tpu-inference 0.11.1.dev202511150811__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +0 -0
- tests/core/__init__.py +0 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +53 -0
- tests/core/test_dp_scheduler.py +899 -0
- tests/core/test_init.py +49 -0
- tests/kernels/__init__.py +0 -0
- tests/kernels/fused_moe_v1_test.py +105 -0
- tests/kernels/mla_v1_test.py +396 -0
- tests/kernels/quantized_matmul_kernel_test.py +191 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
- tests/lora/__init__.py +0 -0
- tests/lora/conftest.py +32 -0
- tests/lora/test_bgmv.py +43 -0
- tests/lora/test_layers.py +654 -0
- tests/lora/test_lora.py +133 -0
- tests/lora/utils.py +96 -0
- tests/test_base.py +201 -0
- tests/test_envs.py +182 -0
- tests/test_quantization.py +836 -0
- tests/test_tpu_info.py +120 -0
- tests/test_utils.py +236 -0
- tpu_inference/__init__.py +34 -0
- tpu_inference/core/__init__.py +0 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +51 -0
- tpu_inference/core/sched/__init__.py +0 -0
- tpu_inference/core/sched/dp_scheduler.py +523 -0
- tpu_inference/distributed/__init__.py +0 -0
- tpu_inference/distributed/jax_parallel_state.py +67 -0
- tpu_inference/distributed/tpu_connector.py +728 -0
- tpu_inference/distributed/utils.py +59 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +107 -0
- tpu_inference/executors/__init__.py +0 -0
- tpu_inference/executors/ray_distributed_executor.py +362 -0
- tpu_inference/experimental/__init__.py +0 -0
- tpu_inference/experimental/llama3_jax_stashed.py +258 -0
- tpu_inference/kernels/__init__.py +0 -0
- tpu_inference/kernels/collectives/__init__.py +0 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +0 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
- tpu_inference/kernels/mla/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/kernel.py +1349 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
- tpu_inference/layers/__init__.py +0 -0
- tpu_inference/layers/common/__init__.py +0 -0
- tpu_inference/layers/common/attention_interface.py +390 -0
- tpu_inference/layers/common/attention_metadata.py +34 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +8 -0
- tpu_inference/layers/common/sharding.py +582 -0
- tpu_inference/layers/jax/__init__.py +0 -0
- tpu_inference/layers/jax/attention/__init__.py +0 -0
- tpu_inference/layers/jax/attention/attention.py +255 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
- tpu_inference/layers/jax/base.py +151 -0
- tpu_inference/layers/jax/constants.py +88 -0
- tpu_inference/layers/jax/layers.py +301 -0
- tpu_inference/layers/jax/misc.py +16 -0
- tpu_inference/layers/jax/moe/__init__.py +0 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
- tpu_inference/layers/jax/moe/moe.py +209 -0
- tpu_inference/layers/jax/rope.py +280 -0
- tpu_inference/layers/jax/rope_interface.py +214 -0
- tpu_inference/layers/jax/sample/__init__.py +0 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
- tpu_inference/layers/jax/sample/sampling.py +96 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
- tpu_inference/layers/jax/transformer_block.py +107 -0
- tpu_inference/layers/vllm/__init__.py +0 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +507 -0
- tpu_inference/layers/vllm/linear_common.py +186 -0
- tpu_inference/layers/vllm/quantization/__init__.py +39 -0
- tpu_inference/layers/vllm/quantization/awq.py +207 -0
- tpu_inference/layers/vllm/quantization/common.py +105 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
- tpu_inference/layers/vllm/sharding.py +230 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +0 -0
- tpu_inference/lora/torch_lora_ops.py +103 -0
- tpu_inference/lora/torch_punica_tpu.py +311 -0
- tpu_inference/mock/__init__.py +0 -0
- tpu_inference/mock/vllm_config_utils.py +28 -0
- tpu_inference/mock/vllm_envs.py +1219 -0
- tpu_inference/mock/vllm_logger.py +212 -0
- tpu_inference/mock/vllm_logging_utils.py +15 -0
- tpu_inference/models/__init__.py +0 -0
- tpu_inference/models/common/__init__.py +0 -0
- tpu_inference/models/common/model_loader.py +444 -0
- tpu_inference/models/jax/__init__.py +0 -0
- tpu_inference/models/jax/deepseek_v3.py +868 -0
- tpu_inference/models/jax/gpt_oss.py +492 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
- tpu_inference/models/jax/llama3.py +375 -0
- tpu_inference/models/jax/llama4.py +629 -0
- tpu_inference/models/jax/llama_eagle3.py +333 -0
- tpu_inference/models/jax/phi3.py +376 -0
- tpu_inference/models/jax/qwen2.py +375 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
- tpu_inference/models/jax/qwen3.py +302 -0
- tpu_inference/models/jax/utils/__init__.py +0 -0
- tpu_inference/models/jax/utils/file_utils.py +96 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
- tpu_inference/models/jax/utils/weight_utils.py +529 -0
- tpu_inference/models/vllm/__init__.py +0 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
- tpu_inference/platforms/__init__.py +2 -0
- tpu_inference/platforms/tpu_platform.py +269 -0
- tpu_inference/runner/__init__.py +0 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +780 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +132 -0
- tpu_inference/runner/kv_cache_manager.py +479 -0
- tpu_inference/runner/lora_utils.py +92 -0
- tpu_inference/runner/multimodal_manager.py +217 -0
- tpu_inference/runner/persistent_batch_manager.py +244 -0
- tpu_inference/runner/speculative_decoding_manager.py +248 -0
- tpu_inference/runner/structured_decoding_manager.py +88 -0
- tpu_inference/runner/tpu_runner.py +1620 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +0 -0
- tpu_inference/spec_decode/jax/__init__.py +0 -0
- tpu_inference/spec_decode/jax/eagle3.py +367 -0
- tpu_inference/tpu_info.py +77 -0
- tpu_inference/utils.py +317 -0
- tpu_inference/worker/__init__.py +0 -0
- tpu_inference/worker/tpu_worker.py +321 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,59 @@
|
|
|
1
|
+
import os
|
|
2
|
+
|
|
3
|
+
from vllm.utils.network_utils import get_ip
|
|
4
|
+
|
|
5
|
+
from tpu_inference.logger import init_logger
|
|
6
|
+
|
|
7
|
+
logger = init_logger(__name__)
|
|
8
|
+
|
|
9
|
+
# For multi-host usage only, to collect IP and port for all nodes.
|
|
10
|
+
_NODES_KV_IP_PORT = dict()
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def set_node_kv_ip_port(ip_port: tuple[int, str, int]):
|
|
14
|
+
global _NODES_KV_IP_PORT
|
|
15
|
+
node_id, ip, port = ip_port
|
|
16
|
+
_NODES_KV_IP_PORT[node_id] = (ip, port)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def get_kv_ips() -> str:
|
|
20
|
+
if os.getenv("TPU_MULTIHOST_BACKEND", "").lower() == "ray":
|
|
21
|
+
num_nodes = len(_NODES_KV_IP_PORT)
|
|
22
|
+
ips = []
|
|
23
|
+
for node_id in range(num_nodes):
|
|
24
|
+
ips.append(_NODES_KV_IP_PORT[node_id][0])
|
|
25
|
+
return ips
|
|
26
|
+
else:
|
|
27
|
+
return get_host_ip()
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def get_kv_ports() -> str:
|
|
31
|
+
if os.getenv("TPU_MULTIHOST_BACKEND", "").lower() == "ray":
|
|
32
|
+
num_nodes = len(_NODES_KV_IP_PORT)
|
|
33
|
+
ports = []
|
|
34
|
+
for node_id in range(num_nodes):
|
|
35
|
+
ports.append(_NODES_KV_IP_PORT[node_id][1])
|
|
36
|
+
return ports
|
|
37
|
+
else:
|
|
38
|
+
return get_kv_transfer_port()
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def get_host_ip() -> str:
|
|
42
|
+
"""Use `VLLM_HOST_IP` if set, otherwise use default network interface IP."""
|
|
43
|
+
return get_ip()
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def get_kv_transfer_port() -> str:
|
|
47
|
+
port = os.getenv("TPU_KV_TRANSFER_PORT", "9100")
|
|
48
|
+
return port
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def get_side_channel_port() -> str:
|
|
52
|
+
port = os.getenv("TPU_SIDE_CHANNEL_PORT", "9600")
|
|
53
|
+
return port
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
def get_node_id() -> int:
|
|
57
|
+
# TODO(xiang): Is it possible to get this from a pre-defiend env?
|
|
58
|
+
id = os.getenv("TPU_NODE_ID", 0)
|
|
59
|
+
return int(id)
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the tpu-inference project
|
|
3
|
+
|
|
4
|
+
import os
|
|
5
|
+
|
|
6
|
+
# Disable CUDA-specific shared experts stream for TPU
|
|
7
|
+
# This prevents errors when trying to create CUDA streams on TPU hardware
|
|
8
|
+
# The issue was introduced by vllm-project/vllm#26440
|
|
9
|
+
os.environ["VLLM_DISABLE_SHARED_EXPERTS_STREAM"] = "1"
|
tpu_inference/envs.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the tpu-inference project
|
|
3
|
+
|
|
4
|
+
import functools
|
|
5
|
+
import os
|
|
6
|
+
from collections.abc import Callable
|
|
7
|
+
from typing import TYPE_CHECKING, Any
|
|
8
|
+
|
|
9
|
+
if TYPE_CHECKING:
|
|
10
|
+
JAX_PLATFORMS: str = ""
|
|
11
|
+
TPU_ACCELERATOR_TYPE: str | None = None
|
|
12
|
+
TPU_NAME: str | None = None
|
|
13
|
+
TPU_WORKER_ID: str | None = None
|
|
14
|
+
TPU_MULTIHOST_BACKEND: str = ""
|
|
15
|
+
PREFILL_SLICES: str = ""
|
|
16
|
+
DECODE_SLICES: str = ""
|
|
17
|
+
SKIP_JAX_PRECOMPILE: bool = False
|
|
18
|
+
MODEL_IMPL_TYPE: str = "flax_nnx"
|
|
19
|
+
NEW_MODEL_DESIGN: bool = False
|
|
20
|
+
PHASED_PROFILING_DIR: str = ""
|
|
21
|
+
PYTHON_TRACER_LEVEL: int = 1
|
|
22
|
+
USE_MOE_EP_KERNEL: bool = False
|
|
23
|
+
RAY_USAGE_STATS_ENABLED: str = "0"
|
|
24
|
+
VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: str = "shm"
|
|
25
|
+
|
|
26
|
+
environment_variables: dict[str, Callable[[], Any]] = {
|
|
27
|
+
# JAX platform selection (e.g., "tpu", "cpu", "proxy")
|
|
28
|
+
"JAX_PLATFORMS":
|
|
29
|
+
lambda: os.getenv("JAX_PLATFORMS", ""),
|
|
30
|
+
# TPU accelerator type (e.g., "v5litepod-16", "v4-8")
|
|
31
|
+
"TPU_ACCELERATOR_TYPE":
|
|
32
|
+
lambda: os.getenv("TPU_ACCELERATOR_TYPE", None),
|
|
33
|
+
# Name of the TPU resource
|
|
34
|
+
"TPU_NAME":
|
|
35
|
+
lambda: os.getenv("TPU_NAME", None),
|
|
36
|
+
# Worker ID for multi-host TPU setups
|
|
37
|
+
"TPU_WORKER_ID":
|
|
38
|
+
lambda: os.getenv("TPU_WORKER_ID", None),
|
|
39
|
+
# Backend for multi-host communication on TPU
|
|
40
|
+
"TPU_MULTIHOST_BACKEND":
|
|
41
|
+
lambda: os.getenv("TPU_MULTIHOST_BACKEND", "").lower(),
|
|
42
|
+
# Slice configuration for disaggregated prefill workers
|
|
43
|
+
"PREFILL_SLICES":
|
|
44
|
+
lambda: os.getenv("PREFILL_SLICES", ""),
|
|
45
|
+
# Slice configuration for disaggregated decode workers
|
|
46
|
+
"DECODE_SLICES":
|
|
47
|
+
lambda: os.getenv("DECODE_SLICES", ""),
|
|
48
|
+
# Skip JAX precompilation step during initialization
|
|
49
|
+
"SKIP_JAX_PRECOMPILE":
|
|
50
|
+
lambda: bool(int(os.getenv("SKIP_JAX_PRECOMPILE", "0"))),
|
|
51
|
+
# Model implementation type (e.g., "flax_nnx")
|
|
52
|
+
"MODEL_IMPL_TYPE":
|
|
53
|
+
lambda: os.getenv("MODEL_IMPL_TYPE", "flax_nnx").lower(),
|
|
54
|
+
# Enable new experimental model design
|
|
55
|
+
"NEW_MODEL_DESIGN":
|
|
56
|
+
lambda: bool(int(os.getenv("NEW_MODEL_DESIGN", "0"))),
|
|
57
|
+
# Directory to store phased profiling output
|
|
58
|
+
"PHASED_PROFILING_DIR":
|
|
59
|
+
lambda: os.getenv("PHASED_PROFILING_DIR", ""),
|
|
60
|
+
# Python tracer level for profiling
|
|
61
|
+
"PYTHON_TRACER_LEVEL":
|
|
62
|
+
lambda: int(os.getenv("PYTHON_TRACER_LEVEL", "1")),
|
|
63
|
+
# Use custom expert-parallel kernel for MoE (Mixture of Experts)
|
|
64
|
+
"USE_MOE_EP_KERNEL":
|
|
65
|
+
lambda: bool(int(os.getenv("USE_MOE_EP_KERNEL", "0"))),
|
|
66
|
+
# Enable/disable Ray usage statistics collection
|
|
67
|
+
"RAY_USAGE_STATS_ENABLED":
|
|
68
|
+
lambda: os.getenv("RAY_USAGE_STATS_ENABLED", "0"),
|
|
69
|
+
# Ray compiled DAG channel type for TPU
|
|
70
|
+
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE":
|
|
71
|
+
lambda: os.getenv("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "shm"),
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
def __getattr__(name: str) -> Any:
|
|
76
|
+
"""
|
|
77
|
+
Gets environment variables lazily.
|
|
78
|
+
|
|
79
|
+
NOTE: After enable_envs_cache() invocation (which triggered after service
|
|
80
|
+
initialization), all environment variables will be cached.
|
|
81
|
+
"""
|
|
82
|
+
if name in environment_variables:
|
|
83
|
+
return environment_variables[name]()
|
|
84
|
+
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def enable_envs_cache() -> None:
|
|
88
|
+
"""
|
|
89
|
+
Enables caching of environment variables by wrapping the module's __getattr__
|
|
90
|
+
function with functools.cache(). This improves performance by avoiding
|
|
91
|
+
repeated re-evaluation of environment variables.
|
|
92
|
+
|
|
93
|
+
NOTE: This should be called after service initialization. Once enabled,
|
|
94
|
+
environment variable values are cached and will not reflect changes to
|
|
95
|
+
os.environ until the process is restarted.
|
|
96
|
+
"""
|
|
97
|
+
# Tag __getattr__ with functools.cache
|
|
98
|
+
global __getattr__
|
|
99
|
+
__getattr__ = functools.cache(__getattr__)
|
|
100
|
+
|
|
101
|
+
# Cache all environment variables
|
|
102
|
+
for key in environment_variables:
|
|
103
|
+
__getattr__(key)
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def __dir__() -> list[str]:
|
|
107
|
+
return list(environment_variables.keys())
|
|
File without changes
|
|
@@ -0,0 +1,362 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from array import array
|
|
3
|
+
from typing import Any, Dict, List, Optional
|
|
4
|
+
|
|
5
|
+
import ray
|
|
6
|
+
import vllm.envs as envs
|
|
7
|
+
from ray.util.placement_group import PlacementGroup
|
|
8
|
+
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
|
|
9
|
+
from vllm.multimodal.inputs import MultiModalKwargs
|
|
10
|
+
from vllm.platforms import current_platform
|
|
11
|
+
from vllm.ray.ray_env import get_env_vars_to_copy
|
|
12
|
+
from vllm.sequence import VLLM_TOKEN_ID_ARRAY_TYPE
|
|
13
|
+
from vllm.utils.network_utils import (get_distributed_init_method, get_ip,
|
|
14
|
+
get_open_port)
|
|
15
|
+
from vllm.v1.core.sched.output import SchedulerOutput
|
|
16
|
+
from vllm.v1.executor.ray_distributed_executor import \
|
|
17
|
+
RayDistributedExecutor as RayDistributedExecutorV1
|
|
18
|
+
from vllm.v1.executor.ray_executor import RayWorkerMetaData
|
|
19
|
+
from vllm.v1.executor.ray_utils import RayWorkerWrapper, _wait_until_pg_ready
|
|
20
|
+
|
|
21
|
+
from tpu_inference.logger import init_logger
|
|
22
|
+
|
|
23
|
+
try:
|
|
24
|
+
from ray._private.state import available_resources_per_node
|
|
25
|
+
except ImportError:
|
|
26
|
+
# Ray 2.9.x doesn't expose `available_resources_per_node`
|
|
27
|
+
from ray._private.state import state as _state
|
|
28
|
+
available_resources_per_node = _state._available_resources_per_node
|
|
29
|
+
|
|
30
|
+
import asyncio
|
|
31
|
+
from collections import defaultdict
|
|
32
|
+
|
|
33
|
+
import msgspec
|
|
34
|
+
from vllm.v1.outputs import SamplerOutput
|
|
35
|
+
|
|
36
|
+
from tpu_inference.distributed.utils import set_node_kv_ip_port
|
|
37
|
+
|
|
38
|
+
logger = init_logger(__name__)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _encode_hook(obj: Any) -> Any:
|
|
42
|
+
"""Custom msgspec enc hook that supports array types and MultiModalKwargs.
|
|
43
|
+
|
|
44
|
+
See https://jcristharif.com/msgspec/api.html#msgspec.msgpack.Encoder
|
|
45
|
+
"""
|
|
46
|
+
if isinstance(obj, array):
|
|
47
|
+
assert obj.typecode == VLLM_TOKEN_ID_ARRAY_TYPE, (
|
|
48
|
+
f"vLLM array type should use '{VLLM_TOKEN_ID_ARRAY_TYPE}' type. "
|
|
49
|
+
f"Given array has a type code of {obj.typecode}.")
|
|
50
|
+
return obj.tobytes()
|
|
51
|
+
if isinstance(obj, MultiModalKwargs):
|
|
52
|
+
return dict(obj)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
class RayDistributedExecutor(RayDistributedExecutorV1):
|
|
56
|
+
"""Ray-based distributed executor for TPU.
|
|
57
|
+
|
|
58
|
+
The implementation is similar to vllm/executor/ray_distributed_executor.py
|
|
59
|
+
with these major differences:
|
|
60
|
+
|
|
61
|
+
1. self._init_executor():
|
|
62
|
+
VLLM_USE_RAY_SPMD_WORKER=1, in which the driver worker is the same as other workers.
|
|
63
|
+
2. self._initialize_ray_cluster():
|
|
64
|
+
This sets placement_group_specs for TPU.
|
|
65
|
+
In vLLM one GPU maps to one placement group.
|
|
66
|
+
While here one TPU node with all chips maps to one placement group.
|
|
67
|
+
3. self._init_workers_ray():
|
|
68
|
+
This set TPU resources when create each worker.
|
|
69
|
+
And we omit the driver worker related logic.
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
def _init_executor(self) -> None:
|
|
73
|
+
self.forward_dag: Optional[ray.dag.CompiledDAG] = None
|
|
74
|
+
|
|
75
|
+
os.environ["VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE"] = "shm"
|
|
76
|
+
|
|
77
|
+
# Currently, this requires USE_RAY_SPMD_WORKER=True.
|
|
78
|
+
self.use_ray_compiled_dag = True
|
|
79
|
+
# If it is true, then we do not distinguish between the
|
|
80
|
+
# "driver worker" vs other workers. Also, the rank 0 worker will
|
|
81
|
+
# be executed in a remote Ray worker. Currently this requires
|
|
82
|
+
# USE_RAY_COMPILED_DAG=True.
|
|
83
|
+
self.use_ray_spmd_worker = True
|
|
84
|
+
|
|
85
|
+
assert self.uses_ray
|
|
86
|
+
self._initialize_ray_cluster()
|
|
87
|
+
placement_group = self.parallel_config.placement_group
|
|
88
|
+
|
|
89
|
+
# Disable Ray usage stats collection.
|
|
90
|
+
ray_usage = os.environ.get("RAY_USAGE_STATS_ENABLED", "0")
|
|
91
|
+
if ray_usage != "1":
|
|
92
|
+
os.environ["RAY_USAGE_STATS_ENABLED"] = "0"
|
|
93
|
+
|
|
94
|
+
# Create the parallel GPU workers.
|
|
95
|
+
self._init_workers_ray(placement_group)
|
|
96
|
+
|
|
97
|
+
self.input_encoder = msgspec.msgpack.Encoder(enc_hook=_encode_hook)
|
|
98
|
+
self.output_decoder = msgspec.msgpack.Decoder(
|
|
99
|
+
Optional[List[SamplerOutput]])
|
|
100
|
+
|
|
101
|
+
self.pp_locks: Optional[List[asyncio.Lock]] = None
|
|
102
|
+
|
|
103
|
+
self.scheduler_output: SchedulerOutput | None = None
|
|
104
|
+
|
|
105
|
+
# KV connector setup
|
|
106
|
+
self.has_connector = self.vllm_config.kv_transfer_config is not None
|
|
107
|
+
if self.has_connector:
|
|
108
|
+
ip_port = self.collective_rpc("get_node_kv_ip_port")
|
|
109
|
+
for item in ip_port:
|
|
110
|
+
set_node_kv_ip_port(item)
|
|
111
|
+
|
|
112
|
+
def _initialize_ray_cluster(self) -> None:
|
|
113
|
+
"""Initialize the distributed cluster with Ray.
|
|
114
|
+
|
|
115
|
+
it will connect to the Ray cluster and create a placement group
|
|
116
|
+
for the workers, which includes the specification of the resources
|
|
117
|
+
for each distributed worker.
|
|
118
|
+
"""
|
|
119
|
+
from vllm.platforms import current_platform
|
|
120
|
+
|
|
121
|
+
if ray.is_initialized():
|
|
122
|
+
logger.info(
|
|
123
|
+
"Ray is already initialized. Skipping Ray initialization.")
|
|
124
|
+
else:
|
|
125
|
+
logger.warning("Ray is not initialized, this is mainly for test.")
|
|
126
|
+
ray.init()
|
|
127
|
+
|
|
128
|
+
device_str = current_platform.ray_device_key
|
|
129
|
+
if not device_str:
|
|
130
|
+
raise ValueError(
|
|
131
|
+
f"current platform {current_platform.device_name} does not "
|
|
132
|
+
"support ray.")
|
|
133
|
+
|
|
134
|
+
placement_group_specs: List[Dict[str, float]] = [{
|
|
135
|
+
device_str:
|
|
136
|
+
node['Resources'][device_str]
|
|
137
|
+
} for node in ray.nodes()]
|
|
138
|
+
|
|
139
|
+
# vLLM engine is also a worker to execute model with an accelerator,
|
|
140
|
+
# so it requires to have the device in a current node. Check if
|
|
141
|
+
# the current node has at least one device.
|
|
142
|
+
current_ip = get_ip()
|
|
143
|
+
current_node_id = ray.get_runtime_context().get_node_id()
|
|
144
|
+
current_node_resource = available_resources_per_node()[current_node_id]
|
|
145
|
+
if current_node_resource.get(device_str, 0) < 1:
|
|
146
|
+
raise ValueError(
|
|
147
|
+
f"Current node has no {device_str} available. "
|
|
148
|
+
f"{current_node_resource=}. vLLM engine cannot start without "
|
|
149
|
+
f"{device_str}. Make sure you have at least 1 {device_str} "
|
|
150
|
+
f"available in a node {current_node_id=} {current_ip=}.")
|
|
151
|
+
# This way, at least bundle is required to be created in a current
|
|
152
|
+
# node.
|
|
153
|
+
placement_group_specs[0][f"node:{current_ip}"] = 0.001
|
|
154
|
+
logger.info(
|
|
155
|
+
f"RayDistributedExecutor | placement_group_specs={placement_group_specs}"
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
# By default, Ray packs resources as much as possible.
|
|
159
|
+
current_placement_group = ray.util.placement_group(
|
|
160
|
+
placement_group_specs, strategy="PACK")
|
|
161
|
+
_wait_until_pg_ready(current_placement_group)
|
|
162
|
+
|
|
163
|
+
assert current_placement_group is not None
|
|
164
|
+
# Set the placement group in the parallel config
|
|
165
|
+
self.parallel_config.placement_group = current_placement_group
|
|
166
|
+
|
|
167
|
+
def _init_workers_ray(self, placement_group: "PlacementGroup",
|
|
168
|
+
**ray_remote_kwargs):
|
|
169
|
+
# The workers are the actual ray actors.
|
|
170
|
+
self.workers: List[RayWorkerWrapper] = []
|
|
171
|
+
|
|
172
|
+
# Used in ray compiled DAG: indexed first by PP rank,
|
|
173
|
+
# and then TP rank. In other words, the inner list is
|
|
174
|
+
# the TP group of workers for a PP rank.
|
|
175
|
+
self.pp_tp_workers: List[List[RayWorkerWrapper]] = []
|
|
176
|
+
|
|
177
|
+
if self.parallel_config.ray_workers_use_nsight:
|
|
178
|
+
ray_remote_kwargs = self._configure_ray_workers_use_nsight(
|
|
179
|
+
ray_remote_kwargs)
|
|
180
|
+
|
|
181
|
+
# Create the workers.
|
|
182
|
+
bundle_indices: List[int]
|
|
183
|
+
if envs.VLLM_RAY_BUNDLE_INDICES:
|
|
184
|
+
# Use the bundle indices specified by the user.
|
|
185
|
+
bundle_indices = list(
|
|
186
|
+
map(int, envs.VLLM_RAY_BUNDLE_INDICES.split(",")))
|
|
187
|
+
assert len(bundle_indices) == self.parallel_config.world_size, \
|
|
188
|
+
("VLLM_RAY_BUNDLE_INDICES must have the same size"
|
|
189
|
+
f" as the world size, but got {bundle_indices=} "
|
|
190
|
+
f"and {self.parallel_config.world_size=}")
|
|
191
|
+
assert len(set(bundle_indices)) == len(bundle_indices), \
|
|
192
|
+
("VLLM_RAY_BUNDLE_INDICES cannot have duplicate values,"
|
|
193
|
+
f" but got {bundle_indices=}")
|
|
194
|
+
else:
|
|
195
|
+
bundle_indices = []
|
|
196
|
+
for bundle_id, bundle in enumerate(placement_group.bundle_specs):
|
|
197
|
+
if bundle.get(current_platform.ray_device_key, 0):
|
|
198
|
+
bundle_indices.append(bundle_id)
|
|
199
|
+
|
|
200
|
+
worker_metadata: List[RayWorkerMetaData] = []
|
|
201
|
+
driver_ip = get_ip()
|
|
202
|
+
num_tpu_per_worker = placement_group.bundle_specs[0].get(
|
|
203
|
+
current_platform.ray_device_key, 0)
|
|
204
|
+
for rank, bundle_id in enumerate(bundle_indices):
|
|
205
|
+
scheduling_strategy = PlacementGroupSchedulingStrategy(
|
|
206
|
+
placement_group=placement_group,
|
|
207
|
+
placement_group_capture_child_tasks=True,
|
|
208
|
+
placement_group_bundle_index=bundle_id,
|
|
209
|
+
)
|
|
210
|
+
worker = ray.remote(
|
|
211
|
+
num_cpus=0,
|
|
212
|
+
num_gpus=0,
|
|
213
|
+
resources={
|
|
214
|
+
current_platform.ray_device_key: num_tpu_per_worker
|
|
215
|
+
},
|
|
216
|
+
scheduling_strategy=scheduling_strategy,
|
|
217
|
+
**ray_remote_kwargs,
|
|
218
|
+
)(RayWorkerWrapper).remote(vllm_config=self.vllm_config,
|
|
219
|
+
rpc_rank=rank)
|
|
220
|
+
worker_metadata.append(
|
|
221
|
+
RayWorkerMetaData(worker=worker, created_rank=rank))
|
|
222
|
+
|
|
223
|
+
worker_ips = ray.get([
|
|
224
|
+
each.worker.get_node_ip.remote() # type: ignore[attr-defined]
|
|
225
|
+
for each in worker_metadata
|
|
226
|
+
])
|
|
227
|
+
|
|
228
|
+
for each, ip in zip(worker_metadata, worker_ips):
|
|
229
|
+
each.ip = ip
|
|
230
|
+
|
|
231
|
+
logger.debug(f"Initialized worker_metadata: {worker_metadata}")
|
|
232
|
+
|
|
233
|
+
ip_counts: Dict[str, int] = {}
|
|
234
|
+
for ip in worker_ips:
|
|
235
|
+
ip_counts[ip] = ip_counts.get(ip, 0) + 1
|
|
236
|
+
|
|
237
|
+
def sort_by_driver_then_worker_ip(item: RayWorkerMetaData):
|
|
238
|
+
"""
|
|
239
|
+
Sort the workers based on 3 properties:
|
|
240
|
+
1. If the worker is on the same node as the driver (vllm engine),
|
|
241
|
+
it should be placed first.
|
|
242
|
+
2. Then, if the worker is on a node with fewer workers, it should
|
|
243
|
+
be placed first.
|
|
244
|
+
3. Finally, if the work is on a node with smaller IP address, it
|
|
245
|
+
should be placed first.
|
|
246
|
+
"""
|
|
247
|
+
ip = item.ip
|
|
248
|
+
return (0 if ip == driver_ip else 1, ip_counts[ip], ip)
|
|
249
|
+
|
|
250
|
+
# After sorting, the workers on the same node will be
|
|
251
|
+
# close to each other, and the workers on the driver
|
|
252
|
+
# node will be placed first.
|
|
253
|
+
sorted_worker_metadata = sorted(worker_metadata,
|
|
254
|
+
key=sort_by_driver_then_worker_ip)
|
|
255
|
+
start_rank = 0
|
|
256
|
+
for i, item in enumerate(sorted_worker_metadata):
|
|
257
|
+
item.adjusted_rank = i + start_rank
|
|
258
|
+
logger.info(
|
|
259
|
+
f"Initialized sorted worker_metadata: {sorted_worker_metadata}")
|
|
260
|
+
|
|
261
|
+
self.workers = [item.worker for item in sorted_worker_metadata]
|
|
262
|
+
rerank_mapping = {
|
|
263
|
+
item.created_rank: item.adjusted_rank
|
|
264
|
+
for item in sorted_worker_metadata
|
|
265
|
+
}
|
|
266
|
+
self.collective_rpc("adjust_rank", args=(rerank_mapping, ))
|
|
267
|
+
|
|
268
|
+
# Get the set of TPU IDs used on each node.
|
|
269
|
+
worker_node_and_tpu_ids = []
|
|
270
|
+
for worker in self.workers:
|
|
271
|
+
worker_node_and_tpu_ids.append(
|
|
272
|
+
ray.get(worker.get_node_and_gpu_ids.remote()) \
|
|
273
|
+
) # type: ignore
|
|
274
|
+
|
|
275
|
+
node_workers = defaultdict(list) # node id -> list of worker ranks
|
|
276
|
+
node_tpus = defaultdict(list) # node id -> list of tpu ids
|
|
277
|
+
|
|
278
|
+
for i, (node_id, tpu_ids) in enumerate(worker_node_and_tpu_ids):
|
|
279
|
+
node_workers[node_id].append(i)
|
|
280
|
+
# `tpu_ids` can be a list of strings or integers.
|
|
281
|
+
# convert them to integers for consistency.
|
|
282
|
+
tpu_ids = [int(x) for x in tpu_ids]
|
|
283
|
+
node_tpus[node_id].extend(tpu_ids)
|
|
284
|
+
for node_id, tpu_ids in node_tpus.items():
|
|
285
|
+
node_tpus[node_id] = sorted(tpu_ids)
|
|
286
|
+
logger.info(
|
|
287
|
+
f"RayDistributedExecutor | node_workers={node_workers} | node_tpus={node_tpus}"
|
|
288
|
+
)
|
|
289
|
+
|
|
290
|
+
all_ips = set(worker_ips + [driver_ip])
|
|
291
|
+
n_ips = len(all_ips)
|
|
292
|
+
n_nodes = len(node_workers)
|
|
293
|
+
|
|
294
|
+
if n_nodes != n_ips:
|
|
295
|
+
logger.warning(
|
|
296
|
+
f"Got {n_nodes} nodes but with {n_ips} IP addresses. "
|
|
297
|
+
"This is not a typical production setup whose "
|
|
298
|
+
"number of nodes and IPs is euqal. This setup may "
|
|
299
|
+
"lead to unexpected behaviors.")
|
|
300
|
+
|
|
301
|
+
# Set environment variables for the driver and workers.
|
|
302
|
+
all_args_to_update_environment_variables = [{
|
|
303
|
+
current_platform.device_control_env_var:
|
|
304
|
+
",".join(map(str, node_tpus[node_id])),
|
|
305
|
+
} for (node_id, _) in worker_node_and_tpu_ids]
|
|
306
|
+
|
|
307
|
+
# Environment variables to copy from driver to workers
|
|
308
|
+
env_vars_to_copy = get_env_vars_to_copy(
|
|
309
|
+
exclude_vars=self.WORKER_SPECIFIC_ENV_VARS,
|
|
310
|
+
additional_vars=set(current_platform.additional_env_vars),
|
|
311
|
+
destination="workers")
|
|
312
|
+
|
|
313
|
+
# Copy existing env vars to each worker's args
|
|
314
|
+
for args in all_args_to_update_environment_variables:
|
|
315
|
+
for name in env_vars_to_copy:
|
|
316
|
+
if name in os.environ:
|
|
317
|
+
args[name] = os.environ[name]
|
|
318
|
+
|
|
319
|
+
self._env_vars_for_all_workers = (
|
|
320
|
+
all_args_to_update_environment_variables)
|
|
321
|
+
|
|
322
|
+
self.collective_rpc("update_environment_variables",
|
|
323
|
+
args=(self._get_env_vars_to_be_updated(), ))
|
|
324
|
+
|
|
325
|
+
distributed_init_method = get_distributed_init_method(
|
|
326
|
+
driver_ip, get_open_port())
|
|
327
|
+
|
|
328
|
+
# Initialize the actual workers inside worker wrapper.
|
|
329
|
+
all_kwargs = []
|
|
330
|
+
for rank, (node_id, _) in enumerate(worker_node_and_tpu_ids):
|
|
331
|
+
local_rank = node_workers[node_id].index(rank)
|
|
332
|
+
kwargs = dict(
|
|
333
|
+
vllm_config=self.vllm_config,
|
|
334
|
+
local_rank=local_rank,
|
|
335
|
+
rank=rank,
|
|
336
|
+
distributed_init_method=distributed_init_method,
|
|
337
|
+
is_driver_worker=(not self.parallel_config)
|
|
338
|
+
or (rank % self.parallel_config.tensor_parallel_size == 0),
|
|
339
|
+
)
|
|
340
|
+
all_kwargs.append(kwargs)
|
|
341
|
+
self.collective_rpc("init_worker", args=(all_kwargs, ))
|
|
342
|
+
self.collective_rpc("init_device")
|
|
343
|
+
self.collective_rpc("load_model")
|
|
344
|
+
|
|
345
|
+
if self.use_ray_spmd_worker:
|
|
346
|
+
for pp_rank in range(self.parallel_config.pipeline_parallel_size):
|
|
347
|
+
self.pp_tp_workers.append([])
|
|
348
|
+
for tp_rank in range(
|
|
349
|
+
int(self.parallel_config.tensor_parallel_size //
|
|
350
|
+
num_tpu_per_worker)):
|
|
351
|
+
# PP=2, TP=4
|
|
352
|
+
# pp_tp_workers = [[0, 1, 2, 3], [4, 5, 6, 7]]
|
|
353
|
+
rank = (pp_rank * self.parallel_config.tensor_parallel_size
|
|
354
|
+
) + tp_rank
|
|
355
|
+
assert len(self.pp_tp_workers[pp_rank]) == tp_rank
|
|
356
|
+
assert pp_rank < len(self.pp_tp_workers)
|
|
357
|
+
self.pp_tp_workers[pp_rank].append(self.workers[rank])
|
|
358
|
+
|
|
359
|
+
# Ray executor do not need handshake metadata
|
|
360
|
+
# as we pass the kv_parameters through proxy server
|
|
361
|
+
def get_kv_connector_handshake_metadata(self) -> None:
|
|
362
|
+
pass
|
|
File without changes
|