transformers 5.0.0rc0__py3-none-any.whl → 5.0.0rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +49 -3
- transformers/activations.py +1 -1
- transformers/audio_utils.py +0 -1
- transformers/cache_utils.py +17 -15
- transformers/cli/serve.py +47 -17
- transformers/configuration_utils.py +114 -70
- transformers/conversion_mapping.py +83 -7
- transformers/convert_slow_tokenizer.py +225 -10
- transformers/core_model_loading.py +374 -147
- transformers/data/data_collator.py +12 -4
- transformers/dependency_versions_table.py +2 -3
- transformers/dynamic_module_utils.py +1 -2
- transformers/feature_extraction_utils.py +55 -24
- transformers/file_utils.py +0 -1
- transformers/generation/__init__.py +11 -1
- transformers/generation/candidate_generator.py +79 -31
- transformers/generation/configuration_utils.py +165 -124
- transformers/generation/continuous_batching/__init__.py +4 -0
- transformers/generation/continuous_batching/cache.py +47 -18
- transformers/generation/continuous_batching/cache_manager.py +131 -34
- transformers/generation/continuous_batching/continuous_api.py +228 -136
- transformers/generation/continuous_batching/requests.py +28 -1
- transformers/generation/continuous_batching/scheduler.py +11 -4
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/utils.py +108 -110
- transformers/generation/watermarking.py +8 -5
- transformers/image_processing_base.py +3 -14
- transformers/image_processing_utils_fast.py +15 -4
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +16 -2
- transformers/integrations/accelerate.py +58 -113
- transformers/integrations/aqlm.py +36 -66
- transformers/integrations/awq.py +46 -515
- transformers/integrations/bitnet.py +47 -105
- transformers/integrations/bitsandbytes.py +91 -202
- transformers/integrations/deepspeed.py +18 -2
- transformers/integrations/eetq.py +84 -81
- transformers/integrations/fbgemm_fp8.py +191 -145
- transformers/integrations/finegrained_fp8.py +241 -208
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/fp_quant.py +92 -0
- transformers/integrations/ggml.py +11 -1
- transformers/integrations/higgs.py +37 -62
- transformers/integrations/hub_kernels.py +65 -8
- transformers/integrations/integration_utils.py +45 -0
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +28 -74
- transformers/integrations/peft.py +12 -29
- transformers/integrations/quanto.py +77 -56
- transformers/integrations/quark.py +55 -0
- transformers/integrations/spqr.py +42 -90
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/torchao.py +32 -38
- transformers/integrations/vptq.py +40 -59
- transformers/modelcard.py +1 -2
- transformers/modeling_gguf_pytorch_utils.py +74 -19
- transformers/modeling_rope_utils.py +107 -86
- transformers/modeling_utils.py +611 -527
- transformers/models/__init__.py +22 -0
- transformers/models/afmoe/modeling_afmoe.py +10 -19
- transformers/models/afmoe/modular_afmoe.py +5 -13
- transformers/models/aimv2/modeling_aimv2.py +4 -0
- transformers/models/aimv2/modular_aimv2.py +4 -0
- transformers/models/albert/modeling_albert.py +3 -0
- transformers/models/albert/tokenization_albert.py +6 -12
- transformers/models/align/modeling_align.py +14 -6
- transformers/models/altclip/modeling_altclip.py +11 -3
- transformers/models/apertus/modeling_apertus.py +8 -6
- transformers/models/apertus/modular_apertus.py +4 -1
- transformers/models/arcee/modeling_arcee.py +5 -5
- transformers/models/aria/modeling_aria.py +12 -8
- transformers/models/aria/modular_aria.py +7 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modular_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/processing_audioflamingo3.py +27 -22
- transformers/models/auto/auto_factory.py +1 -1
- transformers/models/auto/configuration_auto.py +38 -0
- transformers/models/auto/feature_extraction_auto.py +9 -3
- transformers/models/auto/image_processing_auto.py +5 -2
- transformers/models/auto/modeling_auto.py +37 -0
- transformers/models/auto/processing_auto.py +22 -10
- transformers/models/auto/tokenization_auto.py +147 -566
- transformers/models/auto/video_processing_auto.py +5 -2
- transformers/models/autoformer/modeling_autoformer.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +7 -3
- transformers/models/bamba/modeling_bamba.py +21 -21
- transformers/models/bamba/modular_bamba.py +17 -16
- transformers/models/bark/modeling_bark.py +11 -0
- transformers/models/bart/configuration_bart.py +0 -1
- transformers/models/bart/modeling_bart.py +14 -0
- transformers/models/barthez/tokenization_barthez.py +5 -10
- transformers/models/beit/image_processing_beit_fast.py +0 -1
- transformers/models/beit/modeling_beit.py +6 -1
- transformers/models/bert/modeling_bert.py +3 -0
- transformers/models/bert/tokenization_bert.py +8 -21
- transformers/models/bert_generation/modeling_bert_generation.py +2 -0
- transformers/models/big_bird/modeling_big_bird.py +9 -0
- transformers/models/big_bird/tokenization_big_bird.py +18 -42
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +15 -2
- transformers/models/biogpt/modeling_biogpt.py +2 -0
- transformers/models/biogpt/modular_biogpt.py +2 -0
- transformers/models/bit/modeling_bit.py +16 -3
- transformers/models/bitnet/modeling_bitnet.py +5 -5
- transformers/models/blenderbot/modeling_blenderbot.py +12 -0
- transformers/models/blenderbot/tokenization_blenderbot.py +18 -23
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +12 -0
- transformers/models/blip/modeling_blip.py +2 -0
- transformers/models/blip/modeling_blip_text.py +10 -0
- transformers/models/blip_2/modeling_blip_2.py +4 -1
- transformers/models/bloom/modeling_bloom.py +17 -44
- transformers/models/blt/modeling_blt.py +164 -4
- transformers/models/blt/modular_blt.py +170 -5
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +0 -2
- transformers/models/bridgetower/modeling_bridgetower.py +11 -1
- transformers/models/bros/modeling_bros.py +12 -0
- transformers/models/camembert/modeling_camembert.py +109 -106
- transformers/models/camembert/tokenization_camembert.py +8 -12
- transformers/models/canine/modeling_canine.py +11 -0
- transformers/models/canine/tokenization_canine.py +2 -0
- transformers/models/chameleon/modeling_chameleon.py +11 -5
- transformers/models/chinese_clip/modeling_chinese_clip.py +9 -3
- transformers/models/clap/feature_extraction_clap.py +2 -2
- transformers/models/clap/modeling_clap.py +30 -15
- transformers/models/clip/modeling_clip.py +2 -0
- transformers/models/clip/tokenization_clip.py +22 -44
- transformers/models/clipseg/modeling_clipseg.py +9 -0
- transformers/models/clvp/modeling_clvp.py +19 -3
- transformers/models/clvp/tokenization_clvp.py +1 -63
- transformers/models/code_llama/tokenization_code_llama.py +20 -43
- transformers/models/codegen/modeling_codegen.py +13 -4
- transformers/models/codegen/tokenization_codegen.py +14 -43
- transformers/models/cohere/modeling_cohere.py +5 -4
- transformers/models/cohere/modular_cohere.py +2 -1
- transformers/models/cohere/tokenization_cohere.py +12 -42
- transformers/models/cohere2/modeling_cohere2.py +8 -7
- transformers/models/cohere2/modular_cohere2.py +5 -5
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +4 -4
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +7 -3
- transformers/models/cohere2_vision/modular_cohere2_vision.py +4 -3
- transformers/models/colqwen2/modeling_colqwen2.py +1 -0
- transformers/models/colqwen2/modular_colqwen2.py +1 -0
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -1
- transformers/models/conditional_detr/modeling_conditional_detr.py +9 -1
- transformers/models/convbert/modeling_convbert.py +9 -0
- transformers/models/convnext/image_processing_convnext.py +2 -2
- transformers/models/convnext/image_processing_convnext_fast.py +9 -13
- transformers/models/convnext/modeling_convnext.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +2 -4
- transformers/models/csm/generation_csm.py +19 -22
- transformers/models/csm/modeling_csm.py +7 -4
- transformers/models/csm/modular_csm.py +2 -0
- transformers/models/ctrl/modeling_ctrl.py +15 -2
- transformers/models/cvt/modeling_cvt.py +7 -1
- transformers/models/cwm/modeling_cwm.py +5 -5
- transformers/models/d_fine/configuration_d_fine.py +3 -4
- transformers/models/d_fine/modeling_d_fine.py +48 -39
- transformers/models/d_fine/modular_d_fine.py +16 -4
- transformers/models/dab_detr/configuration_dab_detr.py +2 -2
- transformers/models/dab_detr/modeling_dab_detr.py +5 -1
- transformers/models/dac/modeling_dac.py +6 -6
- transformers/models/data2vec/modeling_data2vec_audio.py +5 -0
- transformers/models/data2vec/modeling_data2vec_text.py +7 -0
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -1
- transformers/models/data2vec/modular_data2vec_text.py +7 -0
- transformers/models/dbrx/configuration_dbrx.py +9 -1
- transformers/models/dbrx/modeling_dbrx.py +3 -3
- transformers/models/deberta/modeling_deberta.py +7 -0
- transformers/models/deberta/tokenization_deberta.py +11 -20
- transformers/models/deberta_v2/modeling_deberta_v2.py +8 -0
- transformers/models/deberta_v2/tokenization_deberta_v2.py +13 -28
- transformers/models/decision_transformer/modeling_decision_transformer.py +12 -6
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +9 -7
- transformers/models/deepseek_v2/modular_deepseek_v2.py +6 -4
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +12 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +7 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +0 -1
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +9 -5
- transformers/models/deepseek_vl/modular_deepseek_vl.py +3 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +0 -4
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +9 -5
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +9 -9
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -2
- transformers/models/deformable_detr/modeling_deformable_detr.py +5 -1
- transformers/models/depth_anything/configuration_depth_anything.py +2 -3
- transformers/models/depth_anything/modeling_depth_anything.py +1 -0
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +0 -1
- transformers/models/depth_pro/modeling_depth_pro.py +2 -0
- transformers/models/detr/configuration_detr.py +1 -1
- transformers/models/detr/modeling_detr.py +13 -1
- transformers/models/dia/generation_dia.py +3 -10
- transformers/models/dia/modeling_dia.py +16 -4
- transformers/models/dia/modular_dia.py +11 -1
- transformers/models/dia/processing_dia.py +1 -1
- transformers/models/diffllama/modeling_diffllama.py +5 -5
- transformers/models/diffllama/modular_diffllama.py +2 -2
- transformers/models/dinat/modeling_dinat.py +3 -0
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +1 -1
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +0 -1
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -2
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -2
- transformers/models/distilbert/modeling_distilbert.py +11 -9
- transformers/models/distilbert/tokenization_distilbert.py +13 -0
- transformers/models/doge/modeling_doge.py +3 -4
- transformers/models/doge/modular_doge.py +0 -1
- transformers/models/donut/image_processing_donut_fast.py +0 -1
- transformers/models/donut/modeling_donut_swin.py +18 -12
- transformers/models/dots1/modeling_dots1.py +23 -11
- transformers/models/dots1/modular_dots1.py +5 -3
- transformers/models/dpr/modeling_dpr.py +5 -0
- transformers/models/dpr/tokenization_dpr.py +12 -0
- transformers/models/dpt/configuration_dpt.py +1 -1
- transformers/models/dpt/image_processing_dpt_fast.py +1 -2
- transformers/models/dpt/modular_dpt.py +1 -2
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +6 -3
- transformers/models/edgetam/modular_edgetam.py +15 -14
- transformers/models/edgetam_video/modeling_edgetam_video.py +56 -43
- transformers/models/edgetam_video/modular_edgetam_video.py +14 -19
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +1 -2
- transformers/models/efficientloftr/modeling_efficientloftr.py +16 -3
- transformers/models/efficientnet/image_processing_efficientnet.py +5 -6
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +1 -2
- transformers/models/efficientnet/modeling_efficientnet.py +7 -1
- transformers/models/electra/modeling_electra.py +7 -0
- transformers/models/emu3/modeling_emu3.py +12 -6
- transformers/models/emu3/modular_emu3.py +7 -1
- transformers/models/encodec/modeling_encodec.py +14 -0
- transformers/models/eomt/image_processing_eomt.py +13 -1
- transformers/models/eomt/image_processing_eomt_fast.py +60 -16
- transformers/models/eomt/modeling_eomt.py +7 -0
- transformers/models/eomt/modular_eomt.py +7 -0
- transformers/models/ernie/modeling_ernie.py +6 -0
- transformers/models/ernie/modular_ernie.py +6 -0
- transformers/models/ernie4_5/modeling_ernie4_5.py +5 -5
- transformers/models/ernie4_5/modular_ernie4_5.py +2 -1
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +20 -17
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +11 -37
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +330 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +456 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +232 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1898 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1904 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +251 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +594 -0
- transformers/models/esm/modeling_esm.py +6 -0
- transformers/models/esm/modeling_esmfold.py +11 -5
- transformers/models/evolla/modeling_evolla.py +13 -5
- transformers/models/evolla/modular_evolla.py +8 -0
- transformers/models/exaone4/modeling_exaone4.py +3 -3
- transformers/models/exaone4/modular_exaone4.py +0 -1
- transformers/models/falcon/modeling_falcon.py +9 -4
- transformers/models/falcon_h1/modeling_falcon_h1.py +32 -26
- transformers/models/falcon_h1/modular_falcon_h1.py +7 -2
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +31 -37
- transformers/models/falcon_mamba/modular_falcon_mamba.py +19 -33
- transformers/models/fast_vlm/__init__.py +27 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +137 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +459 -0
- transformers/models/fast_vlm/modular_fast_vlm.py +273 -0
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +31 -13
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +1 -0
- transformers/models/flaubert/modeling_flaubert.py +21 -15
- transformers/models/flava/image_processing_flava_fast.py +0 -2
- transformers/models/flava/modeling_flava.py +10 -2
- transformers/models/flex_olmo/modeling_flex_olmo.py +10 -8
- transformers/models/florence2/modeling_florence2.py +22 -4
- transformers/models/florence2/modular_florence2.py +15 -1
- transformers/models/fnet/modeling_fnet.py +14 -0
- transformers/models/focalnet/modeling_focalnet.py +4 -0
- transformers/models/fsmt/modeling_fsmt.py +2 -0
- transformers/models/funnel/modeling_funnel.py +8 -0
- transformers/models/funnel/tokenization_funnel.py +17 -24
- transformers/models/fuyu/image_processing_fuyu.py +1 -1
- transformers/models/fuyu/modeling_fuyu.py +3 -1
- transformers/models/fuyu/processing_fuyu.py +19 -3
- transformers/models/gemma/modeling_gemma.py +14 -16
- transformers/models/gemma/modular_gemma.py +9 -11
- transformers/models/gemma/tokenization_gemma.py +10 -27
- transformers/models/gemma2/modeling_gemma2.py +5 -5
- transformers/models/gemma2/modular_gemma2.py +3 -2
- transformers/models/gemma3/image_processing_gemma3_fast.py +0 -1
- transformers/models/gemma3/modeling_gemma3.py +42 -91
- transformers/models/gemma3/modular_gemma3.py +38 -87
- transformers/models/gemma3n/configuration_gemma3n.py +3 -0
- transformers/models/gemma3n/modeling_gemma3n.py +65 -218
- transformers/models/gemma3n/modular_gemma3n.py +68 -68
- transformers/models/git/modeling_git.py +183 -126
- transformers/models/glm/modeling_glm.py +5 -5
- transformers/models/glm4/modeling_glm4.py +5 -5
- transformers/models/glm46v/image_processing_glm46v.py +0 -4
- transformers/models/glm46v/modeling_glm46v.py +3 -1
- transformers/models/glm46v/modular_glm46v.py +3 -0
- transformers/models/glm4_moe/modeling_glm4_moe.py +13 -7
- transformers/models/glm4_moe/modular_glm4_moe.py +1 -1
- transformers/models/glm4v/configuration_glm4v.py +3 -1
- transformers/models/glm4v/image_processing_glm4v.py +0 -4
- transformers/models/glm4v/modeling_glm4v.py +18 -8
- transformers/models/glm4v/modular_glm4v.py +17 -7
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +3 -1
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +44 -27
- transformers/models/glm4v_moe/modular_glm4v_moe.py +13 -1
- transformers/models/glmasr/__init__.py +30 -0
- transformers/models/glmasr/configuration_glmasr.py +197 -0
- transformers/models/glmasr/modeling_glmasr.py +512 -0
- transformers/models/glmasr/modular_glmasr.py +433 -0
- transformers/models/glmasr/processing_glmasr.py +332 -0
- transformers/models/glpn/image_processing_glpn_fast.py +0 -1
- transformers/models/glpn/modeling_glpn.py +2 -0
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +0 -1
- transformers/models/got_ocr2/modeling_got_ocr2.py +8 -3
- transformers/models/gpt2/modeling_gpt2.py +13 -6
- transformers/models/gpt2/tokenization_gpt2.py +16 -44
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +4 -8
- transformers/models/gpt_neo/modeling_gpt_neo.py +19 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +6 -3
- transformers/models/gpt_neox/modular_gpt_neox.py +3 -0
- transformers/models/gpt_neox/tokenization_gpt_neox.py +10 -49
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +4 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +17 -0
- transformers/models/gpt_oss/modeling_gpt_oss.py +10 -14
- transformers/models/gpt_oss/modular_gpt_oss.py +8 -12
- transformers/models/gptj/modeling_gptj.py +18 -6
- transformers/models/granite/modeling_granite.py +5 -5
- transformers/models/granite_speech/modeling_granite_speech.py +15 -1
- transformers/models/granitemoe/modeling_granitemoe.py +6 -9
- transformers/models/granitemoe/modular_granitemoe.py +1 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +4 -0
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +36 -28
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +12 -2
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +6 -9
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -3
- transformers/models/grounding_dino/modeling_grounding_dino.py +8 -4
- transformers/models/groupvit/modeling_groupvit.py +9 -1
- transformers/models/helium/modeling_helium.py +5 -4
- transformers/models/herbert/tokenization_herbert.py +9 -25
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -1
- transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -1
- transformers/models/hiera/modeling_hiera.py +4 -0
- transformers/models/hubert/modeling_hubert.py +7 -0
- transformers/models/hubert/modular_hubert.py +5 -0
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +5 -5
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +1 -1
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +15 -7
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +4 -2
- transformers/models/ibert/modeling_ibert.py +22 -0
- transformers/models/idefics/modeling_idefics.py +15 -21
- transformers/models/idefics2/modeling_idefics2.py +7 -1
- transformers/models/idefics3/modeling_idefics3.py +5 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +1 -5
- transformers/models/imagegpt/modeling_imagegpt.py +11 -3
- transformers/models/informer/modeling_informer.py +4 -0
- transformers/models/informer/modular_informer.py +1 -0
- transformers/models/instructblip/modeling_instructblip.py +2 -0
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +52 -50
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +0 -1
- transformers/models/internvl/modeling_internvl.py +13 -12
- transformers/models/internvl/modular_internvl.py +7 -13
- transformers/models/internvl/video_processing_internvl.py +0 -1
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +152 -0
- transformers/models/jais2/modeling_jais2.py +486 -0
- transformers/models/jais2/modular_jais2.py +196 -0
- transformers/models/jamba/modeling_jamba.py +25 -20
- transformers/models/jamba/modular_jamba.py +17 -17
- transformers/models/janus/image_processing_janus_fast.py +0 -1
- transformers/models/janus/modeling_janus.py +16 -7
- transformers/models/janus/modular_janus.py +17 -7
- transformers/models/jetmoe/modeling_jetmoe.py +4 -4
- transformers/models/jetmoe/modular_jetmoe.py +1 -0
- transformers/models/kosmos2/modeling_kosmos2.py +15 -2
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +2 -2
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +10 -1
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +12 -4
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +9 -1
- transformers/models/lasr/__init__.py +29 -0
- transformers/models/lasr/configuration_lasr.py +248 -0
- transformers/models/lasr/feature_extraction_lasr.py +277 -0
- transformers/models/lasr/modeling_lasr.py +730 -0
- transformers/models/lasr/modular_lasr.py +576 -0
- transformers/models/lasr/processing_lasr.py +94 -0
- transformers/models/lasr/tokenization_lasr.py +186 -0
- transformers/models/layoutlm/modeling_layoutlm.py +10 -3
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +0 -1
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +16 -0
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +11 -53
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +0 -1
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +33 -5
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +12 -61
- transformers/models/layoutxlm/tokenization_layoutxlm.py +13 -38
- transformers/models/led/modeling_led.py +12 -0
- transformers/models/levit/modeling_levit.py +21 -0
- transformers/models/lfm2/modeling_lfm2.py +5 -6
- transformers/models/lfm2/modular_lfm2.py +0 -1
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +17 -8
- transformers/models/lfm2_moe/modular_lfm2_moe.py +5 -28
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +11 -5
- transformers/models/lfm2_vl/modular_lfm2_vl.py +4 -2
- transformers/models/lfm2_vl/processing_lfm2_vl.py +82 -42
- transformers/models/lightglue/image_processing_lightglue_fast.py +1 -2
- transformers/models/lightglue/modeling_lightglue.py +3 -1
- transformers/models/lightglue/modular_lightglue.py +1 -0
- transformers/models/lilt/modeling_lilt.py +23 -15
- transformers/models/llama/modeling_llama.py +5 -5
- transformers/models/llama/tokenization_llama.py +15 -43
- transformers/models/llama4/image_processing_llama4_fast.py +1 -2
- transformers/models/llama4/modeling_llama4.py +11 -6
- transformers/models/llava/image_processing_llava_fast.py +0 -1
- transformers/models/llava/modeling_llava.py +12 -7
- transformers/models/llava_next/image_processing_llava_next_fast.py +0 -1
- transformers/models/llava_next/modeling_llava_next.py +7 -3
- transformers/models/llava_next_video/modeling_llava_next_video.py +7 -3
- transformers/models/llava_next_video/modular_llava_next_video.py +7 -3
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +0 -1
- transformers/models/llava_onevision/modeling_llava_onevision.py +7 -3
- transformers/models/llava_onevision/modular_llava_onevision.py +7 -4
- transformers/models/longcat_flash/modeling_longcat_flash.py +6 -5
- transformers/models/longcat_flash/modular_longcat_flash.py +3 -2
- transformers/models/longformer/modeling_longformer.py +6 -0
- transformers/models/longt5/modeling_longt5.py +4 -4
- transformers/models/luke/modeling_luke.py +9 -0
- transformers/models/luke/tokenization_luke.py +11 -38
- transformers/models/lxmert/modeling_lxmert.py +2 -0
- transformers/models/m2m_100/modeling_m2m_100.py +14 -0
- transformers/models/mamba/modeling_mamba.py +16 -23
- transformers/models/mamba2/modeling_mamba2.py +24 -23
- transformers/models/marian/configuration_marian.py +1 -1
- transformers/models/marian/modeling_marian.py +8 -0
- transformers/models/markuplm/modeling_markuplm.py +9 -8
- transformers/models/markuplm/tokenization_markuplm.py +28 -61
- transformers/models/mask2former/configuration_mask2former.py +3 -3
- transformers/models/mask2former/image_processing_mask2former_fast.py +1 -4
- transformers/models/mask2former/modeling_mask2former.py +11 -0
- transformers/models/maskformer/configuration_maskformer.py +3 -3
- transformers/models/maskformer/image_processing_maskformer_fast.py +1 -4
- transformers/models/maskformer/modeling_maskformer.py +11 -1
- transformers/models/maskformer/modeling_maskformer_swin.py +21 -15
- transformers/models/mbart/configuration_mbart.py +1 -0
- transformers/models/mbart/modeling_mbart.py +14 -0
- transformers/models/mbart/tokenization_mbart.py +11 -52
- transformers/models/mbart50/tokenization_mbart50.py +7 -10
- transformers/models/megatron_bert/modeling_megatron_bert.py +9 -0
- transformers/models/metaclip_2/modeling_metaclip_2.py +2 -0
- transformers/models/metaclip_2/modular_metaclip_2.py +2 -0
- transformers/models/mgp_str/modeling_mgp_str.py +2 -0
- transformers/models/mimi/modeling_mimi.py +28 -5
- transformers/models/minimax/modeling_minimax.py +19 -6
- transformers/models/minimax/modular_minimax.py +12 -1
- transformers/models/ministral/modeling_ministral.py +5 -5
- transformers/models/ministral3/configuration_ministral3.py +1 -1
- transformers/models/ministral3/modeling_ministral3.py +5 -4
- transformers/models/mistral/modeling_mistral.py +5 -4
- transformers/models/mistral3/modeling_mistral3.py +10 -4
- transformers/models/mistral3/modular_mistral3.py +3 -1
- transformers/models/mixtral/modeling_mixtral.py +15 -7
- transformers/models/mixtral/modular_mixtral.py +6 -2
- transformers/models/mlcd/modeling_mlcd.py +6 -0
- transformers/models/mlcd/modular_mlcd.py +4 -0
- transformers/models/mllama/modeling_mllama.py +15 -4
- transformers/models/mluke/tokenization_mluke.py +6 -6
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -2
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +8 -4
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -2
- transformers/models/mobilebert/modeling_mobilebert.py +2 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +2 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +0 -1
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +3 -0
- transformers/models/mobilevit/image_processing_mobilevit.py +5 -5
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +1 -2
- transformers/models/mobilevit/modeling_mobilevit.py +7 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +7 -0
- transformers/models/modernbert/modeling_modernbert.py +16 -2
- transformers/models/modernbert/modular_modernbert.py +14 -1
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +17 -10
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +15 -8
- transformers/models/moonshine/modeling_moonshine.py +5 -3
- transformers/models/moshi/modeling_moshi.py +26 -53
- transformers/models/mpnet/modeling_mpnet.py +7 -0
- transformers/models/mpnet/tokenization_mpnet.py +5 -13
- transformers/models/mpt/modeling_mpt.py +2 -0
- transformers/models/mra/modeling_mra.py +10 -1
- transformers/models/mt5/configuration_mt5.py +2 -3
- transformers/models/mt5/modeling_mt5.py +7 -10
- transformers/models/musicgen/modeling_musicgen.py +7 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -0
- transformers/models/mvp/modeling_mvp.py +14 -0
- transformers/models/nanochat/modeling_nanochat.py +5 -5
- transformers/models/nemotron/modeling_nemotron.py +7 -5
- transformers/models/nllb/tokenization_nllb.py +8 -22
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -0
- transformers/models/nllb_moe/modeling_nllb_moe.py +10 -0
- transformers/models/nougat/image_processing_nougat_fast.py +0 -1
- transformers/models/nougat/tokenization_nougat.py +15 -68
- transformers/models/nystromformer/modeling_nystromformer.py +13 -0
- transformers/models/olmo/modeling_olmo.py +5 -5
- transformers/models/olmo/modular_olmo.py +2 -2
- transformers/models/olmo2/modeling_olmo2.py +5 -6
- transformers/models/olmo2/modular_olmo2.py +0 -1
- transformers/models/olmo3/modeling_olmo3.py +5 -5
- transformers/models/olmoe/modeling_olmoe.py +15 -7
- transformers/models/olmoe/modular_olmoe.py +4 -2
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +6 -0
- transformers/models/oneformer/configuration_oneformer.py +3 -3
- transformers/models/oneformer/modeling_oneformer.py +11 -39
- transformers/models/openai/modeling_openai.py +15 -0
- transformers/models/openai/tokenization_openai.py +10 -46
- transformers/models/opt/modeling_opt.py +2 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +0 -1
- transformers/models/ovis2/modeling_ovis2.py +15 -3
- transformers/models/ovis2/modular_ovis2.py +8 -0
- transformers/models/owlv2/image_processing_owlv2_fast.py +0 -2
- transformers/models/owlv2/modeling_owlv2.py +11 -3
- transformers/models/owlv2/modular_owlv2.py +0 -2
- transformers/models/owlvit/modeling_owlvit.py +11 -3
- transformers/models/paddleocr_vl/__init__.py +32 -0
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +336 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +504 -0
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +209 -0
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +1682 -0
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +1359 -0
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +135 -0
- transformers/models/paligemma/modeling_paligemma.py +25 -17
- transformers/models/parakeet/configuration_parakeet.py +4 -6
- transformers/models/parakeet/modeling_parakeet.py +14 -6
- transformers/models/parakeet/modular_parakeet.py +7 -2
- transformers/models/parakeet/processing_parakeet.py +1 -0
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +10 -0
- transformers/models/patchtst/modeling_patchtst.py +25 -6
- transformers/models/pe_audio/__init__.py +30 -0
- transformers/models/pe_audio/configuration_pe_audio.py +206 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +162 -0
- transformers/models/pe_audio/modeling_pe_audio.py +820 -0
- transformers/models/pe_audio/modular_pe_audio.py +299 -0
- transformers/{kernels/falcon_mamba/__init__.py → models/pe_audio/processing_pe_audio.py} +11 -2
- transformers/models/pe_audio_video/__init__.py +29 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +225 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +972 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +764 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +25 -0
- transformers/models/pe_video/__init__.py +30 -0
- transformers/models/pe_video/configuration_pe_video.py +211 -0
- transformers/models/pe_video/modeling_pe_video.py +636 -0
- transformers/models/pe_video/modular_pe_video.py +219 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +66 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -0
- transformers/models/pegasus/modeling_pegasus.py +8 -0
- transformers/models/pegasus/tokenization_pegasus.py +17 -44
- transformers/models/pegasus_x/modeling_pegasus_x.py +5 -0
- transformers/models/perceiver/image_processing_perceiver_fast.py +0 -1
- transformers/models/perceiver/modeling_perceiver.py +13 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +0 -1
- transformers/models/perception_lm/modeling_perception_lm.py +7 -3
- transformers/models/perception_lm/modular_perception_lm.py +7 -3
- transformers/models/persimmon/modeling_persimmon.py +3 -2
- transformers/models/phi/modeling_phi.py +5 -6
- transformers/models/phi/modular_phi.py +0 -1
- transformers/models/phi3/modeling_phi3.py +3 -2
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +9 -6
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +7 -4
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +0 -2
- transformers/models/phimoe/modeling_phimoe.py +15 -7
- transformers/models/phimoe/modular_phimoe.py +3 -3
- transformers/models/pix2struct/modeling_pix2struct.py +2 -0
- transformers/models/pix2struct/processing_pix2struct.py +0 -4
- transformers/models/pixio/__init__.py +30 -0
- transformers/models/pixio/configuration_pixio.py +151 -0
- transformers/models/pixio/modeling_pixio.py +507 -0
- transformers/models/pixio/modular_pixio.py +404 -0
- transformers/models/pixtral/modeling_pixtral.py +3 -2
- transformers/models/pixtral/processing_pixtral.py +3 -1
- transformers/models/plbart/configuration_plbart.py +1 -0
- transformers/models/plbart/modeling_plbart.py +13 -0
- transformers/models/plbart/modular_plbart.py +8 -0
- transformers/models/plbart/tokenization_plbart.py +0 -2
- transformers/models/poolformer/image_processing_poolformer_fast.py +0 -1
- transformers/models/poolformer/modeling_poolformer.py +13 -1
- transformers/models/pop2piano/configuration_pop2piano.py +0 -1
- transformers/models/pop2piano/modeling_pop2piano.py +2 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +2 -3
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +1 -0
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +1 -0
- transformers/models/prophetnet/modeling_prophetnet.py +5 -1
- transformers/models/pvt/modeling_pvt.py +2 -0
- transformers/models/pvt_v2/modeling_pvt_v2.py +3 -0
- transformers/models/qwen2/modeling_qwen2.py +5 -5
- transformers/models/qwen2/tokenization_qwen2.py +14 -18
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +4 -2
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +116 -79
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +71 -33
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +1 -1
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +23 -11
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +29 -27
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +4 -2
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +15 -7
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +1 -1
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +3 -2
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +23 -20
- transformers/models/qwen3/modeling_qwen3.py +5 -5
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +15 -7
- transformers/models/qwen3_next/modeling_qwen3_next.py +7 -8
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +4 -0
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +112 -68
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +62 -20
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +5 -5
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +57 -42
- transformers/models/qwen3_vl/modular_qwen3_vl.py +59 -46
- transformers/models/qwen3_vl/processing_qwen3_vl.py +3 -3
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +132 -148
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +36 -82
- transformers/models/rag/configuration_rag.py +0 -8
- transformers/models/rag/modeling_rag.py +8 -9
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +18 -3
- transformers/models/reformer/modeling_reformer.py +13 -1
- transformers/models/reformer/tokenization_reformer.py +11 -28
- transformers/models/regnet/modeling_regnet.py +10 -1
- transformers/models/rembert/modeling_rembert.py +13 -1
- transformers/models/rembert/tokenization_rembert.py +3 -10
- transformers/models/resnet/modeling_resnet.py +19 -5
- transformers/models/roberta/modeling_roberta.py +3 -0
- transformers/models/roberta/modular_roberta.py +3 -0
- transformers/models/roberta/tokenization_roberta.py +18 -27
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +3 -0
- transformers/models/roc_bert/modeling_roc_bert.py +3 -0
- transformers/models/roformer/modeling_roformer.py +6 -0
- transformers/models/roformer/tokenization_roformer.py +77 -412
- transformers/models/rt_detr/configuration_rt_detr.py +1 -1
- transformers/models/rt_detr/modeling_rt_detr.py +6 -0
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +13 -4
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -3
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +9 -0
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +8 -3
- transformers/models/rwkv/modeling_rwkv.py +2 -1
- transformers/models/sam/configuration_sam.py +1 -0
- transformers/models/sam/image_processing_sam_fast.py +0 -1
- transformers/models/sam/modeling_sam.py +4 -1
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +7 -3
- transformers/models/sam2/modular_sam2.py +7 -3
- transformers/models/sam2_video/modeling_sam2_video.py +52 -43
- transformers/models/sam2_video/modular_sam2_video.py +32 -18
- transformers/models/sam3/configuration_sam3.py +21 -1
- transformers/models/sam3/modeling_sam3.py +100 -80
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker/modular_sam3_tracker.py +8 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -0
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +27 -15
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +25 -2
- transformers/models/sam3_video/configuration_sam3_video.py +14 -0
- transformers/models/sam3_video/modeling_sam3_video.py +4 -3
- transformers/models/sam3_video/processing_sam3_video.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -0
- transformers/models/sam_hq/modeling_sam_hq.py +26 -23
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +32 -12
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +27 -59
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +11 -1
- transformers/models/seed_oss/modeling_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +0 -1
- transformers/models/segformer/modeling_segformer.py +6 -3
- transformers/models/segformer/modular_segformer.py +0 -1
- transformers/models/seggpt/modeling_seggpt.py +2 -0
- transformers/models/sew/modeling_sew.py +3 -0
- transformers/models/sew/modular_sew.py +1 -0
- transformers/models/sew_d/modeling_sew_d.py +3 -0
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +1 -0
- transformers/models/siglip/modeling_siglip.py +24 -2
- transformers/models/siglip2/modeling_siglip2.py +67 -41
- transformers/models/siglip2/modular_siglip2.py +4 -0
- transformers/models/smollm3/modeling_smollm3.py +5 -5
- transformers/models/smolvlm/modeling_smolvlm.py +5 -1
- transformers/models/smolvlm/processing_smolvlm.py +0 -7
- transformers/models/smolvlm/video_processing_smolvlm.py +0 -1
- transformers/models/speech_to_text/modeling_speech_to_text.py +14 -0
- transformers/models/speecht5/modeling_speecht5.py +41 -1
- transformers/models/splinter/modeling_splinter.py +12 -3
- transformers/models/splinter/tokenization_splinter.py +9 -28
- transformers/models/squeezebert/modeling_squeezebert.py +8 -0
- transformers/models/stablelm/modeling_stablelm.py +4 -2
- transformers/models/starcoder2/modeling_starcoder2.py +5 -4
- transformers/models/superglue/image_processing_superglue_fast.py +1 -2
- transformers/models/superglue/modeling_superglue.py +1 -0
- transformers/models/superpoint/image_processing_superpoint_fast.py +1 -2
- transformers/models/superpoint/modeling_superpoint.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +6 -0
- transformers/models/swin/modeling_swin.py +20 -12
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +0 -1
- transformers/models/swin2sr/modeling_swin2sr.py +51 -33
- transformers/models/swinv2/modeling_swinv2.py +45 -33
- transformers/models/switch_transformers/modeling_switch_transformers.py +2 -8
- transformers/models/switch_transformers/modular_switch_transformers.py +2 -8
- transformers/models/t5/configuration_t5.py +7 -1
- transformers/models/t5/modeling_t5.py +8 -7
- transformers/models/t5/tokenization_t5.py +4 -8
- transformers/models/t5gemma/modeling_t5gemma.py +6 -6
- transformers/models/t5gemma2/configuration_t5gemma2.py +6 -42
- transformers/models/t5gemma2/modeling_t5gemma2.py +19 -10
- transformers/models/t5gemma2/modular_t5gemma2.py +289 -4
- transformers/models/table_transformer/configuration_table_transformer.py +1 -1
- transformers/models/table_transformer/modeling_table_transformer.py +5 -1
- transformers/models/tapas/modeling_tapas.py +3 -0
- transformers/models/textnet/image_processing_textnet_fast.py +0 -1
- transformers/models/textnet/modeling_textnet.py +11 -2
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -0
- transformers/models/timesfm/modeling_timesfm.py +14 -0
- transformers/models/timesfm/modular_timesfm.py +14 -0
- transformers/models/timesformer/modeling_timesformer.py +2 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +13 -9
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -0
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +20 -14
- transformers/models/trocr/modeling_trocr.py +3 -2
- transformers/models/tvp/configuration_tvp.py +5 -1
- transformers/models/tvp/modeling_tvp.py +6 -4
- transformers/models/udop/configuration_udop.py +1 -0
- transformers/models/udop/modeling_udop.py +7 -7
- transformers/models/udop/tokenization_udop.py +5 -13
- transformers/models/umt5/configuration_umt5.py +2 -2
- transformers/models/umt5/modeling_umt5.py +7 -6
- transformers/models/unispeech/modeling_unispeech.py +4 -0
- transformers/models/unispeech/modular_unispeech.py +2 -0
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +6 -0
- transformers/models/unispeech_sat/modular_unispeech_sat.py +2 -0
- transformers/models/univnet/modeling_univnet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +1 -0
- transformers/models/vaultgemma/modeling_vaultgemma.py +5 -5
- transformers/models/video_llama_3/image_processing_video_llama_3.py +3 -2
- transformers/models/video_llama_3/modeling_video_llama_3.py +12 -1
- transformers/models/video_llama_3/modular_video_llama_3.py +10 -1
- transformers/models/video_llava/modeling_video_llava.py +7 -3
- transformers/models/vilt/configuration_vilt.py +2 -2
- transformers/models/vilt/modeling_vilt.py +13 -0
- transformers/models/vipllava/modeling_vipllava.py +7 -3
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +1 -0
- transformers/models/visual_bert/modeling_visual_bert.py +8 -0
- transformers/models/vitdet/modeling_vitdet.py +2 -0
- transformers/models/vitmatte/configuration_vitmatte.py +1 -1
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +0 -1
- transformers/models/vitmatte/modeling_vitmatte.py +5 -0
- transformers/models/vitpose/configuration_vitpose.py +1 -1
- transformers/models/vitpose/image_processing_vitpose_fast.py +0 -1
- transformers/models/vits/modeling_vits.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +1 -0
- transformers/models/voxtral/modeling_voxtral.py +2 -2
- transformers/models/voxtral/modular_voxtral.py +2 -2
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -0
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +21 -10
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +12 -0
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +27 -11
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +21 -11
- transformers/models/wavlm/modeling_wavlm.py +5 -0
- transformers/models/whisper/generation_whisper.py +1 -0
- transformers/models/whisper/modeling_whisper.py +11 -3
- transformers/models/whisper/tokenization_whisper.py +4 -15
- transformers/models/x_clip/modeling_x_clip.py +5 -0
- transformers/models/xcodec/modeling_xcodec.py +5 -0
- transformers/models/xglm/modeling_xglm.py +11 -0
- transformers/models/xglm/tokenization_xglm.py +4 -9
- transformers/models/xlm/modeling_xlm.py +18 -14
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +109 -106
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +9 -16
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +3 -0
- transformers/models/xlnet/modeling_xlnet.py +3 -1
- transformers/models/xlnet/tokenization_xlnet.py +3 -7
- transformers/models/xmod/modeling_xmod.py +3 -0
- transformers/models/yoso/modeling_yoso.py +10 -1
- transformers/models/zamba/modeling_zamba.py +4 -1
- transformers/models/zamba2/modeling_zamba2.py +7 -4
- transformers/models/zamba2/modular_zamba2.py +1 -1
- transformers/models/zoedepth/configuration_zoedepth.py +1 -1
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +1 -3
- transformers/models/zoedepth/modeling_zoedepth.py +8 -0
- transformers/pipelines/__init__.py +11 -9
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +2 -10
- transformers/pipelines/document_question_answering.py +4 -2
- transformers/pipelines/question_answering.py +1 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/processing_utils.py +133 -50
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +44 -174
- transformers/quantizers/quantizer_aqlm.py +2 -23
- transformers/quantizers/quantizer_auto_round.py +2 -12
- transformers/quantizers/quantizer_awq.py +20 -89
- transformers/quantizers/quantizer_bitnet.py +4 -14
- transformers/quantizers/quantizer_bnb_4bit.py +18 -155
- transformers/quantizers/quantizer_bnb_8bit.py +24 -110
- transformers/quantizers/quantizer_compressed_tensors.py +2 -9
- transformers/quantizers/quantizer_eetq.py +16 -74
- transformers/quantizers/quantizer_fbgemm_fp8.py +38 -138
- transformers/quantizers/quantizer_finegrained_fp8.py +26 -113
- transformers/quantizers/quantizer_fp_quant.py +52 -82
- transformers/quantizers/quantizer_gptq.py +8 -28
- transformers/quantizers/quantizer_higgs.py +42 -60
- transformers/quantizers/quantizer_hqq.py +144 -153
- transformers/quantizers/quantizer_mxfp4.py +14 -194
- transformers/quantizers/quantizer_quanto.py +35 -79
- transformers/quantizers/quantizer_quark.py +36 -17
- transformers/quantizers/quantizer_spqr.py +4 -12
- transformers/quantizers/quantizer_torchao.py +50 -325
- transformers/quantizers/quantizer_vptq.py +4 -27
- transformers/quantizers/quantizers_utils.py +20 -0
- transformers/testing_utils.py +324 -47
- transformers/tokenization_mistral_common.py +7 -2
- transformers/tokenization_utils_base.py +116 -224
- transformers/tokenization_utils_tokenizers.py +190 -106
- transformers/trainer.py +51 -32
- transformers/trainer_callback.py +8 -0
- transformers/trainer_jit_checkpoint.py +126 -0
- transformers/trainer_seq2seq.py +4 -0
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +74 -38
- transformers/utils/__init__.py +7 -4
- transformers/utils/attention_visualizer.py +4 -4
- transformers/utils/auto_docstring.py +35 -25
- transformers/utils/generic.py +47 -1
- transformers/utils/hub.py +5 -15
- transformers/utils/import_utils.py +112 -25
- transformers/utils/kernel_config.py +74 -19
- transformers/utils/loading_report.py +19 -10
- transformers/utils/quantization_config.py +78 -245
- transformers/video_processing_utils.py +17 -14
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/METADATA +275 -229
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/RECORD +832 -777
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/WHEEL +1 -1
- transformers/kernels/__init__.py +0 -0
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +0 -529
- transformers/models/roformer/tokenization_roformer_fast.py +0 -160
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info/licenses}/LICENSE +0 -0
- {transformers-5.0.0rc0.dist-info → transformers-5.0.0rc2.dist-info}/top_level.txt +0 -0
|
@@ -16,7 +16,7 @@
|
|
|
16
16
|
"""Tokenization classes for Splinter."""
|
|
17
17
|
|
|
18
18
|
import collections
|
|
19
|
-
from typing import Optional
|
|
19
|
+
from typing import Optional, Union
|
|
20
20
|
|
|
21
21
|
from tokenizers import Tokenizer, decoders, normalizers, pre_tokenizers, processors
|
|
22
22
|
from tokenizers.models import WordPiece
|
|
@@ -72,16 +72,17 @@ class SplinterTokenizer(TokenizersBackend):
|
|
|
72
72
|
strip_accents (`bool`, *optional*):
|
|
73
73
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
|
74
74
|
value for `lowercase`.
|
|
75
|
-
vocab (`dict`, *optional*):
|
|
75
|
+
vocab (`str`, `dict` or `list`, *optional*):
|
|
76
76
|
Custom vocabulary dictionary. If not provided, a minimal vocabulary is created.
|
|
77
77
|
"""
|
|
78
78
|
|
|
79
79
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
80
80
|
model_input_names = ["input_ids", "attention_mask"]
|
|
81
|
-
|
|
81
|
+
model = WordPiece
|
|
82
82
|
|
|
83
83
|
def __init__(
|
|
84
84
|
self,
|
|
85
|
+
vocab: Optional[Union[str, dict[str, int]]] = None,
|
|
85
86
|
do_lower_case: bool = True,
|
|
86
87
|
unk_token: str = "[UNK]",
|
|
87
88
|
sep_token: str = "[SEP]",
|
|
@@ -91,15 +92,12 @@ class SplinterTokenizer(TokenizersBackend):
|
|
|
91
92
|
question_token: str = "[QUESTION]",
|
|
92
93
|
tokenize_chinese_chars: bool = True,
|
|
93
94
|
strip_accents: Optional[bool] = None,
|
|
94
|
-
vocab: Optional[dict] = None,
|
|
95
95
|
**kwargs,
|
|
96
96
|
):
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
else:
|
|
102
|
-
self._vocab = {
|
|
97
|
+
self._vocab = (
|
|
98
|
+
vocab
|
|
99
|
+
if vocab is not None
|
|
100
|
+
else {
|
|
103
101
|
str(pad_token): 0,
|
|
104
102
|
str(unk_token): 1,
|
|
105
103
|
str(cls_token): 2,
|
|
@@ -108,6 +106,7 @@ class SplinterTokenizer(TokenizersBackend):
|
|
|
108
106
|
str(question_token): 5,
|
|
109
107
|
".": 6,
|
|
110
108
|
}
|
|
109
|
+
)
|
|
111
110
|
|
|
112
111
|
self._tokenizer = Tokenizer(WordPiece(self._vocab, unk_token=str(unk_token)))
|
|
113
112
|
|
|
@@ -120,10 +119,7 @@ class SplinterTokenizer(TokenizersBackend):
|
|
|
120
119
|
self._tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
|
121
120
|
self._tokenizer.decoder = decoders.WordPiece(prefix="##")
|
|
122
121
|
|
|
123
|
-
tokenizer_object = self._tokenizer
|
|
124
|
-
|
|
125
122
|
super().__init__(
|
|
126
|
-
tokenizer_object=tokenizer_object,
|
|
127
123
|
unk_token=unk_token,
|
|
128
124
|
sep_token=sep_token,
|
|
129
125
|
pad_token=pad_token,
|
|
@@ -136,21 +132,6 @@ class SplinterTokenizer(TokenizersBackend):
|
|
|
136
132
|
**kwargs,
|
|
137
133
|
)
|
|
138
134
|
|
|
139
|
-
if hasattr(self, "_tokenizer") and self._tokenizer.normalizer is not None:
|
|
140
|
-
import json
|
|
141
|
-
|
|
142
|
-
pre_tok_state = json.loads(self._tokenizer.normalizer.__getstate__())
|
|
143
|
-
if (
|
|
144
|
-
pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
|
|
145
|
-
or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
|
|
146
|
-
or pre_tok_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
|
147
|
-
):
|
|
148
|
-
pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
|
|
149
|
-
pre_tok_state["lowercase"] = do_lower_case
|
|
150
|
-
pre_tok_state["strip_accents"] = strip_accents
|
|
151
|
-
pre_tok_state["handle_chinese_chars"] = tokenize_chinese_chars
|
|
152
|
-
self._tokenizer.normalizer = pre_tok_class(**pre_tok_state)
|
|
153
|
-
|
|
154
135
|
self.do_lower_case = do_lower_case
|
|
155
136
|
self.tokenize_chinese_chars = tokenize_chinese_chars
|
|
156
137
|
self.strip_accents = strip_accents
|
|
@@ -412,6 +412,8 @@ class SqueezeBertPreTrainedModel(PreTrainedModel):
|
|
|
412
412
|
super()._init_weights(module)
|
|
413
413
|
if isinstance(module, SqueezeBertLMPredictionHead):
|
|
414
414
|
init.zeros_(module.bias)
|
|
415
|
+
elif isinstance(module, SqueezeBertEmbeddings):
|
|
416
|
+
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
415
417
|
|
|
416
418
|
|
|
417
419
|
@auto_docstring
|
|
@@ -443,6 +445,7 @@ class SqueezeBertModel(SqueezeBertPreTrainedModel):
|
|
|
443
445
|
output_attentions: Optional[bool] = None,
|
|
444
446
|
output_hidden_states: Optional[bool] = None,
|
|
445
447
|
return_dict: Optional[bool] = None,
|
|
448
|
+
**kwargs,
|
|
446
449
|
) -> Union[tuple, BaseModelOutputWithPooling]:
|
|
447
450
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
448
451
|
output_hidden_states = (
|
|
@@ -528,6 +531,7 @@ class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel):
|
|
|
528
531
|
output_attentions: Optional[bool] = None,
|
|
529
532
|
output_hidden_states: Optional[bool] = None,
|
|
530
533
|
return_dict: Optional[bool] = None,
|
|
534
|
+
**kwargs,
|
|
531
535
|
) -> Union[tuple, MaskedLMOutput]:
|
|
532
536
|
r"""
|
|
533
537
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -599,6 +603,7 @@ class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel):
|
|
|
599
603
|
output_attentions: Optional[bool] = None,
|
|
600
604
|
output_hidden_states: Optional[bool] = None,
|
|
601
605
|
return_dict: Optional[bool] = None,
|
|
606
|
+
**kwargs,
|
|
602
607
|
) -> Union[tuple, SequenceClassifierOutput]:
|
|
603
608
|
r"""
|
|
604
609
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -683,6 +688,7 @@ class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel):
|
|
|
683
688
|
output_attentions: Optional[bool] = None,
|
|
684
689
|
output_hidden_states: Optional[bool] = None,
|
|
685
690
|
return_dict: Optional[bool] = None,
|
|
691
|
+
**kwargs,
|
|
686
692
|
) -> Union[tuple, MultipleChoiceModelOutput]:
|
|
687
693
|
r"""
|
|
688
694
|
input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
|
|
@@ -786,6 +792,7 @@ class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel):
|
|
|
786
792
|
output_attentions: Optional[bool] = None,
|
|
787
793
|
output_hidden_states: Optional[bool] = None,
|
|
788
794
|
return_dict: Optional[bool] = None,
|
|
795
|
+
**kwargs,
|
|
789
796
|
) -> Union[tuple, TokenClassifierOutput]:
|
|
790
797
|
r"""
|
|
791
798
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -851,6 +858,7 @@ class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel):
|
|
|
851
858
|
output_attentions: Optional[bool] = None,
|
|
852
859
|
output_hidden_states: Optional[bool] = None,
|
|
853
860
|
return_dict: Optional[bool] = None,
|
|
861
|
+
**kwargs,
|
|
854
862
|
) -> Union[tuple, QuestionAnsweringModelOutput]:
|
|
855
863
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
856
864
|
|
|
@@ -45,6 +45,7 @@ from ...modeling_rope_utils import (
|
|
|
45
45
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
46
46
|
from ...processing_utils import Unpack
|
|
47
47
|
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
|
|
48
|
+
from ...utils.generic import maybe_autocast
|
|
48
49
|
from .configuration_stablelm import StableLmConfig
|
|
49
50
|
|
|
50
51
|
|
|
@@ -75,7 +76,7 @@ class StableLmRotaryEmbedding(nn.Module):
|
|
|
75
76
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
76
77
|
|
|
77
78
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
78
|
-
self.original_inv_freq =
|
|
79
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
79
80
|
|
|
80
81
|
@staticmethod
|
|
81
82
|
# Ignore copy
|
|
@@ -117,7 +118,7 @@ class StableLmRotaryEmbedding(nn.Module):
|
|
|
117
118
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
118
119
|
|
|
119
120
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
120
|
-
with
|
|
121
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
121
122
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
122
123
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
123
124
|
cos = emb.cos() * self.attention_scaling
|
|
@@ -492,6 +493,7 @@ class StableLmModel(StableLmPreTrainedModel):
|
|
|
492
493
|
output_attentions: Optional[bool] = None,
|
|
493
494
|
output_hidden_states: Optional[bool] = None,
|
|
494
495
|
cache_position: Optional[torch.LongTensor] = None,
|
|
496
|
+
**kwargs,
|
|
495
497
|
) -> BaseModelOutputWithPast:
|
|
496
498
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
497
499
|
output_hidden_states = (
|
|
@@ -35,7 +35,7 @@ from transformers.utils.generic import check_model_inputs
|
|
|
35
35
|
from ...activations import ACT2FN
|
|
36
36
|
from ...cache_utils import Cache, DynamicCache
|
|
37
37
|
from ...generation import GenerationMixin
|
|
38
|
-
from ...integrations import use_kernel_func_from_hub
|
|
38
|
+
from ...integrations import use_kernel_func_from_hub, use_kernelized_func
|
|
39
39
|
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
|
|
40
40
|
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
|
41
41
|
from ...modeling_layers import (
|
|
@@ -48,6 +48,7 @@ from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
|
48
48
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
49
49
|
from ...processing_utils import Unpack
|
|
50
50
|
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
|
|
51
|
+
from ...utils.generic import maybe_autocast
|
|
51
52
|
from .configuration_starcoder2 import Starcoder2Config
|
|
52
53
|
|
|
53
54
|
|
|
@@ -141,6 +142,7 @@ def eager_attention_forward(
|
|
|
141
142
|
return attn_output, attn_weights
|
|
142
143
|
|
|
143
144
|
|
|
145
|
+
@use_kernelized_func(apply_rotary_pos_emb)
|
|
144
146
|
class Starcoder2Attention(nn.Module):
|
|
145
147
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
146
148
|
|
|
@@ -157,7 +159,6 @@ class Starcoder2Attention(nn.Module):
|
|
|
157
159
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
|
|
158
160
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
|
|
159
161
|
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
|
|
160
|
-
self.rotary_fn = apply_rotary_pos_emb
|
|
161
162
|
self.residual_dropout = config.residual_dropout
|
|
162
163
|
|
|
163
164
|
def forward(
|
|
@@ -288,7 +289,7 @@ class Starcoder2RotaryEmbedding(nn.Module):
|
|
|
288
289
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
289
290
|
|
|
290
291
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
291
|
-
self.original_inv_freq =
|
|
292
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
292
293
|
|
|
293
294
|
@staticmethod
|
|
294
295
|
def compute_default_rope_parameters(
|
|
@@ -327,7 +328,7 @@ class Starcoder2RotaryEmbedding(nn.Module):
|
|
|
327
328
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
328
329
|
|
|
329
330
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
330
|
-
with
|
|
331
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
331
332
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
332
333
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
333
334
|
cos = emb.cos() * self.attention_scaling
|
|
@@ -161,9 +161,8 @@ class SuperGlueImageProcessorFast(BaseImageProcessorFast):
|
|
|
161
161
|
stacked_pairs = [torch.stack(pair, dim=0) for pair in image_pairs]
|
|
162
162
|
|
|
163
163
|
# Return in same format as slow processor
|
|
164
|
-
image_pairs = torch.stack(stacked_pairs, dim=0) if return_tensors else stacked_pairs
|
|
165
164
|
|
|
166
|
-
return BatchFeature(data={"pixel_values":
|
|
165
|
+
return BatchFeature(data={"pixel_values": stacked_pairs}, tensor_type=return_tensors)
|
|
167
166
|
|
|
168
167
|
def post_process_keypoint_matching(
|
|
169
168
|
self,
|
|
@@ -670,6 +670,7 @@ class SuperGlueForKeypointMatching(SuperGluePreTrainedModel):
|
|
|
670
670
|
output_attentions: Optional[bool] = None,
|
|
671
671
|
output_hidden_states: Optional[bool] = None,
|
|
672
672
|
return_dict: Optional[bool] = None,
|
|
673
|
+
**kwargs,
|
|
673
674
|
) -> Union[tuple, SuperGlueKeypointMatchingOutput]:
|
|
674
675
|
r"""
|
|
675
676
|
Examples:
|
|
@@ -110,8 +110,7 @@ class SuperPointImageProcessorFast(BaseImageProcessorFast):
|
|
|
110
110
|
stacked_images = self.rescale(stacked_images, rescale_factor)
|
|
111
111
|
processed_images_grouped[shape] = stacked_images
|
|
112
112
|
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
|
|
113
|
-
|
|
114
|
-
return BatchFeature(data={"pixel_values": processed_images})
|
|
113
|
+
return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors)
|
|
115
114
|
|
|
116
115
|
def post_process_keypoint_detection(
|
|
117
116
|
self, outputs: "SuperPointKeypointDescriptionOutput", target_sizes: Union[TensorType, list[tuple]]
|
|
@@ -378,6 +378,7 @@ class SuperPointForKeypointDetection(SuperPointPreTrainedModel):
|
|
|
378
378
|
labels: Optional[torch.LongTensor] = None,
|
|
379
379
|
output_hidden_states: Optional[bool] = None,
|
|
380
380
|
return_dict: Optional[bool] = None,
|
|
381
|
+
**kwargs,
|
|
381
382
|
) -> Union[tuple, SuperPointKeypointDescriptionOutput]:
|
|
382
383
|
r"""
|
|
383
384
|
Examples:
|
|
@@ -400,6 +400,10 @@ class SwiftFormerPreTrainedModel(PreTrainedModel):
|
|
|
400
400
|
elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d)):
|
|
401
401
|
init.constant_(module.bias, 0)
|
|
402
402
|
init.constant_(module.weight, 1.0)
|
|
403
|
+
if getattr(module, "running_mean", None) is not None:
|
|
404
|
+
init.zeros_(module.running_mean)
|
|
405
|
+
init.ones_(module.running_var)
|
|
406
|
+
init.zeros_(module.num_batches_tracked)
|
|
403
407
|
elif isinstance(module, (SwiftFormerConvEncoder, SwiftFormerLocalRepresentation)):
|
|
404
408
|
init.ones_(module.layer_scale)
|
|
405
409
|
elif isinstance(module, SwiftFormerEncoderBlock):
|
|
@@ -428,6 +432,7 @@ class SwiftFormerModel(SwiftFormerPreTrainedModel):
|
|
|
428
432
|
pixel_values: Optional[torch.Tensor] = None,
|
|
429
433
|
output_hidden_states: Optional[bool] = None,
|
|
430
434
|
return_dict: Optional[bool] = None,
|
|
435
|
+
**kwargs,
|
|
431
436
|
) -> Union[tuple, BaseModelOutputWithNoAttention]:
|
|
432
437
|
output_hidden_states = (
|
|
433
438
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
@@ -478,6 +483,7 @@ class SwiftFormerForImageClassification(SwiftFormerPreTrainedModel):
|
|
|
478
483
|
labels: Optional[torch.Tensor] = None,
|
|
479
484
|
output_hidden_states: Optional[bool] = None,
|
|
480
485
|
return_dict: Optional[bool] = None,
|
|
486
|
+
**kwargs,
|
|
481
487
|
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
|
|
482
488
|
r"""
|
|
483
489
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -411,18 +411,7 @@ class SwinSelfAttention(nn.Module):
|
|
|
411
411
|
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
|
|
412
412
|
)
|
|
413
413
|
|
|
414
|
-
|
|
415
|
-
coords_h = torch.arange(self.window_size[0])
|
|
416
|
-
coords_w = torch.arange(self.window_size[1])
|
|
417
|
-
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
418
|
-
coords_flatten = torch.flatten(coords, 1)
|
|
419
|
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
420
|
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
421
|
-
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
422
|
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
423
|
-
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
424
|
-
relative_position_index = relative_coords.sum(-1)
|
|
425
|
-
self.register_buffer("relative_position_index", relative_position_index)
|
|
414
|
+
self.register_buffer("relative_position_index", self.create_relative_position_index())
|
|
426
415
|
|
|
427
416
|
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
|
428
417
|
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
|
@@ -481,6 +470,20 @@ class SwinSelfAttention(nn.Module):
|
|
|
481
470
|
|
|
482
471
|
return outputs
|
|
483
472
|
|
|
473
|
+
def create_relative_position_index(self):
|
|
474
|
+
# get pair-wise relative position index for each token inside the window
|
|
475
|
+
coords_h = torch.arange(self.window_size[0])
|
|
476
|
+
coords_w = torch.arange(self.window_size[1])
|
|
477
|
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
478
|
+
coords_flatten = torch.flatten(coords, 1)
|
|
479
|
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
480
|
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
481
|
+
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
482
|
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
483
|
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
484
|
+
relative_position_index = relative_coords.sum(-1)
|
|
485
|
+
return relative_position_index
|
|
486
|
+
|
|
484
487
|
|
|
485
488
|
class SwinSelfOutput(nn.Module):
|
|
486
489
|
def __init__(self, config, dim):
|
|
@@ -823,6 +826,7 @@ class SwinPreTrainedModel(PreTrainedModel):
|
|
|
823
826
|
init.zeros_(module.position_embeddings)
|
|
824
827
|
elif isinstance(module, SwinSelfAttention):
|
|
825
828
|
init.zeros_(module.relative_position_bias_table)
|
|
829
|
+
init.copy_(module.relative_position_index, module.create_relative_position_index())
|
|
826
830
|
|
|
827
831
|
|
|
828
832
|
@auto_docstring
|
|
@@ -860,6 +864,7 @@ class SwinModel(SwinPreTrainedModel):
|
|
|
860
864
|
output_hidden_states: Optional[bool] = None,
|
|
861
865
|
interpolate_pos_encoding: bool = False,
|
|
862
866
|
return_dict: Optional[bool] = None,
|
|
867
|
+
**kwargs,
|
|
863
868
|
) -> Union[tuple, SwinModelOutput]:
|
|
864
869
|
r"""
|
|
865
870
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
|
|
@@ -946,6 +951,7 @@ class SwinForMaskedImageModeling(SwinPreTrainedModel):
|
|
|
946
951
|
output_hidden_states: Optional[bool] = None,
|
|
947
952
|
interpolate_pos_encoding: bool = False,
|
|
948
953
|
return_dict: Optional[bool] = None,
|
|
954
|
+
**kwargs,
|
|
949
955
|
) -> Union[tuple, SwinMaskedImageModelingOutput]:
|
|
950
956
|
r"""
|
|
951
957
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
|
|
@@ -1059,6 +1065,7 @@ class SwinForImageClassification(SwinPreTrainedModel):
|
|
|
1059
1065
|
output_hidden_states: Optional[bool] = None,
|
|
1060
1066
|
interpolate_pos_encoding: bool = False,
|
|
1061
1067
|
return_dict: Optional[bool] = None,
|
|
1068
|
+
**kwargs,
|
|
1062
1069
|
) -> Union[tuple, SwinImageClassifierOutput]:
|
|
1063
1070
|
r"""
|
|
1064
1071
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -1129,6 +1136,7 @@ class SwinBackbone(SwinPreTrainedModel, BackboneMixin):
|
|
|
1129
1136
|
output_hidden_states: Optional[bool] = None,
|
|
1130
1137
|
output_attentions: Optional[bool] = None,
|
|
1131
1138
|
return_dict: Optional[bool] = None,
|
|
1139
|
+
**kwargs,
|
|
1132
1140
|
) -> BackboneOutput:
|
|
1133
1141
|
"""
|
|
1134
1142
|
Returns:
|
|
@@ -97,7 +97,6 @@ class Swin2SRImageProcessorFast(BaseImageProcessorFast):
|
|
|
97
97
|
stacked_images = self.pad(stacked_images, size_divisor=size_divisor)
|
|
98
98
|
processed_image_grouped[shape] = stacked_images
|
|
99
99
|
processed_images = reorder_images(processed_image_grouped, grouped_images_index)
|
|
100
|
-
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
|
|
101
100
|
|
|
102
101
|
return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors)
|
|
103
102
|
|
|
@@ -250,40 +250,8 @@ class Swin2SRSelfAttention(nn.Module):
|
|
|
250
250
|
nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False)
|
|
251
251
|
)
|
|
252
252
|
|
|
253
|
-
|
|
254
|
-
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.int64).float()
|
|
255
|
-
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.int64).float()
|
|
256
|
-
relative_coords_table = (
|
|
257
|
-
torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij"))
|
|
258
|
-
.permute(1, 2, 0)
|
|
259
|
-
.contiguous()
|
|
260
|
-
.unsqueeze(0)
|
|
261
|
-
) # [1, 2*window_height - 1, 2*window_width - 1, 2]
|
|
262
|
-
if pretrained_window_size[0] > 0:
|
|
263
|
-
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
|
|
264
|
-
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
|
|
265
|
-
elif window_size > 1:
|
|
266
|
-
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
|
|
267
|
-
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
|
|
268
|
-
relative_coords_table *= 8 # normalize to -8, 8
|
|
269
|
-
relative_coords_table = (
|
|
270
|
-
torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8)
|
|
271
|
-
)
|
|
272
|
-
# set to same dtype as mlp weight
|
|
273
|
-
relative_coords_table = relative_coords_table.to(next(self.continuous_position_bias_mlp.parameters()).dtype)
|
|
253
|
+
relative_coords_table, relative_position_index = self.create_coords_table_and_index()
|
|
274
254
|
self.register_buffer("relative_coords_table", relative_coords_table, persistent=False)
|
|
275
|
-
|
|
276
|
-
# get pair-wise relative position index for each token inside the window
|
|
277
|
-
coords_h = torch.arange(self.window_size[0])
|
|
278
|
-
coords_w = torch.arange(self.window_size[1])
|
|
279
|
-
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
280
|
-
coords_flatten = torch.flatten(coords, 1)
|
|
281
|
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
282
|
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
283
|
-
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
284
|
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
285
|
-
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
286
|
-
relative_position_index = relative_coords.sum(-1)
|
|
287
255
|
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
|
|
288
256
|
|
|
289
257
|
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
|
@@ -359,6 +327,43 @@ class Swin2SRSelfAttention(nn.Module):
|
|
|
359
327
|
|
|
360
328
|
return outputs
|
|
361
329
|
|
|
330
|
+
def create_coords_table_and_index(self):
|
|
331
|
+
# get relative_coords_table
|
|
332
|
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.int64).float()
|
|
333
|
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.int64).float()
|
|
334
|
+
relative_coords_table = (
|
|
335
|
+
torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij"))
|
|
336
|
+
.permute(1, 2, 0)
|
|
337
|
+
.contiguous()
|
|
338
|
+
.unsqueeze(0)
|
|
339
|
+
) # [1, 2*window_height - 1, 2*window_width - 1, 2]
|
|
340
|
+
if self.pretrained_window_size[0] > 0:
|
|
341
|
+
relative_coords_table[:, :, :, 0] /= self.pretrained_window_size[0] - 1
|
|
342
|
+
relative_coords_table[:, :, :, 1] /= self.pretrained_window_size[1] - 1
|
|
343
|
+
elif self.window_size[0] > 1:
|
|
344
|
+
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
|
|
345
|
+
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
|
|
346
|
+
relative_coords_table *= 8 # normalize to -8, 8
|
|
347
|
+
relative_coords_table = (
|
|
348
|
+
torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8)
|
|
349
|
+
)
|
|
350
|
+
# set to same dtype as mlp weight
|
|
351
|
+
relative_coords_table = relative_coords_table.to(next(self.continuous_position_bias_mlp.parameters()).dtype)
|
|
352
|
+
|
|
353
|
+
# get pair-wise relative position index for each token inside the window
|
|
354
|
+
coords_h = torch.arange(self.window_size[0])
|
|
355
|
+
coords_w = torch.arange(self.window_size[1])
|
|
356
|
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
357
|
+
coords_flatten = torch.flatten(coords, 1)
|
|
358
|
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
359
|
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
360
|
+
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
361
|
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
362
|
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
363
|
+
relative_position_index = relative_coords.sum(-1)
|
|
364
|
+
|
|
365
|
+
return relative_coords_table, relative_position_index
|
|
366
|
+
|
|
362
367
|
|
|
363
368
|
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->Swin2SR
|
|
364
369
|
class Swin2SRSelfOutput(nn.Module):
|
|
@@ -702,6 +707,17 @@ class Swin2SRPreTrainedModel(PreTrainedModel):
|
|
|
702
707
|
elif isinstance(module, nn.LayerNorm):
|
|
703
708
|
init.zeros_(module.bias)
|
|
704
709
|
init.ones_(module.weight)
|
|
710
|
+
elif isinstance(module, Swin2SRSelfAttention):
|
|
711
|
+
init.constant_(module.logit_scale, math.log(10))
|
|
712
|
+
relative_coords_table, relative_position_index = module.create_coords_table_and_index()
|
|
713
|
+
init.copy_(module.relative_coords_table, relative_coords_table)
|
|
714
|
+
init.copy_(module.relative_position_index, relative_position_index)
|
|
715
|
+
elif isinstance(module, Swin2SRModel):
|
|
716
|
+
if module.config.num_channels == 3 and module.config.num_channels_out == 3:
|
|
717
|
+
mean = torch.tensor([0.4488, 0.4371, 0.4040]).view(1, 3, 1, 1)
|
|
718
|
+
else:
|
|
719
|
+
mean = torch.zeros(1, 1, 1, 1)
|
|
720
|
+
init.copy_(module.mean, mean)
|
|
705
721
|
|
|
706
722
|
|
|
707
723
|
@auto_docstring
|
|
@@ -754,6 +770,7 @@ class Swin2SRModel(Swin2SRPreTrainedModel):
|
|
|
754
770
|
output_attentions: Optional[bool] = None,
|
|
755
771
|
output_hidden_states: Optional[bool] = None,
|
|
756
772
|
return_dict: Optional[bool] = None,
|
|
773
|
+
**kwargs,
|
|
757
774
|
) -> Union[tuple, BaseModelOutput]:
|
|
758
775
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
759
776
|
output_hidden_states = (
|
|
@@ -972,6 +989,7 @@ class Swin2SRForImageSuperResolution(Swin2SRPreTrainedModel):
|
|
|
972
989
|
output_attentions: Optional[bool] = None,
|
|
973
990
|
output_hidden_states: Optional[bool] = None,
|
|
974
991
|
return_dict: Optional[bool] = None,
|
|
992
|
+
**kwargs,
|
|
975
993
|
) -> Union[tuple, ImageSuperResolutionOutput]:
|
|
976
994
|
r"""
|
|
977
995
|
Example:
|
|
@@ -421,40 +421,8 @@ class Swinv2SelfAttention(nn.Module):
|
|
|
421
421
|
nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False)
|
|
422
422
|
)
|
|
423
423
|
|
|
424
|
-
|
|
425
|
-
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.int64).float()
|
|
426
|
-
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.int64).float()
|
|
427
|
-
relative_coords_table = (
|
|
428
|
-
torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij"))
|
|
429
|
-
.permute(1, 2, 0)
|
|
430
|
-
.contiguous()
|
|
431
|
-
.unsqueeze(0)
|
|
432
|
-
) # [1, 2*window_height - 1, 2*window_width - 1, 2]
|
|
433
|
-
if pretrained_window_size[0] > 0:
|
|
434
|
-
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
|
|
435
|
-
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
|
|
436
|
-
elif window_size > 1:
|
|
437
|
-
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
|
|
438
|
-
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
|
|
439
|
-
relative_coords_table *= 8 # normalize to -8, 8
|
|
440
|
-
relative_coords_table = (
|
|
441
|
-
torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8)
|
|
442
|
-
)
|
|
443
|
-
# set to same dtype as mlp weight
|
|
444
|
-
relative_coords_table = relative_coords_table.to(next(self.continuous_position_bias_mlp.parameters()).dtype)
|
|
424
|
+
relative_coords_table, relative_position_index = self.create_coords_table_and_index()
|
|
445
425
|
self.register_buffer("relative_coords_table", relative_coords_table, persistent=False)
|
|
446
|
-
|
|
447
|
-
# get pair-wise relative position index for each token inside the window
|
|
448
|
-
coords_h = torch.arange(self.window_size[0])
|
|
449
|
-
coords_w = torch.arange(self.window_size[1])
|
|
450
|
-
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
451
|
-
coords_flatten = torch.flatten(coords, 1)
|
|
452
|
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
453
|
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
454
|
-
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
455
|
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
456
|
-
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
457
|
-
relative_position_index = relative_coords.sum(-1)
|
|
458
426
|
self.register_buffer("relative_position_index", relative_position_index, persistent=False)
|
|
459
427
|
|
|
460
428
|
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
|
@@ -530,6 +498,43 @@ class Swinv2SelfAttention(nn.Module):
|
|
|
530
498
|
|
|
531
499
|
return outputs
|
|
532
500
|
|
|
501
|
+
def create_coords_table_and_index(self):
|
|
502
|
+
# get relative_coords_table
|
|
503
|
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.int64).float()
|
|
504
|
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.int64).float()
|
|
505
|
+
relative_coords_table = (
|
|
506
|
+
torch.stack(meshgrid([relative_coords_h, relative_coords_w], indexing="ij"))
|
|
507
|
+
.permute(1, 2, 0)
|
|
508
|
+
.contiguous()
|
|
509
|
+
.unsqueeze(0)
|
|
510
|
+
) # [1, 2*window_height - 1, 2*window_width - 1, 2]
|
|
511
|
+
if self.pretrained_window_size[0] > 0:
|
|
512
|
+
relative_coords_table[:, :, :, 0] /= self.pretrained_window_size[0] - 1
|
|
513
|
+
relative_coords_table[:, :, :, 1] /= self.pretrained_window_size[1] - 1
|
|
514
|
+
elif self.window_size[0] > 1:
|
|
515
|
+
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
|
|
516
|
+
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
|
|
517
|
+
relative_coords_table *= 8 # normalize to -8, 8
|
|
518
|
+
relative_coords_table = (
|
|
519
|
+
torch.sign(relative_coords_table) * torch.log2(torch.abs(relative_coords_table) + 1.0) / math.log2(8)
|
|
520
|
+
)
|
|
521
|
+
# set to same dtype as mlp weight
|
|
522
|
+
relative_coords_table = relative_coords_table.to(next(self.continuous_position_bias_mlp.parameters()).dtype)
|
|
523
|
+
|
|
524
|
+
# get pair-wise relative position index for each token inside the window
|
|
525
|
+
coords_h = torch.arange(self.window_size[0])
|
|
526
|
+
coords_w = torch.arange(self.window_size[1])
|
|
527
|
+
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
|
|
528
|
+
coords_flatten = torch.flatten(coords, 1)
|
|
529
|
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
530
|
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
531
|
+
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
532
|
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
533
|
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
534
|
+
relative_position_index = relative_coords.sum(-1)
|
|
535
|
+
|
|
536
|
+
return relative_coords_table, relative_position_index
|
|
537
|
+
|
|
533
538
|
|
|
534
539
|
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->Swinv2
|
|
535
540
|
class Swinv2SelfOutput(nn.Module):
|
|
@@ -904,6 +909,9 @@ class Swinv2PreTrainedModel(PreTrainedModel):
|
|
|
904
909
|
init.zeros_(module.position_embeddings)
|
|
905
910
|
elif isinstance(module, Swinv2SelfAttention):
|
|
906
911
|
init.constant_(module.logit_scale, math.log(10))
|
|
912
|
+
relative_coords_table, relative_position_index = module.create_coords_table_and_index()
|
|
913
|
+
init.copy_(module.relative_coords_table, relative_coords_table)
|
|
914
|
+
init.copy_(module.relative_position_index, relative_position_index)
|
|
907
915
|
|
|
908
916
|
|
|
909
917
|
@auto_docstring
|
|
@@ -942,6 +950,7 @@ class Swinv2Model(Swinv2PreTrainedModel):
|
|
|
942
950
|
output_hidden_states: Optional[bool] = None,
|
|
943
951
|
interpolate_pos_encoding: bool = False,
|
|
944
952
|
return_dict: Optional[bool] = None,
|
|
953
|
+
**kwargs,
|
|
945
954
|
) -> Union[tuple, Swinv2ModelOutput]:
|
|
946
955
|
r"""
|
|
947
956
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
|
|
@@ -1030,6 +1039,7 @@ class Swinv2ForMaskedImageModeling(Swinv2PreTrainedModel):
|
|
|
1030
1039
|
output_hidden_states: Optional[bool] = None,
|
|
1031
1040
|
interpolate_pos_encoding: bool = False,
|
|
1032
1041
|
return_dict: Optional[bool] = None,
|
|
1042
|
+
**kwargs,
|
|
1033
1043
|
) -> Union[tuple, Swinv2MaskedImageModelingOutput]:
|
|
1034
1044
|
r"""
|
|
1035
1045
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
|
|
@@ -1144,6 +1154,7 @@ class Swinv2ForImageClassification(Swinv2PreTrainedModel):
|
|
|
1144
1154
|
output_hidden_states: Optional[bool] = None,
|
|
1145
1155
|
interpolate_pos_encoding: bool = False,
|
|
1146
1156
|
return_dict: Optional[bool] = None,
|
|
1157
|
+
**kwargs,
|
|
1147
1158
|
) -> Union[tuple, Swinv2ImageClassifierOutput]:
|
|
1148
1159
|
r"""
|
|
1149
1160
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -1209,6 +1220,7 @@ class Swinv2Backbone(Swinv2PreTrainedModel, BackboneMixin):
|
|
|
1209
1220
|
output_attentions: Optional[bool] = None,
|
|
1210
1221
|
output_hidden_states: Optional[bool] = None,
|
|
1211
1222
|
return_dict: Optional[bool] = None,
|
|
1223
|
+
**kwargs,
|
|
1212
1224
|
) -> BackboneOutput:
|
|
1213
1225
|
r"""
|
|
1214
1226
|
Examples:
|