tpu-inference 0.11.1.dev202511150811__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +0 -0
- tests/core/__init__.py +0 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +53 -0
- tests/core/test_dp_scheduler.py +899 -0
- tests/core/test_init.py +49 -0
- tests/kernels/__init__.py +0 -0
- tests/kernels/fused_moe_v1_test.py +105 -0
- tests/kernels/mla_v1_test.py +396 -0
- tests/kernels/quantized_matmul_kernel_test.py +191 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
- tests/lora/__init__.py +0 -0
- tests/lora/conftest.py +32 -0
- tests/lora/test_bgmv.py +43 -0
- tests/lora/test_layers.py +654 -0
- tests/lora/test_lora.py +133 -0
- tests/lora/utils.py +96 -0
- tests/test_base.py +201 -0
- tests/test_envs.py +182 -0
- tests/test_quantization.py +836 -0
- tests/test_tpu_info.py +120 -0
- tests/test_utils.py +236 -0
- tpu_inference/__init__.py +34 -0
- tpu_inference/core/__init__.py +0 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +51 -0
- tpu_inference/core/sched/__init__.py +0 -0
- tpu_inference/core/sched/dp_scheduler.py +523 -0
- tpu_inference/distributed/__init__.py +0 -0
- tpu_inference/distributed/jax_parallel_state.py +67 -0
- tpu_inference/distributed/tpu_connector.py +728 -0
- tpu_inference/distributed/utils.py +59 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +107 -0
- tpu_inference/executors/__init__.py +0 -0
- tpu_inference/executors/ray_distributed_executor.py +362 -0
- tpu_inference/experimental/__init__.py +0 -0
- tpu_inference/experimental/llama3_jax_stashed.py +258 -0
- tpu_inference/kernels/__init__.py +0 -0
- tpu_inference/kernels/collectives/__init__.py +0 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +0 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
- tpu_inference/kernels/mla/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/kernel.py +1349 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
- tpu_inference/layers/__init__.py +0 -0
- tpu_inference/layers/common/__init__.py +0 -0
- tpu_inference/layers/common/attention_interface.py +390 -0
- tpu_inference/layers/common/attention_metadata.py +34 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +8 -0
- tpu_inference/layers/common/sharding.py +582 -0
- tpu_inference/layers/jax/__init__.py +0 -0
- tpu_inference/layers/jax/attention/__init__.py +0 -0
- tpu_inference/layers/jax/attention/attention.py +255 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
- tpu_inference/layers/jax/base.py +151 -0
- tpu_inference/layers/jax/constants.py +88 -0
- tpu_inference/layers/jax/layers.py +301 -0
- tpu_inference/layers/jax/misc.py +16 -0
- tpu_inference/layers/jax/moe/__init__.py +0 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
- tpu_inference/layers/jax/moe/moe.py +209 -0
- tpu_inference/layers/jax/rope.py +280 -0
- tpu_inference/layers/jax/rope_interface.py +214 -0
- tpu_inference/layers/jax/sample/__init__.py +0 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
- tpu_inference/layers/jax/sample/sampling.py +96 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
- tpu_inference/layers/jax/transformer_block.py +107 -0
- tpu_inference/layers/vllm/__init__.py +0 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +507 -0
- tpu_inference/layers/vllm/linear_common.py +186 -0
- tpu_inference/layers/vllm/quantization/__init__.py +39 -0
- tpu_inference/layers/vllm/quantization/awq.py +207 -0
- tpu_inference/layers/vllm/quantization/common.py +105 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
- tpu_inference/layers/vllm/sharding.py +230 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +0 -0
- tpu_inference/lora/torch_lora_ops.py +103 -0
- tpu_inference/lora/torch_punica_tpu.py +311 -0
- tpu_inference/mock/__init__.py +0 -0
- tpu_inference/mock/vllm_config_utils.py +28 -0
- tpu_inference/mock/vllm_envs.py +1219 -0
- tpu_inference/mock/vllm_logger.py +212 -0
- tpu_inference/mock/vllm_logging_utils.py +15 -0
- tpu_inference/models/__init__.py +0 -0
- tpu_inference/models/common/__init__.py +0 -0
- tpu_inference/models/common/model_loader.py +444 -0
- tpu_inference/models/jax/__init__.py +0 -0
- tpu_inference/models/jax/deepseek_v3.py +868 -0
- tpu_inference/models/jax/gpt_oss.py +492 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
- tpu_inference/models/jax/llama3.py +375 -0
- tpu_inference/models/jax/llama4.py +629 -0
- tpu_inference/models/jax/llama_eagle3.py +333 -0
- tpu_inference/models/jax/phi3.py +376 -0
- tpu_inference/models/jax/qwen2.py +375 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
- tpu_inference/models/jax/qwen3.py +302 -0
- tpu_inference/models/jax/utils/__init__.py +0 -0
- tpu_inference/models/jax/utils/file_utils.py +96 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
- tpu_inference/models/jax/utils/weight_utils.py +529 -0
- tpu_inference/models/vllm/__init__.py +0 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
- tpu_inference/platforms/__init__.py +2 -0
- tpu_inference/platforms/tpu_platform.py +269 -0
- tpu_inference/runner/__init__.py +0 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +780 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +132 -0
- tpu_inference/runner/kv_cache_manager.py +479 -0
- tpu_inference/runner/lora_utils.py +92 -0
- tpu_inference/runner/multimodal_manager.py +217 -0
- tpu_inference/runner/persistent_batch_manager.py +244 -0
- tpu_inference/runner/speculative_decoding_manager.py +248 -0
- tpu_inference/runner/structured_decoding_manager.py +88 -0
- tpu_inference/runner/tpu_runner.py +1620 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +0 -0
- tpu_inference/spec_decode/jax/__init__.py +0 -0
- tpu_inference/spec_decode/jax/eagle3.py +367 -0
- tpu_inference/tpu_info.py +77 -0
- tpu_inference/utils.py +317 -0
- tpu_inference/worker/__init__.py +0 -0
- tpu_inference/worker/tpu_worker.py +321 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,1035 @@
|
|
|
1
|
+
"""TPU-Friendly Fused Mixture of Experts (MoE) kernel."""
|
|
2
|
+
|
|
3
|
+
import functools
|
|
4
|
+
|
|
5
|
+
import jax
|
|
6
|
+
import jax.numpy as jnp
|
|
7
|
+
from jax import lax
|
|
8
|
+
from jax._src import dtypes
|
|
9
|
+
from jax.experimental import pallas as pl
|
|
10
|
+
from jax.experimental import shard_map
|
|
11
|
+
from jax.experimental.pallas import tpu as pltpu
|
|
12
|
+
|
|
13
|
+
P = jax.sharding.PartitionSpec
|
|
14
|
+
|
|
15
|
+
cdiv = pl.cdiv
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def align_to(x, a):
|
|
19
|
+
return cdiv(x, a) * a
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def get_dtype_packing(dtype):
|
|
23
|
+
bits = dtypes.bit_width(dtype)
|
|
24
|
+
return 32 // bits
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def broadcast_minor(src, shape):
|
|
28
|
+
if src.shape == shape:
|
|
29
|
+
return src
|
|
30
|
+
assert src.shape[:-1] == shape[:-1]
|
|
31
|
+
assert src.shape[-1] % 128 == 0
|
|
32
|
+
target_minor = align_to(shape[-1], src.shape[-1])
|
|
33
|
+
# no-op concatenation.
|
|
34
|
+
return jnp.concatenate([src for _ in range(target_minor // src.shape[-1])],
|
|
35
|
+
axis=-1)[..., :shape[-1]]
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def ref_moe(
|
|
39
|
+
tokens: jax.Array, # (num_tokens, hidden_size)
|
|
40
|
+
w1: jax.Array, # (num_experts, 2, hidden_size, intermediate_size)
|
|
41
|
+
w2: jax.Array, # (num_experts, intermediate_size, hidden_size)
|
|
42
|
+
gating_output: jax.Array, # (num_tokens, num_experts)
|
|
43
|
+
top_k: int,
|
|
44
|
+
activation="silu",
|
|
45
|
+
):
|
|
46
|
+
n_tokens = tokens.shape[0] # num_tokens
|
|
47
|
+
|
|
48
|
+
# Compute gating scores for all experts
|
|
49
|
+
gating_logits = jax.nn.softmax(gating_output,
|
|
50
|
+
axis=-1) # [num_tokens, n_experts]
|
|
51
|
+
|
|
52
|
+
# Select top-k experts per token
|
|
53
|
+
top_k_logits, top_k_indices = lax.top_k(
|
|
54
|
+
gating_logits, top_k) # [num_tokens, top_k], [num_tokens, top_k]
|
|
55
|
+
|
|
56
|
+
t_outputs = []
|
|
57
|
+
|
|
58
|
+
# Process each token individually
|
|
59
|
+
for i in range(n_tokens):
|
|
60
|
+
curr_token = jnp.expand_dims(tokens[i], axis=0) # [1, d_model]
|
|
61
|
+
assigned_expert_ids = top_k_indices[
|
|
62
|
+
i] # [top_k] - indices of selected experts for token i
|
|
63
|
+
tok_expert_act = []
|
|
64
|
+
|
|
65
|
+
# Process each selected expert for the current token
|
|
66
|
+
for expert_id in assigned_expert_ids:
|
|
67
|
+
# Get expert weights
|
|
68
|
+
expert_weight_1 = jnp.concat(
|
|
69
|
+
[w1[expert_id, 0], w1[expert_id, 1]],
|
|
70
|
+
axis=-1) # [d_model, 2 * intermediate_size]
|
|
71
|
+
expert_weight_2 = w2[expert_id] # [intermediate_size, d_model]
|
|
72
|
+
|
|
73
|
+
# First linear layer with SwiGLU activation
|
|
74
|
+
gmm_1_out = curr_token @ expert_weight_1 # [1, 2 * intermediate_size]
|
|
75
|
+
|
|
76
|
+
# Split into gate and up projections for SwiGLU
|
|
77
|
+
gmm1_w1_proj, gmm1_w3_proj = jnp.split(
|
|
78
|
+
gmm_1_out, 2,
|
|
79
|
+
axis=-1) # [1, intermediate_size], [1, intermediate_size]
|
|
80
|
+
|
|
81
|
+
# Apply gated activation: activation(gate) * up
|
|
82
|
+
if activation == "silu":
|
|
83
|
+
act = jax.nn.silu(
|
|
84
|
+
gmm1_w1_proj) * gmm1_w3_proj # [1, intermediate_size]
|
|
85
|
+
elif activation == "gelu":
|
|
86
|
+
act = jax.nn.gelu(
|
|
87
|
+
gmm1_w1_proj) * gmm1_w3_proj # [1, intermediate_size]
|
|
88
|
+
else:
|
|
89
|
+
raise ValueError(
|
|
90
|
+
f"Unsupported activation: {activation}. Use 'silu' or 'gelu'."
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
# Second linear layer (down projection)
|
|
94
|
+
gmm_2_out = act @ expert_weight_2 # [1, d_model]
|
|
95
|
+
tok_expert_act.append(gmm_2_out)
|
|
96
|
+
|
|
97
|
+
# Combine outputs from all selected experts
|
|
98
|
+
experts_act = jnp.concatenate(tok_expert_act,
|
|
99
|
+
axis=0) # [top_k, d_model]
|
|
100
|
+
|
|
101
|
+
# Weighted sum using top-k gating weights
|
|
102
|
+
top_k_weights = top_k_logits[i] # [top_k]
|
|
103
|
+
top_k_weights = jnp.expand_dims(top_k_weights, axis=1) # [top_k, 1]
|
|
104
|
+
weighted_output = jnp.sum(experts_act * top_k_weights,
|
|
105
|
+
axis=0,
|
|
106
|
+
keepdims=True) # [1, d_model]
|
|
107
|
+
|
|
108
|
+
t_outputs.append(weighted_output)
|
|
109
|
+
|
|
110
|
+
return jnp.concatenate(t_outputs, axis=0) # [num_tokens, d_model]
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def _fused_ep_moe_kernel(
|
|
114
|
+
# Input
|
|
115
|
+
tokens_hbm, # (local_num_tokens, t_packing, hidden_size // t_packing)
|
|
116
|
+
w1_hbm, # (local_num_experts, 2, hidden_size, intermediate_size)
|
|
117
|
+
w2_hbm, # (local_num_experts, intermediate_size, hidden_size)
|
|
118
|
+
gating_hbm, # (local_num_tokens, padded_num_experts)
|
|
119
|
+
a2a_g_hbm, # (num_experts, bt, t_packing, hidden_size // t_packing)
|
|
120
|
+
# Output
|
|
121
|
+
output_hbm, # (local_num_tokens, hidden_size)
|
|
122
|
+
# Scratch
|
|
123
|
+
t2e_routing_x2_smem, # <bt_sem_id> (2, bt, padded_num_experts)
|
|
124
|
+
d2e_count_x2_smem, # <bt_sem_id> (2, num_devices, 1, padded_num_experts)
|
|
125
|
+
expert_offsets_x2_smem, # <bt_sem_id> (2, 2, padded_num_experts): for a2a_s and a2a_g
|
|
126
|
+
expert_starts_x2_smem, # <bt_sem_id> (2, 1, padded_num_experts)
|
|
127
|
+
expert_sizes_x2_smem, # <bt_sem_id> (2, 1, padded_num_experts)
|
|
128
|
+
a2a_s_sends_x2_smem, # <e_sem_id> (2,)
|
|
129
|
+
a2a_s_x2_vmem, # <e_sem_id> (2, bt * num_devices, t_packing, hidden_size // t_packing)
|
|
130
|
+
a2a_s_acc_x2_vmem, # <e_sem_id> (2, bt * num_devices, t_packing, hidden_size // t_packing)
|
|
131
|
+
### Accumulation for gathered tokens:
|
|
132
|
+
a2a_g_acc_vmem, # (top_k, bt, t_packing, hidden_size // t_packing)
|
|
133
|
+
### Expert weight double buffering:
|
|
134
|
+
b_gating_x2_vmem, # <bt_sem_id> (2, bt, padded_num_experts)
|
|
135
|
+
b_output_x2_vmem, # <bt_sem_id> (2, bt, hidden_size)
|
|
136
|
+
b_w1_x2_vmem, # <bw_sem_id> (2, t_packing, bd1 // t_packing, bf)
|
|
137
|
+
b_w3_x2_vmem, # <bw_sem_id> (2, t_packing, bd1 // t_packing, bf)
|
|
138
|
+
b_w2_x2_vmem, # <bw_sem_id> (2, t_packing, bf, bd2 // t_packing)
|
|
139
|
+
b_acc_vmem, # F32(bt * num_devices, 1, bf * 2)
|
|
140
|
+
### Semaphores:
|
|
141
|
+
local_sems, # (2, 5): 2 x [b_gating_sem, b_w1_sem, b_w2_sem, b_w3_sem, b_output_sem]
|
|
142
|
+
send_sems, # <e_sem_id> (2,)
|
|
143
|
+
recv_sems, # <e_sem_id> (2,)
|
|
144
|
+
a2a_gather_sem,
|
|
145
|
+
a2a_acc_sem,
|
|
146
|
+
*,
|
|
147
|
+
top_k: int,
|
|
148
|
+
ep_axis_name: str,
|
|
149
|
+
# Kernel tuning params.
|
|
150
|
+
bt: int, # Block size of local_num_tokens.
|
|
151
|
+
bf: int, # Block size of intermediate_size.
|
|
152
|
+
bd1: int, # Block size of hidden_size in w1.
|
|
153
|
+
bd2: int, # Block size of hidden_size in w2.
|
|
154
|
+
btc: int, # Compute size of block tokens for active expert.
|
|
155
|
+
bfc: int, # Compute size of block intermediate_size.
|
|
156
|
+
bd1c: int, # Compute size of block hidden_size.
|
|
157
|
+
bd2c: int, # Compute size of block hidden_size.
|
|
158
|
+
):
|
|
159
|
+
my_id = lax.axis_index(ep_axis_name)
|
|
160
|
+
num_devices = lax.axis_size(ep_axis_name)
|
|
161
|
+
local_num_tokens = tokens_hbm.shape[0]
|
|
162
|
+
local_num_experts, intermediate_size, hidden_size = w2_hbm.shape
|
|
163
|
+
# num_experts = local_num_experts * num_devices
|
|
164
|
+
# padded_num_experts = expert_starts_x2_smem.shape[-1]
|
|
165
|
+
right_id = (my_id + 1) % num_devices
|
|
166
|
+
|
|
167
|
+
t_dtype = tokens_hbm.dtype
|
|
168
|
+
t_packing = get_dtype_packing(t_dtype)
|
|
169
|
+
t_bitwidth = 32 // t_packing
|
|
170
|
+
assert a2a_g_hbm.dtype == t_dtype
|
|
171
|
+
assert w1_hbm.dtype == t_dtype
|
|
172
|
+
assert w2_hbm.dtype == t_dtype
|
|
173
|
+
|
|
174
|
+
h_per_packing = hidden_size // t_packing
|
|
175
|
+
assert tokens_hbm.shape[-1] == h_per_packing
|
|
176
|
+
bd1_per_packing = bd1 // t_packing
|
|
177
|
+
bd2_per_packing = bd2 // t_packing
|
|
178
|
+
bd1c_per_packing = bd1c // t_packing
|
|
179
|
+
bd2c_per_packing = bd2c // t_packing
|
|
180
|
+
|
|
181
|
+
num_bt = cdiv(local_num_tokens, bt)
|
|
182
|
+
num_bf = cdiv(intermediate_size, bf)
|
|
183
|
+
num_bd1 = cdiv(hidden_size, bd1)
|
|
184
|
+
num_bd2 = cdiv(hidden_size, bd2)
|
|
185
|
+
|
|
186
|
+
def sync_barrier():
|
|
187
|
+
barrier_sem = pltpu.get_barrier_semaphore()
|
|
188
|
+
pltpu.semaphore_signal(
|
|
189
|
+
barrier_sem,
|
|
190
|
+
device_id=(0, right_id),
|
|
191
|
+
device_id_type=pltpu.DeviceIdType.MESH,
|
|
192
|
+
)
|
|
193
|
+
pltpu.semaphore_wait(barrier_sem, 1)
|
|
194
|
+
|
|
195
|
+
def start_fetch_b_gating(bt_id, priority=0):
|
|
196
|
+
is_valid = jnp.logical_and(0 <= bt_id, bt_id < num_bt)
|
|
197
|
+
sz = pl.multiple_of(lax.select(is_valid, bt, 0), bt)
|
|
198
|
+
bt_sem_id = (bt_id + 2) % 2
|
|
199
|
+
b_gating_sem = local_sems.at[bt_sem_id, 0]
|
|
200
|
+
pltpu.make_async_copy(
|
|
201
|
+
src_ref=gating_hbm.at[pl.ds(bt_id * bt, sz)],
|
|
202
|
+
dst_ref=b_gating_x2_vmem.at[bt_sem_id, pl.ds(0, sz)],
|
|
203
|
+
sem=b_gating_sem,
|
|
204
|
+
).start(priority=priority)
|
|
205
|
+
|
|
206
|
+
def wait_fetch_b_gating(bt_id):
|
|
207
|
+
bt_sem_id = bt_id % 2
|
|
208
|
+
b_gating_sem = local_sems.at[bt_sem_id, 0]
|
|
209
|
+
pltpu.make_async_copy(
|
|
210
|
+
src_ref=b_gating_x2_vmem.at[bt_sem_id],
|
|
211
|
+
dst_ref=b_gating_x2_vmem.at[bt_sem_id],
|
|
212
|
+
sem=b_gating_sem,
|
|
213
|
+
).wait()
|
|
214
|
+
|
|
215
|
+
def get_top_k(input, top_k):
|
|
216
|
+
assert len(input.shape) == 2, input.shape
|
|
217
|
+
input = input.astype(jnp.float32)
|
|
218
|
+
top_k_logits_lst = []
|
|
219
|
+
top_k_indices_lst = []
|
|
220
|
+
t2e = jnp.zeros(input.shape, dtype=jnp.int32)
|
|
221
|
+
t2e_routing = jnp.zeros(input.shape, dtype=jnp.int32)
|
|
222
|
+
iota = jax.lax.broadcasted_iota(jnp.int32, input.shape, 1)
|
|
223
|
+
for k_id in range(top_k):
|
|
224
|
+
# TODO(jevinjiang): return both top_k values and indices in op in Mosaic
|
|
225
|
+
top_k_logits = jnp.broadcast_to(
|
|
226
|
+
jnp.max(input, axis=1, keepdims=True),
|
|
227
|
+
(input.shape[0], 128)).astype(input.dtype)
|
|
228
|
+
top_k_logits_lst.append(top_k_logits)
|
|
229
|
+
# TODO(jevinjiang): support bf16 argmax in Mosaic
|
|
230
|
+
top_k_indices = jnp.broadcast_to(
|
|
231
|
+
jnp.argmax(input, axis=1, keepdims=True), input.shape)
|
|
232
|
+
top_k_indices_lst.append(top_k_indices)
|
|
233
|
+
t2e_routing = jnp.where(iota == k_id, top_k_indices, t2e_routing)
|
|
234
|
+
mask = iota == top_k_indices
|
|
235
|
+
t2e += mask.astype(jnp.int32)
|
|
236
|
+
if k_id != top_k - 1:
|
|
237
|
+
input = jnp.where(mask, -jnp.inf, input)
|
|
238
|
+
|
|
239
|
+
expert_sizes = jnp.sum(t2e, axis=0, keepdims=True)
|
|
240
|
+
expert_starts = jnp.zeros_like(expert_sizes)
|
|
241
|
+
return top_k_logits_lst, t2e_routing, expert_sizes, expert_starts
|
|
242
|
+
|
|
243
|
+
def all_reduce_metadata(bt_sem_id, t2e_routing, starts, sizes):
|
|
244
|
+
send_sem = send_sems.at[0]
|
|
245
|
+
recv_sem = recv_sems.at[0]
|
|
246
|
+
|
|
247
|
+
# All-reduce to accumulate starts and sizes and transfer to SMEM.
|
|
248
|
+
def _all_reduce_metadata(
|
|
249
|
+
t2e_routing_vmem,
|
|
250
|
+
d2e_count_vmem,
|
|
251
|
+
offsets_vmem,
|
|
252
|
+
starts_vmem,
|
|
253
|
+
sizes_vmem,
|
|
254
|
+
):
|
|
255
|
+
offsets_vmem[...] = jnp.zeros_like(offsets_vmem)
|
|
256
|
+
# TODO(jevinjiang): check how slow is VMEM -> SMEM.
|
|
257
|
+
offsets_copy = pltpu.async_copy(
|
|
258
|
+
src_ref=offsets_vmem,
|
|
259
|
+
dst_ref=expert_offsets_x2_smem.at[bt_sem_id],
|
|
260
|
+
sem=send_sem,
|
|
261
|
+
)
|
|
262
|
+
t2e_routing_vmem[...] = t2e_routing
|
|
263
|
+
t2e_routing_copy = pltpu.async_copy(
|
|
264
|
+
src_ref=t2e_routing_vmem,
|
|
265
|
+
dst_ref=t2e_routing_x2_smem.at[bt_sem_id],
|
|
266
|
+
sem=send_sem,
|
|
267
|
+
)
|
|
268
|
+
reduced_sizes = sizes
|
|
269
|
+
reduced_starts = starts
|
|
270
|
+
row_id = my_id
|
|
271
|
+
d2e_count_vmem[row_id] = sizes
|
|
272
|
+
for i in range(num_devices - 1):
|
|
273
|
+
sync_barrier()
|
|
274
|
+
# TODO(jevinjiang): we can use double buffering to improve AR if needed.
|
|
275
|
+
pltpu.async_remote_copy(
|
|
276
|
+
src_ref=d2e_count_vmem.at[row_id],
|
|
277
|
+
dst_ref=d2e_count_vmem.at[row_id],
|
|
278
|
+
send_sem=send_sem,
|
|
279
|
+
recv_sem=recv_sem,
|
|
280
|
+
device_id=(0, right_id),
|
|
281
|
+
device_id_type=pltpu.DeviceIdType.MESH,
|
|
282
|
+
).wait()
|
|
283
|
+
row_id = (row_id + num_devices - 1) % num_devices
|
|
284
|
+
new_sizes = d2e_count_vmem[row_id]
|
|
285
|
+
reduced_sizes += new_sizes
|
|
286
|
+
reduced_starts += lax.select(my_id > i, new_sizes,
|
|
287
|
+
jnp.zeros_like(new_sizes))
|
|
288
|
+
starts_vmem[...] = reduced_starts
|
|
289
|
+
sizes_vmem[...] = reduced_sizes
|
|
290
|
+
|
|
291
|
+
starts_copy = pltpu.async_copy(
|
|
292
|
+
src_ref=starts_vmem,
|
|
293
|
+
dst_ref=expert_starts_x2_smem.at[bt_sem_id],
|
|
294
|
+
sem=send_sem,
|
|
295
|
+
)
|
|
296
|
+
sizes_copy = pltpu.async_copy(
|
|
297
|
+
src_ref=sizes_vmem,
|
|
298
|
+
dst_ref=expert_sizes_x2_smem.at[bt_sem_id],
|
|
299
|
+
sem=send_sem,
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
# TODO(jevinjiang): if d2e_count is too big, we can store in HBM and fetch
|
|
303
|
+
# to SMEM partially.
|
|
304
|
+
d2e_count_copy = pltpu.async_copy(
|
|
305
|
+
src_ref=d2e_count_vmem,
|
|
306
|
+
dst_ref=d2e_count_x2_smem.at[bt_sem_id],
|
|
307
|
+
sem=send_sem,
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
t2e_routing_copy.wait()
|
|
311
|
+
d2e_count_copy.wait()
|
|
312
|
+
offsets_copy.wait()
|
|
313
|
+
starts_copy.wait()
|
|
314
|
+
sizes_copy.wait()
|
|
315
|
+
|
|
316
|
+
pl.run_scoped(
|
|
317
|
+
_all_reduce_metadata,
|
|
318
|
+
pltpu.VMEM(t2e_routing_x2_smem.shape[1:],
|
|
319
|
+
t2e_routing_x2_smem.dtype),
|
|
320
|
+
pltpu.VMEM(d2e_count_x2_smem.shape[1:], d2e_count_x2_smem.dtype),
|
|
321
|
+
pltpu.VMEM(expert_offsets_x2_smem.shape[1:],
|
|
322
|
+
expert_offsets_x2_smem.dtype),
|
|
323
|
+
pltpu.VMEM(expert_starts_x2_smem.shape[1:],
|
|
324
|
+
expert_starts_x2_smem.dtype),
|
|
325
|
+
pltpu.VMEM(expert_sizes_x2_smem.shape[1:],
|
|
326
|
+
expert_sizes_x2_smem.dtype),
|
|
327
|
+
)
|
|
328
|
+
|
|
329
|
+
def start_a2a_scatter(bt_id, e_sem_id, local_e_id):
|
|
330
|
+
bt_sem_id = bt_id % 2
|
|
331
|
+
|
|
332
|
+
# Counting the number of remote sends from the current device.
|
|
333
|
+
send_sz = 0
|
|
334
|
+
for bt_t_id in range(bt):
|
|
335
|
+
for k_id in range(top_k):
|
|
336
|
+
e_id = t2e_routing_x2_smem[bt_sem_id, bt_t_id, k_id]
|
|
337
|
+
is_active_expert = e_id % local_num_experts == local_e_id
|
|
338
|
+
recv_id = e_id // local_num_experts
|
|
339
|
+
offset = expert_offsets_x2_smem[bt_sem_id, 0, e_id]
|
|
340
|
+
sz = lax.select(is_active_expert, 1, 0)
|
|
341
|
+
is_local = recv_id == my_id
|
|
342
|
+
local_sz = lax.select(is_local, sz, 0)
|
|
343
|
+
remote_sz = lax.select(is_local, 0, sz)
|
|
344
|
+
send_sz += remote_sz
|
|
345
|
+
expert_offsets_x2_smem[bt_sem_id, 0,
|
|
346
|
+
e_id] = (offset + local_sz + remote_sz)
|
|
347
|
+
start = expert_starts_x2_smem[bt_sem_id, 0, e_id] + offset
|
|
348
|
+
t_id = bt * bt_id + bt_t_id
|
|
349
|
+
# TODO(jevinjiang): compare the perf when using branches.
|
|
350
|
+
pltpu.make_async_copy(
|
|
351
|
+
src_ref=tokens_hbm.at[pl.ds(t_id, local_sz)],
|
|
352
|
+
dst_ref=a2a_s_x2_vmem.at[e_sem_id,
|
|
353
|
+
pl.ds(start, local_sz)],
|
|
354
|
+
sem=recv_sems.at[e_sem_id],
|
|
355
|
+
).start()
|
|
356
|
+
pltpu.make_async_remote_copy(
|
|
357
|
+
src_ref=tokens_hbm.at[pl.ds(t_id, remote_sz)],
|
|
358
|
+
dst_ref=a2a_s_x2_vmem.at[e_sem_id,
|
|
359
|
+
pl.ds(start, remote_sz)],
|
|
360
|
+
send_sem=send_sems.at[e_sem_id],
|
|
361
|
+
recv_sem=recv_sems.at[e_sem_id],
|
|
362
|
+
device_id=(
|
|
363
|
+
0,
|
|
364
|
+
recv_id,
|
|
365
|
+
),
|
|
366
|
+
).start()
|
|
367
|
+
a2a_s_sends_x2_smem[e_sem_id] = send_sz
|
|
368
|
+
|
|
369
|
+
def wait_a2a_scatter_recv(bt_id, e_sem_id, local_e_id):
|
|
370
|
+
bt_sem_id = bt_id % 2
|
|
371
|
+
e_id = my_id * local_num_experts + local_e_id
|
|
372
|
+
sz = expert_sizes_x2_smem[bt_sem_id, 0, e_id]
|
|
373
|
+
pltpu.make_async_copy(
|
|
374
|
+
src_ref=a2a_s_x2_vmem.at[e_sem_id, pl.ds(0, sz)],
|
|
375
|
+
dst_ref=a2a_s_x2_vmem.at[e_sem_id, pl.ds(0, sz)],
|
|
376
|
+
sem=recv_sems.at[e_sem_id],
|
|
377
|
+
).wait()
|
|
378
|
+
|
|
379
|
+
def wait_a2a_scatter_send(bt_id, e_sem_id, local_e_id):
|
|
380
|
+
del bt_id, local_e_id
|
|
381
|
+
sz = a2a_s_sends_x2_smem[e_sem_id]
|
|
382
|
+
pltpu.make_async_copy(
|
|
383
|
+
src_ref=a2a_s_x2_vmem.at[e_sem_id, pl.ds(0, sz)],
|
|
384
|
+
dst_ref=a2a_s_x2_vmem.at[e_sem_id, pl.ds(0, sz)],
|
|
385
|
+
sem=send_sems.at[e_sem_id],
|
|
386
|
+
).wait()
|
|
387
|
+
|
|
388
|
+
def start_a2a_gather(bt_id, e_sem_id, local_e_id):
|
|
389
|
+
my_e_id = my_id * local_num_experts + local_e_id
|
|
390
|
+
bt_sem_id = bt_id % 2
|
|
391
|
+
start = 0
|
|
392
|
+
for recv_id in range(num_devices):
|
|
393
|
+
sz = d2e_count_x2_smem[bt_sem_id, recv_id, 0, my_e_id]
|
|
394
|
+
is_local = recv_id == my_id
|
|
395
|
+
local_sz = lax.select(is_local, sz, 0)
|
|
396
|
+
remote_sz = lax.select(is_local, 0, sz)
|
|
397
|
+
pltpu.make_async_copy(
|
|
398
|
+
src_ref=a2a_s_acc_x2_vmem.at[e_sem_id,
|
|
399
|
+
pl.ds(start, local_sz)],
|
|
400
|
+
dst_ref=a2a_g_hbm.at[my_e_id, pl.ds(0, local_sz)],
|
|
401
|
+
sem=a2a_gather_sem,
|
|
402
|
+
).start()
|
|
403
|
+
pltpu.make_async_remote_copy(
|
|
404
|
+
src_ref=a2a_s_acc_x2_vmem.at[e_sem_id,
|
|
405
|
+
pl.ds(start, remote_sz)],
|
|
406
|
+
dst_ref=a2a_g_hbm.at[my_e_id, pl.ds(0, remote_sz)],
|
|
407
|
+
send_sem=send_sems.at[e_sem_id],
|
|
408
|
+
recv_sem=a2a_gather_sem,
|
|
409
|
+
device_id=(0, recv_id),
|
|
410
|
+
).start()
|
|
411
|
+
start += sz
|
|
412
|
+
|
|
413
|
+
def wait_a2a_gather_send(bt_id, e_sem_id, local_e_id):
|
|
414
|
+
my_e_id = my_id * local_num_experts + local_e_id
|
|
415
|
+
bt_sem_id = bt_id % 2
|
|
416
|
+
sz = expert_sizes_x2_smem[bt_sem_id, 0, my_e_id]
|
|
417
|
+
local_sz = d2e_count_x2_smem[bt_sem_id, my_id, 0, my_e_id]
|
|
418
|
+
remote_sz = sz - local_sz
|
|
419
|
+
is_valid = jnp.logical_and(0 <= local_e_id, local_e_id
|
|
420
|
+
< local_num_experts)
|
|
421
|
+
remote_sz = lax.select(is_valid, remote_sz, 0)
|
|
422
|
+
pltpu.make_async_copy(
|
|
423
|
+
src_ref=a2a_g_hbm.at[0, pl.ds(0, remote_sz)],
|
|
424
|
+
dst_ref=a2a_g_hbm.at[0, pl.ds(0, remote_sz)],
|
|
425
|
+
sem=send_sems.at[e_sem_id],
|
|
426
|
+
).wait()
|
|
427
|
+
|
|
428
|
+
def wait_a2a_gather_recv_all():
|
|
429
|
+
sz = top_k * bt
|
|
430
|
+
pltpu.make_async_copy(
|
|
431
|
+
src_ref=a2a_g_hbm.at[0, pl.ds(0, sz)],
|
|
432
|
+
dst_ref=a2a_g_hbm.at[0, pl.ds(0, sz)],
|
|
433
|
+
sem=a2a_gather_sem,
|
|
434
|
+
).wait()
|
|
435
|
+
|
|
436
|
+
def start_fetch_bw1(local_e_id, bw1_sem_id, bf_id, bd1_id):
|
|
437
|
+
for p in range(t_packing):
|
|
438
|
+
offset = p * h_per_packing + bd1_id * bd1_per_packing
|
|
439
|
+
pltpu.make_async_copy(
|
|
440
|
+
src_ref=w1_hbm.at[
|
|
441
|
+
local_e_id,
|
|
442
|
+
0,
|
|
443
|
+
pl.ds(offset, bd1_per_packing),
|
|
444
|
+
pl.ds(bf_id * bf, bf),
|
|
445
|
+
],
|
|
446
|
+
dst_ref=b_w1_x2_vmem.at[bw1_sem_id, p],
|
|
447
|
+
sem=local_sems.at[bw1_sem_id, 1],
|
|
448
|
+
).start()
|
|
449
|
+
|
|
450
|
+
def start_fetch_bw2(local_e_id, bw2_sem_id, bf_id, bd2_id):
|
|
451
|
+
for p in range(t_packing):
|
|
452
|
+
offset = p * h_per_packing + bd2_id * bd2_per_packing
|
|
453
|
+
pltpu.make_async_copy(
|
|
454
|
+
src_ref=w2_hbm.at[
|
|
455
|
+
local_e_id,
|
|
456
|
+
pl.ds(bf_id * bf, bf),
|
|
457
|
+
pl.ds(offset, bd2_per_packing),
|
|
458
|
+
],
|
|
459
|
+
dst_ref=b_w2_x2_vmem.at[bw2_sem_id, p],
|
|
460
|
+
sem=local_sems.at[bw2_sem_id, 2],
|
|
461
|
+
).start()
|
|
462
|
+
|
|
463
|
+
def start_fetch_bw3(local_e_id, bw3_sem_id, bf_id, bd3_id):
|
|
464
|
+
for p in range(t_packing):
|
|
465
|
+
offset = p * h_per_packing + bd3_id * bd1_per_packing
|
|
466
|
+
pltpu.make_async_copy(
|
|
467
|
+
src_ref=w1_hbm.at[
|
|
468
|
+
local_e_id,
|
|
469
|
+
1,
|
|
470
|
+
pl.ds(offset, bd1_per_packing),
|
|
471
|
+
pl.ds(bf_id * bf, bf),
|
|
472
|
+
],
|
|
473
|
+
dst_ref=b_w3_x2_vmem.at[bw3_sem_id, p],
|
|
474
|
+
sem=local_sems.at[bw3_sem_id, 3],
|
|
475
|
+
).start()
|
|
476
|
+
|
|
477
|
+
def wait_fetch_bw1(local_e_id, bw1_sem_id, bf_id, bd1_id):
|
|
478
|
+
del local_e_id, bf_id, bd1_id
|
|
479
|
+
pltpu.make_async_copy(
|
|
480
|
+
src_ref=b_w1_x2_vmem.at[bw1_sem_id],
|
|
481
|
+
dst_ref=b_w1_x2_vmem.at[bw1_sem_id],
|
|
482
|
+
sem=local_sems.at[bw1_sem_id, 1],
|
|
483
|
+
).wait()
|
|
484
|
+
|
|
485
|
+
def wait_fetch_bw2(local_e_id, bw2_sem_id, bf_id, bd2_id):
|
|
486
|
+
del local_e_id, bf_id, bd2_id
|
|
487
|
+
pltpu.make_async_copy(
|
|
488
|
+
src_ref=b_w2_x2_vmem.at[bw2_sem_id],
|
|
489
|
+
dst_ref=b_w2_x2_vmem.at[bw2_sem_id],
|
|
490
|
+
sem=local_sems.at[bw2_sem_id, 2],
|
|
491
|
+
).wait()
|
|
492
|
+
|
|
493
|
+
def wait_fetch_bw3(local_e_id, bw3_sem_id, bf_id, bd3_id):
|
|
494
|
+
del local_e_id, bf_id, bd3_id
|
|
495
|
+
pltpu.make_async_copy(
|
|
496
|
+
src_ref=b_w3_x2_vmem.at[bw3_sem_id],
|
|
497
|
+
dst_ref=b_w3_x2_vmem.at[bw3_sem_id],
|
|
498
|
+
sem=local_sems.at[bw3_sem_id, 3],
|
|
499
|
+
).wait()
|
|
500
|
+
|
|
501
|
+
def start_fetch_next_bw(local_e_id, bw_sem_id, bf_id, bd1_id, bd2_id):
|
|
502
|
+
next_bd1_id = bd1_id + 1
|
|
503
|
+
next_bd2_id = bd2_id + 1
|
|
504
|
+
next_sem_id = (bw_sem_id + 1) % 2
|
|
505
|
+
|
|
506
|
+
if bf_id >= num_bf:
|
|
507
|
+
return
|
|
508
|
+
if next_bd1_id < num_bd1:
|
|
509
|
+
start_fetch_bw1(local_e_id, next_sem_id, bf_id, next_bd1_id)
|
|
510
|
+
start_fetch_bw3(local_e_id, next_sem_id, bf_id, next_bd1_id)
|
|
511
|
+
elif next_bd1_id == num_bd1:
|
|
512
|
+
start_fetch_bw2(local_e_id, next_sem_id, bf_id, 0)
|
|
513
|
+
elif next_bd2_id < num_bd2:
|
|
514
|
+
start_fetch_bw2(local_e_id, next_sem_id, bf_id, next_bd2_id)
|
|
515
|
+
elif next_bd2_id == num_bd2:
|
|
516
|
+
start_fetch_next_bw(local_e_id, bw_sem_id, bf_id + 1, -1, -1)
|
|
517
|
+
else:
|
|
518
|
+
raise RuntimeError("Unreachable")
|
|
519
|
+
|
|
520
|
+
def dynamic_ffn1(
|
|
521
|
+
t_b32_vmem,
|
|
522
|
+
w1_vmem,
|
|
523
|
+
w3_vmem,
|
|
524
|
+
acc1_vmem,
|
|
525
|
+
acc3_vmem,
|
|
526
|
+
dyn_sz,
|
|
527
|
+
should_init,
|
|
528
|
+
):
|
|
529
|
+
assert t_b32_vmem.shape == (bt * num_devices, bd1 // t_packing)
|
|
530
|
+
assert w1_vmem.shape == w3_vmem.shape == (t_packing, bd1_per_packing,
|
|
531
|
+
bf)
|
|
532
|
+
assert acc1_vmem.shape == acc3_vmem.shape == (bt * num_devices, bf)
|
|
533
|
+
assert bd1 % (t_packing * 128) == 0, (bd1, t_packing)
|
|
534
|
+
assert bd1c % (t_packing * 128) == 0, (bd1c, t_packing)
|
|
535
|
+
|
|
536
|
+
num_loops = cdiv(dyn_sz, btc)
|
|
537
|
+
repack_ty = jnp.dtype(f"int{t_bitwidth}")
|
|
538
|
+
|
|
539
|
+
def body(btc_id, _):
|
|
540
|
+
for bd1c_id in range(cdiv(bd1, bd1c)):
|
|
541
|
+
t_b32 = t_b32_vmem[
|
|
542
|
+
pl.ds(btc_id * btc, btc),
|
|
543
|
+
pl.ds(bd1c_id * bd1c_per_packing, bd1c_per_packing),
|
|
544
|
+
]
|
|
545
|
+
for p_id in range(t_packing):
|
|
546
|
+
t = pltpu.bitcast(t_b32.astype(repack_ty), t_dtype)
|
|
547
|
+
t_b32 = t_b32 >> t_bitwidth
|
|
548
|
+
for bfc_id in range(cdiv(bf, bfc)):
|
|
549
|
+
w_slices = (
|
|
550
|
+
p_id,
|
|
551
|
+
pl.ds(bd1c_id * bd1c_per_packing,
|
|
552
|
+
bd1c_per_packing),
|
|
553
|
+
pl.ds(bfc_id * bfc, bfc),
|
|
554
|
+
)
|
|
555
|
+
w1 = w1_vmem[*w_slices]
|
|
556
|
+
acc1 = jnp.dot(t,
|
|
557
|
+
w1,
|
|
558
|
+
preferred_element_type=jnp.float32)
|
|
559
|
+
w3 = w3_vmem[*w_slices]
|
|
560
|
+
acc3 = jnp.dot(t,
|
|
561
|
+
w3,
|
|
562
|
+
preferred_element_type=jnp.float32)
|
|
563
|
+
acc_slices = (pl.ds(btc_id * btc,
|
|
564
|
+
btc), pl.ds(bfc_id * bfc, bfc))
|
|
565
|
+
if should_init and p_id == bd1c_id == 0:
|
|
566
|
+
acc1_vmem[*acc_slices] = acc1
|
|
567
|
+
acc3_vmem[*acc_slices] = acc3
|
|
568
|
+
else:
|
|
569
|
+
acc1_vmem[*acc_slices] += acc1
|
|
570
|
+
acc3_vmem[*acc_slices] += acc3
|
|
571
|
+
|
|
572
|
+
lax.fori_loop(0, num_loops, body, None)
|
|
573
|
+
|
|
574
|
+
def dynamic_ffn2(
|
|
575
|
+
acc1_vmem,
|
|
576
|
+
acc3_vmem,
|
|
577
|
+
w2_vmem,
|
|
578
|
+
res_b32_vmem,
|
|
579
|
+
dyn_sz,
|
|
580
|
+
should_init,
|
|
581
|
+
):
|
|
582
|
+
assert res_b32_vmem.shape == (bt * num_devices, bd2_per_packing)
|
|
583
|
+
assert w2_vmem.shape == (t_packing, bf, bd2_per_packing), (
|
|
584
|
+
w2_vmem.shape,
|
|
585
|
+
t_packing,
|
|
586
|
+
bf,
|
|
587
|
+
bd2_per_packing,
|
|
588
|
+
)
|
|
589
|
+
assert acc1_vmem.shape == acc3_vmem.shape == (bt * num_devices, bf)
|
|
590
|
+
assert bd2 % (t_packing * 128) == 0, (bd2, t_packing)
|
|
591
|
+
assert bd2c % (t_packing * 128) == 0, (bd2c, t_packing)
|
|
592
|
+
assert t_dtype in (jnp.float32, jnp.bfloat16)
|
|
593
|
+
|
|
594
|
+
num_loops = cdiv(dyn_sz, btc)
|
|
595
|
+
assert bd2c % (t_packing * 128) == 0, (bd2c, t_packing)
|
|
596
|
+
|
|
597
|
+
def body(btc_id, _):
|
|
598
|
+
for bd2c_id in range(cdiv(bd2, bd2c)):
|
|
599
|
+
res_lst = []
|
|
600
|
+
for p_id in range(t_packing):
|
|
601
|
+
res = jnp.zeros((btc, bd2c_per_packing), dtype=jnp.float32)
|
|
602
|
+
for bfc_id in range(cdiv(bf, bfc)):
|
|
603
|
+
acc_slices = (pl.ds(btc_id * btc,
|
|
604
|
+
btc), pl.ds(bfc_id * bfc, bfc))
|
|
605
|
+
acc1 = acc1_vmem[*acc_slices]
|
|
606
|
+
acc3 = acc3_vmem[*acc_slices]
|
|
607
|
+
act = jax.nn.silu(acc1) * acc3
|
|
608
|
+
w2 = w2_vmem[
|
|
609
|
+
p_id,
|
|
610
|
+
pl.ds(bfc_id * bfc, bfc),
|
|
611
|
+
pl.ds(bd2c_id *
|
|
612
|
+
bd2c_per_packing, bd2c_per_packing),
|
|
613
|
+
]
|
|
614
|
+
res += jnp.dot(act,
|
|
615
|
+
w2,
|
|
616
|
+
preferred_element_type=jnp.float32)
|
|
617
|
+
res = pltpu.bitcast(res, jnp.uint32)
|
|
618
|
+
if t_packing == 2:
|
|
619
|
+
res = res >> 16 << (16 * p_id)
|
|
620
|
+
else:
|
|
621
|
+
assert t_packing == 1
|
|
622
|
+
res_lst.append(res)
|
|
623
|
+
res = res_lst[0]
|
|
624
|
+
# TODO(jevinjiang): use interleaved packing when it is exposed to Pallas
|
|
625
|
+
for i in range(1, t_packing):
|
|
626
|
+
res |= res_lst[i]
|
|
627
|
+
sliced_res_vmem = res_b32_vmem.at[
|
|
628
|
+
pl.ds(btc_id * btc, btc),
|
|
629
|
+
pl.ds(bd2c_id * bd2c_per_packing, bd2c_per_packing),
|
|
630
|
+
]
|
|
631
|
+
if should_init:
|
|
632
|
+
sliced_res_vmem[...] = res
|
|
633
|
+
else:
|
|
634
|
+
sliced_res_vmem[...] = pltpu.bitcast(
|
|
635
|
+
sliced_res_vmem.bitcast(t_dtype)[...] +
|
|
636
|
+
pltpu.bitcast(res, t_dtype),
|
|
637
|
+
sliced_res_vmem.dtype,
|
|
638
|
+
)
|
|
639
|
+
|
|
640
|
+
lax.fori_loop(0, num_loops, body, None)
|
|
641
|
+
|
|
642
|
+
def expert_ffn(bt_id, e_sem_id, local_e_id):
|
|
643
|
+
bt_sem_id = bt_id % 2
|
|
644
|
+
bw_sem_id = 0
|
|
645
|
+
# start_fetch_bw1(local_e_id, bw_sem_id, 0, 0)
|
|
646
|
+
# start_fetch_bw3(local_e_id, bw_sem_id, 0, 0)
|
|
647
|
+
a2a_s_b32_vmem = (a2a_s_x2_vmem.bitcast(jnp.uint32).reshape(
|
|
648
|
+
2, bt * num_devices, hidden_size // t_packing).at[e_sem_id])
|
|
649
|
+
a2a_s_acc_b32_vmem = (a2a_s_acc_x2_vmem.bitcast(jnp.uint32).reshape(
|
|
650
|
+
2, bt * num_devices, hidden_size // t_packing).at[e_sem_id])
|
|
651
|
+
b_acc_vmem_2d = b_acc_vmem.reshape(bt * num_devices, bf * 2)
|
|
652
|
+
b_acc1_vmem = b_acc_vmem_2d.at[:, :bf]
|
|
653
|
+
b_acc3_vmem = b_acc_vmem_2d.at[:, bf:]
|
|
654
|
+
|
|
655
|
+
e_id = my_id * local_num_experts + local_e_id
|
|
656
|
+
dyn_sz = expert_sizes_x2_smem[bt_sem_id, 0, e_id]
|
|
657
|
+
|
|
658
|
+
bd1_per_packing = bd1 // t_packing
|
|
659
|
+
bd2_per_packing = bd2 // t_packing
|
|
660
|
+
|
|
661
|
+
for bf_id in range(num_bf):
|
|
662
|
+
for bd1_id in range(num_bd1):
|
|
663
|
+
start_fetch_next_bw(local_e_id, bw_sem_id, bf_id, bd1_id, 0)
|
|
664
|
+
wait_fetch_bw1(local_e_id, bw_sem_id, bf_id, bd1_id)
|
|
665
|
+
wait_fetch_bw3(local_e_id, bw_sem_id, bf_id, bd1_id)
|
|
666
|
+
|
|
667
|
+
dynamic_ffn1(
|
|
668
|
+
t_b32_vmem=a2a_s_b32_vmem.at[
|
|
669
|
+
...,
|
|
670
|
+
pl.ds(bd1_id * bd1_per_packing, bd1_per_packing)],
|
|
671
|
+
w1_vmem=b_w1_x2_vmem.at[bw_sem_id],
|
|
672
|
+
w3_vmem=b_w3_x2_vmem.at[bw_sem_id],
|
|
673
|
+
acc1_vmem=b_acc1_vmem,
|
|
674
|
+
acc3_vmem=b_acc3_vmem,
|
|
675
|
+
dyn_sz=dyn_sz,
|
|
676
|
+
should_init=(bd1_id == 0),
|
|
677
|
+
)
|
|
678
|
+
bw_sem_id = (bw_sem_id + 1) % 2
|
|
679
|
+
|
|
680
|
+
for bd2_id in range(num_bd2):
|
|
681
|
+
start_fetch_next_bw(local_e_id, bw_sem_id, bf_id, num_bd1,
|
|
682
|
+
bd2_id)
|
|
683
|
+
wait_fetch_bw2(local_e_id, bw_sem_id, bf_id, bd2_id)
|
|
684
|
+
if bf_id == bd2_id == 0:
|
|
685
|
+
wait_a2a_gather_send(bt_id, e_sem_id, local_e_id - 2)
|
|
686
|
+
|
|
687
|
+
dynamic_ffn2(
|
|
688
|
+
acc1_vmem=b_acc1_vmem,
|
|
689
|
+
acc3_vmem=b_acc3_vmem,
|
|
690
|
+
w2_vmem=b_w2_x2_vmem.at[bw_sem_id],
|
|
691
|
+
res_b32_vmem=a2a_s_acc_b32_vmem.at[
|
|
692
|
+
...,
|
|
693
|
+
pl.ds(bd2_id * bd2_per_packing, bd2_per_packing)],
|
|
694
|
+
dyn_sz=dyn_sz,
|
|
695
|
+
should_init=(bf_id == 0),
|
|
696
|
+
)
|
|
697
|
+
bw_sem_id = (bw_sem_id + 1) % 2
|
|
698
|
+
|
|
699
|
+
def bt_acc(bt_id, top_k_logits_lst):
|
|
700
|
+
bt_sem_id = bt_id % 2
|
|
701
|
+
for bt_t_id in range(bt):
|
|
702
|
+
for k_id in range(top_k):
|
|
703
|
+
e_id = t2e_routing_x2_smem[bt_sem_id, bt_t_id, k_id]
|
|
704
|
+
offset = expert_offsets_x2_smem[bt_sem_id, 1, e_id]
|
|
705
|
+
expert_offsets_x2_smem[bt_sem_id, 1, e_id] = offset + 1
|
|
706
|
+
pltpu.make_async_copy(
|
|
707
|
+
src_ref=a2a_g_hbm.at[e_id, pl.ds(offset, 1)],
|
|
708
|
+
dst_ref=a2a_g_acc_vmem.at[k_id, pl.ds(bt_t_id, 1)],
|
|
709
|
+
sem=a2a_acc_sem,
|
|
710
|
+
).start()
|
|
711
|
+
pltpu.make_async_copy(
|
|
712
|
+
src_ref=a2a_g_acc_vmem,
|
|
713
|
+
dst_ref=a2a_g_acc_vmem,
|
|
714
|
+
sem=a2a_acc_sem,
|
|
715
|
+
).wait()
|
|
716
|
+
output = None
|
|
717
|
+
for k_id in range(top_k):
|
|
718
|
+
acc = a2a_g_acc_vmem[k_id].reshape(bt, hidden_size)
|
|
719
|
+
logits = broadcast_minor(top_k_logits_lst[k_id], acc.shape)
|
|
720
|
+
acc *= logits
|
|
721
|
+
if output is None:
|
|
722
|
+
output = acc
|
|
723
|
+
else:
|
|
724
|
+
output += acc
|
|
725
|
+
assert output is not None
|
|
726
|
+
return output.astype(output_hbm.dtype)
|
|
727
|
+
|
|
728
|
+
def start_send_bo(bt_id, priority=0):
|
|
729
|
+
bt_sem_id = bt_id % 2
|
|
730
|
+
b_output_sem = local_sems.at[bt_sem_id, 4]
|
|
731
|
+
pltpu.make_async_copy(
|
|
732
|
+
src_ref=b_output_x2_vmem.at[bt_sem_id],
|
|
733
|
+
dst_ref=output_hbm.at[pl.ds(bt_id * bt, bt)],
|
|
734
|
+
sem=b_output_sem,
|
|
735
|
+
).start(priority=priority)
|
|
736
|
+
|
|
737
|
+
def wait_send_bo(bt_id):
|
|
738
|
+
is_valid = jnp.logical_and(0 <= bt_id, bt_id < num_bt)
|
|
739
|
+
sz = pl.multiple_of(lax.select(is_valid, bt, 0), bt)
|
|
740
|
+
bt_sem_id = (bt_id + 2) % 2
|
|
741
|
+
b_output_sem = local_sems.at[bt_sem_id, 4]
|
|
742
|
+
pltpu.make_async_copy(
|
|
743
|
+
src_ref=output_hbm.at[pl.ds(0, sz)],
|
|
744
|
+
dst_ref=output_hbm.at[pl.ds(0, sz)],
|
|
745
|
+
sem=b_output_sem,
|
|
746
|
+
).wait()
|
|
747
|
+
|
|
748
|
+
### ------- Kernel start ------- ###
|
|
749
|
+
start_fetch_b_gating(bt_id=0)
|
|
750
|
+
|
|
751
|
+
def run_per_bt(bt_id, e_sem_id):
|
|
752
|
+
bt_sem_id = bt_id % 2
|
|
753
|
+
next_bt_id = bt_id + 1
|
|
754
|
+
start_fetch_b_gating(next_bt_id)
|
|
755
|
+
wait_fetch_b_gating(bt_id)
|
|
756
|
+
|
|
757
|
+
b_gating = b_gating_x2_vmem[bt_sem_id]
|
|
758
|
+
b_gating_score = jax.nn.softmax(b_gating, axis=-1)
|
|
759
|
+
top_k_logits_lst, t2e_routing, expert_sizes, expert_starts = get_top_k(
|
|
760
|
+
b_gating_score, top_k)
|
|
761
|
+
|
|
762
|
+
all_reduce_metadata(bt_sem_id, t2e_routing, expert_starts,
|
|
763
|
+
expert_sizes)
|
|
764
|
+
|
|
765
|
+
start_a2a_scatter(bt_id=bt_id, e_sem_id=e_sem_id, local_e_id=0)
|
|
766
|
+
|
|
767
|
+
def run_per_expert(local_e_id, e_sem_id):
|
|
768
|
+
sync_barrier()
|
|
769
|
+
next_e_sem_id = lax.select(e_sem_id == 0, 1, 0)
|
|
770
|
+
next_local_e_id = local_e_id + 1
|
|
771
|
+
|
|
772
|
+
@pl.when(next_local_e_id < local_num_experts)
|
|
773
|
+
def _():
|
|
774
|
+
start_a2a_scatter(bt_id, next_e_sem_id, next_local_e_id)
|
|
775
|
+
|
|
776
|
+
# Prefetch weights for active expert.
|
|
777
|
+
start_fetch_bw1(local_e_id, bw1_sem_id=0, bf_id=0, bd1_id=0)
|
|
778
|
+
start_fetch_bw3(local_e_id, bw3_sem_id=0, bf_id=0, bd3_id=0)
|
|
779
|
+
|
|
780
|
+
# Wait for a2a scatter and perform FFN for active expert.
|
|
781
|
+
wait_a2a_scatter_recv(bt_id, e_sem_id, local_e_id)
|
|
782
|
+
expert_ffn(bt_id, e_sem_id, local_e_id)
|
|
783
|
+
|
|
784
|
+
# Wait for a2a gather to send back tokens for active expert.
|
|
785
|
+
start_a2a_gather(bt_id, e_sem_id, local_e_id)
|
|
786
|
+
|
|
787
|
+
# A must-wait before next sync_barrier.
|
|
788
|
+
wait_a2a_scatter_send(bt_id, e_sem_id, local_e_id)
|
|
789
|
+
return next_e_sem_id
|
|
790
|
+
|
|
791
|
+
e_sem_id = lax.fori_loop(0,
|
|
792
|
+
local_num_experts,
|
|
793
|
+
run_per_expert,
|
|
794
|
+
e_sem_id,
|
|
795
|
+
unroll=False)
|
|
796
|
+
|
|
797
|
+
wait_a2a_gather_recv_all()
|
|
798
|
+
output = bt_acc(bt_id, top_k_logits_lst)
|
|
799
|
+
|
|
800
|
+
# Make sure it is safe to overwrite output buffer.
|
|
801
|
+
wait_send_bo(bt_id=bt_id - 2)
|
|
802
|
+
b_output_x2_vmem[bt_sem_id] = output
|
|
803
|
+
|
|
804
|
+
start_send_bo(bt_id)
|
|
805
|
+
|
|
806
|
+
wait_a2a_gather_send(
|
|
807
|
+
bt_id,
|
|
808
|
+
e_sem_id=e_sem_id,
|
|
809
|
+
local_e_id=local_num_experts - 2,
|
|
810
|
+
)
|
|
811
|
+
wait_a2a_gather_send(
|
|
812
|
+
bt_id,
|
|
813
|
+
e_sem_id=lax.select(e_sem_id == 0, 1, 0),
|
|
814
|
+
local_e_id=local_num_experts - 1,
|
|
815
|
+
)
|
|
816
|
+
return e_sem_id
|
|
817
|
+
|
|
818
|
+
lax.fori_loop(0, num_bt, run_per_bt, 0, unroll=False)
|
|
819
|
+
wait_send_bo(bt_id=num_bt - 2)
|
|
820
|
+
wait_send_bo(bt_id=num_bt - 1)
|
|
821
|
+
|
|
822
|
+
### ------- Kernel end ------- ###
|
|
823
|
+
|
|
824
|
+
|
|
825
|
+
@functools.partial(
|
|
826
|
+
jax.jit,
|
|
827
|
+
static_argnames=[
|
|
828
|
+
"mesh",
|
|
829
|
+
"top_k",
|
|
830
|
+
"bt",
|
|
831
|
+
"bf",
|
|
832
|
+
"bd1",
|
|
833
|
+
"bd2",
|
|
834
|
+
"btc",
|
|
835
|
+
"bfc",
|
|
836
|
+
"bd1c",
|
|
837
|
+
"bd2c",
|
|
838
|
+
"ep_axis_name",
|
|
839
|
+
],
|
|
840
|
+
)
|
|
841
|
+
def fused_ep_moe(
|
|
842
|
+
mesh: jax.sharding.Mesh,
|
|
843
|
+
tokens: jax.Array, # (num_tokens, hidden_size)
|
|
844
|
+
w1: jax.Array, # (num_experts, 2, hidden_size, intermediate_size)
|
|
845
|
+
w2: jax.Array, # (num_experts, intermediate_size, hidden_size)
|
|
846
|
+
gating_output: jax.Array, # (num_tokens, num_experts)
|
|
847
|
+
top_k: int,
|
|
848
|
+
*,
|
|
849
|
+
# Kernel tuning parameters.
|
|
850
|
+
bt: int,
|
|
851
|
+
bf: int,
|
|
852
|
+
bd1: int,
|
|
853
|
+
bd2: int,
|
|
854
|
+
btc: int,
|
|
855
|
+
bfc: int,
|
|
856
|
+
bd1c: int,
|
|
857
|
+
bd2c: int,
|
|
858
|
+
ep_axis_name: str = 'model',
|
|
859
|
+
):
|
|
860
|
+
# Assert all other axes have length of 1
|
|
861
|
+
assert len(mesh.shape) == 2, "Expect 2D mesh in tpu-inference"
|
|
862
|
+
assert 'data' in mesh.shape and mesh.shape['data'] == 1, \
|
|
863
|
+
"Expect data axis size of 1 in tpu-inference"
|
|
864
|
+
|
|
865
|
+
ep_size = mesh.shape[ep_axis_name]
|
|
866
|
+
num_devices = ep_size
|
|
867
|
+
|
|
868
|
+
num_tokens, actual_hidden_size = tokens.shape
|
|
869
|
+
num_experts, intermediate_size, _ = w2.shape
|
|
870
|
+
|
|
871
|
+
assert num_tokens % ep_size == 0
|
|
872
|
+
assert num_experts % ep_size == 0
|
|
873
|
+
|
|
874
|
+
local_num_tokens = num_tokens // ep_size
|
|
875
|
+
# local_num_experts = num_experts // ep_size
|
|
876
|
+
padded_num_experts = align_to(num_experts, 128)
|
|
877
|
+
|
|
878
|
+
t_dtype = tokens.dtype
|
|
879
|
+
t_packing = get_dtype_packing(t_dtype)
|
|
880
|
+
hidden_size = align_to(actual_hidden_size, 128 * t_packing)
|
|
881
|
+
if hidden_size != actual_hidden_size:
|
|
882
|
+
tokens = jnp.pad(
|
|
883
|
+
tokens,
|
|
884
|
+
((0, 0), (0, hidden_size - actual_hidden_size)),
|
|
885
|
+
constant_values=0,
|
|
886
|
+
)
|
|
887
|
+
tokens = tokens.reshape(-1, t_packing, hidden_size // t_packing)
|
|
888
|
+
bt = min(bt, local_num_tokens)
|
|
889
|
+
bf = min(bf, intermediate_size)
|
|
890
|
+
bd1 = min(bd1, hidden_size)
|
|
891
|
+
bd2 = min(bd2, hidden_size)
|
|
892
|
+
|
|
893
|
+
btc = min(btc, bt * num_devices)
|
|
894
|
+
bfc = min(bfc, bf)
|
|
895
|
+
bd1c = min(bd1c, bd1)
|
|
896
|
+
bd2c = min(bd2c, bd2)
|
|
897
|
+
assert bfc % 128 == 0
|
|
898
|
+
assert bd1c % (t_packing * 128) == 0
|
|
899
|
+
assert bd2c % (t_packing * 128) == 0
|
|
900
|
+
assert bf % bfc == 0
|
|
901
|
+
assert bd1 % bd1c == 0
|
|
902
|
+
assert bd2 % bd2c == 0
|
|
903
|
+
|
|
904
|
+
if padded_num_experts != gating_output.shape[-1]:
|
|
905
|
+
gating_output = jnp.pad(
|
|
906
|
+
gating_output,
|
|
907
|
+
((0, 0), (0, padded_num_experts - gating_output.shape[-1])),
|
|
908
|
+
constant_values=-jnp.inf,
|
|
909
|
+
)
|
|
910
|
+
|
|
911
|
+
scope_name = f"fused_moe_k-{top_k}_bt-{bt}-{btc}_bf-{bf}-{bfc}_bd1-{bd1}-{bd1c}_bd2-{bd2}-{bd2c}"
|
|
912
|
+
fused_moe = jax.named_scope(scope_name)(
|
|
913
|
+
pl.pallas_call(
|
|
914
|
+
functools.partial(
|
|
915
|
+
_fused_ep_moe_kernel,
|
|
916
|
+
top_k=top_k,
|
|
917
|
+
ep_axis_name=ep_axis_name,
|
|
918
|
+
bt=bt,
|
|
919
|
+
bf=bf,
|
|
920
|
+
bd1=bd1,
|
|
921
|
+
bd2=bd2,
|
|
922
|
+
btc=btc,
|
|
923
|
+
bfc=bfc,
|
|
924
|
+
bd1c=bd1c,
|
|
925
|
+
bd2c=bd2c,
|
|
926
|
+
),
|
|
927
|
+
out_shape=jax.ShapeDtypeStruct((local_num_tokens, hidden_size),
|
|
928
|
+
t_dtype),
|
|
929
|
+
grid_spec=pltpu.PrefetchScalarGridSpec(
|
|
930
|
+
num_scalar_prefetch=0,
|
|
931
|
+
in_specs=[
|
|
932
|
+
pl.BlockSpec(memory_space=pltpu.MemorySpace.HBM),
|
|
933
|
+
pl.BlockSpec(memory_space=pltpu.MemorySpace.HBM),
|
|
934
|
+
pl.BlockSpec(memory_space=pltpu.MemorySpace.HBM),
|
|
935
|
+
pl.BlockSpec(memory_space=pltpu.MemorySpace.HBM),
|
|
936
|
+
pl.BlockSpec(memory_space=pltpu.MemorySpace.HBM),
|
|
937
|
+
],
|
|
938
|
+
out_specs=pl.BlockSpec(memory_space=pltpu.MemorySpace.HBM),
|
|
939
|
+
scratch_shapes=([
|
|
940
|
+
# t2e_routing_x2_smem
|
|
941
|
+
pltpu.SMEM((2, bt, padded_num_experts), jnp.int32),
|
|
942
|
+
# d2e_count_x2_smem
|
|
943
|
+
pltpu.SMEM((2, num_devices, 1, padded_num_experts),
|
|
944
|
+
jnp.int32),
|
|
945
|
+
# expert_offsets_x2_smem
|
|
946
|
+
pltpu.SMEM((2, 2, padded_num_experts), jnp.int32),
|
|
947
|
+
# expert_starts_x2_smem
|
|
948
|
+
pltpu.SMEM((2, 1, padded_num_experts), jnp.int32),
|
|
949
|
+
# expert_sizes_x2_smem
|
|
950
|
+
pltpu.SMEM((2, 1, padded_num_experts), jnp.int32),
|
|
951
|
+
# a2a_s_sends_x2_smem
|
|
952
|
+
pltpu.SMEM((2, ), jnp.int32),
|
|
953
|
+
# a2a_s_x2_vmem
|
|
954
|
+
pltpu.VMEM(
|
|
955
|
+
(
|
|
956
|
+
2,
|
|
957
|
+
bt * num_devices,
|
|
958
|
+
t_packing,
|
|
959
|
+
hidden_size // t_packing,
|
|
960
|
+
),
|
|
961
|
+
t_dtype,
|
|
962
|
+
),
|
|
963
|
+
# a2a_s_acc_x2_vmem
|
|
964
|
+
pltpu.VMEM(
|
|
965
|
+
(
|
|
966
|
+
2,
|
|
967
|
+
bt * num_devices,
|
|
968
|
+
t_packing,
|
|
969
|
+
hidden_size // t_packing,
|
|
970
|
+
),
|
|
971
|
+
t_dtype,
|
|
972
|
+
),
|
|
973
|
+
# a2a_g_acc_vmem
|
|
974
|
+
pltpu.VMEM(
|
|
975
|
+
(top_k, bt, t_packing, hidden_size // t_packing),
|
|
976
|
+
t_dtype),
|
|
977
|
+
# b_gating_x2_vmem
|
|
978
|
+
pltpu.VMEM((2, bt, padded_num_experts), t_dtype),
|
|
979
|
+
# b_output_x2_vmem
|
|
980
|
+
pltpu.VMEM((2, bt, hidden_size), t_dtype),
|
|
981
|
+
# b_w1_x2_vmem
|
|
982
|
+
pltpu.VMEM((2, t_packing, bd1 // t_packing, bf), w1.dtype),
|
|
983
|
+
# b_w3_x2_vmem
|
|
984
|
+
pltpu.VMEM((2, t_packing, bd1 // t_packing, bf), w1.dtype),
|
|
985
|
+
# b_w2_x2_vmem
|
|
986
|
+
pltpu.VMEM((2, t_packing, bf, bd2 // t_packing), w2.dtype),
|
|
987
|
+
# b_acc_vmem
|
|
988
|
+
pltpu.VMEM((bt * num_devices, 1, bf * 2), jnp.float32),
|
|
989
|
+
# local_sems
|
|
990
|
+
pltpu.SemaphoreType.DMA((2, 5)),
|
|
991
|
+
# send_sems
|
|
992
|
+
pltpu.SemaphoreType.DMA((2, )),
|
|
993
|
+
# recv_sems
|
|
994
|
+
pltpu.SemaphoreType.DMA((2, )),
|
|
995
|
+
# a2a_gather_sem
|
|
996
|
+
pltpu.SemaphoreType.DMA,
|
|
997
|
+
# a2a_acc_sem
|
|
998
|
+
pltpu.SemaphoreType.DMA,
|
|
999
|
+
]),
|
|
1000
|
+
),
|
|
1001
|
+
compiler_params=pltpu.CompilerParams(
|
|
1002
|
+
collective_id=0,
|
|
1003
|
+
vmem_limit_bytes=100 * 1024 * 1024,
|
|
1004
|
+
),
|
|
1005
|
+
name=scope_name,
|
|
1006
|
+
))
|
|
1007
|
+
|
|
1008
|
+
@jax.jit
|
|
1009
|
+
@functools.partial(
|
|
1010
|
+
shard_map.shard_map,
|
|
1011
|
+
mesh=mesh,
|
|
1012
|
+
in_specs=(P(ep_axis_name), P(ep_axis_name), P(ep_axis_name),
|
|
1013
|
+
P(ep_axis_name), P()),
|
|
1014
|
+
out_specs=P(ep_axis_name),
|
|
1015
|
+
check_rep=False,
|
|
1016
|
+
)
|
|
1017
|
+
def kernel(tokens, w1, w2, gating_output, a2a_g_hbm_scratch):
|
|
1018
|
+
return fused_moe(
|
|
1019
|
+
pltpu.with_memory_space_constraint(tokens, pltpu.HBM),
|
|
1020
|
+
pltpu.with_memory_space_constraint(w1, pltpu.HBM),
|
|
1021
|
+
pltpu.with_memory_space_constraint(w2, pltpu.HBM),
|
|
1022
|
+
pltpu.with_memory_space_constraint(gating_output, pltpu.HBM),
|
|
1023
|
+
pltpu.with_memory_space_constraint(a2a_g_hbm_scratch, pltpu.HBM),
|
|
1024
|
+
)
|
|
1025
|
+
|
|
1026
|
+
a2a_g_hbm_scratch = pl.empty(
|
|
1027
|
+
(num_experts, bt, t_packing, hidden_size // t_packing), t_dtype)
|
|
1028
|
+
results = kernel(
|
|
1029
|
+
tokens,
|
|
1030
|
+
w1,
|
|
1031
|
+
w2,
|
|
1032
|
+
gating_output,
|
|
1033
|
+
a2a_g_hbm_scratch,
|
|
1034
|
+
)
|
|
1035
|
+
return results[:, :actual_hidden_size]
|