tpu-inference 0.11.1.dev202511150811__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +0 -0
- tests/core/__init__.py +0 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +53 -0
- tests/core/test_dp_scheduler.py +899 -0
- tests/core/test_init.py +49 -0
- tests/kernels/__init__.py +0 -0
- tests/kernels/fused_moe_v1_test.py +105 -0
- tests/kernels/mla_v1_test.py +396 -0
- tests/kernels/quantized_matmul_kernel_test.py +191 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
- tests/lora/__init__.py +0 -0
- tests/lora/conftest.py +32 -0
- tests/lora/test_bgmv.py +43 -0
- tests/lora/test_layers.py +654 -0
- tests/lora/test_lora.py +133 -0
- tests/lora/utils.py +96 -0
- tests/test_base.py +201 -0
- tests/test_envs.py +182 -0
- tests/test_quantization.py +836 -0
- tests/test_tpu_info.py +120 -0
- tests/test_utils.py +236 -0
- tpu_inference/__init__.py +34 -0
- tpu_inference/core/__init__.py +0 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +51 -0
- tpu_inference/core/sched/__init__.py +0 -0
- tpu_inference/core/sched/dp_scheduler.py +523 -0
- tpu_inference/distributed/__init__.py +0 -0
- tpu_inference/distributed/jax_parallel_state.py +67 -0
- tpu_inference/distributed/tpu_connector.py +728 -0
- tpu_inference/distributed/utils.py +59 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +107 -0
- tpu_inference/executors/__init__.py +0 -0
- tpu_inference/executors/ray_distributed_executor.py +362 -0
- tpu_inference/experimental/__init__.py +0 -0
- tpu_inference/experimental/llama3_jax_stashed.py +258 -0
- tpu_inference/kernels/__init__.py +0 -0
- tpu_inference/kernels/collectives/__init__.py +0 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +0 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
- tpu_inference/kernels/mla/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/kernel.py +1349 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
- tpu_inference/layers/__init__.py +0 -0
- tpu_inference/layers/common/__init__.py +0 -0
- tpu_inference/layers/common/attention_interface.py +390 -0
- tpu_inference/layers/common/attention_metadata.py +34 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +8 -0
- tpu_inference/layers/common/sharding.py +582 -0
- tpu_inference/layers/jax/__init__.py +0 -0
- tpu_inference/layers/jax/attention/__init__.py +0 -0
- tpu_inference/layers/jax/attention/attention.py +255 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
- tpu_inference/layers/jax/base.py +151 -0
- tpu_inference/layers/jax/constants.py +88 -0
- tpu_inference/layers/jax/layers.py +301 -0
- tpu_inference/layers/jax/misc.py +16 -0
- tpu_inference/layers/jax/moe/__init__.py +0 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
- tpu_inference/layers/jax/moe/moe.py +209 -0
- tpu_inference/layers/jax/rope.py +280 -0
- tpu_inference/layers/jax/rope_interface.py +214 -0
- tpu_inference/layers/jax/sample/__init__.py +0 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
- tpu_inference/layers/jax/sample/sampling.py +96 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
- tpu_inference/layers/jax/transformer_block.py +107 -0
- tpu_inference/layers/vllm/__init__.py +0 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +507 -0
- tpu_inference/layers/vllm/linear_common.py +186 -0
- tpu_inference/layers/vllm/quantization/__init__.py +39 -0
- tpu_inference/layers/vllm/quantization/awq.py +207 -0
- tpu_inference/layers/vllm/quantization/common.py +105 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
- tpu_inference/layers/vllm/sharding.py +230 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +0 -0
- tpu_inference/lora/torch_lora_ops.py +103 -0
- tpu_inference/lora/torch_punica_tpu.py +311 -0
- tpu_inference/mock/__init__.py +0 -0
- tpu_inference/mock/vllm_config_utils.py +28 -0
- tpu_inference/mock/vllm_envs.py +1219 -0
- tpu_inference/mock/vllm_logger.py +212 -0
- tpu_inference/mock/vllm_logging_utils.py +15 -0
- tpu_inference/models/__init__.py +0 -0
- tpu_inference/models/common/__init__.py +0 -0
- tpu_inference/models/common/model_loader.py +444 -0
- tpu_inference/models/jax/__init__.py +0 -0
- tpu_inference/models/jax/deepseek_v3.py +868 -0
- tpu_inference/models/jax/gpt_oss.py +492 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
- tpu_inference/models/jax/llama3.py +375 -0
- tpu_inference/models/jax/llama4.py +629 -0
- tpu_inference/models/jax/llama_eagle3.py +333 -0
- tpu_inference/models/jax/phi3.py +376 -0
- tpu_inference/models/jax/qwen2.py +375 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
- tpu_inference/models/jax/qwen3.py +302 -0
- tpu_inference/models/jax/utils/__init__.py +0 -0
- tpu_inference/models/jax/utils/file_utils.py +96 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
- tpu_inference/models/jax/utils/weight_utils.py +529 -0
- tpu_inference/models/vllm/__init__.py +0 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
- tpu_inference/platforms/__init__.py +2 -0
- tpu_inference/platforms/tpu_platform.py +269 -0
- tpu_inference/runner/__init__.py +0 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +780 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +132 -0
- tpu_inference/runner/kv_cache_manager.py +479 -0
- tpu_inference/runner/lora_utils.py +92 -0
- tpu_inference/runner/multimodal_manager.py +217 -0
- tpu_inference/runner/persistent_batch_manager.py +244 -0
- tpu_inference/runner/speculative_decoding_manager.py +248 -0
- tpu_inference/runner/structured_decoding_manager.py +88 -0
- tpu_inference/runner/tpu_runner.py +1620 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +0 -0
- tpu_inference/spec_decode/jax/__init__.py +0 -0
- tpu_inference/spec_decode/jax/eagle3.py +367 -0
- tpu_inference/tpu_info.py +77 -0
- tpu_inference/utils.py +317 -0
- tpu_inference/worker/__init__.py +0 -0
- tpu_inference/worker/tpu_worker.py +321 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,191 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
|
|
3
|
+
import functools
|
|
4
|
+
|
|
5
|
+
import jax
|
|
6
|
+
import jax.numpy as jnp
|
|
7
|
+
from absl.testing import absltest, parameterized
|
|
8
|
+
from jax._src import test_util as jtu
|
|
9
|
+
|
|
10
|
+
from tpu_inference.kernels.quantized_matmul import (kernel, tuned_block_sizes,
|
|
11
|
+
util)
|
|
12
|
+
|
|
13
|
+
quantized_matmul_kernel = kernel.quantized_matmul_kernel
|
|
14
|
+
quantize_tensor = util.quantize_tensor
|
|
15
|
+
get_tuned_block_sizes = tuned_block_sizes.get_tuned_block_sizes
|
|
16
|
+
|
|
17
|
+
jax.config.parse_flags_with_absl()
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@functools.partial(jax.jit, static_argnames=["quantize_activation"])
|
|
21
|
+
def reference_quantized_matmul(
|
|
22
|
+
x: jax.Array,
|
|
23
|
+
w_q: jax.Array,
|
|
24
|
+
w_scale: jax.Array,
|
|
25
|
+
quantize_activation=True,
|
|
26
|
+
):
|
|
27
|
+
if quantize_activation:
|
|
28
|
+
acc_dtype = jnp.float32
|
|
29
|
+
if quantize_activation and jnp.issubdtype(w_q.dtype, jnp.integer):
|
|
30
|
+
acc_dtype = jnp.int32
|
|
31
|
+
|
|
32
|
+
x_q, x_scale = quantize_tensor(x, w_q.dtype)
|
|
33
|
+
out = jax.lax.dot_general(
|
|
34
|
+
x_q,
|
|
35
|
+
w_q,
|
|
36
|
+
dimension_numbers=(((1, ), (1, )), ((), ())),
|
|
37
|
+
preferred_element_type=acc_dtype,
|
|
38
|
+
).astype(jnp.float32)
|
|
39
|
+
out *= x_scale
|
|
40
|
+
else:
|
|
41
|
+
out = jax.lax.dot_general(
|
|
42
|
+
x,
|
|
43
|
+
w_q,
|
|
44
|
+
dimension_numbers=(((1, ), (1, )), ((), ())),
|
|
45
|
+
preferred_element_type=jnp.float32,
|
|
46
|
+
)
|
|
47
|
+
out *= jnp.expand_dims(w_scale, 0)
|
|
48
|
+
return out.astype(x.dtype)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
52
|
+
class QuantizedMatmulKernelTest(jtu.JaxTestCase):
|
|
53
|
+
|
|
54
|
+
def setUp(self):
|
|
55
|
+
super().setUp()
|
|
56
|
+
if not jtu.is_device_tpu_at_least(6):
|
|
57
|
+
self.skipTest("Expect TPUv6+")
|
|
58
|
+
|
|
59
|
+
def _test_quantized_matmul(
|
|
60
|
+
self,
|
|
61
|
+
dtype: jnp.dtype,
|
|
62
|
+
q_dtype: jnp.dtype,
|
|
63
|
+
bs: int,
|
|
64
|
+
n_input_features: int,
|
|
65
|
+
n_output_features: int,
|
|
66
|
+
quantize_activation: bool,
|
|
67
|
+
tuned_value=None,
|
|
68
|
+
atol=0.5,
|
|
69
|
+
rtol=0.5,
|
|
70
|
+
):
|
|
71
|
+
|
|
72
|
+
prng_key = jax.random.key(1234)
|
|
73
|
+
k0, k1 = jax.random.split(prng_key, 2)
|
|
74
|
+
x = jax.random.uniform(k0, (bs, n_input_features),
|
|
75
|
+
dtype=dtype,
|
|
76
|
+
minval=0,
|
|
77
|
+
maxval=1)
|
|
78
|
+
w = jax.random.uniform(
|
|
79
|
+
k1,
|
|
80
|
+
(n_output_features, n_input_features),
|
|
81
|
+
dtype=dtype,
|
|
82
|
+
minval=-1,
|
|
83
|
+
maxval=1,
|
|
84
|
+
)
|
|
85
|
+
w_q, w_scale = quantize_tensor(w, q_dtype)
|
|
86
|
+
w_scale = jnp.squeeze(w_scale)
|
|
87
|
+
assert w_scale.shape == (n_output_features, )
|
|
88
|
+
|
|
89
|
+
x_q_dtype = w_q.dtype if quantize_activation else dtype
|
|
90
|
+
output = quantized_matmul_kernel(
|
|
91
|
+
x,
|
|
92
|
+
w_q,
|
|
93
|
+
w_scale,
|
|
94
|
+
x_q_dtype=x_q_dtype,
|
|
95
|
+
tuned_value=tuned_value,
|
|
96
|
+
)
|
|
97
|
+
expected = reference_quantized_matmul(
|
|
98
|
+
x, w_q, w_scale, quantize_activation=quantize_activation)
|
|
99
|
+
|
|
100
|
+
self.assertAllClose(output,
|
|
101
|
+
expected,
|
|
102
|
+
rtol=rtol,
|
|
103
|
+
atol=atol,
|
|
104
|
+
check_dtypes=True)
|
|
105
|
+
|
|
106
|
+
@parameterized.product(
|
|
107
|
+
dtype=[jnp.bfloat16, jnp.float32],
|
|
108
|
+
q_dtype=[jnp.int8, jnp.float8_e4m3fn],
|
|
109
|
+
bs=[128, 256, 512],
|
|
110
|
+
n_input_features=[128, 256, 512],
|
|
111
|
+
n_output_features=[128, 256, 512],
|
|
112
|
+
quantize_activation=[True],
|
|
113
|
+
)
|
|
114
|
+
def test_quantized_matmul_various_input_shapes(
|
|
115
|
+
self,
|
|
116
|
+
dtype: jnp.dtype,
|
|
117
|
+
q_dtype: jnp.dtype,
|
|
118
|
+
bs: int,
|
|
119
|
+
n_input_features: int,
|
|
120
|
+
n_output_features: int,
|
|
121
|
+
quantize_activation: bool,
|
|
122
|
+
):
|
|
123
|
+
self._test_quantized_matmul(
|
|
124
|
+
dtype,
|
|
125
|
+
q_dtype,
|
|
126
|
+
bs,
|
|
127
|
+
n_input_features,
|
|
128
|
+
n_output_features,
|
|
129
|
+
quantize_activation=quantize_activation,
|
|
130
|
+
tuned_value=None,
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
@parameterized.product(
|
|
134
|
+
dtype=[jnp.bfloat16, jnp.float32],
|
|
135
|
+
q_dtype=[jnp.int8, jnp.float8_e4m3fn],
|
|
136
|
+
bs=[64, 192],
|
|
137
|
+
n_input_features=[64, 192],
|
|
138
|
+
n_output_features=[64, 192],
|
|
139
|
+
quantize_activation=[True],
|
|
140
|
+
)
|
|
141
|
+
def test_quantized_matmul_unaligned_input_shapes(
|
|
142
|
+
self,
|
|
143
|
+
dtype: jnp.dtype,
|
|
144
|
+
q_dtype: jnp.dtype,
|
|
145
|
+
bs: int,
|
|
146
|
+
n_input_features: int,
|
|
147
|
+
n_output_features: int,
|
|
148
|
+
quantize_activation: bool,
|
|
149
|
+
):
|
|
150
|
+
self._test_quantized_matmul(
|
|
151
|
+
dtype,
|
|
152
|
+
q_dtype,
|
|
153
|
+
bs,
|
|
154
|
+
n_input_features,
|
|
155
|
+
n_output_features,
|
|
156
|
+
quantize_activation=quantize_activation,
|
|
157
|
+
tuned_value=None,
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
@parameterized.parameters(
|
|
161
|
+
(jnp.bfloat16, jnp.int8, 128, 1280, 8192, True),
|
|
162
|
+
(jnp.bfloat16, jnp.int8, 128, 28672, 4096, True),
|
|
163
|
+
(jnp.bfloat16, jnp.int8, 128, 4096, 14336, True),
|
|
164
|
+
(jnp.bfloat16, jnp.int8, 128, 4096, 4096, True),
|
|
165
|
+
(jnp.bfloat16, jnp.int8, 128, 6144, 4096, True),
|
|
166
|
+
(jnp.bfloat16, jnp.int8, 128, 7168, 8192, True),
|
|
167
|
+
(jnp.bfloat16, jnp.int8, 128, 8192, 1024, True),
|
|
168
|
+
(jnp.bfloat16, jnp.int8, 128, 8192, 3584, True),
|
|
169
|
+
)
|
|
170
|
+
def test_quantized_matmul_use_tuned_block_sizes(
|
|
171
|
+
self,
|
|
172
|
+
dtype: jnp.dtype,
|
|
173
|
+
q_dtype: jnp.dtype,
|
|
174
|
+
bs: int,
|
|
175
|
+
n_input_features: int,
|
|
176
|
+
n_output_features: int,
|
|
177
|
+
quantize_activation: bool,
|
|
178
|
+
):
|
|
179
|
+
self._test_quantized_matmul(
|
|
180
|
+
dtype,
|
|
181
|
+
q_dtype,
|
|
182
|
+
bs,
|
|
183
|
+
n_input_features,
|
|
184
|
+
n_output_features,
|
|
185
|
+
quantize_activation=quantize_activation,
|
|
186
|
+
tuned_value=None,
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
if __name__ == "__main__":
|
|
191
|
+
absltest.main(testLoader=jtu.JaxTestLoader())
|
|
@@ -0,0 +1,234 @@
|
|
|
1
|
+
import jax
|
|
2
|
+
import jax.numpy as jnp
|
|
3
|
+
import numpy as np
|
|
4
|
+
from absl.testing import parameterized
|
|
5
|
+
from jax._src import test_util as jtu
|
|
6
|
+
from jax.sharding import Mesh, NamedSharding
|
|
7
|
+
from jax.sharding import PartitionSpec as P
|
|
8
|
+
|
|
9
|
+
from tpu_inference.kernels.ragged_paged_attention.v2.ragged_kv_cache_update import \
|
|
10
|
+
kv_cache_update
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def kv_cache_update_ref(new_kv, slot_mapping, kv_cache):
|
|
14
|
+
"""Reference implementation of KV cache update."""
|
|
15
|
+
for i in range(slot_mapping.shape[1]):
|
|
16
|
+
start_idx, new_kv_idx, slice_len = slot_mapping[:, i]
|
|
17
|
+
kv_cache = kv_cache.at[start_idx:start_idx + slice_len].set(
|
|
18
|
+
new_kv[new_kv_idx:new_kv_idx + slice_len])
|
|
19
|
+
return kv_cache
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
23
|
+
class KVCacheUpdateTest(jtu.JaxTestCase):
|
|
24
|
+
|
|
25
|
+
def _generate_data(self, page_size, combined_kv_head_num, head_dim):
|
|
26
|
+
page_num = 20
|
|
27
|
+
padded_num_tokens = 128
|
|
28
|
+
prng_key = jax.random.key(1234)
|
|
29
|
+
kv_cache = jnp.zeros(
|
|
30
|
+
(page_num * page_size, combined_kv_head_num, head_dim),
|
|
31
|
+
dtype=jnp.bfloat16)
|
|
32
|
+
new_kv = jax.random.normal(
|
|
33
|
+
prng_key, (padded_num_tokens, combined_kv_head_num, head_dim),
|
|
34
|
+
dtype=jnp.bfloat16)
|
|
35
|
+
slice_lens = np.array([7, page_size, page_size, 1, 1, 1, 9],
|
|
36
|
+
dtype=np.int32)
|
|
37
|
+
num_slices = jnp.array([len(slice_lens)], dtype=np.int32)
|
|
38
|
+
kv_cache_start_indices = np.array([
|
|
39
|
+
page_size * 2 - 7, page_size * 2, page_size * 3, page_size * 4 + 6,
|
|
40
|
+
page_size * 5 + 7, page_size * 6 + 8, page_size * 15 + 3
|
|
41
|
+
],
|
|
42
|
+
dtype=np.int32)
|
|
43
|
+
new_kv_cache_indices = np.concatenate(
|
|
44
|
+
[np.array([0], dtype=np.int32),
|
|
45
|
+
np.cumsum(slice_lens[:-1])])
|
|
46
|
+
slot_mapping_np = np.stack(
|
|
47
|
+
[kv_cache_start_indices, new_kv_cache_indices, slice_lens], axis=1)
|
|
48
|
+
slot_mapping_np = np.transpose(slot_mapping_np)
|
|
49
|
+
slot_mapping = jnp.array(slot_mapping_np, dtype=jnp.int32)
|
|
50
|
+
return new_kv, slot_mapping, kv_cache, num_slices
|
|
51
|
+
|
|
52
|
+
@parameterized.product(
|
|
53
|
+
page_size=[32, 33],
|
|
54
|
+
combined_kv_head_num=[2, 16],
|
|
55
|
+
head_dim=[128, 256],
|
|
56
|
+
num_slices_per_block=[None, 8],
|
|
57
|
+
dynamic_validate_inputs=[False, True],
|
|
58
|
+
)
|
|
59
|
+
def test_basic(self, page_size: int, combined_kv_head_num: int,
|
|
60
|
+
head_dim: int, num_slices_per_block: int,
|
|
61
|
+
dynamic_validate_inputs: bool):
|
|
62
|
+
new_kv, slot_mapping, kv_cache, num_slices = self._generate_data(
|
|
63
|
+
page_size, combined_kv_head_num, head_dim)
|
|
64
|
+
old_kv_cache_copy = kv_cache.copy()
|
|
65
|
+
|
|
66
|
+
with jax.disable_jit(disable=dynamic_validate_inputs):
|
|
67
|
+
updated_kv_cache = kv_cache_update(
|
|
68
|
+
new_kv,
|
|
69
|
+
slot_mapping,
|
|
70
|
+
kv_cache,
|
|
71
|
+
num_slices,
|
|
72
|
+
page_size=page_size,
|
|
73
|
+
num_slices_per_block=num_slices_per_block,
|
|
74
|
+
dynamic_validate_inputs=dynamic_validate_inputs)
|
|
75
|
+
updated_kv_cache_ref = kv_cache_update_ref(new_kv,
|
|
76
|
+
np.asarray(slot_mapping),
|
|
77
|
+
old_kv_cache_copy)
|
|
78
|
+
self.assertAllClose(updated_kv_cache,
|
|
79
|
+
updated_kv_cache_ref,
|
|
80
|
+
atol=1e-4,
|
|
81
|
+
rtol=1e-4)
|
|
82
|
+
|
|
83
|
+
@parameterized.product(
|
|
84
|
+
page_size=[32, 33],
|
|
85
|
+
combined_kv_head_num=[16, 32],
|
|
86
|
+
head_dim=[128, 256],
|
|
87
|
+
num_slices_per_block=[None, 8],
|
|
88
|
+
)
|
|
89
|
+
def test_torchax_shard_map(self, page_size: int, combined_kv_head_num: int,
|
|
90
|
+
head_dim: int, num_slices_per_block: int):
|
|
91
|
+
new_kv, slot_mapping, kv_cache, num_slices = self._generate_data(
|
|
92
|
+
page_size, combined_kv_head_num, head_dim)
|
|
93
|
+
old_kv_cache_copy = kv_cache.copy()
|
|
94
|
+
|
|
95
|
+
mesh = Mesh(jax.devices(), 'x')
|
|
96
|
+
kv_cache_pspec = P(None, 'x', None)
|
|
97
|
+
|
|
98
|
+
new_kv = jax.device_put(new_kv, NamedSharding(mesh, kv_cache_pspec))
|
|
99
|
+
slot_mapping = jax.device_put(slot_mapping, NamedSharding(mesh, P()))
|
|
100
|
+
kv_cache = jax.device_put(kv_cache,
|
|
101
|
+
NamedSharding(mesh, kv_cache_pspec))
|
|
102
|
+
num_slices = jax.device_put(num_slices, NamedSharding(mesh, P()))
|
|
103
|
+
|
|
104
|
+
updated_kv_cache = kv_cache_update(new_kv, slot_mapping, kv_cache,
|
|
105
|
+
num_slices,
|
|
106
|
+
page_size=page_size,
|
|
107
|
+
num_slices_per_block=\
|
|
108
|
+
num_slices_per_block,
|
|
109
|
+
mesh=mesh,
|
|
110
|
+
kv_cache_pspec=kv_cache_pspec,)
|
|
111
|
+
updated_kv_cache_ref = kv_cache_update_ref(new_kv,
|
|
112
|
+
np.asarray(slot_mapping),
|
|
113
|
+
old_kv_cache_copy)
|
|
114
|
+
self.assertAllClose(updated_kv_cache,
|
|
115
|
+
updated_kv_cache_ref,
|
|
116
|
+
atol=1e-4,
|
|
117
|
+
rtol=1e-4)
|
|
118
|
+
|
|
119
|
+
def test_invalid_inputs(self):
|
|
120
|
+
# Test all the cases when the inputs are invalid in the `_dynamic_validate_inputs` method
|
|
121
|
+
page_size = 32
|
|
122
|
+
combined_kv_head_num = 2
|
|
123
|
+
head_dim = 128
|
|
124
|
+
|
|
125
|
+
new_kv, slot_mapping, kv_cache, num_slices = self._generate_data(
|
|
126
|
+
page_size, combined_kv_head_num, head_dim)
|
|
127
|
+
|
|
128
|
+
with jax.disable_jit():
|
|
129
|
+
# Case 1: new_kv_start < 0
|
|
130
|
+
invalid_slot_mapping = slot_mapping.at[1, 0].set(-1)
|
|
131
|
+
with self.assertRaisesRegex(
|
|
132
|
+
ValueError, "new_kv_start=-1 must be greater than"):
|
|
133
|
+
kv_cache_update(new_kv,
|
|
134
|
+
invalid_slot_mapping,
|
|
135
|
+
kv_cache,
|
|
136
|
+
num_slices,
|
|
137
|
+
page_size=page_size,
|
|
138
|
+
dynamic_validate_inputs=True)
|
|
139
|
+
|
|
140
|
+
# Case 2: kv_cache_start < 0
|
|
141
|
+
invalid_slot_mapping = slot_mapping.at[0, 0].set(-1)
|
|
142
|
+
with self.assertRaisesRegex(
|
|
143
|
+
ValueError, "kv_cache_start=-1 must be greater than"):
|
|
144
|
+
kv_cache_update(new_kv,
|
|
145
|
+
invalid_slot_mapping,
|
|
146
|
+
kv_cache,
|
|
147
|
+
num_slices,
|
|
148
|
+
page_size=page_size,
|
|
149
|
+
dynamic_validate_inputs=True)
|
|
150
|
+
|
|
151
|
+
# Case 3: slice_len <= 0
|
|
152
|
+
invalid_slot_mapping = slot_mapping.at[2, 0].set(0)
|
|
153
|
+
with self.assertRaisesRegex(
|
|
154
|
+
ValueError, "slice_len=0 must be less or equal to"):
|
|
155
|
+
kv_cache_update(new_kv,
|
|
156
|
+
invalid_slot_mapping,
|
|
157
|
+
kv_cache,
|
|
158
|
+
num_slices,
|
|
159
|
+
page_size=page_size,
|
|
160
|
+
dynamic_validate_inputs=True)
|
|
161
|
+
|
|
162
|
+
# Case 4: slice_len > page_size
|
|
163
|
+
invalid_slot_mapping = slot_mapping.at[2, 0].set(page_size + 1)
|
|
164
|
+
with self.assertRaisesRegex(
|
|
165
|
+
ValueError,
|
|
166
|
+
f"slice_len={page_size + 1} must be less or equal to"):
|
|
167
|
+
kv_cache_update(new_kv,
|
|
168
|
+
invalid_slot_mapping,
|
|
169
|
+
kv_cache,
|
|
170
|
+
num_slices,
|
|
171
|
+
page_size=page_size,
|
|
172
|
+
dynamic_validate_inputs=True)
|
|
173
|
+
|
|
174
|
+
# Case 5: new_kv_start + slice_len > new_token_num
|
|
175
|
+
invalid_slot_mapping = slot_mapping.at[1, 0].set(new_kv.shape[0])
|
|
176
|
+
with self.assertRaisesRegex(
|
|
177
|
+
ValueError,
|
|
178
|
+
"new_kv_start=128 \+ slice_len=7 must be less or equal to new_token_num=128"
|
|
179
|
+
):
|
|
180
|
+
kv_cache_update(new_kv,
|
|
181
|
+
invalid_slot_mapping,
|
|
182
|
+
kv_cache,
|
|
183
|
+
num_slices,
|
|
184
|
+
page_size=page_size,
|
|
185
|
+
dynamic_validate_inputs=True)
|
|
186
|
+
|
|
187
|
+
# Case 6: kv_cache_start + slice_len > kv_cache_token_num
|
|
188
|
+
invalid_slot_mapping = slot_mapping.at[0, 0].set(kv_cache.shape[0])
|
|
189
|
+
with self.assertRaisesRegex(
|
|
190
|
+
ValueError,
|
|
191
|
+
"kv_cache_start=640 \+ slice_len=7 must be less or equal to kv_cache_token_num=640"
|
|
192
|
+
):
|
|
193
|
+
kv_cache_update(new_kv,
|
|
194
|
+
invalid_slot_mapping,
|
|
195
|
+
kv_cache,
|
|
196
|
+
num_slices,
|
|
197
|
+
page_size=page_size,
|
|
198
|
+
dynamic_validate_inputs=True)
|
|
199
|
+
|
|
200
|
+
# Case 7: Each slice must reside in the same page
|
|
201
|
+
invalid_slot_mapping = slot_mapping.at[0, 0].set(page_size - 1)
|
|
202
|
+
invalid_slot_mapping = invalid_slot_mapping.at[2, 0].set(page_size)
|
|
203
|
+
with self.assertRaisesRegex(
|
|
204
|
+
ValueError, "Each slice must reside in the same page"):
|
|
205
|
+
kv_cache_update(new_kv,
|
|
206
|
+
invalid_slot_mapping,
|
|
207
|
+
kv_cache,
|
|
208
|
+
num_slices,
|
|
209
|
+
page_size=page_size,
|
|
210
|
+
dynamic_validate_inputs=True)
|
|
211
|
+
|
|
212
|
+
# Case 8: new_kv slices are not continuous
|
|
213
|
+
invalid_slot_mapping = slot_mapping.at[1,
|
|
214
|
+
1].set(slot_mapping[1, 1] +
|
|
215
|
+
1)
|
|
216
|
+
with self.assertRaisesRegex(ValueError, "is expeced to equal to"):
|
|
217
|
+
kv_cache_update(new_kv,
|
|
218
|
+
invalid_slot_mapping,
|
|
219
|
+
kv_cache,
|
|
220
|
+
num_slices,
|
|
221
|
+
page_size=page_size,
|
|
222
|
+
dynamic_validate_inputs=True)
|
|
223
|
+
|
|
224
|
+
# Case 9: Overlap among the kv cache slices
|
|
225
|
+
invalid_slot_mapping = slot_mapping.at[0, 4].set(slot_mapping[0,
|
|
226
|
+
3])
|
|
227
|
+
with self.assertRaisesRegex(
|
|
228
|
+
ValueError, "Overlap detected in kv_cache intervals"):
|
|
229
|
+
kv_cache_update(new_kv,
|
|
230
|
+
invalid_slot_mapping,
|
|
231
|
+
kv_cache,
|
|
232
|
+
num_slices,
|
|
233
|
+
page_size=page_size,
|
|
234
|
+
dynamic_validate_inputs=True)
|