
|
420
|
+
for name in ("q_proj", "k_proj", "v_proj", "o_proj", "dense"):
|
|
421
|
+
proj = getattr(module, name, None)
|
|
422
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
423
|
+
dim = proj.weight.shape[-1]
|
|
424
|
+
break
|
|
425
|
+
if dim is None:
|
|
426
|
+
return
|
|
427
|
+
|
|
428
|
+
std = dim**-0.5
|
|
429
|
+
|
|
430
|
+
# Input projections (q, k, v)
|
|
431
|
+
for proj_name in ("q_proj", "k_proj", "v_proj"):
|
|
432
|
+
proj = getattr(module, proj_name, None)
|
|
433
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
434
|
+
init.trunc_normal_(
|
|
435
|
+
proj.weight,
|
|
436
|
+
mean=0.0,
|
|
437
|
+
std=std,
|
|
438
|
+
a=-3 * std,
|
|
439
|
+
b=3 * std,
|
|
440
|
+
)
|
|
441
|
+
if getattr(proj, "bias", None) is not None:
|
|
442
|
+
init.zeros_(proj.bias)
|
|
443
|
+
|
|
444
|
+
# Output projection: o_proj or dense
|
|
445
|
+
o_proj = getattr(module, "o_proj", getattr(module, "dense", None))
|
|
446
|
+
if o_proj is not None and hasattr(o_proj, "weight"):
|
|
447
|
+
init.trunc_normal_(
|
|
448
|
+
o_proj.weight,
|
|
449
|
+
mean=0.0,
|
|
450
|
+
std=std,
|
|
451
|
+
a=-3 * std,
|
|
452
|
+
b=3 * std,
|
|
453
|
+
)
|
|
454
|
+
if getattr(o_proj, "bias", None) is not None:
|
|
455
|
+
init.zeros_(o_proj.bias)
|
|
456
|
+
return
|
|
457
|
+
|
|
458
|
+
# MLP / FFN blocks
|
|
459
|
+
if isinstance(module, BltMLP) or class_name == "MllamaTextMLP":
|
|
460
|
+
hidden_size = getattr(self.config, "hidden_size", None)
|
|
461
|
+
if hidden_size is None and hasattr(self.config, "decoder_config"):
|
|
462
|
+
hidden_size = getattr(self.config.decoder_config, "hidden_size", None)
|
|
463
|
+
if hidden_size is None and hasattr(self.config, "encoder_config"):
|
|
464
|
+
hidden_size = getattr(self.config.encoder_config, "hidden_size", None)
|
|
465
|
+
|
|
466
|
+
# Input-side std
|
|
467
|
+
in_std = None
|
|
468
|
+
if hidden_size is not None:
|
|
469
|
+
in_std = hidden_size**-0.5
|
|
470
|
+
|
|
471
|
+
gate_proj = getattr(module, "gate_proj", getattr(module, "fc1", None))
|
|
472
|
+
up_proj = getattr(module, "up_proj", None)
|
|
473
|
+
down_proj = getattr(module, "down_proj", getattr(module, "fc2", None))
|
|
474
|
+
|
|
475
|
+
# gate / input projections
|
|
476
|
+
for proj in (gate_proj, up_proj):
|
|
477
|
+
if proj is not None and hasattr(proj, "weight"):
|
|
478
|
+
std = in_std or (proj.weight.shape[1] ** -0.5)
|
|
479
|
+
init.trunc_normal_(
|
|
480
|
+
proj.weight,
|
|
481
|
+
mean=0.0,
|
|
482
|
+
std=std,
|
|
483
|
+
a=-3 * std,
|
|
484
|
+
b=3 * std,
|
|
485
|
+
)
|
|
486
|
+
if getattr(proj, "bias", None) is not None:
|
|
487
|
+
init.zeros_(proj.bias)
|
|
488
|
+
|
|
489
|
+
# output/ down projections
|
|
490
|
+
if down_proj is not None and hasattr(down_proj, "weight"):
|
|
491
|
+
hidden_dim = down_proj.weight.shape[1]
|
|
492
|
+
out_std = hidden_dim**-0.5
|
|
493
|
+
init.trunc_normal_(
|
|
494
|
+
down_proj.weight,
|
|
495
|
+
mean=0.0,
|
|
496
|
+
std=out_std,
|
|
497
|
+
a=-3 * out_std,
|
|
498
|
+
b=3 * out_std,
|
|
499
|
+
)
|
|
500
|
+
if getattr(down_proj, "bias", None) is not None:
|
|
501
|
+
init.zeros_(down_proj.bias)
|
|
502
|
+
return
|
|
503
|
+
|
|
504
|
+
# Generic Linear layers (projections, lm_head, etc.)
|
|
505
|
+
if isinstance(module, nn.Linear):
|
|
506
|
+
fan_in = module.in_features
|
|
507
|
+
std = fan_in**-0.5
|
|
508
|
+
init.trunc_normal_(
|
|
509
|
+
module.weight,
|
|
510
|
+
mean=0.0,
|
|
511
|
+
std=std,
|
|
512
|
+
a=-3 * std,
|
|
513
|
+
b=3 * std,
|
|
514
|
+
)
|
|
515
|
+
if module.bias is not None:
|
|
516
|
+
init.zeros_(module.bias)
|
|
517
|
+
return
|
|
518
|
+
|
|
519
|
+
if isinstance(module, BltRotaryEmbedding):
|
|
520
|
+
rope_fn = (
|
|
521
|
+
ROPE_INIT_FUNCTIONS[module.rope_type]
|
|
522
|
+
if module.rope_type != "default"
|
|
523
|
+
else module.compute_default_rope_parameters
|
|
524
|
+
)
|
|
525
|
+
buffer_value, _ = rope_fn(module.config)
|
|
526
|
+
init.copy_(module.inv_freq, buffer_value)
|
|
527
|
+
init.copy_(module.original_inv_freq, buffer_value)
|
|
365
528
|
|
|
366
529
|
def _update_causal_mask(self, module):
|
|
367
530
|
raise AttributeError("No need to inherit it!")
|
|
@@ -634,6 +797,8 @@ class BltPatcher(BltPreTrainedModel):
|
|
|
634
797
|
bias=False,
|
|
635
798
|
)
|
|
636
799
|
|
|
800
|
+
self.post_init()
|
|
801
|
+
|
|
637
802
|
def forward(
|
|
638
803
|
self,
|
|
639
804
|
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -251,10 +251,8 @@ class BridgeTowerImageProcessorFast(BaseImageProcessorFast):
|
|
|
251
251
|
processed_images, processed_masks = self.pad(
|
|
252
252
|
processed_images, return_mask=True, disable_grouping=disable_grouping
|
|
253
253
|
)
|
|
254
|
-
processed_masks = torch.stack(processed_masks, dim=0) if return_tensors else processed_masks
|
|
255
254
|
data["pixel_mask"] = processed_masks
|
|
256
255
|
|
|
257
|
-
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
|
|
258
256
|
data["pixel_values"] = processed_images
|
|
259
257
|
|
|
260
258
|
return BatchFeature(data=data, tensor_type=return_tensors)
|
|
@@ -943,6 +943,11 @@ class BridgeTowerPreTrainedModel(PreTrainedModel):
|
|
|
943
943
|
init.ones_(module.weight)
|
|
944
944
|
elif isinstance(module, BridgeTowerForContrastiveLearning):
|
|
945
945
|
init.constant_(module.logit_scale, self.config.logit_scale_init_value)
|
|
946
|
+
elif isinstance(module, BridgeTowerVisionEmbeddings):
|
|
947
|
+
init.copy_(module.position_ids, torch.arange(module.num_positions).expand((1, -1)))
|
|
948
|
+
elif isinstance(module, BridgeTowerTextEmbeddings):
|
|
949
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
950
|
+
init.zeros_(module.token_type_ids)
|
|
946
951
|
|
|
947
952
|
if isinstance(module, (nn.Linear, BridgeTowerMLMHead)) and module.bias is not None:
|
|
948
953
|
init.zeros_(module.bias)
|
|
@@ -955,12 +960,13 @@ class BridgeTowerVisionModel(BridgeTowerPreTrainedModel):
|
|
|
955
960
|
def __init__(self, config):
|
|
956
961
|
super().__init__(config)
|
|
957
962
|
self.visual = BridgeTowerVisionTransformer(config)
|
|
963
|
+
self.post_init()
|
|
958
964
|
|
|
959
965
|
@property
|
|
960
966
|
def dtype(self):
|
|
961
967
|
return self.visual.embeddings.patch_embedding.weight.dtype
|
|
962
968
|
|
|
963
|
-
def forward(self, image, image_mask=None, interpolate_pos_encoding=False):
|
|
969
|
+
def forward(self, image, image_mask=None, interpolate_pos_encoding=False, **kwargs):
|
|
964
970
|
return self.visual(image.type(self.dtype), image_mask, interpolate_pos_encoding)
|
|
965
971
|
|
|
966
972
|
|
|
@@ -1223,6 +1229,7 @@ class BridgeTowerModel(BridgeTowerPreTrainedModel):
|
|
|
1223
1229
|
return_dict: Optional[bool] = None,
|
|
1224
1230
|
labels: Optional[torch.LongTensor] = None,
|
|
1225
1231
|
interpolate_pos_encoding: bool = False,
|
|
1232
|
+
**kwargs,
|
|
1226
1233
|
) -> Union[tuple[torch.Tensor], BridgeTowerModelOutput]:
|
|
1227
1234
|
r"""
|
|
1228
1235
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):
|
|
@@ -1530,6 +1537,7 @@ class BridgeTowerForMaskedLM(BridgeTowerPreTrainedModel):
|
|
|
1530
1537
|
output_hidden_states: Optional[bool] = None,
|
|
1531
1538
|
return_dict: Optional[bool] = None,
|
|
1532
1539
|
labels: Optional[torch.LongTensor] = None,
|
|
1540
|
+
**kwargs,
|
|
1533
1541
|
) -> Union[MaskedLMOutput, tuple[torch.FloatTensor]]:
|
|
1534
1542
|
r"""
|
|
1535
1543
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):
|
|
@@ -1630,6 +1638,7 @@ class BridgeTowerForImageAndTextRetrieval(BridgeTowerPreTrainedModel):
|
|
|
1630
1638
|
output_hidden_states: Optional[bool] = None,
|
|
1631
1639
|
return_dict: Optional[bool] = None,
|
|
1632
1640
|
labels: Optional[torch.LongTensor] = None,
|
|
1641
|
+
**kwargs,
|
|
1633
1642
|
) -> Union[SequenceClassifierOutput, tuple[torch.FloatTensor]]:
|
|
1634
1643
|
r"""
|
|
1635
1644
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):
|
|
@@ -1742,6 +1751,7 @@ class BridgeTowerForContrastiveLearning(BridgeTowerPreTrainedModel):
|
|
|
1742
1751
|
output_hidden_states: Optional[bool] = True,
|
|
1743
1752
|
return_dict: Optional[bool] = None,
|
|
1744
1753
|
return_loss: Optional[bool] = None,
|
|
1754
|
+
**kwargs,
|
|
1745
1755
|
) -> Union[BridgeTowerContrastiveOutput, tuple[torch.FloatTensor]]:
|
|
1746
1756
|
r"""
|
|
1747
1757
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):
|