tpu-inference 0.11.1.dev202511150811__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (179) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +53 -0
  6. tests/core/test_dp_scheduler.py +899 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/fused_moe_v1_test.py +105 -0
  10. tests/kernels/mla_v1_test.py +396 -0
  11. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  12. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  13. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  14. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
  15. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  16. tests/lora/__init__.py +0 -0
  17. tests/lora/conftest.py +32 -0
  18. tests/lora/test_bgmv.py +43 -0
  19. tests/lora/test_layers.py +654 -0
  20. tests/lora/test_lora.py +133 -0
  21. tests/lora/utils.py +96 -0
  22. tests/test_base.py +201 -0
  23. tests/test_envs.py +182 -0
  24. tests/test_quantization.py +836 -0
  25. tests/test_tpu_info.py +120 -0
  26. tests/test_utils.py +236 -0
  27. tpu_inference/__init__.py +34 -0
  28. tpu_inference/core/__init__.py +0 -0
  29. tpu_inference/core/core_tpu.py +786 -0
  30. tpu_inference/core/disagg_executor.py +118 -0
  31. tpu_inference/core/disagg_utils.py +51 -0
  32. tpu_inference/core/sched/__init__.py +0 -0
  33. tpu_inference/core/sched/dp_scheduler.py +523 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/jax_parallel_state.py +67 -0
  36. tpu_inference/distributed/tpu_connector.py +728 -0
  37. tpu_inference/distributed/utils.py +59 -0
  38. tpu_inference/env_override.py +9 -0
  39. tpu_inference/envs.py +107 -0
  40. tpu_inference/executors/__init__.py +0 -0
  41. tpu_inference/executors/ray_distributed_executor.py +362 -0
  42. tpu_inference/experimental/__init__.py +0 -0
  43. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  44. tpu_inference/kernels/__init__.py +0 -0
  45. tpu_inference/kernels/collectives/__init__.py +0 -0
  46. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  47. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  48. tpu_inference/kernels/collectives/util.py +47 -0
  49. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  50. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  51. tpu_inference/kernels/fused_moe/__init__.py +0 -0
  52. tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
  53. tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
  54. tpu_inference/kernels/mla/__init__.py +0 -0
  55. tpu_inference/kernels/mla/v1/__init__.py +0 -0
  56. tpu_inference/kernels/mla/v1/kernel.py +1349 -0
  57. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  58. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  59. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  60. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  61. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  62. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  66. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
  71. tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
  72. tpu_inference/layers/__init__.py +0 -0
  73. tpu_inference/layers/common/__init__.py +0 -0
  74. tpu_inference/layers/common/attention_interface.py +390 -0
  75. tpu_inference/layers/common/attention_metadata.py +34 -0
  76. tpu_inference/layers/common/binary_search.py +295 -0
  77. tpu_inference/layers/common/quant_methods.py +8 -0
  78. tpu_inference/layers/common/sharding.py +582 -0
  79. tpu_inference/layers/jax/__init__.py +0 -0
  80. tpu_inference/layers/jax/attention/__init__.py +0 -0
  81. tpu_inference/layers/jax/attention/attention.py +255 -0
  82. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  83. tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
  84. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  85. tpu_inference/layers/jax/base.py +151 -0
  86. tpu_inference/layers/jax/constants.py +88 -0
  87. tpu_inference/layers/jax/layers.py +301 -0
  88. tpu_inference/layers/jax/misc.py +16 -0
  89. tpu_inference/layers/jax/moe/__init__.py +0 -0
  90. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  91. tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
  92. tpu_inference/layers/jax/moe/moe.py +209 -0
  93. tpu_inference/layers/jax/rope.py +280 -0
  94. tpu_inference/layers/jax/rope_interface.py +214 -0
  95. tpu_inference/layers/jax/sample/__init__.py +0 -0
  96. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  97. tpu_inference/layers/jax/sample/sampling.py +96 -0
  98. tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
  99. tpu_inference/layers/jax/transformer_block.py +107 -0
  100. tpu_inference/layers/vllm/__init__.py +0 -0
  101. tpu_inference/layers/vllm/attention.py +221 -0
  102. tpu_inference/layers/vllm/fused_moe.py +507 -0
  103. tpu_inference/layers/vllm/linear_common.py +186 -0
  104. tpu_inference/layers/vllm/quantization/__init__.py +39 -0
  105. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  106. tpu_inference/layers/vllm/quantization/common.py +105 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  108. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
  109. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
  110. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  111. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  112. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  113. tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
  114. tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
  115. tpu_inference/layers/vllm/sharding.py +230 -0
  116. tpu_inference/logger.py +10 -0
  117. tpu_inference/lora/__init__.py +0 -0
  118. tpu_inference/lora/torch_lora_ops.py +103 -0
  119. tpu_inference/lora/torch_punica_tpu.py +311 -0
  120. tpu_inference/mock/__init__.py +0 -0
  121. tpu_inference/mock/vllm_config_utils.py +28 -0
  122. tpu_inference/mock/vllm_envs.py +1219 -0
  123. tpu_inference/mock/vllm_logger.py +212 -0
  124. tpu_inference/mock/vllm_logging_utils.py +15 -0
  125. tpu_inference/models/__init__.py +0 -0
  126. tpu_inference/models/common/__init__.py +0 -0
  127. tpu_inference/models/common/model_loader.py +444 -0
  128. tpu_inference/models/jax/__init__.py +0 -0
  129. tpu_inference/models/jax/deepseek_v3.py +868 -0
  130. tpu_inference/models/jax/gpt_oss.py +492 -0
  131. tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
  132. tpu_inference/models/jax/llama3.py +375 -0
  133. tpu_inference/models/jax/llama4.py +629 -0
  134. tpu_inference/models/jax/llama_eagle3.py +333 -0
  135. tpu_inference/models/jax/phi3.py +376 -0
  136. tpu_inference/models/jax/qwen2.py +375 -0
  137. tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
  138. tpu_inference/models/jax/qwen3.py +302 -0
  139. tpu_inference/models/jax/utils/__init__.py +0 -0
  140. tpu_inference/models/jax/utils/file_utils.py +96 -0
  141. tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
  142. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  143. tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
  144. tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
  145. tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
  146. tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
  147. tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
  148. tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
  149. tpu_inference/models/jax/utils/weight_utils.py +529 -0
  150. tpu_inference/models/vllm/__init__.py +0 -0
  151. tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
  152. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  153. tpu_inference/platforms/__init__.py +2 -0
  154. tpu_inference/platforms/tpu_platform.py +269 -0
  155. tpu_inference/runner/__init__.py +0 -0
  156. tpu_inference/runner/block_table.py +122 -0
  157. tpu_inference/runner/compilation_manager.py +780 -0
  158. tpu_inference/runner/input_batch.py +435 -0
  159. tpu_inference/runner/kv_cache.py +132 -0
  160. tpu_inference/runner/kv_cache_manager.py +479 -0
  161. tpu_inference/runner/lora_utils.py +92 -0
  162. tpu_inference/runner/multimodal_manager.py +217 -0
  163. tpu_inference/runner/persistent_batch_manager.py +244 -0
  164. tpu_inference/runner/speculative_decoding_manager.py +248 -0
  165. tpu_inference/runner/structured_decoding_manager.py +88 -0
  166. tpu_inference/runner/tpu_runner.py +1620 -0
  167. tpu_inference/runner/utils.py +426 -0
  168. tpu_inference/spec_decode/__init__.py +0 -0
  169. tpu_inference/spec_decode/jax/__init__.py +0 -0
  170. tpu_inference/spec_decode/jax/eagle3.py +367 -0
  171. tpu_inference/tpu_info.py +77 -0
  172. tpu_inference/utils.py +317 -0
  173. tpu_inference/worker/__init__.py +0 -0
  174. tpu_inference/worker/tpu_worker.py +321 -0
  175. tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
  176. tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
  177. tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
  178. tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
  179. tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
@@ -0,0 +1,375 @@
1
+ from typing import List, Optional, Tuple
2
+
3
+ import jax
4
+ import jax.numpy as jnp
5
+ from flax import nnx
6
+ from jax.sharding import Mesh
7
+ from transformers import LlamaConfig, modeling_flax_utils
8
+ from vllm.config import VllmConfig
9
+
10
+ from tpu_inference import utils
11
+ from tpu_inference.layers.common.attention_interface import attention
12
+ from tpu_inference.layers.common.attention_metadata import AttentionMetadata
13
+ from tpu_inference.layers.common.sharding import ShardingAxisName
14
+ from tpu_inference.layers.jax.rope_interface import apply_rope
15
+ from tpu_inference.logger import init_logger
16
+ from tpu_inference.models.jax.utils.weight_utils import (get_default_maps,
17
+ load_hf_weights)
18
+
19
+ logger = init_logger(__name__)
20
+
21
+ init_fn = nnx.initializers.uniform()
22
+
23
+
24
+ class LlamaMLP(nnx.Module):
25
+
26
+ def __init__(self, config: LlamaConfig, dtype: jnp.dtype, rng: nnx.Rngs):
27
+ hidden_size = config.hidden_size
28
+ intermediate_size = config.intermediate_size
29
+ act = config.hidden_act
30
+
31
+ self.gate_proj = nnx.Linear(
32
+ hidden_size,
33
+ intermediate_size,
34
+ use_bias=False,
35
+ param_dtype=dtype,
36
+ kernel_init=nnx.with_partitioning(
37
+ init_fn, (None, ShardingAxisName.MLP_TENSOR)),
38
+ rngs=rng,
39
+ )
40
+ self.up_proj = nnx.Linear(
41
+ hidden_size,
42
+ intermediate_size,
43
+ use_bias=False,
44
+ param_dtype=dtype,
45
+ kernel_init=nnx.with_partitioning(
46
+ init_fn, (None, ShardingAxisName.MLP_TENSOR)),
47
+ rngs=rng,
48
+ )
49
+ self.down_proj = nnx.Linear(
50
+ intermediate_size,
51
+ hidden_size,
52
+ use_bias=False,
53
+ param_dtype=dtype,
54
+ kernel_init=nnx.with_partitioning(
55
+ init_fn, (ShardingAxisName.MLP_TENSOR, None)),
56
+ rngs=rng,
57
+ )
58
+ self.act_fn = modeling_flax_utils.ACT2FN[act]
59
+
60
+ def __call__(self, x: jax.Array) -> jax.Array:
61
+ gate = self.act_fn(self.gate_proj(x))
62
+ up = self.up_proj(x)
63
+ fuse = gate * up
64
+ result = self.down_proj(fuse)
65
+ return result
66
+
67
+
68
+ class LlamaAttention(nnx.Module):
69
+
70
+ def __init__(self, config: LlamaConfig, dtype: jnp.dtype, rng: nnx.Rngs,
71
+ mesh: Mesh, kv_cache_dtype: str):
72
+ self.hidden_size = config.hidden_size
73
+ self.num_heads = config.num_attention_heads
74
+ self.num_kv_heads = config.num_key_value_heads
75
+ self.rope_theta = config.rope_theta
76
+ self.rope_scaling = getattr(config, "rope_scaling", None)
77
+
78
+ self.head_dim_original = getattr(config, "head_dim",
79
+ self.hidden_size // self.num_heads)
80
+ self.head_dim = utils.get_padded_head_dim(self.head_dim_original)
81
+
82
+ sharding_size = mesh.shape["model"] * mesh.shape.get("attn_dp", 1)
83
+ self.num_heads = utils.get_padded_num_heads(self.num_heads,
84
+ sharding_size)
85
+ self.num_kv_heads = utils.get_padded_num_heads(self.num_kv_heads,
86
+ sharding_size)
87
+
88
+ self.mesh = mesh
89
+
90
+ self.q_proj = nnx.Einsum(
91
+ "TD,DNH->TNH",
92
+ (self.hidden_size, self.num_heads, self.head_dim),
93
+ param_dtype=dtype,
94
+ kernel_init=nnx.with_partitioning(
95
+ init_fn, (None, ShardingAxisName.ATTN_HEAD, None)),
96
+ rngs=rng,
97
+ )
98
+ self.k_proj = nnx.Einsum(
99
+ "TD,DKH->TKH",
100
+ (self.hidden_size, self.num_kv_heads, self.head_dim),
101
+ param_dtype=dtype,
102
+ kernel_init=nnx.with_partitioning(
103
+ init_fn, (None, ShardingAxisName.ATTN_HEAD, None)),
104
+ rngs=rng,
105
+ )
106
+ self.v_proj = nnx.Einsum(
107
+ "TD,DKH->TKH",
108
+ (self.hidden_size, self.num_kv_heads, self.head_dim),
109
+ param_dtype=dtype,
110
+ kernel_init=nnx.with_partitioning(
111
+ init_fn, (None, ShardingAxisName.ATTN_HEAD, None)),
112
+ rngs=rng,
113
+ )
114
+ self.o_proj = nnx.Einsum(
115
+ "TNH,NHD->TD",
116
+ (self.num_heads, self.head_dim, self.hidden_size),
117
+ param_dtype=dtype,
118
+ kernel_init=nnx.with_partitioning(
119
+ init_fn, (ShardingAxisName.ATTN_HEAD, None, None)),
120
+ rngs=rng,
121
+ )
122
+
123
+ self._q_scale = 1.0
124
+ self._k_scale = 1.0
125
+ self._v_scale = 1.0
126
+ self.kv_cache_quantized_dtype = None
127
+ if kv_cache_dtype != "auto":
128
+ self.kv_cache_quantized_dtype = utils.get_jax_dtype_from_str_dtype(
129
+ kv_cache_dtype)
130
+
131
+ def __call__(
132
+ self,
133
+ kv_cache: Optional[jax.Array],
134
+ x: jax.Array,
135
+ attention_metadata: AttentionMetadata,
136
+ ) -> Tuple[jax.Array, jax.Array]:
137
+ md = attention_metadata
138
+ # q: (T, N, H)
139
+ q = self.q_proj(x)
140
+ q = apply_rope(q, md.input_positions, self.head_dim_original,
141
+ self.rope_theta, self.rope_scaling)
142
+ # k: (T, K, H)
143
+ k = self.k_proj(x)
144
+ k = apply_rope(k, md.input_positions, self.head_dim_original,
145
+ self.rope_theta, self.rope_scaling)
146
+ # v: (T, K, H)
147
+ v = self.v_proj(x)
148
+ # o: (T, N, H)
149
+ q_scale = k_scale = v_scale = None
150
+ if self.kv_cache_quantized_dtype:
151
+ # TODO(kyuyeunk/jacobplatin): Enable w8a8 when VREG spill issue is resolved.
152
+ # q_scale = self._q_scale
153
+ k_scale = self._k_scale
154
+ v_scale = self._v_scale
155
+ k, v = utils.quantize_kv(k, v, self.kv_cache_quantized_dtype,
156
+ k_scale, v_scale)
157
+ new_kv_cache, outputs = attention(
158
+ kv_cache,
159
+ q,
160
+ k,
161
+ v,
162
+ attention_metadata,
163
+ self.mesh,
164
+ self.head_dim_original,
165
+ q_scale=q_scale,
166
+ k_scale=k_scale,
167
+ v_scale=v_scale,
168
+ )
169
+ # (T, D)
170
+ o = self.o_proj(outputs)
171
+ return new_kv_cache, o
172
+
173
+
174
+ class LlamaDecoderLayer(nnx.Module):
175
+
176
+ def __init__(self, config: LlamaConfig, dtype: jnp.dtype, rng: nnx.Rngs,
177
+ mesh: Mesh, kv_cache_dtype: str):
178
+ rms_norm_eps = config.rms_norm_eps
179
+ hidden_size = config.hidden_size
180
+
181
+ self.input_layernorm = nnx.RMSNorm(
182
+ hidden_size,
183
+ epsilon=rms_norm_eps,
184
+ param_dtype=dtype,
185
+ scale_init=nnx.with_partitioning(init_fn, (None, )),
186
+ rngs=rng,
187
+ )
188
+ self.self_attn = LlamaAttention(config=config,
189
+ dtype=dtype,
190
+ rng=rng,
191
+ mesh=mesh,
192
+ kv_cache_dtype=kv_cache_dtype)
193
+ self.post_attention_layernorm = nnx.RMSNorm(
194
+ hidden_size,
195
+ epsilon=rms_norm_eps,
196
+ param_dtype=dtype,
197
+ scale_init=nnx.with_partitioning(init_fn, (None, )),
198
+ rngs=rng,
199
+ )
200
+ self.mlp = LlamaMLP(
201
+ config=config,
202
+ dtype=dtype,
203
+ rng=rng,
204
+ )
205
+
206
+ def __call__(
207
+ self,
208
+ kv_cache: jax.Array,
209
+ x: jax.Array,
210
+ attention_metadata: AttentionMetadata,
211
+ ) -> Tuple[jax.Array, jax.Array]:
212
+ hidden_states = self.input_layernorm(x)
213
+ kv_cache, attn_output = self.self_attn(
214
+ kv_cache,
215
+ hidden_states,
216
+ attention_metadata,
217
+ )
218
+ attn_output += x
219
+
220
+ residual = attn_output
221
+ attn_output = self.post_attention_layernorm(attn_output)
222
+ outputs = self.mlp(attn_output)
223
+ outputs = residual + outputs
224
+ return kv_cache, outputs
225
+
226
+
227
+ class LlamaModel(nnx.Module):
228
+
229
+ def __init__(self, vllm_config: VllmConfig, rng: nnx.Rngs,
230
+ mesh: Mesh) -> None:
231
+ model_config = vllm_config.model_config
232
+ hf_config = model_config.hf_config
233
+ vocab_size = model_config.get_vocab_size()
234
+ dtype = model_config.dtype
235
+ rms_norm_eps = hf_config.rms_norm_eps
236
+ hidden_size = hf_config.hidden_size
237
+
238
+ self.embed = nnx.Embed(
239
+ num_embeddings=vocab_size,
240
+ features=hidden_size,
241
+ param_dtype=dtype,
242
+ embedding_init=nnx.with_partitioning(
243
+ init_fn, (ShardingAxisName.VOCAB, None)),
244
+ rngs=rng,
245
+ )
246
+ self.layers = [
247
+ LlamaDecoderLayer(
248
+ config=hf_config,
249
+ dtype=dtype,
250
+ rng=rng,
251
+ mesh=mesh,
252
+ # TODO (jacobplatin): we should refactor this to pass a dtype (or config) directly
253
+ kv_cache_dtype=vllm_config.cache_config.cache_dtype)
254
+ for _ in range(hf_config.num_hidden_layers)
255
+ ]
256
+ self.norm = nnx.RMSNorm(
257
+ hidden_size,
258
+ epsilon=rms_norm_eps,
259
+ param_dtype=dtype,
260
+ scale_init=nnx.with_partitioning(init_fn, (None, )),
261
+ rngs=rng,
262
+ )
263
+ if model_config.hf_config.tie_word_embeddings:
264
+ self.lm_head = self.embed.embedding
265
+ else:
266
+ self.lm_head = nnx.Param(
267
+ init_fn(rng.params(), (hidden_size, vocab_size), dtype),
268
+ sharding=(None, ShardingAxisName.VOCAB),
269
+ )
270
+
271
+ self.aux_hidden_state_layers = []
272
+ if vllm_config.speculative_config and vllm_config.speculative_config.method == "eagle3":
273
+ self.aux_hidden_state_layers = self.get_eagle3_aux_hidden_state_layers(
274
+ )
275
+
276
+ def get_eagle3_aux_hidden_state_layers(self):
277
+ num_layers = len(self.layers)
278
+ return (2, num_layers // 2, num_layers - 3)
279
+
280
+ def __call__(
281
+ self,
282
+ kv_caches: List[jax.Array],
283
+ input_ids: jax.Array,
284
+ attention_metadata: AttentionMetadata,
285
+ ) -> Tuple[List[jax.Array], jax.Array, List[jax.Array]]:
286
+ x = self.embed(input_ids)
287
+ aux_hidden_states = []
288
+ for i, layer in enumerate(self.layers):
289
+ if i in self.aux_hidden_state_layers:
290
+ aux_hidden_states.append(x)
291
+ kv_cache = kv_caches[i]
292
+ kv_cache, x = layer(
293
+ kv_cache,
294
+ x,
295
+ attention_metadata,
296
+ )
297
+ kv_caches[i] = kv_cache
298
+ x = self.norm(x)
299
+ return kv_caches, x, aux_hidden_states
300
+
301
+
302
+ class LlamaForCausalLM(nnx.Module):
303
+
304
+ def __init__(self, vllm_config: VllmConfig, rng_key: jax.Array,
305
+ mesh: Mesh) -> None:
306
+ self.vllm_config = vllm_config
307
+ self.rng = nnx.Rngs(rng_key)
308
+ self.mesh = mesh
309
+
310
+ self.model = LlamaModel(
311
+ vllm_config=vllm_config,
312
+ rng=self.rng,
313
+ mesh=mesh,
314
+ )
315
+
316
+ def __call__(
317
+ self,
318
+ kv_caches: List[jax.Array],
319
+ input_ids: jax.Array,
320
+ attention_metadata: AttentionMetadata,
321
+ *args,
322
+ ) -> Tuple[List[jax.Array], jax.Array, List[jax.Array]]:
323
+ kv_caches, x, aux_hidden_states = self.model(
324
+ kv_caches,
325
+ input_ids,
326
+ attention_metadata,
327
+ )
328
+ return kv_caches, x, aux_hidden_states
329
+
330
+ def compute_logits(self, hidden_states: jax.Array) -> jax.Array:
331
+ if self.vllm_config.model_config.hf_config.tie_word_embeddings:
332
+ logits = jnp.dot(hidden_states, self.model.lm_head.value.T)
333
+ else:
334
+ logits = jnp.dot(hidden_states, self.model.lm_head.value)
335
+ return logits
336
+
337
+ def load_weights(self, rng_key: jax.Array):
338
+ # NOTE: Since we are using nnx.eval_shape to init the model,
339
+ # we have to pass dynamic arrays here for __call__'s usage.
340
+ self.rng = nnx.Rngs(rng_key)
341
+
342
+ # Key: path to a HF layer weight
343
+ # Value: path to a nnx layer weight
344
+ mappings = {
345
+ "model.embed_tokens": "model.embed.embedding",
346
+ "model.layers.*.input_layernorm":
347
+ "model.layers.*.input_layernorm.scale",
348
+ "model.layers.*.mlp.down_proj":
349
+ "model.layers.*.mlp.down_proj.kernel",
350
+ "model.layers.*.mlp.gate_proj":
351
+ "model.layers.*.mlp.gate_proj.kernel",
352
+ "model.layers.*.mlp.up_proj": "model.layers.*.mlp.up_proj.kernel",
353
+ "model.layers.*.post_attention_layernorm":
354
+ "model.layers.*.post_attention_layernorm.scale",
355
+ "model.layers.*.self_attn.k_proj":
356
+ "model.layers.*.self_attn.k_proj.kernel",
357
+ "model.layers.*.self_attn.o_proj":
358
+ "model.layers.*.self_attn.o_proj.kernel",
359
+ "model.layers.*.self_attn.q_proj":
360
+ "model.layers.*.self_attn.q_proj.kernel",
361
+ "model.layers.*.self_attn.v_proj":
362
+ "model.layers.*.self_attn.v_proj.kernel",
363
+ "model.norm": "model.norm.scale",
364
+ }
365
+ # Add lm_head mapping only if it's not tied to embeddings
366
+ if not self.vllm_config.model_config.hf_config.tie_word_embeddings:
367
+ mappings.update({
368
+ "lm_head": "model.lm_head",
369
+ })
370
+
371
+ metadata_map = get_default_maps(self.vllm_config, self.mesh, mappings)
372
+ load_hf_weights(vllm_config=self.vllm_config,
373
+ model=self,
374
+ metadata_map=metadata_map,
375
+ mesh=self.mesh)