tpu-inference 0.11.1.dev202511150811__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (179) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +53 -0
  6. tests/core/test_dp_scheduler.py +899 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/fused_moe_v1_test.py +105 -0
  10. tests/kernels/mla_v1_test.py +396 -0
  11. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  12. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  13. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  14. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
  15. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  16. tests/lora/__init__.py +0 -0
  17. tests/lora/conftest.py +32 -0
  18. tests/lora/test_bgmv.py +43 -0
  19. tests/lora/test_layers.py +654 -0
  20. tests/lora/test_lora.py +133 -0
  21. tests/lora/utils.py +96 -0
  22. tests/test_base.py +201 -0
  23. tests/test_envs.py +182 -0
  24. tests/test_quantization.py +836 -0
  25. tests/test_tpu_info.py +120 -0
  26. tests/test_utils.py +236 -0
  27. tpu_inference/__init__.py +34 -0
  28. tpu_inference/core/__init__.py +0 -0
  29. tpu_inference/core/core_tpu.py +786 -0
  30. tpu_inference/core/disagg_executor.py +118 -0
  31. tpu_inference/core/disagg_utils.py +51 -0
  32. tpu_inference/core/sched/__init__.py +0 -0
  33. tpu_inference/core/sched/dp_scheduler.py +523 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/jax_parallel_state.py +67 -0
  36. tpu_inference/distributed/tpu_connector.py +728 -0
  37. tpu_inference/distributed/utils.py +59 -0
  38. tpu_inference/env_override.py +9 -0
  39. tpu_inference/envs.py +107 -0
  40. tpu_inference/executors/__init__.py +0 -0
  41. tpu_inference/executors/ray_distributed_executor.py +362 -0
  42. tpu_inference/experimental/__init__.py +0 -0
  43. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  44. tpu_inference/kernels/__init__.py +0 -0
  45. tpu_inference/kernels/collectives/__init__.py +0 -0
  46. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  47. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  48. tpu_inference/kernels/collectives/util.py +47 -0
  49. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  50. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  51. tpu_inference/kernels/fused_moe/__init__.py +0 -0
  52. tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
  53. tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
  54. tpu_inference/kernels/mla/__init__.py +0 -0
  55. tpu_inference/kernels/mla/v1/__init__.py +0 -0
  56. tpu_inference/kernels/mla/v1/kernel.py +1349 -0
  57. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  58. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  59. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  60. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  61. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  62. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  66. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
  71. tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
  72. tpu_inference/layers/__init__.py +0 -0
  73. tpu_inference/layers/common/__init__.py +0 -0
  74. tpu_inference/layers/common/attention_interface.py +390 -0
  75. tpu_inference/layers/common/attention_metadata.py +34 -0
  76. tpu_inference/layers/common/binary_search.py +295 -0
  77. tpu_inference/layers/common/quant_methods.py +8 -0
  78. tpu_inference/layers/common/sharding.py +582 -0
  79. tpu_inference/layers/jax/__init__.py +0 -0
  80. tpu_inference/layers/jax/attention/__init__.py +0 -0
  81. tpu_inference/layers/jax/attention/attention.py +255 -0
  82. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  83. tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
  84. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  85. tpu_inference/layers/jax/base.py +151 -0
  86. tpu_inference/layers/jax/constants.py +88 -0
  87. tpu_inference/layers/jax/layers.py +301 -0
  88. tpu_inference/layers/jax/misc.py +16 -0
  89. tpu_inference/layers/jax/moe/__init__.py +0 -0
  90. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  91. tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
  92. tpu_inference/layers/jax/moe/moe.py +209 -0
  93. tpu_inference/layers/jax/rope.py +280 -0
  94. tpu_inference/layers/jax/rope_interface.py +214 -0
  95. tpu_inference/layers/jax/sample/__init__.py +0 -0
  96. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  97. tpu_inference/layers/jax/sample/sampling.py +96 -0
  98. tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
  99. tpu_inference/layers/jax/transformer_block.py +107 -0
  100. tpu_inference/layers/vllm/__init__.py +0 -0
  101. tpu_inference/layers/vllm/attention.py +221 -0
  102. tpu_inference/layers/vllm/fused_moe.py +507 -0
  103. tpu_inference/layers/vllm/linear_common.py +186 -0
  104. tpu_inference/layers/vllm/quantization/__init__.py +39 -0
  105. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  106. tpu_inference/layers/vllm/quantization/common.py +105 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  108. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
  109. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
  110. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  111. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  112. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  113. tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
  114. tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
  115. tpu_inference/layers/vllm/sharding.py +230 -0
  116. tpu_inference/logger.py +10 -0
  117. tpu_inference/lora/__init__.py +0 -0
  118. tpu_inference/lora/torch_lora_ops.py +103 -0
  119. tpu_inference/lora/torch_punica_tpu.py +311 -0
  120. tpu_inference/mock/__init__.py +0 -0
  121. tpu_inference/mock/vllm_config_utils.py +28 -0
  122. tpu_inference/mock/vllm_envs.py +1219 -0
  123. tpu_inference/mock/vllm_logger.py +212 -0
  124. tpu_inference/mock/vllm_logging_utils.py +15 -0
  125. tpu_inference/models/__init__.py +0 -0
  126. tpu_inference/models/common/__init__.py +0 -0
  127. tpu_inference/models/common/model_loader.py +444 -0
  128. tpu_inference/models/jax/__init__.py +0 -0
  129. tpu_inference/models/jax/deepseek_v3.py +868 -0
  130. tpu_inference/models/jax/gpt_oss.py +492 -0
  131. tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
  132. tpu_inference/models/jax/llama3.py +375 -0
  133. tpu_inference/models/jax/llama4.py +629 -0
  134. tpu_inference/models/jax/llama_eagle3.py +333 -0
  135. tpu_inference/models/jax/phi3.py +376 -0
  136. tpu_inference/models/jax/qwen2.py +375 -0
  137. tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
  138. tpu_inference/models/jax/qwen3.py +302 -0
  139. tpu_inference/models/jax/utils/__init__.py +0 -0
  140. tpu_inference/models/jax/utils/file_utils.py +96 -0
  141. tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
  142. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  143. tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
  144. tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
  145. tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
  146. tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
  147. tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
  148. tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
  149. tpu_inference/models/jax/utils/weight_utils.py +529 -0
  150. tpu_inference/models/vllm/__init__.py +0 -0
  151. tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
  152. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  153. tpu_inference/platforms/__init__.py +2 -0
  154. tpu_inference/platforms/tpu_platform.py +269 -0
  155. tpu_inference/runner/__init__.py +0 -0
  156. tpu_inference/runner/block_table.py +122 -0
  157. tpu_inference/runner/compilation_manager.py +780 -0
  158. tpu_inference/runner/input_batch.py +435 -0
  159. tpu_inference/runner/kv_cache.py +132 -0
  160. tpu_inference/runner/kv_cache_manager.py +479 -0
  161. tpu_inference/runner/lora_utils.py +92 -0
  162. tpu_inference/runner/multimodal_manager.py +217 -0
  163. tpu_inference/runner/persistent_batch_manager.py +244 -0
  164. tpu_inference/runner/speculative_decoding_manager.py +248 -0
  165. tpu_inference/runner/structured_decoding_manager.py +88 -0
  166. tpu_inference/runner/tpu_runner.py +1620 -0
  167. tpu_inference/runner/utils.py +426 -0
  168. tpu_inference/spec_decode/__init__.py +0 -0
  169. tpu_inference/spec_decode/jax/__init__.py +0 -0
  170. tpu_inference/spec_decode/jax/eagle3.py +367 -0
  171. tpu_inference/tpu_info.py +77 -0
  172. tpu_inference/utils.py +317 -0
  173. tpu_inference/worker/__init__.py +0 -0
  174. tpu_inference/worker/tpu_worker.py +321 -0
  175. tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
  176. tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
  177. tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
  178. tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
  179. tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
@@ -0,0 +1,191 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+
3
+ import functools
4
+
5
+ import jax
6
+ import jax.numpy as jnp
7
+ from absl.testing import absltest, parameterized
8
+ from jax._src import test_util as jtu
9
+
10
+ from tpu_inference.kernels.quantized_matmul import (kernel, tuned_block_sizes,
11
+ util)
12
+
13
+ quantized_matmul_kernel = kernel.quantized_matmul_kernel
14
+ quantize_tensor = util.quantize_tensor
15
+ get_tuned_block_sizes = tuned_block_sizes.get_tuned_block_sizes
16
+
17
+ jax.config.parse_flags_with_absl()
18
+
19
+
20
+ @functools.partial(jax.jit, static_argnames=["quantize_activation"])
21
+ def reference_quantized_matmul(
22
+ x: jax.Array,
23
+ w_q: jax.Array,
24
+ w_scale: jax.Array,
25
+ quantize_activation=True,
26
+ ):
27
+ if quantize_activation:
28
+ acc_dtype = jnp.float32
29
+ if quantize_activation and jnp.issubdtype(w_q.dtype, jnp.integer):
30
+ acc_dtype = jnp.int32
31
+
32
+ x_q, x_scale = quantize_tensor(x, w_q.dtype)
33
+ out = jax.lax.dot_general(
34
+ x_q,
35
+ w_q,
36
+ dimension_numbers=(((1, ), (1, )), ((), ())),
37
+ preferred_element_type=acc_dtype,
38
+ ).astype(jnp.float32)
39
+ out *= x_scale
40
+ else:
41
+ out = jax.lax.dot_general(
42
+ x,
43
+ w_q,
44
+ dimension_numbers=(((1, ), (1, )), ((), ())),
45
+ preferred_element_type=jnp.float32,
46
+ )
47
+ out *= jnp.expand_dims(w_scale, 0)
48
+ return out.astype(x.dtype)
49
+
50
+
51
+ @jtu.with_config(jax_numpy_dtype_promotion="standard")
52
+ class QuantizedMatmulKernelTest(jtu.JaxTestCase):
53
+
54
+ def setUp(self):
55
+ super().setUp()
56
+ if not jtu.is_device_tpu_at_least(6):
57
+ self.skipTest("Expect TPUv6+")
58
+
59
+ def _test_quantized_matmul(
60
+ self,
61
+ dtype: jnp.dtype,
62
+ q_dtype: jnp.dtype,
63
+ bs: int,
64
+ n_input_features: int,
65
+ n_output_features: int,
66
+ quantize_activation: bool,
67
+ tuned_value=None,
68
+ atol=0.5,
69
+ rtol=0.5,
70
+ ):
71
+
72
+ prng_key = jax.random.key(1234)
73
+ k0, k1 = jax.random.split(prng_key, 2)
74
+ x = jax.random.uniform(k0, (bs, n_input_features),
75
+ dtype=dtype,
76
+ minval=0,
77
+ maxval=1)
78
+ w = jax.random.uniform(
79
+ k1,
80
+ (n_output_features, n_input_features),
81
+ dtype=dtype,
82
+ minval=-1,
83
+ maxval=1,
84
+ )
85
+ w_q, w_scale = quantize_tensor(w, q_dtype)
86
+ w_scale = jnp.squeeze(w_scale)
87
+ assert w_scale.shape == (n_output_features, )
88
+
89
+ x_q_dtype = w_q.dtype if quantize_activation else dtype
90
+ output = quantized_matmul_kernel(
91
+ x,
92
+ w_q,
93
+ w_scale,
94
+ x_q_dtype=x_q_dtype,
95
+ tuned_value=tuned_value,
96
+ )
97
+ expected = reference_quantized_matmul(
98
+ x, w_q, w_scale, quantize_activation=quantize_activation)
99
+
100
+ self.assertAllClose(output,
101
+ expected,
102
+ rtol=rtol,
103
+ atol=atol,
104
+ check_dtypes=True)
105
+
106
+ @parameterized.product(
107
+ dtype=[jnp.bfloat16, jnp.float32],
108
+ q_dtype=[jnp.int8, jnp.float8_e4m3fn],
109
+ bs=[128, 256, 512],
110
+ n_input_features=[128, 256, 512],
111
+ n_output_features=[128, 256, 512],
112
+ quantize_activation=[True],
113
+ )
114
+ def test_quantized_matmul_various_input_shapes(
115
+ self,
116
+ dtype: jnp.dtype,
117
+ q_dtype: jnp.dtype,
118
+ bs: int,
119
+ n_input_features: int,
120
+ n_output_features: int,
121
+ quantize_activation: bool,
122
+ ):
123
+ self._test_quantized_matmul(
124
+ dtype,
125
+ q_dtype,
126
+ bs,
127
+ n_input_features,
128
+ n_output_features,
129
+ quantize_activation=quantize_activation,
130
+ tuned_value=None,
131
+ )
132
+
133
+ @parameterized.product(
134
+ dtype=[jnp.bfloat16, jnp.float32],
135
+ q_dtype=[jnp.int8, jnp.float8_e4m3fn],
136
+ bs=[64, 192],
137
+ n_input_features=[64, 192],
138
+ n_output_features=[64, 192],
139
+ quantize_activation=[True],
140
+ )
141
+ def test_quantized_matmul_unaligned_input_shapes(
142
+ self,
143
+ dtype: jnp.dtype,
144
+ q_dtype: jnp.dtype,
145
+ bs: int,
146
+ n_input_features: int,
147
+ n_output_features: int,
148
+ quantize_activation: bool,
149
+ ):
150
+ self._test_quantized_matmul(
151
+ dtype,
152
+ q_dtype,
153
+ bs,
154
+ n_input_features,
155
+ n_output_features,
156
+ quantize_activation=quantize_activation,
157
+ tuned_value=None,
158
+ )
159
+
160
+ @parameterized.parameters(
161
+ (jnp.bfloat16, jnp.int8, 128, 1280, 8192, True),
162
+ (jnp.bfloat16, jnp.int8, 128, 28672, 4096, True),
163
+ (jnp.bfloat16, jnp.int8, 128, 4096, 14336, True),
164
+ (jnp.bfloat16, jnp.int8, 128, 4096, 4096, True),
165
+ (jnp.bfloat16, jnp.int8, 128, 6144, 4096, True),
166
+ (jnp.bfloat16, jnp.int8, 128, 7168, 8192, True),
167
+ (jnp.bfloat16, jnp.int8, 128, 8192, 1024, True),
168
+ (jnp.bfloat16, jnp.int8, 128, 8192, 3584, True),
169
+ )
170
+ def test_quantized_matmul_use_tuned_block_sizes(
171
+ self,
172
+ dtype: jnp.dtype,
173
+ q_dtype: jnp.dtype,
174
+ bs: int,
175
+ n_input_features: int,
176
+ n_output_features: int,
177
+ quantize_activation: bool,
178
+ ):
179
+ self._test_quantized_matmul(
180
+ dtype,
181
+ q_dtype,
182
+ bs,
183
+ n_input_features,
184
+ n_output_features,
185
+ quantize_activation=quantize_activation,
186
+ tuned_value=None,
187
+ )
188
+
189
+
190
+ if __name__ == "__main__":
191
+ absltest.main(testLoader=jtu.JaxTestLoader())
@@ -0,0 +1,234 @@
1
+ import jax
2
+ import jax.numpy as jnp
3
+ import numpy as np
4
+ from absl.testing import parameterized
5
+ from jax._src import test_util as jtu
6
+ from jax.sharding import Mesh, NamedSharding
7
+ from jax.sharding import PartitionSpec as P
8
+
9
+ from tpu_inference.kernels.ragged_paged_attention.v2.ragged_kv_cache_update import \
10
+ kv_cache_update
11
+
12
+
13
+ def kv_cache_update_ref(new_kv, slot_mapping, kv_cache):
14
+ """Reference implementation of KV cache update."""
15
+ for i in range(slot_mapping.shape[1]):
16
+ start_idx, new_kv_idx, slice_len = slot_mapping[:, i]
17
+ kv_cache = kv_cache.at[start_idx:start_idx + slice_len].set(
18
+ new_kv[new_kv_idx:new_kv_idx + slice_len])
19
+ return kv_cache
20
+
21
+
22
+ @jtu.with_config(jax_numpy_dtype_promotion="standard")
23
+ class KVCacheUpdateTest(jtu.JaxTestCase):
24
+
25
+ def _generate_data(self, page_size, combined_kv_head_num, head_dim):
26
+ page_num = 20
27
+ padded_num_tokens = 128
28
+ prng_key = jax.random.key(1234)
29
+ kv_cache = jnp.zeros(
30
+ (page_num * page_size, combined_kv_head_num, head_dim),
31
+ dtype=jnp.bfloat16)
32
+ new_kv = jax.random.normal(
33
+ prng_key, (padded_num_tokens, combined_kv_head_num, head_dim),
34
+ dtype=jnp.bfloat16)
35
+ slice_lens = np.array([7, page_size, page_size, 1, 1, 1, 9],
36
+ dtype=np.int32)
37
+ num_slices = jnp.array([len(slice_lens)], dtype=np.int32)
38
+ kv_cache_start_indices = np.array([
39
+ page_size * 2 - 7, page_size * 2, page_size * 3, page_size * 4 + 6,
40
+ page_size * 5 + 7, page_size * 6 + 8, page_size * 15 + 3
41
+ ],
42
+ dtype=np.int32)
43
+ new_kv_cache_indices = np.concatenate(
44
+ [np.array([0], dtype=np.int32),
45
+ np.cumsum(slice_lens[:-1])])
46
+ slot_mapping_np = np.stack(
47
+ [kv_cache_start_indices, new_kv_cache_indices, slice_lens], axis=1)
48
+ slot_mapping_np = np.transpose(slot_mapping_np)
49
+ slot_mapping = jnp.array(slot_mapping_np, dtype=jnp.int32)
50
+ return new_kv, slot_mapping, kv_cache, num_slices
51
+
52
+ @parameterized.product(
53
+ page_size=[32, 33],
54
+ combined_kv_head_num=[2, 16],
55
+ head_dim=[128, 256],
56
+ num_slices_per_block=[None, 8],
57
+ dynamic_validate_inputs=[False, True],
58
+ )
59
+ def test_basic(self, page_size: int, combined_kv_head_num: int,
60
+ head_dim: int, num_slices_per_block: int,
61
+ dynamic_validate_inputs: bool):
62
+ new_kv, slot_mapping, kv_cache, num_slices = self._generate_data(
63
+ page_size, combined_kv_head_num, head_dim)
64
+ old_kv_cache_copy = kv_cache.copy()
65
+
66
+ with jax.disable_jit(disable=dynamic_validate_inputs):
67
+ updated_kv_cache = kv_cache_update(
68
+ new_kv,
69
+ slot_mapping,
70
+ kv_cache,
71
+ num_slices,
72
+ page_size=page_size,
73
+ num_slices_per_block=num_slices_per_block,
74
+ dynamic_validate_inputs=dynamic_validate_inputs)
75
+ updated_kv_cache_ref = kv_cache_update_ref(new_kv,
76
+ np.asarray(slot_mapping),
77
+ old_kv_cache_copy)
78
+ self.assertAllClose(updated_kv_cache,
79
+ updated_kv_cache_ref,
80
+ atol=1e-4,
81
+ rtol=1e-4)
82
+
83
+ @parameterized.product(
84
+ page_size=[32, 33],
85
+ combined_kv_head_num=[16, 32],
86
+ head_dim=[128, 256],
87
+ num_slices_per_block=[None, 8],
88
+ )
89
+ def test_torchax_shard_map(self, page_size: int, combined_kv_head_num: int,
90
+ head_dim: int, num_slices_per_block: int):
91
+ new_kv, slot_mapping, kv_cache, num_slices = self._generate_data(
92
+ page_size, combined_kv_head_num, head_dim)
93
+ old_kv_cache_copy = kv_cache.copy()
94
+
95
+ mesh = Mesh(jax.devices(), 'x')
96
+ kv_cache_pspec = P(None, 'x', None)
97
+
98
+ new_kv = jax.device_put(new_kv, NamedSharding(mesh, kv_cache_pspec))
99
+ slot_mapping = jax.device_put(slot_mapping, NamedSharding(mesh, P()))
100
+ kv_cache = jax.device_put(kv_cache,
101
+ NamedSharding(mesh, kv_cache_pspec))
102
+ num_slices = jax.device_put(num_slices, NamedSharding(mesh, P()))
103
+
104
+ updated_kv_cache = kv_cache_update(new_kv, slot_mapping, kv_cache,
105
+ num_slices,
106
+ page_size=page_size,
107
+ num_slices_per_block=\
108
+ num_slices_per_block,
109
+ mesh=mesh,
110
+ kv_cache_pspec=kv_cache_pspec,)
111
+ updated_kv_cache_ref = kv_cache_update_ref(new_kv,
112
+ np.asarray(slot_mapping),
113
+ old_kv_cache_copy)
114
+ self.assertAllClose(updated_kv_cache,
115
+ updated_kv_cache_ref,
116
+ atol=1e-4,
117
+ rtol=1e-4)
118
+
119
+ def test_invalid_inputs(self):
120
+ # Test all the cases when the inputs are invalid in the `_dynamic_validate_inputs` method
121
+ page_size = 32
122
+ combined_kv_head_num = 2
123
+ head_dim = 128
124
+
125
+ new_kv, slot_mapping, kv_cache, num_slices = self._generate_data(
126
+ page_size, combined_kv_head_num, head_dim)
127
+
128
+ with jax.disable_jit():
129
+ # Case 1: new_kv_start < 0
130
+ invalid_slot_mapping = slot_mapping.at[1, 0].set(-1)
131
+ with self.assertRaisesRegex(
132
+ ValueError, "new_kv_start=-1 must be greater than"):
133
+ kv_cache_update(new_kv,
134
+ invalid_slot_mapping,
135
+ kv_cache,
136
+ num_slices,
137
+ page_size=page_size,
138
+ dynamic_validate_inputs=True)
139
+
140
+ # Case 2: kv_cache_start < 0
141
+ invalid_slot_mapping = slot_mapping.at[0, 0].set(-1)
142
+ with self.assertRaisesRegex(
143
+ ValueError, "kv_cache_start=-1 must be greater than"):
144
+ kv_cache_update(new_kv,
145
+ invalid_slot_mapping,
146
+ kv_cache,
147
+ num_slices,
148
+ page_size=page_size,
149
+ dynamic_validate_inputs=True)
150
+
151
+ # Case 3: slice_len <= 0
152
+ invalid_slot_mapping = slot_mapping.at[2, 0].set(0)
153
+ with self.assertRaisesRegex(
154
+ ValueError, "slice_len=0 must be less or equal to"):
155
+ kv_cache_update(new_kv,
156
+ invalid_slot_mapping,
157
+ kv_cache,
158
+ num_slices,
159
+ page_size=page_size,
160
+ dynamic_validate_inputs=True)
161
+
162
+ # Case 4: slice_len > page_size
163
+ invalid_slot_mapping = slot_mapping.at[2, 0].set(page_size + 1)
164
+ with self.assertRaisesRegex(
165
+ ValueError,
166
+ f"slice_len={page_size + 1} must be less or equal to"):
167
+ kv_cache_update(new_kv,
168
+ invalid_slot_mapping,
169
+ kv_cache,
170
+ num_slices,
171
+ page_size=page_size,
172
+ dynamic_validate_inputs=True)
173
+
174
+ # Case 5: new_kv_start + slice_len > new_token_num
175
+ invalid_slot_mapping = slot_mapping.at[1, 0].set(new_kv.shape[0])
176
+ with self.assertRaisesRegex(
177
+ ValueError,
178
+ "new_kv_start=128 \+ slice_len=7 must be less or equal to new_token_num=128"
179
+ ):
180
+ kv_cache_update(new_kv,
181
+ invalid_slot_mapping,
182
+ kv_cache,
183
+ num_slices,
184
+ page_size=page_size,
185
+ dynamic_validate_inputs=True)
186
+
187
+ # Case 6: kv_cache_start + slice_len > kv_cache_token_num
188
+ invalid_slot_mapping = slot_mapping.at[0, 0].set(kv_cache.shape[0])
189
+ with self.assertRaisesRegex(
190
+ ValueError,
191
+ "kv_cache_start=640 \+ slice_len=7 must be less or equal to kv_cache_token_num=640"
192
+ ):
193
+ kv_cache_update(new_kv,
194
+ invalid_slot_mapping,
195
+ kv_cache,
196
+ num_slices,
197
+ page_size=page_size,
198
+ dynamic_validate_inputs=True)
199
+
200
+ # Case 7: Each slice must reside in the same page
201
+ invalid_slot_mapping = slot_mapping.at[0, 0].set(page_size - 1)
202
+ invalid_slot_mapping = invalid_slot_mapping.at[2, 0].set(page_size)
203
+ with self.assertRaisesRegex(
204
+ ValueError, "Each slice must reside in the same page"):
205
+ kv_cache_update(new_kv,
206
+ invalid_slot_mapping,
207
+ kv_cache,
208
+ num_slices,
209
+ page_size=page_size,
210
+ dynamic_validate_inputs=True)
211
+
212
+ # Case 8: new_kv slices are not continuous
213
+ invalid_slot_mapping = slot_mapping.at[1,
214
+ 1].set(slot_mapping[1, 1] +
215
+ 1)
216
+ with self.assertRaisesRegex(ValueError, "is expeced to equal to"):
217
+ kv_cache_update(new_kv,
218
+ invalid_slot_mapping,
219
+ kv_cache,
220
+ num_slices,
221
+ page_size=page_size,
222
+ dynamic_validate_inputs=True)
223
+
224
+ # Case 9: Overlap among the kv cache slices
225
+ invalid_slot_mapping = slot_mapping.at[0, 4].set(slot_mapping[0,
226
+ 3])
227
+ with self.assertRaisesRegex(
228
+ ValueError, "Overlap detected in kv_cache intervals"):
229
+ kv_cache_update(new_kv,
230
+ invalid_slot_mapping,
231
+ kv_cache,
232
+ num_slices,
233
+ page_size=page_size,
234
+ dynamic_validate_inputs=True)