tpu-inference 0.11.1.dev202511150811__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (179) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +53 -0
  6. tests/core/test_dp_scheduler.py +899 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/fused_moe_v1_test.py +105 -0
  10. tests/kernels/mla_v1_test.py +396 -0
  11. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  12. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  13. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  14. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
  15. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  16. tests/lora/__init__.py +0 -0
  17. tests/lora/conftest.py +32 -0
  18. tests/lora/test_bgmv.py +43 -0
  19. tests/lora/test_layers.py +654 -0
  20. tests/lora/test_lora.py +133 -0
  21. tests/lora/utils.py +96 -0
  22. tests/test_base.py +201 -0
  23. tests/test_envs.py +182 -0
  24. tests/test_quantization.py +836 -0
  25. tests/test_tpu_info.py +120 -0
  26. tests/test_utils.py +236 -0
  27. tpu_inference/__init__.py +34 -0
  28. tpu_inference/core/__init__.py +0 -0
  29. tpu_inference/core/core_tpu.py +786 -0
  30. tpu_inference/core/disagg_executor.py +118 -0
  31. tpu_inference/core/disagg_utils.py +51 -0
  32. tpu_inference/core/sched/__init__.py +0 -0
  33. tpu_inference/core/sched/dp_scheduler.py +523 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/jax_parallel_state.py +67 -0
  36. tpu_inference/distributed/tpu_connector.py +728 -0
  37. tpu_inference/distributed/utils.py +59 -0
  38. tpu_inference/env_override.py +9 -0
  39. tpu_inference/envs.py +107 -0
  40. tpu_inference/executors/__init__.py +0 -0
  41. tpu_inference/executors/ray_distributed_executor.py +362 -0
  42. tpu_inference/experimental/__init__.py +0 -0
  43. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  44. tpu_inference/kernels/__init__.py +0 -0
  45. tpu_inference/kernels/collectives/__init__.py +0 -0
  46. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  47. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  48. tpu_inference/kernels/collectives/util.py +47 -0
  49. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  50. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  51. tpu_inference/kernels/fused_moe/__init__.py +0 -0
  52. tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
  53. tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
  54. tpu_inference/kernels/mla/__init__.py +0 -0
  55. tpu_inference/kernels/mla/v1/__init__.py +0 -0
  56. tpu_inference/kernels/mla/v1/kernel.py +1349 -0
  57. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  58. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  59. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  60. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  61. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  62. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  66. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
  71. tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
  72. tpu_inference/layers/__init__.py +0 -0
  73. tpu_inference/layers/common/__init__.py +0 -0
  74. tpu_inference/layers/common/attention_interface.py +390 -0
  75. tpu_inference/layers/common/attention_metadata.py +34 -0
  76. tpu_inference/layers/common/binary_search.py +295 -0
  77. tpu_inference/layers/common/quant_methods.py +8 -0
  78. tpu_inference/layers/common/sharding.py +582 -0
  79. tpu_inference/layers/jax/__init__.py +0 -0
  80. tpu_inference/layers/jax/attention/__init__.py +0 -0
  81. tpu_inference/layers/jax/attention/attention.py +255 -0
  82. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  83. tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
  84. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  85. tpu_inference/layers/jax/base.py +151 -0
  86. tpu_inference/layers/jax/constants.py +88 -0
  87. tpu_inference/layers/jax/layers.py +301 -0
  88. tpu_inference/layers/jax/misc.py +16 -0
  89. tpu_inference/layers/jax/moe/__init__.py +0 -0
  90. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  91. tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
  92. tpu_inference/layers/jax/moe/moe.py +209 -0
  93. tpu_inference/layers/jax/rope.py +280 -0
  94. tpu_inference/layers/jax/rope_interface.py +214 -0
  95. tpu_inference/layers/jax/sample/__init__.py +0 -0
  96. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  97. tpu_inference/layers/jax/sample/sampling.py +96 -0
  98. tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
  99. tpu_inference/layers/jax/transformer_block.py +107 -0
  100. tpu_inference/layers/vllm/__init__.py +0 -0
  101. tpu_inference/layers/vllm/attention.py +221 -0
  102. tpu_inference/layers/vllm/fused_moe.py +507 -0
  103. tpu_inference/layers/vllm/linear_common.py +186 -0
  104. tpu_inference/layers/vllm/quantization/__init__.py +39 -0
  105. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  106. tpu_inference/layers/vllm/quantization/common.py +105 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  108. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
  109. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
  110. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  111. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  112. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  113. tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
  114. tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
  115. tpu_inference/layers/vllm/sharding.py +230 -0
  116. tpu_inference/logger.py +10 -0
  117. tpu_inference/lora/__init__.py +0 -0
  118. tpu_inference/lora/torch_lora_ops.py +103 -0
  119. tpu_inference/lora/torch_punica_tpu.py +311 -0
  120. tpu_inference/mock/__init__.py +0 -0
  121. tpu_inference/mock/vllm_config_utils.py +28 -0
  122. tpu_inference/mock/vllm_envs.py +1219 -0
  123. tpu_inference/mock/vllm_logger.py +212 -0
  124. tpu_inference/mock/vllm_logging_utils.py +15 -0
  125. tpu_inference/models/__init__.py +0 -0
  126. tpu_inference/models/common/__init__.py +0 -0
  127. tpu_inference/models/common/model_loader.py +444 -0
  128. tpu_inference/models/jax/__init__.py +0 -0
  129. tpu_inference/models/jax/deepseek_v3.py +868 -0
  130. tpu_inference/models/jax/gpt_oss.py +492 -0
  131. tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
  132. tpu_inference/models/jax/llama3.py +375 -0
  133. tpu_inference/models/jax/llama4.py +629 -0
  134. tpu_inference/models/jax/llama_eagle3.py +333 -0
  135. tpu_inference/models/jax/phi3.py +376 -0
  136. tpu_inference/models/jax/qwen2.py +375 -0
  137. tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
  138. tpu_inference/models/jax/qwen3.py +302 -0
  139. tpu_inference/models/jax/utils/__init__.py +0 -0
  140. tpu_inference/models/jax/utils/file_utils.py +96 -0
  141. tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
  142. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  143. tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
  144. tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
  145. tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
  146. tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
  147. tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
  148. tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
  149. tpu_inference/models/jax/utils/weight_utils.py +529 -0
  150. tpu_inference/models/vllm/__init__.py +0 -0
  151. tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
  152. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  153. tpu_inference/platforms/__init__.py +2 -0
  154. tpu_inference/platforms/tpu_platform.py +269 -0
  155. tpu_inference/runner/__init__.py +0 -0
  156. tpu_inference/runner/block_table.py +122 -0
  157. tpu_inference/runner/compilation_manager.py +780 -0
  158. tpu_inference/runner/input_batch.py +435 -0
  159. tpu_inference/runner/kv_cache.py +132 -0
  160. tpu_inference/runner/kv_cache_manager.py +479 -0
  161. tpu_inference/runner/lora_utils.py +92 -0
  162. tpu_inference/runner/multimodal_manager.py +217 -0
  163. tpu_inference/runner/persistent_batch_manager.py +244 -0
  164. tpu_inference/runner/speculative_decoding_manager.py +248 -0
  165. tpu_inference/runner/structured_decoding_manager.py +88 -0
  166. tpu_inference/runner/tpu_runner.py +1620 -0
  167. tpu_inference/runner/utils.py +426 -0
  168. tpu_inference/spec_decode/__init__.py +0 -0
  169. tpu_inference/spec_decode/jax/__init__.py +0 -0
  170. tpu_inference/spec_decode/jax/eagle3.py +367 -0
  171. tpu_inference/tpu_info.py +77 -0
  172. tpu_inference/utils.py +317 -0
  173. tpu_inference/worker/__init__.py +0 -0
  174. tpu_inference/worker/tpu_worker.py +321 -0
  175. tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
  176. tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
  177. tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
  178. tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
  179. tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
@@ -0,0 +1,367 @@
1
+ """Auto-tuned block sizes for ragged paged attention."""
2
+
3
+ import jax.numpy as jnp
4
+
5
+ from tpu_inference.kernels.ragged_paged_attention.v3.util import (
6
+ align_to, get_dtype_packing, get_tpu_version, next_power_of_2)
7
+ from tpu_inference.logger import init_logger
8
+ from tpu_inference.utils import get_device_name
9
+
10
+ logger = init_logger(__name__)
11
+
12
+ # key
13
+ # - device_name
14
+ # - page_size
15
+ # - q_{q_dtype_name}_kv_{kv_dtype_name}
16
+ # - q_head-{num_q_heads}_kv_head-{num_kv_heads}-_head-{head_dim}
17
+ # - max_model_len
18
+ # value:
19
+ # - (num_kv_pages_per_block, num_queries_per_block)
20
+ TUNED_BLOCK_SIZES = {
21
+ 'TPU v5e': {
22
+ 128: {
23
+ 'q_bfloat16_kv_bfloat16': {
24
+ 'q_head-8_kv_head-2_head-64': {
25
+ 4096: (16, 32),
26
+ 8192: (32, 128),
27
+ 128: (1, 16),
28
+ 256: (1, 64),
29
+ 512: (4, 128),
30
+ 1024: (4, 16),
31
+ 2048: (16, 64),
32
+ },
33
+ 'q_head-64_kv_head-8_head-64': {
34
+ 128: (1, 16),
35
+ 4096: (16, 16),
36
+ 1024: (8, 8),
37
+ 256: (2, 16),
38
+ 8192: (16, 32),
39
+ 2048: (8, 16),
40
+ 512: (4, 8),
41
+ },
42
+ 'q_head-32_kv_head-4_head-64': {
43
+ 256: (2, 8),
44
+ 512: (4, 32),
45
+ 1024: (8, 8),
46
+ 2048: (16, 8),
47
+ 4096: (32, 32),
48
+ 8192: (16, 32),
49
+ 128: (1, 8),
50
+ },
51
+ 'q_head-16_kv_head-2_head-64': {
52
+ 128: (1, 128),
53
+ 256: (2, 128),
54
+ 512: (4, 32),
55
+ 1024: (8, 16),
56
+ 2048: (8, 32),
57
+ 4096: (16, 32),
58
+ 8192: (16, 32),
59
+ },
60
+ }
61
+ },
62
+ 256: {
63
+ 'q_bfloat16_kv_bfloat16': {
64
+ 'q_head-16_kv_head-2_head-64': {
65
+ 1024: (4, 32),
66
+ 2048: (8, 16),
67
+ 4096: (8, 32),
68
+ 8192: (16, 16),
69
+ 256: (1, 128),
70
+ 512: (2, 128),
71
+ },
72
+ 'q_head-64_kv_head-8_head-64': {
73
+ 256: (1, 8),
74
+ 512: (2, 32),
75
+ 1024: (4, 16),
76
+ 2048: (8, 8),
77
+ 4096: (8, 32),
78
+ 8192: (8, 32),
79
+ },
80
+ 'q_head-8_kv_head-2_head-64': {
81
+ 256: (1, 8),
82
+ 512: (1, 32),
83
+ 1024: (4, 32),
84
+ 2048: (8, 64),
85
+ 4096: (8, 16),
86
+ 8192: (16, 32),
87
+ },
88
+ 'q_head-32_kv_head-4_head-64': {
89
+ 256: (1, 16),
90
+ 512: (2, 16),
91
+ 1024: (4, 32),
92
+ 2048: (8, 16),
93
+ 4096: (8, 16),
94
+ 8192: (8, 32),
95
+ },
96
+ }
97
+ },
98
+ },
99
+ 'TPU v6e': {
100
+ 128: {
101
+ 'q_bfloat16_kv_bfloat16': {
102
+ 'q_head-8_kv_head-2_head-64': {
103
+ 4096: (32, 32),
104
+ 8192: (32, 128),
105
+ 128: (1, 64),
106
+ 256: (2, 128),
107
+ 512: (4, 256),
108
+ 1024: (8, 16),
109
+ 2048: (16, 32),
110
+ },
111
+ 'q_head-64_kv_head-8_head-64': {
112
+ 128: (1, 32),
113
+ 4096: (32, 16),
114
+ 1024: (8, 32),
115
+ 256: (2, 16),
116
+ 8192: (32, 8),
117
+ 2048: (16, 32),
118
+ 512: (4, 32),
119
+ },
120
+ 'q_head-32_kv_head-4_head-64': {
121
+ 256: (2, 16),
122
+ 512: (4, 128),
123
+ 1024: (8, 64),
124
+ 2048: (16, 32),
125
+ 4096: (16, 16),
126
+ 8192: (32, 32),
127
+ 128: (1, 64),
128
+ },
129
+ 'q_head-16_kv_head-2_head-64': {
130
+ 128: (1, 128),
131
+ 256: (2, 128),
132
+ 512: (4, 128),
133
+ 1024: (8, 64),
134
+ 2048: (8, 32),
135
+ 4096: (32, 32),
136
+ 8192: (32, 32),
137
+ },
138
+ }
139
+ },
140
+ 256: {
141
+ 'q_bfloat16_kv_bfloat16': {
142
+ 'q_head-16_kv_head-2_head-64': {
143
+ 1024: (4, 128),
144
+ 2048: (8, 32),
145
+ 4096: (16, 16),
146
+ 8192: (16, 16),
147
+ 256: (1, 64),
148
+ 512: (2, 32),
149
+ },
150
+ 'q_head-64_kv_head-8_head-64': {
151
+ 256: (1, 32),
152
+ 512: (2, 32),
153
+ 1024: (4, 32),
154
+ 2048: (8, 16),
155
+ 4096: (16, 16),
156
+ 8192: (16, 16),
157
+ },
158
+ 'q_head-8_kv_head-2_head-64': {
159
+ 256: (1, 8),
160
+ 512: (2, 128),
161
+ 1024: (4, 64),
162
+ 2048: (8, 32),
163
+ 4096: (8, 32),
164
+ 8192: (16, 128),
165
+ },
166
+ 'q_head-32_kv_head-4_head-64': {
167
+ 256: (1, 32),
168
+ 512: (2, 8),
169
+ 1024: (4, 8),
170
+ 2048: (8, 16),
171
+ 4096: (16, 16),
172
+ 8192: (16, 16),
173
+ },
174
+ }
175
+ },
176
+ },
177
+ 'TPU v7': {
178
+ 128: {
179
+ 'q_bfloat16_kv_bfloat16': {
180
+ 'q_head-8_kv_head-2_head-64': {
181
+ 4096: (32, 16),
182
+ 8192: (32, 64),
183
+ 128: (1, 16),
184
+ 256: (2, 64),
185
+ 512: (4, 16),
186
+ 1024: (8, 32),
187
+ 2048: (16, 32),
188
+ },
189
+ 'q_head-64_kv_head-8_head-64': {
190
+ 128: (1, 16),
191
+ 4096: (32, 8),
192
+ 1024: (8, 16),
193
+ 256: (2, 16),
194
+ 8192: (32, 16),
195
+ 2048: (16, 16),
196
+ 512: (4, 16),
197
+ },
198
+ 'q_head-32_kv_head-4_head-64': {
199
+ 256: (2, 8),
200
+ 512: (4, 16),
201
+ 1024: (8, 16),
202
+ 2048: (16, 32),
203
+ 4096: (32, 64),
204
+ 8192: (32, 16),
205
+ 128: (1, 16),
206
+ },
207
+ 'q_head-16_kv_head-2_head-64': {
208
+ 128: (1, 64),
209
+ 256: (2, 8),
210
+ 512: (4, 8),
211
+ 1024: (8, 16),
212
+ 2048: (16, 16),
213
+ 4096: (32, 32),
214
+ 8192: (32, 32),
215
+ },
216
+ }
217
+ },
218
+ 256: {
219
+ 'q_bfloat16_kv_bfloat16': {
220
+ 'q_head-16_kv_head-2_head-64': {
221
+ 1024: (4, 32),
222
+ 2048: (8, 16),
223
+ 4096: (16, 8),
224
+ 8192: (16, 16),
225
+ 256: (1, 64),
226
+ 512: (2, 32),
227
+ },
228
+ 'q_head-64_kv_head-8_head-64': {
229
+ 256: (1, 8),
230
+ 512: (2, 16),
231
+ 1024: (4, 32),
232
+ 2048: (8, 16),
233
+ 4096: (16, 16),
234
+ 8192: (16, 16),
235
+ },
236
+ 'q_head-8_kv_head-2_head-64': {
237
+ 256: (1, 256),
238
+ 512: (2, 16),
239
+ 1024: (4, 16),
240
+ 2048: (8, 16),
241
+ 4096: (16, 32),
242
+ 8192: (16, 16),
243
+ },
244
+ 'q_head-32_kv_head-4_head-64': {
245
+ 256: (1, 64),
246
+ 512: (2, 32),
247
+ 1024: (4, 8),
248
+ 2048: (8, 8),
249
+ 4096: (16, 32),
250
+ 8192: (16, 32),
251
+ },
252
+ }
253
+ },
254
+ },
255
+ }
256
+
257
+
258
+ def get_tuned_block_sizes(
259
+ q_dtype,
260
+ kv_dtype,
261
+ actual_num_q_heads,
262
+ actual_num_kv_heads,
263
+ head_dim,
264
+ page_size,
265
+ max_num_tokens,
266
+ pages_per_seq,
267
+ ) -> tuple[int, int]:
268
+ """Search tuned values for (num_kv_pages_per_blk, num_queries_per_blk)."""
269
+
270
+ # Set default block sizes for each tpu_version.
271
+ tpu_version = get_tpu_version()
272
+ if tpu_version < 4:
273
+ raise NotImplementedError('TPU version must be 4 or higher.')
274
+ match tpu_version:
275
+ case 4:
276
+ # TPUv4 has much smaller VMEM size so we pick fixed block sizes.
277
+ bkv_p, bq = (512 // page_size, 32)
278
+ case 7:
279
+ bkv_p, bq = (4096 // page_size, 32)
280
+ case _:
281
+ bkv_p, bq = (2048 // page_size, 32)
282
+
283
+ keys = get_lookup_keys(
284
+ page_size,
285
+ q_dtype,
286
+ kv_dtype,
287
+ actual_num_q_heads,
288
+ actual_num_kv_heads,
289
+ head_dim,
290
+ page_size * pages_per_seq,
291
+ )
292
+ device, page_size, dtypes, head_dims, max_model_len = keys
293
+
294
+ try:
295
+ bkv_p, bq = TUNED_BLOCK_SIZES[device][page_size][dtypes][head_dims][
296
+ max_model_len]
297
+ except KeyError:
298
+ print('Couldn`t find tuned sizes for the RPA v3 kernel with %s', keys)
299
+
300
+ return (min(pages_per_seq, bkv_p), min(max_num_tokens, bq))
301
+
302
+
303
+ def get_lookup_keys(
304
+ page_size,
305
+ q_dtype,
306
+ kv_dtype,
307
+ num_q_heads,
308
+ num_kv_heads,
309
+ head_dim,
310
+ max_model_len,
311
+ ):
312
+ """Get the lookup keys for tuned block sizes."""
313
+ (
314
+ page_size,
315
+ q_dtype_name,
316
+ kv_dtype_name,
317
+ num_q_heads,
318
+ num_kv_heads,
319
+ head_dim,
320
+ max_model_len,
321
+ ) = get_simplified_raw_key(
322
+ page_size,
323
+ q_dtype,
324
+ kv_dtype,
325
+ num_q_heads,
326
+ num_kv_heads,
327
+ head_dim,
328
+ max_model_len,
329
+ )
330
+
331
+ return (
332
+ get_device_name(),
333
+ next_power_of_2(page_size),
334
+ f'q_{q_dtype_name}_kv_{kv_dtype_name}',
335
+ f'q_head-{num_q_heads}_kv_head-{num_kv_heads}_head-{head_dim}',
336
+ next_power_of_2(max_model_len),
337
+ )
338
+
339
+
340
+ def get_simplified_raw_key(
341
+ page_size,
342
+ q_dtype,
343
+ kv_dtype,
344
+ actual_num_q_heads,
345
+ actual_num_kv_heads,
346
+ head_dim,
347
+ max_model_len,
348
+ ):
349
+ """Get the simplified key."""
350
+ assert head_dim == 64
351
+ assert actual_num_q_heads % actual_num_kv_heads == 0
352
+ actual_num_q_heads_per_kv_head = actual_num_q_heads // actual_num_kv_heads
353
+ q_packing = get_dtype_packing(q_dtype)
354
+ kv_packing = get_dtype_packing(kv_dtype)
355
+ num_kv_heads = align_to(actual_num_kv_heads, kv_packing)
356
+ num_q_heads_per_kv_head = align_to(actual_num_q_heads_per_kv_head,
357
+ q_packing)
358
+
359
+ return (
360
+ next_power_of_2(page_size),
361
+ jnp.dtype(q_dtype).name,
362
+ jnp.dtype(kv_dtype).name,
363
+ next_power_of_2(num_q_heads_per_kv_head * actual_num_kv_heads),
364
+ next_power_of_2(num_kv_heads),
365
+ head_dim,
366
+ next_power_of_2(max_model_len),
367
+ )
@@ -0,0 +1,51 @@
1
+ """Utility functions for ragged paged attention."""
2
+ import jax
3
+ from jax._src import dtypes
4
+
5
+
6
+ def cdiv(a, b):
7
+ assert b != 0
8
+ return (a + b - 1) // b
9
+
10
+
11
+ def align_to(x, a):
12
+ return cdiv(x, a) * a
13
+
14
+
15
+ def get_dtype_bitwidth(dtype):
16
+ return dtypes.bit_width(dtype)
17
+
18
+
19
+ def get_dtype_packing(dtype):
20
+ bits = get_dtype_bitwidth(dtype)
21
+ return 32 // bits
22
+
23
+
24
+ def next_power_of_2(x: int):
25
+ """Finds the smallest power of 2 >= x using bit manipulation.
26
+
27
+ Args:
28
+ x: The input number (should be an integer).
29
+
30
+ Returns:
31
+ The smallest integer power of 2 that is >= x.
32
+ """
33
+ assert x > 0
34
+ if x == 1:
35
+ return 1
36
+ return 1 << (x - 1).bit_length()
37
+
38
+
39
+ def get_tpu_version() -> int:
40
+ """Returns the numeric version of the TPU, or -1 if not on TPU."""
41
+ kind = jax.devices()[0].device_kind
42
+ if 'TPU' not in kind:
43
+ return -1
44
+ if kind.endswith(' lite'):
45
+ kind = kind[:-len(' lite')]
46
+ if kind.endswith('p') or kind.endswith('e'):
47
+ kind = kind[:-1]
48
+ if kind == 'TPU7x':
49
+ return 7
50
+ assert kind[:-1] == 'TPU v', kind
51
+ return int(kind[-1])
File without changes
File without changes