tpu-inference 0.11.1.dev202511150811__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (179) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +53 -0
  6. tests/core/test_dp_scheduler.py +899 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/fused_moe_v1_test.py +105 -0
  10. tests/kernels/mla_v1_test.py +396 -0
  11. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  12. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  13. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  14. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
  15. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  16. tests/lora/__init__.py +0 -0
  17. tests/lora/conftest.py +32 -0
  18. tests/lora/test_bgmv.py +43 -0
  19. tests/lora/test_layers.py +654 -0
  20. tests/lora/test_lora.py +133 -0
  21. tests/lora/utils.py +96 -0
  22. tests/test_base.py +201 -0
  23. tests/test_envs.py +182 -0
  24. tests/test_quantization.py +836 -0
  25. tests/test_tpu_info.py +120 -0
  26. tests/test_utils.py +236 -0
  27. tpu_inference/__init__.py +34 -0
  28. tpu_inference/core/__init__.py +0 -0
  29. tpu_inference/core/core_tpu.py +786 -0
  30. tpu_inference/core/disagg_executor.py +118 -0
  31. tpu_inference/core/disagg_utils.py +51 -0
  32. tpu_inference/core/sched/__init__.py +0 -0
  33. tpu_inference/core/sched/dp_scheduler.py +523 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/jax_parallel_state.py +67 -0
  36. tpu_inference/distributed/tpu_connector.py +728 -0
  37. tpu_inference/distributed/utils.py +59 -0
  38. tpu_inference/env_override.py +9 -0
  39. tpu_inference/envs.py +107 -0
  40. tpu_inference/executors/__init__.py +0 -0
  41. tpu_inference/executors/ray_distributed_executor.py +362 -0
  42. tpu_inference/experimental/__init__.py +0 -0
  43. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  44. tpu_inference/kernels/__init__.py +0 -0
  45. tpu_inference/kernels/collectives/__init__.py +0 -0
  46. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  47. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  48. tpu_inference/kernels/collectives/util.py +47 -0
  49. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  50. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  51. tpu_inference/kernels/fused_moe/__init__.py +0 -0
  52. tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
  53. tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
  54. tpu_inference/kernels/mla/__init__.py +0 -0
  55. tpu_inference/kernels/mla/v1/__init__.py +0 -0
  56. tpu_inference/kernels/mla/v1/kernel.py +1349 -0
  57. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  58. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  59. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  60. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  61. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  62. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  66. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
  71. tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
  72. tpu_inference/layers/__init__.py +0 -0
  73. tpu_inference/layers/common/__init__.py +0 -0
  74. tpu_inference/layers/common/attention_interface.py +390 -0
  75. tpu_inference/layers/common/attention_metadata.py +34 -0
  76. tpu_inference/layers/common/binary_search.py +295 -0
  77. tpu_inference/layers/common/quant_methods.py +8 -0
  78. tpu_inference/layers/common/sharding.py +582 -0
  79. tpu_inference/layers/jax/__init__.py +0 -0
  80. tpu_inference/layers/jax/attention/__init__.py +0 -0
  81. tpu_inference/layers/jax/attention/attention.py +255 -0
  82. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  83. tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
  84. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  85. tpu_inference/layers/jax/base.py +151 -0
  86. tpu_inference/layers/jax/constants.py +88 -0
  87. tpu_inference/layers/jax/layers.py +301 -0
  88. tpu_inference/layers/jax/misc.py +16 -0
  89. tpu_inference/layers/jax/moe/__init__.py +0 -0
  90. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  91. tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
  92. tpu_inference/layers/jax/moe/moe.py +209 -0
  93. tpu_inference/layers/jax/rope.py +280 -0
  94. tpu_inference/layers/jax/rope_interface.py +214 -0
  95. tpu_inference/layers/jax/sample/__init__.py +0 -0
  96. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  97. tpu_inference/layers/jax/sample/sampling.py +96 -0
  98. tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
  99. tpu_inference/layers/jax/transformer_block.py +107 -0
  100. tpu_inference/layers/vllm/__init__.py +0 -0
  101. tpu_inference/layers/vllm/attention.py +221 -0
  102. tpu_inference/layers/vllm/fused_moe.py +507 -0
  103. tpu_inference/layers/vllm/linear_common.py +186 -0
  104. tpu_inference/layers/vllm/quantization/__init__.py +39 -0
  105. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  106. tpu_inference/layers/vllm/quantization/common.py +105 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  108. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
  109. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
  110. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  111. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  112. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  113. tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
  114. tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
  115. tpu_inference/layers/vllm/sharding.py +230 -0
  116. tpu_inference/logger.py +10 -0
  117. tpu_inference/lora/__init__.py +0 -0
  118. tpu_inference/lora/torch_lora_ops.py +103 -0
  119. tpu_inference/lora/torch_punica_tpu.py +311 -0
  120. tpu_inference/mock/__init__.py +0 -0
  121. tpu_inference/mock/vllm_config_utils.py +28 -0
  122. tpu_inference/mock/vllm_envs.py +1219 -0
  123. tpu_inference/mock/vllm_logger.py +212 -0
  124. tpu_inference/mock/vllm_logging_utils.py +15 -0
  125. tpu_inference/models/__init__.py +0 -0
  126. tpu_inference/models/common/__init__.py +0 -0
  127. tpu_inference/models/common/model_loader.py +444 -0
  128. tpu_inference/models/jax/__init__.py +0 -0
  129. tpu_inference/models/jax/deepseek_v3.py +868 -0
  130. tpu_inference/models/jax/gpt_oss.py +492 -0
  131. tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
  132. tpu_inference/models/jax/llama3.py +375 -0
  133. tpu_inference/models/jax/llama4.py +629 -0
  134. tpu_inference/models/jax/llama_eagle3.py +333 -0
  135. tpu_inference/models/jax/phi3.py +376 -0
  136. tpu_inference/models/jax/qwen2.py +375 -0
  137. tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
  138. tpu_inference/models/jax/qwen3.py +302 -0
  139. tpu_inference/models/jax/utils/__init__.py +0 -0
  140. tpu_inference/models/jax/utils/file_utils.py +96 -0
  141. tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
  142. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  143. tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
  144. tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
  145. tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
  146. tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
  147. tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
  148. tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
  149. tpu_inference/models/jax/utils/weight_utils.py +529 -0
  150. tpu_inference/models/vllm/__init__.py +0 -0
  151. tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
  152. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  153. tpu_inference/platforms/__init__.py +2 -0
  154. tpu_inference/platforms/tpu_platform.py +269 -0
  155. tpu_inference/runner/__init__.py +0 -0
  156. tpu_inference/runner/block_table.py +122 -0
  157. tpu_inference/runner/compilation_manager.py +780 -0
  158. tpu_inference/runner/input_batch.py +435 -0
  159. tpu_inference/runner/kv_cache.py +132 -0
  160. tpu_inference/runner/kv_cache_manager.py +479 -0
  161. tpu_inference/runner/lora_utils.py +92 -0
  162. tpu_inference/runner/multimodal_manager.py +217 -0
  163. tpu_inference/runner/persistent_batch_manager.py +244 -0
  164. tpu_inference/runner/speculative_decoding_manager.py +248 -0
  165. tpu_inference/runner/structured_decoding_manager.py +88 -0
  166. tpu_inference/runner/tpu_runner.py +1620 -0
  167. tpu_inference/runner/utils.py +426 -0
  168. tpu_inference/spec_decode/__init__.py +0 -0
  169. tpu_inference/spec_decode/jax/__init__.py +0 -0
  170. tpu_inference/spec_decode/jax/eagle3.py +367 -0
  171. tpu_inference/tpu_info.py +77 -0
  172. tpu_inference/utils.py +317 -0
  173. tpu_inference/worker/__init__.py +0 -0
  174. tpu_inference/worker/tpu_worker.py +321 -0
  175. tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
  176. tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
  177. tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
  178. tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
  179. tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
@@ -0,0 +1,390 @@
1
+ import functools
2
+ import math
3
+ from typing import Any, Callable, Optional, Tuple
4
+
5
+ import jax
6
+ import jax.numpy as jnp
7
+ from jax.experimental import shard_map
8
+ from jax.experimental.pallas.ops.tpu.paged_attention import paged_attention
9
+ from jax.experimental.pallas.ops.tpu.splash_attention import \
10
+ splash_attention_kernel as splash
11
+ from jax.experimental.pallas.ops.tpu.splash_attention import \
12
+ splash_attention_mask as mask_lib
13
+ from jax.sharding import Mesh
14
+ from jax.sharding import PartitionSpec as P
15
+
16
+ import tpu_inference.kernels.ragged_paged_attention.v3.kernel as rpa
17
+ import tpu_inference.kernels.ragged_paged_attention.v3.kernel_hd64 as rpa_hd64
18
+ from tpu_inference.kernels.flash_attention.kernel import flash_attention
19
+ from tpu_inference.layers.common.attention_metadata import AttentionMetadata
20
+ from tpu_inference.layers.common.sharding import ShardingAxisName
21
+ from tpu_inference.utils import get_megacore
22
+
23
+ MAX_ALLOWED_PAGE_INDICES_N = (
24
+ 128 * 1024
25
+ ) # Based on experiments on v5e, 256x1024 results in smem oom but 128x1024 not. TODO: Adjust this based on TPU version.
26
+
27
+ ragged_paged_attention = rpa.ragged_paged_attention
28
+ get_kv_cache_shape = rpa.get_kv_cache_shape
29
+
30
+ ragged_paged_attention_hd64 = rpa_hd64.ragged_paged_attention_hd64
31
+ get_kv_cache_shape_hd64 = rpa_hd64.get_kv_cache_shape
32
+
33
+
34
+ def sharded_flash_attention(
35
+ mesh: Mesh,
36
+ causal: bool = True,
37
+ sm_scale: Optional[float] = None,
38
+ vmem_limit_bytes: int | None = None,
39
+ ) -> Callable[..., Any]:
40
+ in_specs = (
41
+ P("data", "model", None, None), # q
42
+ P("data", "model", None, None), # k
43
+ P("data", "model", None, None), # v
44
+ P(), # segment_ids
45
+ )
46
+ out_specs = P("data", "model", None, None)
47
+
48
+ def _flash_attention(q, k, v, segment_ids):
49
+ return flash_attention(q,
50
+ k,
51
+ v,
52
+ segment_ids=segment_ids,
53
+ sm_scale=sm_scale,
54
+ causal=causal,
55
+ vmem_limit_bytes=vmem_limit_bytes)
56
+
57
+ return jax.jit(
58
+ shard_map.shard_map(_flash_attention,
59
+ mesh=mesh,
60
+ in_specs=in_specs,
61
+ out_specs=out_specs,
62
+ check_rep=False))
63
+
64
+
65
+ def sharded_paged_attention(
66
+ mesh: Mesh,
67
+ attn_logits_soft_cap: Optional[float] = None,
68
+ ) -> Callable[..., Any]:
69
+ """Shards GQA PagedAttention along KV heads."""
70
+ in_specs = (
71
+ P(None, "model", None), # q
72
+ P("model", None, None, None), # k
73
+ P("model", None, None, None), # v
74
+ P(), # lengths
75
+ P(), # page_indices
76
+ )
77
+ out_specs = P(None, "model", None)
78
+
79
+ def _paged_attention_fn(q, k, v, lengths, page_indices):
80
+ if page_indices.size > MAX_ALLOWED_PAGE_INDICES_N:
81
+ raise ValueError(
82
+ "This will result in smem OOM. Use `paged_attention_with_guarded_smem` to run with minibatches."
83
+ )
84
+ return paged_attention(
85
+ q,
86
+ k,
87
+ v,
88
+ lengths,
89
+ page_indices,
90
+ attn_logits_soft_cap=attn_logits_soft_cap,
91
+ pages_per_compute_block=min(
92
+ 16, page_indices.shape[1]), # 512 / page_size:32,
93
+ megacore_mode="kv_head" if get_megacore() else None,
94
+ )
95
+
96
+ return jax.jit(
97
+ shard_map.shard_map(
98
+ _paged_attention_fn,
99
+ mesh=mesh,
100
+ in_specs=in_specs,
101
+ out_specs=out_specs,
102
+ check_rep=False,
103
+ ))
104
+
105
+
106
+ # TODO(xiangxu): merge this with sharded_paged_attention
107
+ @functools.partial(jax.jit, static_argnums=[0])
108
+ def paged_attention_with_guarded_smem(
109
+ paged_attention_kernel: Callable,
110
+ q: jax.Array,
111
+ k_pages: jax.Array,
112
+ v_pages: jax.Array,
113
+ lengths: jax.Array,
114
+ page_indices: jax.Array,
115
+ ):
116
+ # Addresses b/336316706. Summary:
117
+ # Paged attention kernel stores `lengths` (batch_size * 4 bytes) and `page_indices` (batch_size * num_blocks_per_seq * 4 bytes) in SMEM.
118
+ # Capacity of SMEM is quite limited which is also TPU version dependent. Models with higher context length or higher batch size, can cause OOM in SMEM.
119
+ # There are two solutions:
120
+ # 1. Reduce blocks per seq by increasing page size.
121
+ # 2. Splitting the batch into several minibatches (Higher perf based on my benchmark).
122
+
123
+ batch_size, blocks_per_seq = page_indices.shape
124
+
125
+ if page_indices.size <= MAX_ALLOWED_PAGE_INDICES_N:
126
+ return paged_attention_kernel(q, k_pages, v_pages, lengths,
127
+ page_indices)
128
+
129
+ mini_batch_size = MAX_ALLOWED_PAGE_INDICES_N // blocks_per_seq
130
+
131
+ # If batch_size is not disible by mini_batch_size,
132
+ # we set mini_batch_size to a smaller value, i.e GCD,
133
+ # which will trigger more kernel launches but it's fine.
134
+ # TODO: Fix --decode_seqs_padding with this limitation.
135
+ mini_batch_size = math.gcd(batch_size, mini_batch_size)
136
+
137
+ num_kernel_launches = batch_size // mini_batch_size
138
+
139
+ outputs = jnp.zeros_like(q).reshape(
140
+ (num_kernel_launches, mini_batch_size, *q.shape[1:]))
141
+ q = q.reshape((num_kernel_launches, mini_batch_size, *q.shape[1:]))
142
+ seq_lens = lengths.reshape((num_kernel_launches, mini_batch_size))
143
+ block_indices = page_indices.reshape(
144
+ (num_kernel_launches, mini_batch_size, page_indices.shape[1]))
145
+
146
+ for i in range(num_kernel_launches):
147
+ outputs = outputs.at[i].set(
148
+ paged_attention_kernel(q[i], k_pages, v_pages, seq_lens[i],
149
+ block_indices[i]))
150
+
151
+ outputs = outputs.reshape((batch_size, *outputs.shape[2:]))
152
+
153
+ return outputs
154
+
155
+
156
+ # ruff: noqa: E741
157
+ def update_cache(
158
+ is_prefill,
159
+ cache,
160
+ indices,
161
+ operand,
162
+ prefill_seq_len=None,
163
+ sliding_window=None,
164
+ ) -> jax.Array:
165
+
166
+ # (8, 55640, 32, 128) (1, 8, 256, 128) -> K (8, 8, 32, 128)
167
+ # I = B * T // S
168
+ # k cache, operand
169
+
170
+ B, K, T, H = operand.shape
171
+ K_c, L, S, H = cache.shape
172
+ assert K == K_c
173
+ # NOTE: The cache updating is pretty tricky:
174
+ # 1. The random access updating cache is not as performant as the slice updating.
175
+ # If the random access is necessary, make sure the indexing count is as small as possible.
176
+ # 2. The random access updating may trigger extra tranpose (memory copy) of cache,
177
+ # which is a disaster because the cache is huge. This is a data formatting op inserted by
178
+ # the XLA compiler and not well documented.
179
+ # To mitigate the issues above:
180
+ # For prefill:
181
+ # We reshape the operand so that we can update the cache in block wise, which only requires the block indices.
182
+ # For decode:
183
+ # We reshape the cache so that we can update the cache in token wise, which only requires the token indices (block_id + offset).
184
+ if is_prefill:
185
+ # In the case of sliding window, we should select sliding_window tokens from actual prompt, not from the padded tokens.
186
+ if sliding_window and T > sliding_window:
187
+ assert B == 1
188
+ start_index = jax.lax.max(0, prefill_seq_len - sliding_window)
189
+ operand = jax.lax.dynamic_slice_in_dim(
190
+ operand, start_index, sliding_window,
191
+ axis=2) # TODO: @pooyam Perf check this.
192
+ T = sliding_window
193
+
194
+ I = B * T // S
195
+ # cache: (K, L, S, H)
196
+ # operand: (B, K, T, H) -> (K, I, S, H)
197
+ # indices: (B, T // S) -> (I,)
198
+ operand = jnp.swapaxes(operand, 0, 1).reshape(K, I, S, H)
199
+ indices = indices.reshape(I)
200
+ cache = cache.at[:, indices, :, :].set(operand)
201
+ else:
202
+ # cache: (K, L, S, H) -> (K, L * S, H)
203
+ # operand: (B, K, 1, H) -> (K, B, H)
204
+ # indices: (B,)
205
+ cache = cache.reshape(K, L * S, H)
206
+ operand = jnp.swapaxes(operand, 0, 1).reshape(K, B, H)
207
+ # NOTE: `cache.[:, indices, :].set()` will trigger the extra tranpose of the cache.
208
+ # The `jnp.arange(K)[..., None]` trick is to avoid it. WTF?
209
+ cache = cache.at[jnp.arange(K)[..., None], indices, :].set(operand)
210
+ cache = cache.reshape(K, L, S, H)
211
+ return cache
212
+
213
+
214
+ @functools.partial(
215
+ jax.jit, static_argnames=["window_size", "attn_logits_soft_cap", "is_mqa"])
216
+ def apply_splash(q, k, v, window_size, attn_logits_soft_cap,
217
+ is_mqa) -> jax.Array:
218
+ # q: (batch_size, num_heads, seq_len, head_dim)
219
+ num_heads = q.shape[1]
220
+ q_seq_len = q.shape[2]
221
+ kv_seq_len = k.shape[2]
222
+ assert kv_seq_len >= q_seq_len
223
+
224
+ masks = [
225
+ mask_lib.LocalMask((q_seq_len, kv_seq_len), (window_size, 0),
226
+ kv_seq_len - q_seq_len) for _ in range(num_heads)
227
+ ]
228
+ mask = mask_lib.MultiHeadMask(tuple((m for m in masks)))
229
+ block_sizes = splash.BlockSizes.get_default()
230
+
231
+ if is_mqa:
232
+ attn = splash.make_splash_mqa_single_device(
233
+ mask,
234
+ block_sizes=block_sizes,
235
+ attn_logits_soft_cap=attn_logits_soft_cap)
236
+ else:
237
+ attn = splash.make_splash_mha_single_device(
238
+ mask,
239
+ block_sizes=block_sizes,
240
+ attn_logits_soft_cap=attn_logits_soft_cap)
241
+ attn = jax.vmap(attn)
242
+ outputs = attn(q, k, v, None)
243
+
244
+ return outputs
245
+
246
+
247
+ def sharded_splash_attention(
248
+ mesh: Mesh,
249
+ window_size: Optional[int] = None,
250
+ attn_logits_soft_cap: Optional[float] = None,
251
+ is_mqa: bool = False,
252
+ ) -> Callable[..., Any]:
253
+ in_specs = (
254
+ P("data", "model", None, None), # q
255
+ P("data", "model", None, None), # k
256
+ P("data", "model", None, None), # vx
257
+ )
258
+ out_specs = P("data", "model", None, None)
259
+ return jax.jit(
260
+ shard_map.shard_map(
261
+ functools.partial(
262
+ apply_splash,
263
+ window_size=window_size,
264
+ attn_logits_soft_cap=attn_logits_soft_cap,
265
+ is_mqa=is_mqa,
266
+ ),
267
+ mesh=mesh,
268
+ in_specs=in_specs,
269
+ out_specs=out_specs,
270
+ check_rep=False,
271
+ ))
272
+
273
+
274
+ def sharded_ragged_paged_attention(
275
+ mesh: Mesh,
276
+ q: jax.Array,
277
+ k: jax.Array,
278
+ v: jax.Array,
279
+ kv_cache: jax.Array,
280
+ kv_lens: jax.Array,
281
+ page_indices: jax.Array,
282
+ cu_q_lens: jax.Array,
283
+ distribution: jax.Array,
284
+ attention_sink: jax.Array | None,
285
+ sm_scale: float,
286
+ attention_chunk_size: int | None = None,
287
+ q_scale: float | None = None,
288
+ k_scale: float | None = None,
289
+ v_scale: float | None = None,
290
+ ):
291
+ """Shards along KV heads."""
292
+
293
+ qkv_spec = P(ShardingAxisName.ATTN_DATA, ShardingAxisName.ATTN_HEAD, None)
294
+ kv_cache_spec = P(ShardingAxisName.ATTN_DATA, None,
295
+ ShardingAxisName.ATTN_HEAD, None, None)
296
+ in_specs = (
297
+ qkv_spec, # q
298
+ qkv_spec, # k
299
+ qkv_spec, # v
300
+ kv_cache_spec, # kv cache
301
+ P(ShardingAxisName.ATTN_DATA), # kv_lens
302
+ P(ShardingAxisName.ATTN_DATA), # page_indices
303
+ P(ShardingAxisName.ATTN_DATA), # cu_q_lens
304
+ P(ShardingAxisName.ATTN_DATA), # distribution
305
+ )
306
+ out_specs = (qkv_spec, kv_cache_spec)
307
+
308
+ args = (q, k, v, kv_cache, kv_lens, page_indices, cu_q_lens, distribution)
309
+
310
+ use_hd64 = q.shape[-1] == 64
311
+ func = ragged_paged_attention_hd64 if use_hd64 else ragged_paged_attention
312
+
313
+ if attention_sink is not None:
314
+ if not use_hd64:
315
+ raise NotImplementedError(
316
+ "Attention sink support is only available when head_dim==64")
317
+
318
+ in_specs += (P(ShardingAxisName.ATTN_HEAD), )
319
+ args += (attention_sink, )
320
+
321
+ def _ragged_paged_attention(*args):
322
+ return func(
323
+ *args,
324
+ sm_scale=sm_scale,
325
+ sliding_window=attention_chunk_size,
326
+ q_scale=q_scale,
327
+ k_scale=k_scale,
328
+ v_scale=v_scale,
329
+ )
330
+
331
+ return shard_map.shard_map(
332
+ _ragged_paged_attention,
333
+ mesh=mesh,
334
+ in_specs=in_specs,
335
+ out_specs=out_specs,
336
+ check_rep=False,
337
+ )(*args)
338
+
339
+
340
+ def attention(
341
+ kv_cache: jax.Array,
342
+ q: jax.Array,
343
+ k: jax.Array,
344
+ v: jax.Array,
345
+ attention_metadata: AttentionMetadata,
346
+ mesh: Mesh,
347
+ head_dim_original: int | None = None, # before padding,
348
+ attention_chunk_size: int | None = None,
349
+ q_scale: float | None = None,
350
+ k_scale: float | None = None,
351
+ v_scale: float | None = None,
352
+ sinks: jax.Array | None = None,
353
+ ) -> Tuple[jax.Array, jax.Array]:
354
+ # T: seq_len
355
+ # N: num_heads
356
+ # K: num_kv_heads
357
+ # D: hidden_size
358
+ # H: head_dim
359
+ # L: num_blocks
360
+ # S: block_size
361
+
362
+ # TODO(jevinjiang, cuiq): transpose q weight offline.
363
+ # q: (T, N, H)
364
+ # k,v: (T, K, H)
365
+
366
+ if head_dim_original is None:
367
+ head_dim_original = q.shape[-1]
368
+
369
+ md = attention_metadata
370
+
371
+ # (T, N, H)
372
+ output, kv_cache = sharded_ragged_paged_attention(
373
+ mesh,
374
+ q,
375
+ k,
376
+ v,
377
+ kv_cache,
378
+ md.seq_lens,
379
+ md.block_tables,
380
+ md.query_start_loc,
381
+ md.request_distribution,
382
+ sinks,
383
+ sm_scale=head_dim_original**-0.5,
384
+ attention_chunk_size=attention_chunk_size,
385
+ q_scale=q_scale,
386
+ k_scale=k_scale,
387
+ v_scale=v_scale,
388
+ )
389
+
390
+ return kv_cache, output
@@ -0,0 +1,34 @@
1
+ import functools
2
+ from dataclasses import dataclass, field
3
+ from typing import Any
4
+
5
+ import jax
6
+
7
+
8
+ @functools.partial(
9
+ jax.tree_util.register_dataclass,
10
+ data_fields=[
11
+ "input_positions",
12
+ "block_tables",
13
+ "seq_lens",
14
+ "query_start_loc",
15
+ "request_distribution",
16
+ ],
17
+ meta_fields=[],
18
+ drop_fields=["query_start_loc_cpu", "seq_lens_cpu"],
19
+ )
20
+ @dataclass
21
+ class AttentionMetadata(object):
22
+ # (padded_total_num_scheduled_tokens,)
23
+ input_positions: jax.Array
24
+ # (max_num_seqs * max_num_blocks_per_req,)
25
+ block_tables: jax.Array = None
26
+ # (max_num_seqs,)
27
+ seq_lens: jax.Array = None
28
+ # (max_num_seqs + 1,)
29
+ query_start_loc: jax.Array = None
30
+ # (3,)
31
+ request_distribution: jax.Array = None
32
+
33
+ query_start_loc_cpu: Any = field(init=False)
34
+ seq_lens_cpu: Any = field(init=False)