tpu-inference 0.11.1.dev202511150811__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (179) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +53 -0
  6. tests/core/test_dp_scheduler.py +899 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/fused_moe_v1_test.py +105 -0
  10. tests/kernels/mla_v1_test.py +396 -0
  11. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  12. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  13. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  14. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
  15. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  16. tests/lora/__init__.py +0 -0
  17. tests/lora/conftest.py +32 -0
  18. tests/lora/test_bgmv.py +43 -0
  19. tests/lora/test_layers.py +654 -0
  20. tests/lora/test_lora.py +133 -0
  21. tests/lora/utils.py +96 -0
  22. tests/test_base.py +201 -0
  23. tests/test_envs.py +182 -0
  24. tests/test_quantization.py +836 -0
  25. tests/test_tpu_info.py +120 -0
  26. tests/test_utils.py +236 -0
  27. tpu_inference/__init__.py +34 -0
  28. tpu_inference/core/__init__.py +0 -0
  29. tpu_inference/core/core_tpu.py +786 -0
  30. tpu_inference/core/disagg_executor.py +118 -0
  31. tpu_inference/core/disagg_utils.py +51 -0
  32. tpu_inference/core/sched/__init__.py +0 -0
  33. tpu_inference/core/sched/dp_scheduler.py +523 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/jax_parallel_state.py +67 -0
  36. tpu_inference/distributed/tpu_connector.py +728 -0
  37. tpu_inference/distributed/utils.py +59 -0
  38. tpu_inference/env_override.py +9 -0
  39. tpu_inference/envs.py +107 -0
  40. tpu_inference/executors/__init__.py +0 -0
  41. tpu_inference/executors/ray_distributed_executor.py +362 -0
  42. tpu_inference/experimental/__init__.py +0 -0
  43. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  44. tpu_inference/kernels/__init__.py +0 -0
  45. tpu_inference/kernels/collectives/__init__.py +0 -0
  46. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  47. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  48. tpu_inference/kernels/collectives/util.py +47 -0
  49. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  50. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  51. tpu_inference/kernels/fused_moe/__init__.py +0 -0
  52. tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
  53. tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
  54. tpu_inference/kernels/mla/__init__.py +0 -0
  55. tpu_inference/kernels/mla/v1/__init__.py +0 -0
  56. tpu_inference/kernels/mla/v1/kernel.py +1349 -0
  57. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  58. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  59. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  60. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  61. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  62. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  66. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
  71. tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
  72. tpu_inference/layers/__init__.py +0 -0
  73. tpu_inference/layers/common/__init__.py +0 -0
  74. tpu_inference/layers/common/attention_interface.py +390 -0
  75. tpu_inference/layers/common/attention_metadata.py +34 -0
  76. tpu_inference/layers/common/binary_search.py +295 -0
  77. tpu_inference/layers/common/quant_methods.py +8 -0
  78. tpu_inference/layers/common/sharding.py +582 -0
  79. tpu_inference/layers/jax/__init__.py +0 -0
  80. tpu_inference/layers/jax/attention/__init__.py +0 -0
  81. tpu_inference/layers/jax/attention/attention.py +255 -0
  82. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  83. tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
  84. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  85. tpu_inference/layers/jax/base.py +151 -0
  86. tpu_inference/layers/jax/constants.py +88 -0
  87. tpu_inference/layers/jax/layers.py +301 -0
  88. tpu_inference/layers/jax/misc.py +16 -0
  89. tpu_inference/layers/jax/moe/__init__.py +0 -0
  90. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  91. tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
  92. tpu_inference/layers/jax/moe/moe.py +209 -0
  93. tpu_inference/layers/jax/rope.py +280 -0
  94. tpu_inference/layers/jax/rope_interface.py +214 -0
  95. tpu_inference/layers/jax/sample/__init__.py +0 -0
  96. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  97. tpu_inference/layers/jax/sample/sampling.py +96 -0
  98. tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
  99. tpu_inference/layers/jax/transformer_block.py +107 -0
  100. tpu_inference/layers/vllm/__init__.py +0 -0
  101. tpu_inference/layers/vllm/attention.py +221 -0
  102. tpu_inference/layers/vllm/fused_moe.py +507 -0
  103. tpu_inference/layers/vllm/linear_common.py +186 -0
  104. tpu_inference/layers/vllm/quantization/__init__.py +39 -0
  105. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  106. tpu_inference/layers/vllm/quantization/common.py +105 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  108. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
  109. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
  110. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  111. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  112. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  113. tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
  114. tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
  115. tpu_inference/layers/vllm/sharding.py +230 -0
  116. tpu_inference/logger.py +10 -0
  117. tpu_inference/lora/__init__.py +0 -0
  118. tpu_inference/lora/torch_lora_ops.py +103 -0
  119. tpu_inference/lora/torch_punica_tpu.py +311 -0
  120. tpu_inference/mock/__init__.py +0 -0
  121. tpu_inference/mock/vllm_config_utils.py +28 -0
  122. tpu_inference/mock/vllm_envs.py +1219 -0
  123. tpu_inference/mock/vllm_logger.py +212 -0
  124. tpu_inference/mock/vllm_logging_utils.py +15 -0
  125. tpu_inference/models/__init__.py +0 -0
  126. tpu_inference/models/common/__init__.py +0 -0
  127. tpu_inference/models/common/model_loader.py +444 -0
  128. tpu_inference/models/jax/__init__.py +0 -0
  129. tpu_inference/models/jax/deepseek_v3.py +868 -0
  130. tpu_inference/models/jax/gpt_oss.py +492 -0
  131. tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
  132. tpu_inference/models/jax/llama3.py +375 -0
  133. tpu_inference/models/jax/llama4.py +629 -0
  134. tpu_inference/models/jax/llama_eagle3.py +333 -0
  135. tpu_inference/models/jax/phi3.py +376 -0
  136. tpu_inference/models/jax/qwen2.py +375 -0
  137. tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
  138. tpu_inference/models/jax/qwen3.py +302 -0
  139. tpu_inference/models/jax/utils/__init__.py +0 -0
  140. tpu_inference/models/jax/utils/file_utils.py +96 -0
  141. tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
  142. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  143. tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
  144. tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
  145. tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
  146. tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
  147. tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
  148. tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
  149. tpu_inference/models/jax/utils/weight_utils.py +529 -0
  150. tpu_inference/models/vllm/__init__.py +0 -0
  151. tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
  152. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  153. tpu_inference/platforms/__init__.py +2 -0
  154. tpu_inference/platforms/tpu_platform.py +269 -0
  155. tpu_inference/runner/__init__.py +0 -0
  156. tpu_inference/runner/block_table.py +122 -0
  157. tpu_inference/runner/compilation_manager.py +780 -0
  158. tpu_inference/runner/input_batch.py +435 -0
  159. tpu_inference/runner/kv_cache.py +132 -0
  160. tpu_inference/runner/kv_cache_manager.py +479 -0
  161. tpu_inference/runner/lora_utils.py +92 -0
  162. tpu_inference/runner/multimodal_manager.py +217 -0
  163. tpu_inference/runner/persistent_batch_manager.py +244 -0
  164. tpu_inference/runner/speculative_decoding_manager.py +248 -0
  165. tpu_inference/runner/structured_decoding_manager.py +88 -0
  166. tpu_inference/runner/tpu_runner.py +1620 -0
  167. tpu_inference/runner/utils.py +426 -0
  168. tpu_inference/spec_decode/__init__.py +0 -0
  169. tpu_inference/spec_decode/jax/__init__.py +0 -0
  170. tpu_inference/spec_decode/jax/eagle3.py +367 -0
  171. tpu_inference/tpu_info.py +77 -0
  172. tpu_inference/utils.py +317 -0
  173. tpu_inference/worker/__init__.py +0 -0
  174. tpu_inference/worker/tpu_worker.py +321 -0
  175. tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
  176. tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
  177. tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
  178. tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
  179. tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
@@ -0,0 +1,295 @@
1
+ # Copyright 2024 The T5X Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Binary search over float32 bits.
15
+
16
+ Includes fast algorithms top-k masking and top-p masking on probability
17
+ distributions.
18
+ """
19
+
20
+ from typing import Callable, Sequence
21
+
22
+ import jax
23
+ from jax import lax
24
+ from jax import numpy as jnp
25
+
26
+
27
+ def int32_bsearch(batch_shape: Sequence[int],
28
+ predicate: Callable[[jnp.ndarray], jnp.ndarray]):
29
+ """Batched binary search over int32 values.
30
+
31
+ For each element of the batch, search for the largest int32 (closest to
32
+ positive infinity) for which the predicate is False. If the predicate is
33
+ always True, returns the minimum int32 value.
34
+
35
+ Args:
36
+ batch_shape: Shape of the search that we're batching over.
37
+ predicate: the query we're searching for. For every batch element, this is
38
+ required to be a monotonic function from int32 to bool. In other words,
39
+ the predicate must return False for all numbers <= some threshold and then
40
+ return True for all numbers > that threshold. The threshold may be
41
+ different for different elements of the batch.
42
+
43
+ Returns:
44
+ For each element of the batch, the largest int32 for which the predicate
45
+ returns False. Shape: batch_shape.
46
+ """
47
+ current_bits = jnp.zeros(batch_shape, dtype=jnp.int32)
48
+
49
+ # bit 31 is special, because it compares in the opposite order of all other
50
+ # bits. we use uint32 due to numpy promotion/casting rules.
51
+ midpoint = current_bits
52
+ predicate_satisfied = predicate(midpoint)
53
+ current_bits = current_bits | jnp.where(predicate_satisfied,
54
+ jnp.uint32(1 << 31), jnp.uint32(0))
55
+ del midpoint, predicate_satisfied
56
+
57
+ def loop_body(i, current_bits):
58
+ bit_index = 30 - i
59
+ bit = jnp.int32(1 << bit_index)
60
+ midpoint = current_bits | bit
61
+ predicate_satisfied = predicate(midpoint)
62
+ current_bits = current_bits | jnp.where(predicate_satisfied,
63
+ jnp.int32(0), bit)
64
+ return current_bits
65
+
66
+ current_bits = lax.fori_loop(0, 31, loop_body, current_bits)
67
+ return current_bits
68
+
69
+
70
+ def _monotonic_int32_to_float32_bit_pattern(x: int) -> int:
71
+ """Converts an int32 to a float32 bit pattern with consistent ordering.
72
+
73
+ This function is the unique function that is monotonic with respect to the
74
+ floating point total order, see
75
+ https://en.wikipedia.org/wiki/IEEE_754#Total-ordering_predicate. Note that
76
+ this function returns an int32, not a float32. For the function that returns
77
+ float32, see `monotonic_int32_to_float32`.
78
+
79
+ Args:
80
+ x: int bit pattern.
81
+
82
+ Returns:
83
+ Bit pattern of a float32 number.
84
+ """
85
+ non_sign_bits = jnp.int32((1 << 31) - 1)
86
+ # See
87
+ # https://stackoverflow.com/questions/20097380/iee-754-total-order-in-standard-c11
88
+ # for the relationship between int32 order and f32 total order, including
89
+ # the "xor trick".
90
+
91
+ # Flip the sort order for numbers where the sign bit is set. On int32,
92
+ # the bit pattern with sign bit set and all other bits clear is the most
93
+ # negative bit pattern (it's int32::MIN), whereas on float32 it's the least
94
+ # negative bit pattern (it's -0.0). Flipping all the non-sign bits makes the
95
+ # int32 sort order consistent with the float32 sort order.
96
+ x = x ^ jnp.where(x < 0, non_sign_bits, jnp.int32(0))
97
+ return x
98
+
99
+
100
+ def _monotonic_int32_to_float32(x: int) -> jax.Array:
101
+ """Converts an int32 to a float32 with consistent ordering.
102
+
103
+ This function is the unique function that is monotonic with respect to the
104
+ floating point total order, see
105
+ https://en.wikipedia.org/wiki/IEEE_754#Total-ordering_predicate.
106
+
107
+ Args:
108
+ x: int bit pattern.
109
+
110
+ Returns:
111
+ float32 number with consistent ordering.
112
+ """
113
+ x = _monotonic_int32_to_float32_bit_pattern(x)
114
+ return lax.bitcast_convert_type(x, jnp.float32)
115
+
116
+
117
+ def float32_bsearch(batch_shape, predicate):
118
+ """Binary search on finite float32 numbers.
119
+
120
+ For each element of the batch, this function searches for the largest finite
121
+ non-NaN float32 for which the predicate is False.
122
+
123
+ Args:
124
+ batch_shape: Shape of the search that we're batching over.
125
+ predicate: the query we're searching for. This is required to be monotonic
126
+ with respect to the floating point order, i.e. it must be False for all
127
+ numbers <= a threshold, and then True for all numbers > the threshold. The
128
+ threshold may be different for different elements of the batch.
129
+
130
+ Returns:
131
+ For each element of the batch, the largest float32 for which the predicate
132
+ returns False. Shape: f32[batch_shape].
133
+ """
134
+ exponent_bits = jnp.int32((1 << 31) - (1 << (31 - 8)))
135
+
136
+ def int32_predicate(x):
137
+ x = _monotonic_int32_to_float32_bit_pattern(x)
138
+ is_finite = (x & exponent_bits) != exponent_bits
139
+
140
+ # Non-finite numbers (infinity and NaN) are at the very extremes of the
141
+ # int32 range, i.e. they include int32::MAX and int32::MIN, plus the numbers
142
+ # adjacent to them. For the nonfinite numbers touching int32::MIN, we
143
+ # arrange for them to return False from the predicate, and for the nonfinite
144
+ # numbers touching int32::MAX, we arrange for them to return True from the
145
+ # predicate. x>=0 is an easy way to achieve that.
146
+ predicate_on_nonfinite = x >= 0
147
+ x_float32 = lax.bitcast_convert_type(x, jnp.float32)
148
+ return jnp.where(is_finite, predicate(x_float32),
149
+ predicate_on_nonfinite)
150
+
151
+ # We search over bit patterns, which requires bit shifting and ordering of bit
152
+ # patterns. This is natively supported on int32 but not on float32.
153
+ # Additionally, it's more common to reason about int32 bit arithmetic and
154
+ # ordering than float32 bit arithmetic and ordering, so we do the core of our
155
+ # search in int32. Additionally, this allows us to test the underlying binary
156
+ # search on int32 values.
157
+ #
158
+ # The function _monotonic_int32_to_float32 encapsulates all of the knowledge
159
+ # we need about float32 bit patterns.
160
+ result = int32_bsearch(batch_shape, int32_predicate)
161
+ return _monotonic_int32_to_float32(result)
162
+
163
+
164
+ def topk_mask(x: jnp.ndarray, k: int, replace_val: jnp.ndarray) -> jnp.ndarray:
165
+ """Sets everything to replace_val, except the top k values per batch element.
166
+
167
+ Sharding considerations: this function does 32 reductions over the vocab_size
168
+ axis of the input array. To avoid excessive latency from these reductions, you
169
+ should ensure that the vocab_size axis is unsharded on input to this function.
170
+ Prefer to shard the batch axes instead.
171
+
172
+ Scratchpad memory considerations: this function is most efficient if the
173
+ entire input array can fit in a fast memory tier. To help ensure this, you may
174
+ wish to split the batch axes into microbatches and the microbatches in a
175
+ sequential loop.
176
+
177
+ Args:
178
+ x: Values before masking. [batch..., vocab_size]
179
+ k: Number of masked values to return. In presence of ties, more than k
180
+ values might be returned.
181
+ replace_val: For the masked values of x, what to overwrite them with.
182
+
183
+ Returns:
184
+ masked version of x. [batch..., vocab_size]
185
+ """
186
+ batch_shape = tuple(list(x.shape)[:-1]) # [batch...]
187
+
188
+ x_for_loop = x
189
+ reduce_axis = x.ndim - 1
190
+ if x.ndim > 1:
191
+ # We're going to be doing 32 reductions over 'reduce_axis'. Generally,
192
+ # reductions over the last dimension are the most expensive, because they
193
+ # involve reducing across vector lanes, which is often not efficient. So
194
+ # we transpose the reduce_axis to be the second-last dimension, to avoid
195
+ # this inefficiency.
196
+ #
197
+ # Normaly the XLA compiler would automatically perform this optimization,
198
+ # but it doesn't yet see through loops to do so. So we do it ourselves.
199
+ x_for_loop = jnp.swapaxes(x_for_loop, -1, -2)
200
+ reduce_axis = x.ndim - 2
201
+
202
+ # x: [batch..., vocab_size, batch]
203
+ def predicate(threshold):
204
+ # threshold: [batch...]
205
+
206
+ # Since we've negated, we now want a predicate that is True for small
207
+ # numbers and False for large numbers. The result of the bsearch is the
208
+ # smallest float32 for which the predicate is False.
209
+ threshold = -threshold
210
+
211
+ threshold = lax.expand_dims(threshold, (reduce_axis, ))
212
+ # threshold: [batch..., 1, last_batch]
213
+
214
+ # count_ge: [batch...]
215
+ count_gt = jnp.sum(x_for_loop > threshold, axis=reduce_axis)
216
+
217
+ return count_gt >= k
218
+
219
+ # cutoff: [batch...]
220
+ cutoff = float32_bsearch(batch_shape, predicate)
221
+ cutoff = -cutoff
222
+ # cutoff: [batch..., 1]
223
+ cutoff = lax.expand_dims(cutoff, (cutoff.ndim, ))
224
+ return jnp.where(x >= cutoff, x, jnp.full_like(x, replace_val))
225
+
226
+
227
+ def topp_mask(logits: jnp.ndarray, p: float,
228
+ replace_val: jnp.ndarray) -> jnp.ndarray:
229
+ """Applies top-p masking to logits.
230
+
231
+ Masks logits down to the smallest set of choices, such that the total
232
+ probability mass is >= p. Values in this set are left as they are. All other
233
+ values are set with `replace_val`.
234
+
235
+ Sharding considerations: this function does 33 reductions over the vocab_size
236
+ axis of the input array. To avoid excessive latency from these reductions, you
237
+ should ensure that the vocab_size axis is unsharded on input to this function.
238
+ Prefer to shard the batch axes instead.
239
+
240
+ Scratchpad memory considerations: this function is most efficient if the
241
+ entire input array can fit in a fast memory tier. To help ensure this, you may
242
+ wish to split the batch axes into microbatches and the microbatches in a
243
+ sequential loop.
244
+
245
+ Args:
246
+ logits: Logits before masking. [batch..., vocab_size]
247
+ p: Minimum probability mass requested.
248
+ replace_val: For the masked values of logits, what to overwrite them with.
249
+
250
+ Returns:
251
+ masked version of x. [batch..., vocab_size]
252
+ """
253
+ batch_shape = tuple(list(logits.shape)[:-1]) # [batch...]
254
+
255
+ probs = jax.nn.softmax(logits, axis=-1)
256
+
257
+ probs_for_reduction = probs
258
+ reduce_axis = probs_for_reduction.ndim - 1
259
+ if probs_for_reduction.ndim > 1:
260
+ # We're going to be doing 33 reductions over 'reduce_axis'. Generally,
261
+ # reductions over the last dimension are the most expensive, because they
262
+ # involve reducing across vector lanes, which is often not efficient. So
263
+ # we transpose the reduce_axis to be the second-last dimension, to avoid
264
+ # this inefficiency.
265
+ probs_for_reduction = jnp.swapaxes(probs_for_reduction, -1, -2)
266
+ reduce_axis = probs_for_reduction.ndim - 2
267
+
268
+ # As we increase the threshold, the probability mass decreases, and the number
269
+ # selected decreases.
270
+ #
271
+ # We want the largest threshold with the probability mass >= p. Binary search
272
+ # searches for when the predicate is False, so we negate the output of the
273
+ # predicate, i.e. probability mass < p.
274
+
275
+ # probs_for_reduction: [batch..., vocab_size, batch]
276
+ def predicate(threshold):
277
+ # threshold: [batch...]
278
+ threshold = lax.expand_dims(threshold, (reduce_axis, ))
279
+ # threshold: [batch..., 1, last_batch]
280
+
281
+ # count_ge: [batch...]
282
+ probability_mass = jnp.sum(
283
+ jnp.where(probs_for_reduction >= threshold, probs_for_reduction,
284
+ 0.0),
285
+ axis=reduce_axis,
286
+ )
287
+
288
+ return probability_mass < p
289
+
290
+ # threshold: [batch...]
291
+ threshold = float32_bsearch(batch_shape, predicate)
292
+ # threshold: [batch..., 1]
293
+ threshold = lax.expand_dims(threshold, (threshold.ndim, ))
294
+ return jnp.where(probs >= threshold, logits,
295
+ jnp.full_like(logits, replace_val))
@@ -0,0 +1,8 @@
1
+ UNQUANTIZED = "unquantized"
2
+ MXFP4 = "mxfp4"
3
+ AWQ = "awq"
4
+ COMPRESSED_TENSORS = "compressed-tensors"
5
+
6
+
7
+ def get_tpu_quant_method(quant_method: str) -> str:
8
+ return "tpu-" + quant_method