tpu-inference 0.11.1.dev202511150811__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (179) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +53 -0
  6. tests/core/test_dp_scheduler.py +899 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/fused_moe_v1_test.py +105 -0
  10. tests/kernels/mla_v1_test.py +396 -0
  11. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  12. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  13. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  14. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
  15. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  16. tests/lora/__init__.py +0 -0
  17. tests/lora/conftest.py +32 -0
  18. tests/lora/test_bgmv.py +43 -0
  19. tests/lora/test_layers.py +654 -0
  20. tests/lora/test_lora.py +133 -0
  21. tests/lora/utils.py +96 -0
  22. tests/test_base.py +201 -0
  23. tests/test_envs.py +182 -0
  24. tests/test_quantization.py +836 -0
  25. tests/test_tpu_info.py +120 -0
  26. tests/test_utils.py +236 -0
  27. tpu_inference/__init__.py +34 -0
  28. tpu_inference/core/__init__.py +0 -0
  29. tpu_inference/core/core_tpu.py +786 -0
  30. tpu_inference/core/disagg_executor.py +118 -0
  31. tpu_inference/core/disagg_utils.py +51 -0
  32. tpu_inference/core/sched/__init__.py +0 -0
  33. tpu_inference/core/sched/dp_scheduler.py +523 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/jax_parallel_state.py +67 -0
  36. tpu_inference/distributed/tpu_connector.py +728 -0
  37. tpu_inference/distributed/utils.py +59 -0
  38. tpu_inference/env_override.py +9 -0
  39. tpu_inference/envs.py +107 -0
  40. tpu_inference/executors/__init__.py +0 -0
  41. tpu_inference/executors/ray_distributed_executor.py +362 -0
  42. tpu_inference/experimental/__init__.py +0 -0
  43. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  44. tpu_inference/kernels/__init__.py +0 -0
  45. tpu_inference/kernels/collectives/__init__.py +0 -0
  46. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  47. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  48. tpu_inference/kernels/collectives/util.py +47 -0
  49. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  50. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  51. tpu_inference/kernels/fused_moe/__init__.py +0 -0
  52. tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
  53. tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
  54. tpu_inference/kernels/mla/__init__.py +0 -0
  55. tpu_inference/kernels/mla/v1/__init__.py +0 -0
  56. tpu_inference/kernels/mla/v1/kernel.py +1349 -0
  57. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  58. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  59. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  60. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  61. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  62. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  66. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
  71. tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
  72. tpu_inference/layers/__init__.py +0 -0
  73. tpu_inference/layers/common/__init__.py +0 -0
  74. tpu_inference/layers/common/attention_interface.py +390 -0
  75. tpu_inference/layers/common/attention_metadata.py +34 -0
  76. tpu_inference/layers/common/binary_search.py +295 -0
  77. tpu_inference/layers/common/quant_methods.py +8 -0
  78. tpu_inference/layers/common/sharding.py +582 -0
  79. tpu_inference/layers/jax/__init__.py +0 -0
  80. tpu_inference/layers/jax/attention/__init__.py +0 -0
  81. tpu_inference/layers/jax/attention/attention.py +255 -0
  82. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  83. tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
  84. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  85. tpu_inference/layers/jax/base.py +151 -0
  86. tpu_inference/layers/jax/constants.py +88 -0
  87. tpu_inference/layers/jax/layers.py +301 -0
  88. tpu_inference/layers/jax/misc.py +16 -0
  89. tpu_inference/layers/jax/moe/__init__.py +0 -0
  90. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  91. tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
  92. tpu_inference/layers/jax/moe/moe.py +209 -0
  93. tpu_inference/layers/jax/rope.py +280 -0
  94. tpu_inference/layers/jax/rope_interface.py +214 -0
  95. tpu_inference/layers/jax/sample/__init__.py +0 -0
  96. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  97. tpu_inference/layers/jax/sample/sampling.py +96 -0
  98. tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
  99. tpu_inference/layers/jax/transformer_block.py +107 -0
  100. tpu_inference/layers/vllm/__init__.py +0 -0
  101. tpu_inference/layers/vllm/attention.py +221 -0
  102. tpu_inference/layers/vllm/fused_moe.py +507 -0
  103. tpu_inference/layers/vllm/linear_common.py +186 -0
  104. tpu_inference/layers/vllm/quantization/__init__.py +39 -0
  105. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  106. tpu_inference/layers/vllm/quantization/common.py +105 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  108. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
  109. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
  110. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  111. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  112. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  113. tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
  114. tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
  115. tpu_inference/layers/vllm/sharding.py +230 -0
  116. tpu_inference/logger.py +10 -0
  117. tpu_inference/lora/__init__.py +0 -0
  118. tpu_inference/lora/torch_lora_ops.py +103 -0
  119. tpu_inference/lora/torch_punica_tpu.py +311 -0
  120. tpu_inference/mock/__init__.py +0 -0
  121. tpu_inference/mock/vllm_config_utils.py +28 -0
  122. tpu_inference/mock/vllm_envs.py +1219 -0
  123. tpu_inference/mock/vllm_logger.py +212 -0
  124. tpu_inference/mock/vllm_logging_utils.py +15 -0
  125. tpu_inference/models/__init__.py +0 -0
  126. tpu_inference/models/common/__init__.py +0 -0
  127. tpu_inference/models/common/model_loader.py +444 -0
  128. tpu_inference/models/jax/__init__.py +0 -0
  129. tpu_inference/models/jax/deepseek_v3.py +868 -0
  130. tpu_inference/models/jax/gpt_oss.py +492 -0
  131. tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
  132. tpu_inference/models/jax/llama3.py +375 -0
  133. tpu_inference/models/jax/llama4.py +629 -0
  134. tpu_inference/models/jax/llama_eagle3.py +333 -0
  135. tpu_inference/models/jax/phi3.py +376 -0
  136. tpu_inference/models/jax/qwen2.py +375 -0
  137. tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
  138. tpu_inference/models/jax/qwen3.py +302 -0
  139. tpu_inference/models/jax/utils/__init__.py +0 -0
  140. tpu_inference/models/jax/utils/file_utils.py +96 -0
  141. tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
  142. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  143. tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
  144. tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
  145. tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
  146. tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
  147. tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
  148. tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
  149. tpu_inference/models/jax/utils/weight_utils.py +529 -0
  150. tpu_inference/models/vllm/__init__.py +0 -0
  151. tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
  152. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  153. tpu_inference/platforms/__init__.py +2 -0
  154. tpu_inference/platforms/tpu_platform.py +269 -0
  155. tpu_inference/runner/__init__.py +0 -0
  156. tpu_inference/runner/block_table.py +122 -0
  157. tpu_inference/runner/compilation_manager.py +780 -0
  158. tpu_inference/runner/input_batch.py +435 -0
  159. tpu_inference/runner/kv_cache.py +132 -0
  160. tpu_inference/runner/kv_cache_manager.py +479 -0
  161. tpu_inference/runner/lora_utils.py +92 -0
  162. tpu_inference/runner/multimodal_manager.py +217 -0
  163. tpu_inference/runner/persistent_batch_manager.py +244 -0
  164. tpu_inference/runner/speculative_decoding_manager.py +248 -0
  165. tpu_inference/runner/structured_decoding_manager.py +88 -0
  166. tpu_inference/runner/tpu_runner.py +1620 -0
  167. tpu_inference/runner/utils.py +426 -0
  168. tpu_inference/spec_decode/__init__.py +0 -0
  169. tpu_inference/spec_decode/jax/__init__.py +0 -0
  170. tpu_inference/spec_decode/jax/eagle3.py +367 -0
  171. tpu_inference/tpu_info.py +77 -0
  172. tpu_inference/utils.py +317 -0
  173. tpu_inference/worker/__init__.py +0 -0
  174. tpu_inference/worker/tpu_worker.py +321 -0
  175. tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
  176. tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
  177. tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
  178. tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
  179. tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
@@ -0,0 +1,400 @@
1
+ import random
2
+
3
+ import jax
4
+ import jax.numpy as jnp
5
+ from absl.testing import absltest, parameterized
6
+ from jax._src import test_util as jtu
7
+
8
+ from tpu_inference.kernels.ragged_paged_attention.v2.kernel import (
9
+ dynamic_validate_inputs, ragged_paged_attention,
10
+ ref_ragged_paged_attention)
11
+
12
+ jax.config.parse_flags_with_absl()
13
+
14
+
15
+ def ceil_div(x, a):
16
+ assert a != 0
17
+ return (x + a - 1) // a
18
+
19
+
20
+ @jtu.with_config(jax_numpy_dtype_promotion="standard")
21
+ class PagedAttentionKernelTest(jtu.JaxTestCase):
22
+
23
+ def _test_ragged_paged_attention(
24
+ self,
25
+ seq_lens, # List[(q_len, kv_len)]
26
+ num_heads, # [num_q_heads, num_kv_heads]
27
+ head_dim,
28
+ page_size,
29
+ dtype,
30
+ num_pages,
31
+ *,
32
+ num_kv_pages_per_block=8,
33
+ num_queries_per_block=64,
34
+ vmem_limit_bytes=32 * 1024 * 1024,
35
+ max_num_batched_tokens=512,
36
+ max_num_seq=8,
37
+ sliding_window: int | None = None,
38
+ soft_cap: float | None = None,
39
+ ):
40
+ if not jtu.is_device_tpu_at_least(version=4):
41
+ self.skipTest("Expect TPUv4+")
42
+ cu_q_lens = [0]
43
+ kv_lens = []
44
+ for q_len, kv_len in seq_lens:
45
+ assert q_len <= kv_len
46
+ cu_q_lens.append(cu_q_lens[-1] + q_len)
47
+ kv_lens.append(kv_len)
48
+
49
+ max_num_batched_tokens = max(cu_q_lens[-1], max_num_batched_tokens)
50
+ max_num_seq = max(len(seq_lens), max_num_seq)
51
+ max_kv_len = max(kv_lens)
52
+ pages_per_seq = ceil_div(max_kv_len, page_size)
53
+ num_q_heads, num_kv_heads = num_heads
54
+
55
+ cu_q_lens = jnp.array(cu_q_lens, dtype=jnp.int32)
56
+ kv_lens = jnp.array(kv_lens, dtype=jnp.int32)
57
+ cu_q_lens = jnp.pad(cu_q_lens,
58
+ (0, max_num_seq + 1 - cu_q_lens.shape[0]))
59
+ kv_lens = jnp.pad(kv_lens, (0, max_num_seq - kv_lens.shape[0]))
60
+ prng_key = jax.random.key(1234)
61
+ k0, k1, k2 = jax.random.split(prng_key, 3)
62
+ q = jax.random.normal(
63
+ k0,
64
+ (max_num_batched_tokens, num_q_heads, head_dim),
65
+ dtype=dtype,
66
+ )
67
+ kv_pages = jax.random.normal(
68
+ k1,
69
+ (num_pages, page_size, num_kv_heads * 2, head_dim),
70
+ dtype=dtype,
71
+ )
72
+ page_indices = jax.random.randint(k2, (max_num_seq, pages_per_seq),
73
+ 0,
74
+ num_pages,
75
+ dtype=jnp.int32)
76
+
77
+ num_seqs = jnp.array([len(seq_lens)], dtype=jnp.int32)
78
+
79
+ dynamic_validate_inputs(
80
+ q,
81
+ kv_pages,
82
+ kv_lens,
83
+ page_indices,
84
+ cu_q_lens,
85
+ num_seqs,
86
+ sliding_window=sliding_window,
87
+ soft_cap=soft_cap,
88
+ )
89
+
90
+ actual_num_q_tokens = cu_q_lens[num_seqs[0]]
91
+ output = ragged_paged_attention(
92
+ q,
93
+ kv_pages,
94
+ kv_lens,
95
+ page_indices,
96
+ cu_q_lens,
97
+ num_seqs=num_seqs,
98
+ num_kv_pages_per_block=min(num_kv_pages_per_block, pages_per_seq),
99
+ num_queries_per_block=num_queries_per_block,
100
+ vmem_limit_bytes=vmem_limit_bytes,
101
+ sliding_window=sliding_window,
102
+ soft_cap=soft_cap,
103
+ )[:actual_num_q_tokens]
104
+
105
+ expected = ref_ragged_paged_attention(
106
+ q,
107
+ kv_pages,
108
+ kv_lens,
109
+ page_indices,
110
+ cu_q_lens,
111
+ num_seqs=num_seqs,
112
+ sliding_window=sliding_window,
113
+ soft_cap=soft_cap,
114
+ )
115
+ tols = {
116
+ "float32": 0.15,
117
+ "bfloat16": 0.2,
118
+ }
119
+ tol = tols[jnp.dtype(dtype).name]
120
+ self.assertAllClose(output, expected, atol=tol, rtol=tol)
121
+
122
+ @parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
123
+ def test_ragged_paged_attention_basic(self, dtype):
124
+ seq_lens = [(192, 328), (128, 180), (64, 255)]
125
+ num_heads = (32, 8)
126
+ head_dim = 128
127
+ page_size = 16
128
+ num_pages = 1000
129
+
130
+ self._test_ragged_paged_attention(
131
+ seq_lens,
132
+ num_heads,
133
+ head_dim,
134
+ page_size,
135
+ dtype,
136
+ num_pages,
137
+ )
138
+
139
+ @parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
140
+ def test_ragged_paged_attention_decode_only(self, dtype):
141
+ seq_lens = [
142
+ (1, 18),
143
+ (1, 129),
144
+ (1, 597),
145
+ (1, 122),
146
+ (1, 64),
147
+ (1, 322),
148
+ (1, 463),
149
+ (1, 181),
150
+ (1, 1107),
151
+ (1, 123),
152
+ (1, 31),
153
+ (1, 18),
154
+ (1, 1229),
155
+ (1, 229),
156
+ (1, 87),
157
+ (1, 1328),
158
+ ]
159
+ num_heads = (32, 8)
160
+ head_dim = 128
161
+ page_size = 16
162
+ num_pages = 1000
163
+
164
+ self._test_ragged_paged_attention(
165
+ seq_lens,
166
+ num_heads,
167
+ head_dim,
168
+ page_size,
169
+ dtype,
170
+ num_pages,
171
+ )
172
+
173
+ @parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
174
+ def test_ragged_paged_attention_prefill_only(self, dtype):
175
+ seq_lens = [
176
+ (5, 18),
177
+ (15, 129),
178
+ (120, 597),
179
+ (100, 122),
180
+ (21, 64),
181
+ (32, 322),
182
+ (251, 463),
183
+ (40, 181),
184
+ (64, 1107),
185
+ (99, 123),
186
+ (10, 31),
187
+ (5, 18),
188
+ (3, 1229),
189
+ (120, 229),
190
+ (9, 87),
191
+ (2, 1328),
192
+ ]
193
+ num_heads = (32, 8)
194
+ head_dim = 128
195
+ page_size = 16
196
+ num_pages = 1000
197
+
198
+ self._test_ragged_paged_attention(
199
+ seq_lens,
200
+ num_heads,
201
+ head_dim,
202
+ page_size,
203
+ dtype,
204
+ num_pages,
205
+ )
206
+
207
+ @parameterized.product(dtype=[jnp.float32, jnp.bfloat16], )
208
+ def test_ragged_paged_attention_mixed(self, dtype):
209
+ seq_lens = [
210
+ (5, 18),
211
+ (1, 129),
212
+ (120, 597),
213
+ (1, 122),
214
+ (1, 64),
215
+ (32, 322),
216
+ (251, 463),
217
+ (1, 181),
218
+ (1, 1107),
219
+ (99, 123),
220
+ (1, 31),
221
+ (5, 18),
222
+ (3, 1229),
223
+ (117, 229),
224
+ (1, 87),
225
+ (1, 1328),
226
+ ]
227
+ num_heads = (32, 8)
228
+ head_dim = 128
229
+ page_size = 16
230
+ num_pages = 1000
231
+
232
+ self._test_ragged_paged_attention(
233
+ seq_lens,
234
+ num_heads,
235
+ head_dim,
236
+ page_size,
237
+ dtype,
238
+ num_pages,
239
+ )
240
+
241
+ @parameterized.product(
242
+ num_seqs=[1, 5, 16],
243
+ # TODO(jevinjiang): Support more num_heads!
244
+ num_heads=[(32, 8), (32, 16), (12, 2), (4, 4), (8, 1)],
245
+ dtype=[jnp.float32, jnp.bfloat16],
246
+ num_kv_pages_per_block=[4, 8],
247
+ num_queries_per_block=[32, 64],
248
+ )
249
+ def test_ragged_paged_attention_complex(
250
+ self,
251
+ num_seqs,
252
+ num_heads,
253
+ dtype,
254
+ num_kv_pages_per_block,
255
+ num_queries_per_block,
256
+ ):
257
+ seq_lens = []
258
+ for _ in range(num_seqs):
259
+ q_len = random.randint(1, 100)
260
+ kv_len = q_len + random.randint(0, 50)
261
+ seq_lens.append((q_len, kv_len))
262
+ # TODO(jevinjiang): Support non-128 head_dim!
263
+ head_dim = 128
264
+ page_size = 16
265
+ num_pages = 1000
266
+
267
+ self._test_ragged_paged_attention(
268
+ seq_lens,
269
+ num_heads,
270
+ head_dim,
271
+ page_size,
272
+ dtype,
273
+ num_pages,
274
+ num_kv_pages_per_block=num_kv_pages_per_block,
275
+ num_queries_per_block=num_queries_per_block,
276
+ )
277
+
278
+ @parameterized.product(
279
+ num_kv_pages_per_block=[4, 8],
280
+ num_queries_per_block=[32, 64],
281
+ sliding_window=[None, 5, 128],
282
+ )
283
+ def test_ragged_paged_attention_sliding_window(
284
+ self,
285
+ num_kv_pages_per_block,
286
+ num_queries_per_block,
287
+ sliding_window: int | None,
288
+ ):
289
+ num_seqs = 5
290
+ num_heads = (4, 4)
291
+ dtype = jnp.float32
292
+ seq_lens = []
293
+ for _ in range(num_seqs):
294
+ q_len = random.randint(1, 100)
295
+ kv_len = q_len + random.randint(0, 50)
296
+ seq_lens.append((q_len, kv_len))
297
+ # TODO(jevinjiang): Support non-128 head_dim!
298
+ head_dim = 128
299
+ page_size = 16
300
+ num_pages = 1000
301
+
302
+ self._test_ragged_paged_attention(
303
+ seq_lens,
304
+ num_heads,
305
+ head_dim,
306
+ page_size,
307
+ dtype,
308
+ num_pages,
309
+ num_kv_pages_per_block=num_kv_pages_per_block,
310
+ num_queries_per_block=num_queries_per_block,
311
+ sliding_window=sliding_window,
312
+ )
313
+
314
+ @parameterized.product(
315
+ num_kv_pages_per_block=[4, 8],
316
+ num_queries_per_block=[32, 64],
317
+ soft_cap=[None, 50.0],
318
+ )
319
+ def test_ragged_paged_attention_logit_soft_capping(
320
+ self,
321
+ num_kv_pages_per_block,
322
+ num_queries_per_block,
323
+ soft_cap: float | None,
324
+ ):
325
+ num_heads = (12, 2)
326
+ num_seqs = 2
327
+ dtype = jnp.float32
328
+ seq_lens = []
329
+ for _ in range(num_seqs):
330
+ q_len = random.randint(1, 100)
331
+ kv_len = q_len + random.randint(0, 50)
332
+ seq_lens.append((q_len, kv_len))
333
+ head_dim = 128
334
+ page_size = 16
335
+ num_pages = 1000
336
+
337
+ self._test_ragged_paged_attention(
338
+ seq_lens,
339
+ num_heads,
340
+ head_dim,
341
+ page_size,
342
+ dtype,
343
+ num_pages,
344
+ num_kv_pages_per_block=num_kv_pages_per_block,
345
+ num_queries_per_block=num_queries_per_block,
346
+ soft_cap=soft_cap,
347
+ )
348
+
349
+ def test_ragged_paged_attention_sliding_window_should_be_positive(self):
350
+ dtype = jnp.float32
351
+ seq_lens = [(192, 328), (128, 180), (64, 255)]
352
+ num_heads = (32, 8)
353
+ head_dim = 128
354
+ page_size = 16
355
+ num_pages = 1000
356
+
357
+ with self.assertRaisesRegex(ValueError, "must be positive"):
358
+ self._test_ragged_paged_attention(
359
+ seq_lens,
360
+ num_heads,
361
+ head_dim,
362
+ page_size,
363
+ dtype,
364
+ num_pages,
365
+ sliding_window=0,
366
+ )
367
+
368
+ with self.assertRaisesRegex(ValueError, "must be positive"):
369
+ self._test_ragged_paged_attention(
370
+ seq_lens,
371
+ num_heads,
372
+ head_dim,
373
+ page_size,
374
+ dtype,
375
+ num_pages,
376
+ sliding_window=-1,
377
+ )
378
+
379
+ def test_ragged_paged_attention_soft_cap_cannot_be_zero(self):
380
+ dtype = jnp.float32
381
+ seq_lens = [(192, 328), (128, 180), (64, 255)]
382
+ num_heads = (32, 8)
383
+ head_dim = 128
384
+ page_size = 16
385
+ num_pages = 1000
386
+
387
+ with self.assertRaisesRegex(ValueError, "must not be 0.0"):
388
+ self._test_ragged_paged_attention(
389
+ seq_lens,
390
+ num_heads,
391
+ head_dim,
392
+ page_size,
393
+ dtype,
394
+ num_pages,
395
+ soft_cap=0.0,
396
+ )
397
+
398
+
399
+ if __name__ == "__main__":
400
+ absltest.main(testLoader=jtu.JaxTestLoader())