tpu-inference 0.11.1.dev202511150811__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +0 -0
- tests/core/__init__.py +0 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +53 -0
- tests/core/test_dp_scheduler.py +899 -0
- tests/core/test_init.py +49 -0
- tests/kernels/__init__.py +0 -0
- tests/kernels/fused_moe_v1_test.py +105 -0
- tests/kernels/mla_v1_test.py +396 -0
- tests/kernels/quantized_matmul_kernel_test.py +191 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
- tests/lora/__init__.py +0 -0
- tests/lora/conftest.py +32 -0
- tests/lora/test_bgmv.py +43 -0
- tests/lora/test_layers.py +654 -0
- tests/lora/test_lora.py +133 -0
- tests/lora/utils.py +96 -0
- tests/test_base.py +201 -0
- tests/test_envs.py +182 -0
- tests/test_quantization.py +836 -0
- tests/test_tpu_info.py +120 -0
- tests/test_utils.py +236 -0
- tpu_inference/__init__.py +34 -0
- tpu_inference/core/__init__.py +0 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +51 -0
- tpu_inference/core/sched/__init__.py +0 -0
- tpu_inference/core/sched/dp_scheduler.py +523 -0
- tpu_inference/distributed/__init__.py +0 -0
- tpu_inference/distributed/jax_parallel_state.py +67 -0
- tpu_inference/distributed/tpu_connector.py +728 -0
- tpu_inference/distributed/utils.py +59 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +107 -0
- tpu_inference/executors/__init__.py +0 -0
- tpu_inference/executors/ray_distributed_executor.py +362 -0
- tpu_inference/experimental/__init__.py +0 -0
- tpu_inference/experimental/llama3_jax_stashed.py +258 -0
- tpu_inference/kernels/__init__.py +0 -0
- tpu_inference/kernels/collectives/__init__.py +0 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +0 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1035 -0
- tpu_inference/kernels/mla/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/kernel.py +1349 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1478 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
- tpu_inference/layers/__init__.py +0 -0
- tpu_inference/layers/common/__init__.py +0 -0
- tpu_inference/layers/common/attention_interface.py +390 -0
- tpu_inference/layers/common/attention_metadata.py +34 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +8 -0
- tpu_inference/layers/common/sharding.py +582 -0
- tpu_inference/layers/jax/__init__.py +0 -0
- tpu_inference/layers/jax/attention/__init__.py +0 -0
- tpu_inference/layers/jax/attention/attention.py +255 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
- tpu_inference/layers/jax/base.py +151 -0
- tpu_inference/layers/jax/constants.py +88 -0
- tpu_inference/layers/jax/layers.py +301 -0
- tpu_inference/layers/jax/misc.py +16 -0
- tpu_inference/layers/jax/moe/__init__.py +0 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
- tpu_inference/layers/jax/moe/moe.py +209 -0
- tpu_inference/layers/jax/rope.py +280 -0
- tpu_inference/layers/jax/rope_interface.py +214 -0
- tpu_inference/layers/jax/sample/__init__.py +0 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
- tpu_inference/layers/jax/sample/sampling.py +96 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
- tpu_inference/layers/jax/transformer_block.py +107 -0
- tpu_inference/layers/vllm/__init__.py +0 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +507 -0
- tpu_inference/layers/vllm/linear_common.py +186 -0
- tpu_inference/layers/vllm/quantization/__init__.py +39 -0
- tpu_inference/layers/vllm/quantization/awq.py +207 -0
- tpu_inference/layers/vllm/quantization/common.py +105 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +266 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +386 -0
- tpu_inference/layers/vllm/sharding.py +230 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +0 -0
- tpu_inference/lora/torch_lora_ops.py +103 -0
- tpu_inference/lora/torch_punica_tpu.py +311 -0
- tpu_inference/mock/__init__.py +0 -0
- tpu_inference/mock/vllm_config_utils.py +28 -0
- tpu_inference/mock/vllm_envs.py +1219 -0
- tpu_inference/mock/vllm_logger.py +212 -0
- tpu_inference/mock/vllm_logging_utils.py +15 -0
- tpu_inference/models/__init__.py +0 -0
- tpu_inference/models/common/__init__.py +0 -0
- tpu_inference/models/common/model_loader.py +444 -0
- tpu_inference/models/jax/__init__.py +0 -0
- tpu_inference/models/jax/deepseek_v3.py +868 -0
- tpu_inference/models/jax/gpt_oss.py +492 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
- tpu_inference/models/jax/llama3.py +375 -0
- tpu_inference/models/jax/llama4.py +629 -0
- tpu_inference/models/jax/llama_eagle3.py +333 -0
- tpu_inference/models/jax/phi3.py +376 -0
- tpu_inference/models/jax/qwen2.py +375 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1103 -0
- tpu_inference/models/jax/qwen3.py +302 -0
- tpu_inference/models/jax/utils/__init__.py +0 -0
- tpu_inference/models/jax/utils/file_utils.py +96 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +653 -0
- tpu_inference/models/jax/utils/weight_utils.py +529 -0
- tpu_inference/models/vllm/__init__.py +0 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +286 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
- tpu_inference/platforms/__init__.py +2 -0
- tpu_inference/platforms/tpu_platform.py +269 -0
- tpu_inference/runner/__init__.py +0 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +780 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +132 -0
- tpu_inference/runner/kv_cache_manager.py +479 -0
- tpu_inference/runner/lora_utils.py +92 -0
- tpu_inference/runner/multimodal_manager.py +217 -0
- tpu_inference/runner/persistent_batch_manager.py +244 -0
- tpu_inference/runner/speculative_decoding_manager.py +248 -0
- tpu_inference/runner/structured_decoding_manager.py +88 -0
- tpu_inference/runner/tpu_runner.py +1620 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +0 -0
- tpu_inference/spec_decode/jax/__init__.py +0 -0
- tpu_inference/spec_decode/jax/eagle3.py +367 -0
- tpu_inference/tpu_info.py +77 -0
- tpu_inference/utils.py +317 -0
- tpu_inference/worker/__init__.py +0 -0
- tpu_inference/worker/tpu_worker.py +321 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/METADATA +107 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/RECORD +179 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/WHEEL +5 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.11.1.dev202511150811.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,1349 @@
|
|
|
1
|
+
"""TPU-Friendly and Data-Movement-Friendly MLA Ragged Paged Attention kernel."""
|
|
2
|
+
|
|
3
|
+
import functools
|
|
4
|
+
|
|
5
|
+
import jax
|
|
6
|
+
import jax.numpy as jnp
|
|
7
|
+
from jax import lax
|
|
8
|
+
from jax.experimental import pallas as pl
|
|
9
|
+
from jax.experimental.pallas import tpu as pltpu
|
|
10
|
+
|
|
11
|
+
from tpu_inference.kernels.ragged_paged_attention.v3.util import (
|
|
12
|
+
align_to, cdiv, get_dtype_packing)
|
|
13
|
+
|
|
14
|
+
DEFAULT_MASK_VALUE = -0.7 * float(jnp.finfo(jnp.dtype("float32")).max)
|
|
15
|
+
|
|
16
|
+
DEFAULT_VMEM_LIMIT_BYTES = 100 * 1024 * 1024
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
@functools.partial(
|
|
20
|
+
jax.jit,
|
|
21
|
+
donate_argnames=("cache_kv_c", "cache_k_pe"),
|
|
22
|
+
)
|
|
23
|
+
def update_kv_cache(
|
|
24
|
+
new_kv_c: jax.Array, # [num_tokens, actual_lkv_dim]
|
|
25
|
+
new_k_pe: jax.Array, # [num_tokens, actual_r_dim]
|
|
26
|
+
cache_kv_c: jax.
|
|
27
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, lkv_dim]
|
|
28
|
+
cache_k_pe: jax.
|
|
29
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, r_dim]
|
|
30
|
+
kv_lens: jax.Array, # i32[max_num_seqs]
|
|
31
|
+
page_indices: jax.Array, # i32[max_num_seqs * pages_per_seq]
|
|
32
|
+
cu_q_lens: jax.Array, # i32[max_num_seqs + 1]
|
|
33
|
+
distribution: jax.Array, # i32[3]
|
|
34
|
+
) -> tuple[jax.Array, jax.Array]:
|
|
35
|
+
"""Update KV cache with new tokens."""
|
|
36
|
+
actual_r_dim = new_k_pe.shape[-1]
|
|
37
|
+
r_dim = align_to(actual_r_dim, 128)
|
|
38
|
+
if actual_r_dim != r_dim:
|
|
39
|
+
new_k_pe = jnp.pad(new_k_pe, ((0, 0), (0, r_dim - actual_r_dim)),
|
|
40
|
+
constant_values=0)
|
|
41
|
+
actual_lkv_dim = new_kv_c.shape[-1]
|
|
42
|
+
lkv_dim = align_to(actual_lkv_dim, 128)
|
|
43
|
+
if actual_lkv_dim != lkv_dim:
|
|
44
|
+
new_kv_c = jnp.pad(new_kv_c, ((0, 0), (0, lkv_dim - actual_lkv_dim)),
|
|
45
|
+
constant_values=0)
|
|
46
|
+
|
|
47
|
+
_, page_size_per_kv_packing, kv_packing, cache_lkv_dim = cache_kv_c.shape
|
|
48
|
+
_, _, _, cache_r_dim = cache_k_pe.shape
|
|
49
|
+
assert lkv_dim == cache_lkv_dim
|
|
50
|
+
assert r_dim == cache_r_dim
|
|
51
|
+
page_size = page_size_per_kv_packing * kv_packing
|
|
52
|
+
|
|
53
|
+
max_num_seqs = kv_lens.shape[0]
|
|
54
|
+
num_page_indices = page_indices.shape[0]
|
|
55
|
+
pages_per_seq = num_page_indices // max_num_seqs
|
|
56
|
+
|
|
57
|
+
def seq_loop_body(i, caches):
|
|
58
|
+
cache_kv_c, cache_k_pe = caches
|
|
59
|
+
q_start, q_end = cu_q_lens[i], cu_q_lens[i + 1]
|
|
60
|
+
q_len = q_end - q_start
|
|
61
|
+
kv_len = kv_lens[i]
|
|
62
|
+
|
|
63
|
+
def token_loop_body(j, caches_):
|
|
64
|
+
cache_kv_c_, cache_k_pe_ = caches_
|
|
65
|
+
token_idx_in_seq = kv_len - q_len + j
|
|
66
|
+
page_num_in_seq = token_idx_in_seq // page_size
|
|
67
|
+
page_indices_start = i * pages_per_seq
|
|
68
|
+
page_idx = page_indices[page_indices_start + page_num_in_seq]
|
|
69
|
+
row = (token_idx_in_seq % page_size) // kv_packing
|
|
70
|
+
col = (token_idx_in_seq % page_size) % kv_packing
|
|
71
|
+
|
|
72
|
+
cache_kv_c_ = cache_kv_c_.at[page_idx, row,
|
|
73
|
+
col].set(new_kv_c[q_start + j])
|
|
74
|
+
cache_k_pe_ = cache_k_pe_.at[page_idx, row,
|
|
75
|
+
col].set(new_k_pe[q_start + j])
|
|
76
|
+
return cache_kv_c_, cache_k_pe_
|
|
77
|
+
|
|
78
|
+
return lax.fori_loop(0, q_len, token_loop_body,
|
|
79
|
+
(cache_kv_c, cache_k_pe))
|
|
80
|
+
|
|
81
|
+
cache_kv_c, cache_k_pe = lax.fori_loop(0, distribution[-1], seq_loop_body,
|
|
82
|
+
(cache_kv_c, cache_k_pe))
|
|
83
|
+
return cache_kv_c, cache_k_pe
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def ref_mla_ragged_paged_attention(
|
|
87
|
+
ql_nope: jax.Array, # [num_tokens, actual_num_q_heads, actual_lkv_dim]
|
|
88
|
+
q_pe: jax.Array, # [num_tokens, actual_num_q_heads, actual_r_dim]
|
|
89
|
+
new_kv_c: jax.Array, # [num_tokens, actual_lkv_dim]
|
|
90
|
+
new_k_pe: jax.Array, # [num_tokens, actual_r_dim]
|
|
91
|
+
cache_kv_c: jax.
|
|
92
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, lkv_dim]
|
|
93
|
+
cache_k_pe: jax.
|
|
94
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, r_dim]
|
|
95
|
+
kv_lens: jax.Array, # i32[max_num_seqs]
|
|
96
|
+
page_indices: jax.Array, # i32[max_num_seqs * pages_per_seq]
|
|
97
|
+
cu_q_lens: jax.Array, # i32[max_num_seqs + 1]
|
|
98
|
+
distribution: jax.Array, # i32[3]
|
|
99
|
+
*,
|
|
100
|
+
sm_scale: float = 1.0,
|
|
101
|
+
sliding_window: int | None = None,
|
|
102
|
+
soft_cap: float | None = None,
|
|
103
|
+
mask_value: float | None = DEFAULT_MASK_VALUE,
|
|
104
|
+
):
|
|
105
|
+
|
|
106
|
+
if mask_value is None:
|
|
107
|
+
mask_value = DEFAULT_MASK_VALUE
|
|
108
|
+
|
|
109
|
+
dynamic_validate_inputs(
|
|
110
|
+
ql_nope,
|
|
111
|
+
q_pe,
|
|
112
|
+
new_kv_c,
|
|
113
|
+
new_k_pe,
|
|
114
|
+
cache_kv_c,
|
|
115
|
+
cache_k_pe,
|
|
116
|
+
kv_lens,
|
|
117
|
+
page_indices,
|
|
118
|
+
cu_q_lens,
|
|
119
|
+
distribution,
|
|
120
|
+
sm_scale=sm_scale,
|
|
121
|
+
sliding_window=sliding_window,
|
|
122
|
+
soft_cap=soft_cap,
|
|
123
|
+
mask_value=mask_value,
|
|
124
|
+
)
|
|
125
|
+
|
|
126
|
+
cache_kv_c, cache_k_pe = update_kv_cache(
|
|
127
|
+
new_kv_c,
|
|
128
|
+
new_k_pe,
|
|
129
|
+
cache_kv_c,
|
|
130
|
+
cache_k_pe,
|
|
131
|
+
kv_lens,
|
|
132
|
+
page_indices,
|
|
133
|
+
cu_q_lens,
|
|
134
|
+
distribution,
|
|
135
|
+
)
|
|
136
|
+
# Pad ql_nope and q_pe to make the last dimension 128-byte aligned.
|
|
137
|
+
actual_lkv_dim = ql_nope.shape[-1]
|
|
138
|
+
lkv_dim = align_to(actual_lkv_dim, 128)
|
|
139
|
+
if lkv_dim != actual_lkv_dim:
|
|
140
|
+
ql_nope = jnp.pad(
|
|
141
|
+
ql_nope,
|
|
142
|
+
((0, 0), (0, 0), (0, lkv_dim - actual_lkv_dim)),
|
|
143
|
+
constant_values=0,
|
|
144
|
+
)
|
|
145
|
+
actual_r_dim = q_pe.shape[-1]
|
|
146
|
+
r_dim = align_to(actual_r_dim, 128)
|
|
147
|
+
if actual_r_dim != r_dim:
|
|
148
|
+
q_pe = jnp.pad(q_pe, ((0, 0), (0, 0), (0, r_dim - actual_r_dim)),
|
|
149
|
+
constant_values=0)
|
|
150
|
+
|
|
151
|
+
q = jnp.concatenate([ql_nope, q_pe], axis=-1)
|
|
152
|
+
max_num_seqs = kv_lens.shape[0]
|
|
153
|
+
num_page_indices = page_indices.shape[0]
|
|
154
|
+
assert num_page_indices % max_num_seqs == 0
|
|
155
|
+
pages_per_seq = num_page_indices // max_num_seqs
|
|
156
|
+
|
|
157
|
+
total_num_pages, page_size_per_kv_packing, kv_packing, _ = cache_kv_c.shape
|
|
158
|
+
page_size = page_size_per_kv_packing * kv_packing
|
|
159
|
+
assert lkv_dim == ql_nope.shape[-1]
|
|
160
|
+
assert r_dim == q_pe.shape[-1]
|
|
161
|
+
|
|
162
|
+
kv_c_cache = cache_kv_c.reshape(total_num_pages, page_size, lkv_dim)
|
|
163
|
+
k_pe_cache = cache_k_pe.reshape(total_num_pages, page_size, r_dim)
|
|
164
|
+
|
|
165
|
+
outputs = []
|
|
166
|
+
|
|
167
|
+
for i in range(distribution[-1]):
|
|
168
|
+
q_start, q_end = cu_q_lens[i], cu_q_lens[i + 1]
|
|
169
|
+
q_len = q_end - q_start
|
|
170
|
+
kv_len = kv_lens[i]
|
|
171
|
+
|
|
172
|
+
q_i = q[q_start:q_end] # [q_len, actual_num_q_heads, lkv_dim+r_dim]
|
|
173
|
+
|
|
174
|
+
indices_start = i * pages_per_seq
|
|
175
|
+
num_pages_i = cdiv(kv_len, page_size)
|
|
176
|
+
indices_end = indices_start + num_pages_i
|
|
177
|
+
indices = page_indices[indices_start:indices_end]
|
|
178
|
+
|
|
179
|
+
# Gather paged kv_c and k_pe
|
|
180
|
+
gathered_kv_c = kv_c_cache[
|
|
181
|
+
indices] # [num_pages_i, page_size, lkv_dim]
|
|
182
|
+
gathered_k_pe = k_pe_cache[indices] # [num_pages_i, page_size, r_dim]
|
|
183
|
+
|
|
184
|
+
# Flatten pages to sequence
|
|
185
|
+
flat_kv_c = gathered_kv_c.reshape(
|
|
186
|
+
-1, lkv_dim) # [num_pages_i * page_size, lkv_dim]
|
|
187
|
+
flat_k_pe = gathered_k_pe.reshape(
|
|
188
|
+
-1, r_dim) # [num_pages_i * page_size, r_dim]
|
|
189
|
+
|
|
190
|
+
# Prepare k and v for attention
|
|
191
|
+
k_i = jnp.concatenate([flat_kv_c[:kv_len], flat_k_pe[:kv_len]],
|
|
192
|
+
axis=-1) # [kv_len, lkv_dim+r_dim]
|
|
193
|
+
v_i = flat_kv_c[:kv_len] # [kv_len, lkv_dim]
|
|
194
|
+
|
|
195
|
+
# MQA attention:
|
|
196
|
+
# q:[q_len, actual_num_q_heads, lkv_dim+r_dim]
|
|
197
|
+
# k:[kv_len, lkv_dim+r_dim]
|
|
198
|
+
# v:[kv_len, lkv_dim]
|
|
199
|
+
# attn: [actual_num_q_heads, q_len, kv_len]
|
|
200
|
+
attn = jnp.einsum("qnh,kh->nqk",
|
|
201
|
+
q_i,
|
|
202
|
+
k_i,
|
|
203
|
+
preferred_element_type=jnp.float32)
|
|
204
|
+
attn *= sm_scale
|
|
205
|
+
|
|
206
|
+
# Causal mask
|
|
207
|
+
q_span = kv_len - q_len + jax.lax.broadcasted_iota(
|
|
208
|
+
jnp.int32, attn.shape, 1)
|
|
209
|
+
kv_span = jax.lax.broadcasted_iota(jnp.int32, attn.shape, 2)
|
|
210
|
+
mask = q_span < kv_span
|
|
211
|
+
if sliding_window is not None:
|
|
212
|
+
mask = jnp.logical_or(mask, q_span - sliding_window >= kv_span)
|
|
213
|
+
if soft_cap is not None:
|
|
214
|
+
attn = soft_cap * jnp.tanh(attn / soft_cap)
|
|
215
|
+
attn = jnp.where(mask, mask_value, attn)
|
|
216
|
+
attn = jax.nn.softmax(attn, axis=-1).astype(v_i.dtype)
|
|
217
|
+
|
|
218
|
+
# out_i: [q_len, actual_num_q_heads, lkv_dim]
|
|
219
|
+
out_i = jnp.einsum("nqk,kl->qnl", attn, v_i).astype(q_i.dtype)
|
|
220
|
+
outputs.append(out_i)
|
|
221
|
+
|
|
222
|
+
return (
|
|
223
|
+
jnp.concatenate(outputs, axis=0),
|
|
224
|
+
cache_kv_c,
|
|
225
|
+
cache_k_pe,
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
# Expect to run this validation during runtime.
|
|
230
|
+
def dynamic_validate_inputs(
|
|
231
|
+
ql_nope: jax.Array, # [max_num_tokens, actual_num_q_heads, actual_lkv_dim]
|
|
232
|
+
q_pe: jax.Array, # [max_num_tokens, actual_num_q_heads, actual_r_dim]
|
|
233
|
+
new_kv_c: jax.Array, # [max_num_tokens, actual_lkv_dim]
|
|
234
|
+
new_k_pe: jax.Array, # [max_num_tokens, actual_r_dim]
|
|
235
|
+
cache_kv_c: jax.
|
|
236
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, lkv_dim]
|
|
237
|
+
cache_k_pe: jax.
|
|
238
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, r_dim]
|
|
239
|
+
kv_lens: jax.Array, # i32[max_num_seqs]
|
|
240
|
+
page_indices: jax.Array, # i32[max_num_seqs * pages_per_seq]
|
|
241
|
+
cu_q_lens: jax.Array, # i32[max_num_seqs + 1]
|
|
242
|
+
distribution: jax.Array, # i32[3]
|
|
243
|
+
*,
|
|
244
|
+
sm_scale: float = 1.0,
|
|
245
|
+
sliding_window: int | None = None,
|
|
246
|
+
soft_cap: float | None = None,
|
|
247
|
+
mask_value: float | None = DEFAULT_MASK_VALUE,
|
|
248
|
+
# Kernel optimization params.
|
|
249
|
+
chunk_prefill_size: int | None = None,
|
|
250
|
+
# Kernel tuning params.
|
|
251
|
+
num_kv_pages_per_block: int | None = None,
|
|
252
|
+
num_queries_per_block: int | None = None,
|
|
253
|
+
vmem_limit_bytes: int | None = None,
|
|
254
|
+
# Debug params.
|
|
255
|
+
debug_mode: bool = False,
|
|
256
|
+
):
|
|
257
|
+
"""Validate inputs to the MLA RPA kernel dynamically."""
|
|
258
|
+
static_validate_inputs(
|
|
259
|
+
ql_nope,
|
|
260
|
+
q_pe,
|
|
261
|
+
new_kv_c,
|
|
262
|
+
new_k_pe,
|
|
263
|
+
cache_kv_c,
|
|
264
|
+
cache_k_pe,
|
|
265
|
+
kv_lens,
|
|
266
|
+
page_indices,
|
|
267
|
+
cu_q_lens,
|
|
268
|
+
distribution,
|
|
269
|
+
sm_scale=sm_scale,
|
|
270
|
+
sliding_window=sliding_window,
|
|
271
|
+
soft_cap=soft_cap,
|
|
272
|
+
mask_value=mask_value,
|
|
273
|
+
chunk_prefill_size=chunk_prefill_size,
|
|
274
|
+
num_kv_pages_per_block=num_kv_pages_per_block,
|
|
275
|
+
num_queries_per_block=num_queries_per_block,
|
|
276
|
+
vmem_limit_bytes=vmem_limit_bytes,
|
|
277
|
+
debug_mode=debug_mode,
|
|
278
|
+
)
|
|
279
|
+
max_num_tokens = ql_nope.shape[0]
|
|
280
|
+
total_num_pages = cache_kv_c.shape[0]
|
|
281
|
+
_, page_size_per_kv_packing, kv_packing, _ = cache_kv_c.shape
|
|
282
|
+
page_size = page_size_per_kv_packing * kv_packing
|
|
283
|
+
max_num_seqs = kv_lens.shape[0]
|
|
284
|
+
num_page_indices = page_indices.shape[0]
|
|
285
|
+
assert num_page_indices % max_num_seqs == 0
|
|
286
|
+
pages_per_seq = num_page_indices // max_num_seqs
|
|
287
|
+
|
|
288
|
+
i, j, k = distribution
|
|
289
|
+
if not (0 <= i <= j <= k):
|
|
290
|
+
raise ValueError(f"Invalid distribution: {distribution=}")
|
|
291
|
+
|
|
292
|
+
if k > max_num_seqs:
|
|
293
|
+
raise ValueError(f"num_seqs={k} must be <= {max_num_seqs=}")
|
|
294
|
+
|
|
295
|
+
if cu_q_lens[k] > max_num_tokens:
|
|
296
|
+
raise ValueError(
|
|
297
|
+
f"Total q tokens {cu_q_lens[k]} must be <= {max_num_tokens=}.")
|
|
298
|
+
for seq_idx in range(k):
|
|
299
|
+
q_len = cu_q_lens[seq_idx + 1] - cu_q_lens[seq_idx]
|
|
300
|
+
kv_len = kv_lens[seq_idx]
|
|
301
|
+
if not (0 < q_len <= kv_len):
|
|
302
|
+
raise ValueError(
|
|
303
|
+
f"Require 0 < {q_len=} <= {kv_len=} at sequence {seq_idx}.")
|
|
304
|
+
page_cnt = cdiv(kv_len, page_size)
|
|
305
|
+
if page_cnt > pages_per_seq:
|
|
306
|
+
raise ValueError(
|
|
307
|
+
f"Require {page_cnt=} <= {pages_per_seq=} at sequence {seq_idx} where"
|
|
308
|
+
f" {kv_len=} and {page_size=}.")
|
|
309
|
+
for p in range(page_cnt):
|
|
310
|
+
page_idx = page_indices[seq_idx * pages_per_seq + p]
|
|
311
|
+
if not (0 <= page_idx < total_num_pages):
|
|
312
|
+
raise ValueError(
|
|
313
|
+
f"Require 0 <= {page_idx=} < {total_num_pages=} at sequence"
|
|
314
|
+
f" {seq_idx} where {kv_len=} and {page_size=}.")
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
# Expect to run this validation during compile time.
|
|
318
|
+
def static_validate_inputs(
|
|
319
|
+
ql_nope: jax.Array, # [max_num_tokens, actual_num_q_heads, actual_lkv_dim]
|
|
320
|
+
q_pe: jax.Array, # [max_num_tokens, actual_num_q_heads, actual_r_dim]
|
|
321
|
+
new_kv_c: jax.Array, # [max_num_tokens, actual_lkv_dim]
|
|
322
|
+
new_k_pe: jax.Array, # [max_num_tokens, actual_r_dim]
|
|
323
|
+
cache_kv_c: jax.
|
|
324
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, lkv_dim]
|
|
325
|
+
cache_k_pe: jax.
|
|
326
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, r_dim]
|
|
327
|
+
kv_lens: jax.Array, # i32[max_num_seqs]
|
|
328
|
+
page_indices: jax.Array, # i32[max_num_seqs * pages_per_seq]
|
|
329
|
+
cu_q_lens: jax.Array, # i32[max_num_seqs + 1]
|
|
330
|
+
distribution: jax.Array, # i32[3]
|
|
331
|
+
*,
|
|
332
|
+
sm_scale: float = 1.0,
|
|
333
|
+
sliding_window: int | None = None,
|
|
334
|
+
soft_cap: float | None = None,
|
|
335
|
+
mask_value: float | None = DEFAULT_MASK_VALUE,
|
|
336
|
+
# Kernel optimization params.
|
|
337
|
+
chunk_prefill_size: int | None = None,
|
|
338
|
+
# Kernel tuning params.
|
|
339
|
+
num_kv_pages_per_block: int | None = None,
|
|
340
|
+
num_queries_per_block: int | None = None,
|
|
341
|
+
vmem_limit_bytes: int | None = None,
|
|
342
|
+
# Debug params.
|
|
343
|
+
debug_mode: bool = False,
|
|
344
|
+
):
|
|
345
|
+
"""Validate inputs to the MLA RPA kernel statically."""
|
|
346
|
+
if len(ql_nope.shape) != 3:
|
|
347
|
+
raise ValueError(f"Expected 3D array for {ql_nope.shape=}")
|
|
348
|
+
if len(q_pe.shape) != 3:
|
|
349
|
+
raise ValueError(f"Expected 3D array for {q_pe.shape=}")
|
|
350
|
+
if len(new_kv_c.shape) != 2:
|
|
351
|
+
raise ValueError(f"Expected 2D array for {new_kv_c.shape=}")
|
|
352
|
+
if len(new_k_pe.shape) != 2:
|
|
353
|
+
raise ValueError(f"Expected 2D array for {new_k_pe.shape=}")
|
|
354
|
+
|
|
355
|
+
if ql_nope.shape[:2] != q_pe.shape[:2]:
|
|
356
|
+
raise ValueError(
|
|
357
|
+
f"Expected {ql_nope.shape[:2]=} to be equal to {q_pe.shape[:2]=}")
|
|
358
|
+
if ql_nope.shape[0] != new_kv_c.shape[0]:
|
|
359
|
+
raise ValueError(
|
|
360
|
+
f"Expected {ql_nope.shape[0]=} to be equal to {new_kv_c.shape[0]=}"
|
|
361
|
+
)
|
|
362
|
+
if new_kv_c.shape[0] != new_k_pe.shape[0]:
|
|
363
|
+
raise ValueError(
|
|
364
|
+
f"Expected {new_kv_c.shape[0]=} to be equal to {new_k_pe.shape[0]=}"
|
|
365
|
+
)
|
|
366
|
+
if ql_nope.shape[2] != new_kv_c.shape[1]:
|
|
367
|
+
raise ValueError(
|
|
368
|
+
f"Expected {ql_nope.shape[2]=} to be equal to {new_kv_c.shape[1]=}"
|
|
369
|
+
)
|
|
370
|
+
if q_pe.shape[2] != new_k_pe.shape[1]:
|
|
371
|
+
raise ValueError(
|
|
372
|
+
f"Expected {q_pe.shape[2]=} to be equal to {new_k_pe.shape[1]=}")
|
|
373
|
+
|
|
374
|
+
actual_lkv_dim = ql_nope.shape[2]
|
|
375
|
+
actual_r_dim = q_pe.shape[2]
|
|
376
|
+
|
|
377
|
+
(
|
|
378
|
+
_,
|
|
379
|
+
page_size_per_kv_packing,
|
|
380
|
+
kv_packing,
|
|
381
|
+
lkv_dim,
|
|
382
|
+
) = cache_kv_c.shape
|
|
383
|
+
_, _, _, r_dim = cache_k_pe.shape
|
|
384
|
+
|
|
385
|
+
if lkv_dim != align_to(actual_lkv_dim, 128):
|
|
386
|
+
raise ValueError(
|
|
387
|
+
f"Expected {lkv_dim=} is equal to {align_to(actual_lkv_dim, 128)=}"
|
|
388
|
+
)
|
|
389
|
+
if r_dim != align_to(actual_r_dim, 128):
|
|
390
|
+
raise ValueError(
|
|
391
|
+
f"Expected {r_dim=} is equal to {align_to(actual_r_dim, 128)=}")
|
|
392
|
+
|
|
393
|
+
if not (cache_kv_c.dtype == new_kv_c.dtype):
|
|
394
|
+
raise ValueError(
|
|
395
|
+
f"Expected {cache_kv_c.dtype=} to be equal to {new_kv_c.dtype=}.")
|
|
396
|
+
if not (cache_k_pe.dtype == new_k_pe.dtype):
|
|
397
|
+
raise ValueError(
|
|
398
|
+
f"Expected {cache_k_pe.dtype=} to be equal to {new_k_pe.dtype=}.")
|
|
399
|
+
|
|
400
|
+
# Integer kv quantization is currently not supported.
|
|
401
|
+
if not jnp.issubdtype(cache_kv_c.dtype, jnp.floating):
|
|
402
|
+
raise ValueError(
|
|
403
|
+
f"Expected {cache_kv_c.dtype=} to be a floating point.")
|
|
404
|
+
if not jnp.issubdtype(cache_k_pe.dtype, jnp.floating):
|
|
405
|
+
raise ValueError(
|
|
406
|
+
f"Expected {cache_k_pe.dtype=} to be a floating point.")
|
|
407
|
+
|
|
408
|
+
if kv_packing != get_dtype_packing(cache_kv_c.dtype):
|
|
409
|
+
raise ValueError(
|
|
410
|
+
f"{kv_packing=} does not match with {cache_kv_c.dtype=}")
|
|
411
|
+
if kv_packing != get_dtype_packing(cache_k_pe.dtype):
|
|
412
|
+
raise ValueError(
|
|
413
|
+
f"{kv_packing=} does not match with {cache_k_pe.dtype=}")
|
|
414
|
+
|
|
415
|
+
if not (jnp.int32 == kv_lens.dtype == page_indices.dtype == cu_q_lens.dtype
|
|
416
|
+
== distribution.dtype):
|
|
417
|
+
raise ValueError(
|
|
418
|
+
f"Expected int32 dtype for {kv_lens.dtype=}, {page_indices.dtype=},"
|
|
419
|
+
f" {cu_q_lens.dtype=}, {distribution.dtype=}")
|
|
420
|
+
|
|
421
|
+
if not (len(kv_lens.shape) == len(page_indices.shape) == len(
|
|
422
|
+
cu_q_lens.shape) == 1):
|
|
423
|
+
raise ValueError(
|
|
424
|
+
f"Expected 1D array for {kv_lens.shape=}, {page_indices.shape=},"
|
|
425
|
+
f" {cu_q_lens.shape=}")
|
|
426
|
+
|
|
427
|
+
max_num_seqs = kv_lens.shape[0]
|
|
428
|
+
num_page_indices = page_indices.shape[0]
|
|
429
|
+
if num_page_indices % max_num_seqs != 0:
|
|
430
|
+
raise ValueError(
|
|
431
|
+
f"Expected {num_page_indices=} to be divisible by {max_num_seqs=}."
|
|
432
|
+
)
|
|
433
|
+
if cu_q_lens.shape != (max_num_seqs + 1, ):
|
|
434
|
+
raise ValueError(
|
|
435
|
+
f"Expected {cu_q_lens.shape=} to be ({max_num_seqs + 1},).")
|
|
436
|
+
if distribution.shape != (3, ):
|
|
437
|
+
raise ValueError(f"Expected {distribution.shape=} to be (3,).")
|
|
438
|
+
|
|
439
|
+
page_size = page_size_per_kv_packing * kv_packing
|
|
440
|
+
if page_size % kv_packing != 0:
|
|
441
|
+
raise ValueError(f"{page_size=} must be divisible by {kv_packing=}.")
|
|
442
|
+
if sliding_window is not None and sliding_window <= 0:
|
|
443
|
+
raise ValueError(f"{sliding_window=} must be positive.")
|
|
444
|
+
if soft_cap is not None and soft_cap == 0.0:
|
|
445
|
+
raise ValueError(f"{soft_cap=} must not be 0.0.")
|
|
446
|
+
if chunk_prefill_size is not None and chunk_prefill_size <= 0:
|
|
447
|
+
raise ValueError(f"{chunk_prefill_size=} must be positive.")
|
|
448
|
+
if num_kv_pages_per_block is not None:
|
|
449
|
+
if num_kv_pages_per_block <= 0:
|
|
450
|
+
raise ValueError(f"{num_kv_pages_per_block=} must be positive.")
|
|
451
|
+
if num_queries_per_block is not None:
|
|
452
|
+
if num_queries_per_block <= 0:
|
|
453
|
+
raise ValueError(f"{num_queries_per_block=} must be positive.")
|
|
454
|
+
if vmem_limit_bytes is not None and vmem_limit_bytes <= 0:
|
|
455
|
+
raise ValueError(f"{vmem_limit_bytes=} must be positive.")
|
|
456
|
+
|
|
457
|
+
# No constraints for the following inputs.
|
|
458
|
+
del sm_scale
|
|
459
|
+
del mask_value
|
|
460
|
+
del debug_mode
|
|
461
|
+
|
|
462
|
+
|
|
463
|
+
def _mla_ragged_paged_attention_kernel(
|
|
464
|
+
# Prefetch
|
|
465
|
+
kv_lens_ref, # [max_num_seqs]
|
|
466
|
+
page_indices_ref, # [max_num_seqs * pages_per_seq]
|
|
467
|
+
cu_q_lens_ref, # [max_num_seqs + 1]
|
|
468
|
+
# TODO(jevinjiang): merge these into one so we can save SMEM.
|
|
469
|
+
distribution_ref, # [3] (decode_end, prefill_end, mixed_end)
|
|
470
|
+
sem_ids_ref, # [3] (bq_sem_idx, bkv_sem_idx, bo_sem_idx)
|
|
471
|
+
bo_ids_ref, # [4] (bo_sem_0_seq_idx, bo_sem_1_seq_idx, bo_sem_0_bo_idx, bo_sem_1_bo_idx)
|
|
472
|
+
bkv_update_ids_ref, # [6] (bkv_sem_0_seq_idx, bkv_sem_1_seq_idx, bkv_sem_0_offset, bkv_sem_1_offset, bkv_sem_0_sz, bkv_sem_1_sz)
|
|
473
|
+
# Input
|
|
474
|
+
ql_nope_hbm_ref, # [max_num_tokens, num_q_heads_per_q_packing, q_packing, lkv_dim]
|
|
475
|
+
q_pe_hbm_ref, # [max_num_tokens, num_q_heads_per_q_packing, q_packing, r_dim]
|
|
476
|
+
new_kv_c_hbm_ref, # [max_num_tokens_per_kv_packing, kv_packing, lkv_dim]
|
|
477
|
+
new_k_pe_hbm_ref, # [max_num_tokens_per_kv_packing, kv_packing, r_dim]
|
|
478
|
+
cache_kv_c_hbm_ref, # [total_num_pages, page_size_per_kv_packing, kv_packing, lkv_dim]
|
|
479
|
+
cache_k_pe_hbm_ref, # [total_num_pages, page_size_per_kv_packing, kv_packing, r_dim]
|
|
480
|
+
# Output
|
|
481
|
+
o_hbm_ref, # [max_num_tokens, num_q_heads_per_q_packing, q_packing, lkv_dim]
|
|
482
|
+
updated_cache_kv_c_hbm_ref, # [total_num_pages, page_size_per_kv_packing, kv_packing, lkv_dim]
|
|
483
|
+
updated_cache_k_pe_hbm_ref, # [total_num_pages, page_size_per_kv_packing, kv_packing, r_dim]
|
|
484
|
+
# Scratch
|
|
485
|
+
bkvc_x2_ref, # [2, bkv_sz_per_kv_packing, kv_packing, lkv_dim]
|
|
486
|
+
bkpe_x2_ref, # [2, bkv_sz_per_kv_packing, kv_packing, r_dim]
|
|
487
|
+
bq_nope_x2_ref, # [2, bq_sz, num_q_heads_per_q_packing, q_packing, lkv_dim]
|
|
488
|
+
bq_rope_x2_ref, # [2, bq_sz, num_q_heads_per_q_packing, q_packing, r_dim]
|
|
489
|
+
bo_x2_ref, # [2, bq_sz, num_q_heads_per_q_packing, q_packing, lkv_dim]
|
|
490
|
+
sems, # [4, 2]
|
|
491
|
+
l_ref, # [bq_sz * num_q_heads, 128],
|
|
492
|
+
m_ref, # [bq_sz * num_q_heads, 128],
|
|
493
|
+
acc_ref, # [bq_sz * num_q_heads, lkv_dim],
|
|
494
|
+
*,
|
|
495
|
+
sm_scale: float,
|
|
496
|
+
sliding_window: int | None = None,
|
|
497
|
+
soft_cap: float | None = None,
|
|
498
|
+
mask_value: float = DEFAULT_MASK_VALUE,
|
|
499
|
+
q_scale: float | None = None,
|
|
500
|
+
k_scale: float | None = None,
|
|
501
|
+
v_scale: float | None = None,
|
|
502
|
+
chunk_prefill_size: int | None = None,
|
|
503
|
+
bkv_p,
|
|
504
|
+
bq_sz,
|
|
505
|
+
debug_mode: bool = False,
|
|
506
|
+
):
|
|
507
|
+
assert ql_nope_hbm_ref.shape == o_hbm_ref.shape
|
|
508
|
+
assert ql_nope_hbm_ref.shape[-1] == cache_kv_c_hbm_ref.shape[-1]
|
|
509
|
+
assert q_pe_hbm_ref.shape[-1] == cache_k_pe_hbm_ref.shape[-1]
|
|
510
|
+
_, num_q_heads_per_q_packing, q_packing, lkv_dim = ql_nope_hbm_ref.shape
|
|
511
|
+
r_dim = q_pe_hbm_ref.shape[-1]
|
|
512
|
+
num_q_heads = num_q_heads_per_q_packing * q_packing
|
|
513
|
+
total_num_pages, page_size_per_kv_packing, kv_packing, _ = (
|
|
514
|
+
cache_kv_c_hbm_ref.shape)
|
|
515
|
+
max_num_seqs = kv_lens_ref.shape[0]
|
|
516
|
+
num_page_indices = page_indices_ref.shape[0]
|
|
517
|
+
|
|
518
|
+
assert num_page_indices % max_num_seqs == 0
|
|
519
|
+
pages_per_seq = num_page_indices // max_num_seqs
|
|
520
|
+
q_dtype = ql_nope_hbm_ref.dtype
|
|
521
|
+
kv_dtype = cache_kv_c_hbm_ref.dtype
|
|
522
|
+
assert q_pe_hbm_ref.dtype == q_dtype
|
|
523
|
+
assert o_hbm_ref.dtype == q_dtype
|
|
524
|
+
assert get_dtype_packing(q_dtype) == q_packing
|
|
525
|
+
assert get_dtype_packing(kv_dtype) == kv_packing
|
|
526
|
+
assert lkv_dim % 128 == 0
|
|
527
|
+
assert r_dim % 128 == 0
|
|
528
|
+
bkv_sz_per_kv_packing = bkv_p * page_size_per_kv_packing
|
|
529
|
+
bkv_sz = bkv_sz_per_kv_packing * kv_packing
|
|
530
|
+
page_size = page_size_per_kv_packing * kv_packing
|
|
531
|
+
seq_idx = pl.program_id(0)
|
|
532
|
+
num_seqs = pl.num_programs(0)
|
|
533
|
+
decode_end = distribution_ref[0]
|
|
534
|
+
prefill_end = distribution_ref[1]
|
|
535
|
+
mixed_end = distribution_ref[2]
|
|
536
|
+
|
|
537
|
+
q_start = cu_q_lens_ref[seq_idx]
|
|
538
|
+
q_end = cu_q_lens_ref[seq_idx + 1]
|
|
539
|
+
q_len = q_end - q_start
|
|
540
|
+
kv_len = kv_lens_ref[seq_idx]
|
|
541
|
+
|
|
542
|
+
def debug_print(msg, *args):
|
|
543
|
+
if debug_mode:
|
|
544
|
+
pl.debug_print(msg, *args)
|
|
545
|
+
|
|
546
|
+
debug_print("[RPA debug] ======= In loop seq_idx={}", seq_idx)
|
|
547
|
+
debug_print("[RPA debug] num_seqs={}", num_seqs)
|
|
548
|
+
debug_print("[RPA debug] decode_end={}", decode_end)
|
|
549
|
+
debug_print("[RPA debug] prefill_end={}", prefill_end)
|
|
550
|
+
debug_print("[RPA debug] mixed_end={}", mixed_end)
|
|
551
|
+
debug_print("[RPA debug] bkv_p={}", bkv_p)
|
|
552
|
+
debug_print("[RPA debug] page_size={}", page_size)
|
|
553
|
+
debug_print("[RPA debug] pages_per_seq={}", pages_per_seq)
|
|
554
|
+
debug_print("[RPA debug] bkv_sz_per_kv_packing={}", bkv_sz_per_kv_packing)
|
|
555
|
+
debug_print("[RPA debug] bq_sz={}", bq_sz)
|
|
556
|
+
debug_print("[RPA debug] q_start={}", q_start)
|
|
557
|
+
debug_print("[RPA debug] q_end={}", q_end)
|
|
558
|
+
debug_print("[RPA debug] q_len={}", q_len)
|
|
559
|
+
debug_print("[RPA debug] kv_len={}", kv_len)
|
|
560
|
+
|
|
561
|
+
def flash_attention(
|
|
562
|
+
ql_nope, # [actual_bq_sz * num_q_heads, lkv_dim]
|
|
563
|
+
q_pe, # [actual_bq_sz * num_q_heads, r_dim]
|
|
564
|
+
kv_c, # [bkv_sz, lkv_dim]
|
|
565
|
+
k_pe, # [bkv_sz, r_dim]
|
|
566
|
+
*,
|
|
567
|
+
bq_idx,
|
|
568
|
+
bkv_idx,
|
|
569
|
+
):
|
|
570
|
+
assert len(ql_nope.shape) == 2
|
|
571
|
+
assert len(q_pe.shape) == 2
|
|
572
|
+
assert len(kv_c.shape) == 2
|
|
573
|
+
assert len(k_pe.shape) == 2
|
|
574
|
+
assert ql_nope.shape[0] % num_q_heads == 0
|
|
575
|
+
assert ql_nope.shape[0] == q_pe.shape[0]
|
|
576
|
+
assert q_pe.shape[0] % bq_sz == 0
|
|
577
|
+
assert ql_nope.shape[1] == lkv_dim
|
|
578
|
+
assert q_pe.shape[1] == r_dim
|
|
579
|
+
assert kv_c.shape == (bkv_sz, lkv_dim)
|
|
580
|
+
assert k_pe.shape == (bkv_sz, r_dim)
|
|
581
|
+
head_l_ref = l_ref.at[:ql_nope.shape[0]]
|
|
582
|
+
head_m_ref = m_ref.at[:ql_nope.shape[0]]
|
|
583
|
+
head_acc_ref = acc_ref.at[:ql_nope.shape[0]]
|
|
584
|
+
|
|
585
|
+
def load_with_init(ref, init_val):
|
|
586
|
+
return jnp.where(bkv_idx == 0, jnp.full_like(ref, init_val),
|
|
587
|
+
ref[...])
|
|
588
|
+
|
|
589
|
+
# Follow FlashAttention-2 forward pass.
|
|
590
|
+
s_nope = jnp.einsum("nd,md->nm",
|
|
591
|
+
ql_nope,
|
|
592
|
+
kv_c,
|
|
593
|
+
preferred_element_type=jnp.float32)
|
|
594
|
+
s_pe = jnp.einsum("nd,md->nm",
|
|
595
|
+
q_pe,
|
|
596
|
+
k_pe,
|
|
597
|
+
preferred_element_type=jnp.float32)
|
|
598
|
+
s = s_nope + s_pe
|
|
599
|
+
s *= sm_scale
|
|
600
|
+
if k_scale is not None:
|
|
601
|
+
s *= k_scale
|
|
602
|
+
if q_scale is not None:
|
|
603
|
+
s *= q_scale
|
|
604
|
+
|
|
605
|
+
q_span = (kv_len - q_len + bq_idx * bq_sz +
|
|
606
|
+
lax.broadcasted_iota(jnp.int32, s.shape, 0) // num_q_heads)
|
|
607
|
+
k_span = bkv_idx * bkv_sz + lax.broadcasted_iota(jnp.int32, s.shape, 1)
|
|
608
|
+
mask = q_span < k_span
|
|
609
|
+
# TODO(jevinjiang, xiowei): reduce pages_per_seq based on sliding_window.
|
|
610
|
+
if sliding_window is not None:
|
|
611
|
+
mask = jnp.logical_or(mask, q_span - sliding_window >= k_span)
|
|
612
|
+
|
|
613
|
+
if soft_cap is not None:
|
|
614
|
+
s = soft_cap * jnp.tanh(s / soft_cap)
|
|
615
|
+
s = jnp.where(mask, mask_value, s)
|
|
616
|
+
s_rowmax = jnp.max(s, axis=1, keepdims=True)
|
|
617
|
+
m_prev = load_with_init(head_m_ref, -jnp.inf)
|
|
618
|
+
m_curr = jnp.maximum(m_prev, s_rowmax)
|
|
619
|
+
head_m_ref[...] = m_curr
|
|
620
|
+
p = jnp.exp(s - broadcast_minor(m_curr, s.shape))
|
|
621
|
+
|
|
622
|
+
pv = jnp.einsum("nm,md->nd",
|
|
623
|
+
p,
|
|
624
|
+
kv_c,
|
|
625
|
+
preferred_element_type=jnp.float32)
|
|
626
|
+
if v_scale is not None:
|
|
627
|
+
pv *= v_scale
|
|
628
|
+
|
|
629
|
+
p_rowsum = jnp.sum(p, axis=1, keepdims=True)
|
|
630
|
+
exp_m_diff = jnp.exp(m_prev - m_curr)
|
|
631
|
+
l_prev = load_with_init(head_l_ref, 0.0)
|
|
632
|
+
l_curr = exp_m_diff * l_prev + p_rowsum
|
|
633
|
+
head_l_ref[...] = l_curr
|
|
634
|
+
o_prev = load_with_init(head_acc_ref, 0.0)
|
|
635
|
+
o_curr = broadcast_minor(exp_m_diff, o_prev.shape) * o_prev + pv
|
|
636
|
+
head_acc_ref[...] = o_curr
|
|
637
|
+
|
|
638
|
+
def _async_copy(src, dst, sem, wait):
|
|
639
|
+
if debug_mode:
|
|
640
|
+
# Skip DMA if debug mode is enabled.
|
|
641
|
+
return
|
|
642
|
+
cp = pltpu.make_async_copy(src, dst, sem)
|
|
643
|
+
if wait:
|
|
644
|
+
cp.wait()
|
|
645
|
+
else:
|
|
646
|
+
cp.start()
|
|
647
|
+
|
|
648
|
+
def _fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx, *, wait=False):
|
|
649
|
+
sem = sems.at[0, bkv_sem_idx]
|
|
650
|
+
bkvc_vmem_ref = bkvc_x2_ref.at[bkv_sem_idx]
|
|
651
|
+
bkvpe_vmem_ref = bkpe_x2_ref.at[bkv_sem_idx]
|
|
652
|
+
|
|
653
|
+
reshaped_cache_kv_c_hbm_ref = cache_kv_c_hbm_ref.reshape(
|
|
654
|
+
total_num_pages * page_size_per_kv_packing,
|
|
655
|
+
*cache_kv_c_hbm_ref.shape[2:],
|
|
656
|
+
)
|
|
657
|
+
reshaped_cache_k_pe_hbm_ref = cache_k_pe_hbm_ref.reshape(
|
|
658
|
+
total_num_pages * page_size_per_kv_packing,
|
|
659
|
+
*cache_k_pe_hbm_ref.shape[2:],
|
|
660
|
+
)
|
|
661
|
+
kv_len = kv_lens_ref[seq_idx]
|
|
662
|
+
kv_len_start = bkv_idx * bkv_sz
|
|
663
|
+
kv_p_start = bkv_idx * bkv_p
|
|
664
|
+
|
|
665
|
+
kv_left = kv_len - kv_len_start
|
|
666
|
+
kv_left_per_kv_packing = cdiv(kv_left, kv_packing)
|
|
667
|
+
page_indices_offset = seq_idx * pages_per_seq + kv_p_start
|
|
668
|
+
|
|
669
|
+
debug_print(
|
|
670
|
+
"[RPA debug]"
|
|
671
|
+
f" -----------{'wait' if wait else 'start'}_fetch_bkv-----------")
|
|
672
|
+
debug_print("[RPA debug] seq_idx={}", seq_idx)
|
|
673
|
+
debug_print("[RPA debug] bkv_idx={}", bkv_idx)
|
|
674
|
+
debug_print("[RPA debug] bkv_sem_idx={}", bkv_sem_idx)
|
|
675
|
+
debug_print("[RPA debug] kv_len_start={}", kv_len_start)
|
|
676
|
+
debug_print("[RPA debug] kv_p_start={}", kv_p_start)
|
|
677
|
+
debug_print("[RPA debug] kv_left={}", kv_left)
|
|
678
|
+
debug_print("[RPA debug] page_indices_offset={}", page_indices_offset)
|
|
679
|
+
|
|
680
|
+
# Fetch effective kv from kv cache.
|
|
681
|
+
def loop_body(i, _):
|
|
682
|
+
sz_per_kv_packing = jnp.minimum(
|
|
683
|
+
page_size_per_kv_packing,
|
|
684
|
+
kv_left_per_kv_packing - i * page_size_per_kv_packing,
|
|
685
|
+
)
|
|
686
|
+
_async_copy(
|
|
687
|
+
reshaped_cache_kv_c_hbm_ref.at[pl.ds(
|
|
688
|
+
page_indices_ref[page_indices_offset + i] *
|
|
689
|
+
page_size_per_kv_packing,
|
|
690
|
+
sz_per_kv_packing,
|
|
691
|
+
)],
|
|
692
|
+
bkvc_vmem_ref.at[pl.ds(i * page_size_per_kv_packing,
|
|
693
|
+
sz_per_kv_packing)],
|
|
694
|
+
sem,
|
|
695
|
+
wait,
|
|
696
|
+
)
|
|
697
|
+
_async_copy(
|
|
698
|
+
reshaped_cache_k_pe_hbm_ref.at[pl.ds(
|
|
699
|
+
page_indices_ref[page_indices_offset + i] *
|
|
700
|
+
page_size_per_kv_packing,
|
|
701
|
+
sz_per_kv_packing,
|
|
702
|
+
)],
|
|
703
|
+
bkvpe_vmem_ref.at[pl.ds(i * page_size_per_kv_packing,
|
|
704
|
+
sz_per_kv_packing)],
|
|
705
|
+
sem,
|
|
706
|
+
wait,
|
|
707
|
+
)
|
|
708
|
+
debug_print(
|
|
709
|
+
"[RPA debug] loop_body i={}, sz_per_kv_packing={}",
|
|
710
|
+
i,
|
|
711
|
+
sz_per_kv_packing,
|
|
712
|
+
)
|
|
713
|
+
|
|
714
|
+
actual_bkv_p = jnp.minimum(cdiv(kv_left, page_size), bkv_p)
|
|
715
|
+
lax.fori_loop(
|
|
716
|
+
0,
|
|
717
|
+
actual_bkv_p,
|
|
718
|
+
loop_body,
|
|
719
|
+
None, # init value
|
|
720
|
+
unroll=False,
|
|
721
|
+
)
|
|
722
|
+
|
|
723
|
+
def _fetch_bq(seq_idx, bq_idx, bq_sem_idx, *, wait=False):
|
|
724
|
+
sem = sems.at[1, bq_sem_idx]
|
|
725
|
+
bq_nope_vmem_ref = bq_nope_x2_ref.at[bq_sem_idx]
|
|
726
|
+
bq_rope_vmem_ref = bq_rope_x2_ref.at[bq_sem_idx]
|
|
727
|
+
|
|
728
|
+
q_len_start = cu_q_lens_ref[seq_idx] + bq_idx * bq_sz
|
|
729
|
+
q_end = cu_q_lens_ref[seq_idx + 1]
|
|
730
|
+
sz = jnp.minimum(bq_sz, q_end - q_len_start)
|
|
731
|
+
|
|
732
|
+
debug_print(
|
|
733
|
+
"[RPA debug]"
|
|
734
|
+
f" -----------{'wait' if wait else 'start'}_fetch_bq-----------")
|
|
735
|
+
debug_print("[RPA debug] seq_idx={}", seq_idx)
|
|
736
|
+
debug_print("[RPA debug] bq_idx={}", bq_idx)
|
|
737
|
+
debug_print("[RPA debug] bq_sem_idx={}", bq_sem_idx)
|
|
738
|
+
debug_print("[RPA debug] q_len_start={}", q_len_start)
|
|
739
|
+
debug_print("[RPA debug] q_end={}", q_end)
|
|
740
|
+
debug_print("[RPA debug] sz={}", sz)
|
|
741
|
+
|
|
742
|
+
_async_copy(
|
|
743
|
+
ql_nope_hbm_ref.at[pl.ds(q_len_start, sz)],
|
|
744
|
+
bq_nope_vmem_ref.at[pl.ds(0, sz)],
|
|
745
|
+
sem,
|
|
746
|
+
wait,
|
|
747
|
+
)
|
|
748
|
+
|
|
749
|
+
_async_copy(
|
|
750
|
+
q_pe_hbm_ref.at[pl.ds(q_len_start, sz)],
|
|
751
|
+
bq_rope_vmem_ref.at[pl.ds(0, sz)],
|
|
752
|
+
sem,
|
|
753
|
+
wait,
|
|
754
|
+
)
|
|
755
|
+
|
|
756
|
+
def _send_bo(seq_idx, bo_idx, bo_sem_idx, *, wait=False):
|
|
757
|
+
sem = sems.at[2, bo_sem_idx]
|
|
758
|
+
vmem_ref = bo_x2_ref.at[bo_sem_idx]
|
|
759
|
+
q_len_start = cu_q_lens_ref[seq_idx] + bo_idx * bq_sz
|
|
760
|
+
q_end = cu_q_lens_ref[seq_idx + 1]
|
|
761
|
+
sz = jnp.minimum(bq_sz, q_end - q_len_start)
|
|
762
|
+
|
|
763
|
+
debug_print(
|
|
764
|
+
"[RPA debug]"
|
|
765
|
+
f" -----------{'wait' if wait else 'start'}_send_bo-----------")
|
|
766
|
+
debug_print("[RPA debug] seq_idx={}", seq_idx)
|
|
767
|
+
debug_print("[RPA debug] bo_idx={}", bo_idx)
|
|
768
|
+
debug_print("[RPA debug] bo_sem_idx={}", bo_sem_idx)
|
|
769
|
+
debug_print("[RPA debug] q_len_start={}", q_len_start)
|
|
770
|
+
debug_print("[RPA debug] q_end={}", q_end)
|
|
771
|
+
debug_print("[RPA debug] sz={}", sz)
|
|
772
|
+
|
|
773
|
+
_async_copy(
|
|
774
|
+
vmem_ref.at[pl.ds(0, sz)],
|
|
775
|
+
o_hbm_ref.at[pl.ds(q_len_start, sz)],
|
|
776
|
+
sem,
|
|
777
|
+
wait,
|
|
778
|
+
)
|
|
779
|
+
|
|
780
|
+
def start_fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx):
|
|
781
|
+
return _fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx)
|
|
782
|
+
|
|
783
|
+
def wait_fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx):
|
|
784
|
+
return _fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx, wait=True)
|
|
785
|
+
|
|
786
|
+
def start_fetch_bq(seq_idx, bq_idx, bq_sem_idx):
|
|
787
|
+
return _fetch_bq(seq_idx, bq_idx, bq_sem_idx)
|
|
788
|
+
|
|
789
|
+
def wait_fetch_bq(seq_idx, bq_idx, bq_sem_idx):
|
|
790
|
+
return _fetch_bq(seq_idx, bq_idx, bq_sem_idx, wait=True)
|
|
791
|
+
|
|
792
|
+
def start_send_bo(seq_idx, bo_idx, bo_sem_idx):
|
|
793
|
+
bo_ids_ref[bo_sem_idx] = seq_idx
|
|
794
|
+
bo_ids_ref[bo_sem_idx + 2] = bo_idx
|
|
795
|
+
_send_bo(seq_idx, bo_idx, bo_sem_idx)
|
|
796
|
+
|
|
797
|
+
def wait_send_bo(bo_sem_idx):
|
|
798
|
+
old_seq_idx = bo_ids_ref[bo_sem_idx]
|
|
799
|
+
old_bo_idx = bo_ids_ref[bo_sem_idx + 2]
|
|
800
|
+
|
|
801
|
+
@pl.when(jnp.logical_and(0 <= old_seq_idx, old_seq_idx <= seq_idx))
|
|
802
|
+
def _():
|
|
803
|
+
_send_bo(old_seq_idx, old_bo_idx, bo_sem_idx, wait=True)
|
|
804
|
+
|
|
805
|
+
def load_bq(bq_sem_idx, *, actual_bq_sz=bq_sz):
|
|
806
|
+
q_nope_ref = (bq_nope_x2_ref.bitcast(
|
|
807
|
+
jnp.uint32).at[bq_sem_idx].reshape(
|
|
808
|
+
bq_sz * num_q_heads_per_q_packing, lkv_dim))
|
|
809
|
+
q_nope_vec = pltpu.bitcast(
|
|
810
|
+
q_nope_ref[:actual_bq_sz * num_q_heads_per_q_packing],
|
|
811
|
+
q_dtype,
|
|
812
|
+
)
|
|
813
|
+
q_rope_ref = (bq_rope_x2_ref.bitcast(
|
|
814
|
+
jnp.uint32).at[bq_sem_idx].reshape(
|
|
815
|
+
bq_sz * num_q_heads_per_q_packing, r_dim))
|
|
816
|
+
q_rope_vec = pltpu.bitcast(
|
|
817
|
+
q_rope_ref[:actual_bq_sz * num_q_heads_per_q_packing],
|
|
818
|
+
q_dtype,
|
|
819
|
+
)
|
|
820
|
+
return q_nope_vec, q_rope_vec
|
|
821
|
+
|
|
822
|
+
def load_bkv(bkv_sem_idx, *, bkvc_mask, bkpe_mask):
|
|
823
|
+
bitwidth = 32 // kv_packing
|
|
824
|
+
repack_ty = jnp.dtype(f"uint{bitwidth}")
|
|
825
|
+
bkvc_ref = (bkvc_x2_ref.bitcast(jnp.uint32).at[bkv_sem_idx].reshape(
|
|
826
|
+
bkv_sz_per_kv_packing, lkv_dim))
|
|
827
|
+
bkvc_vec = bkvc_ref[...]
|
|
828
|
+
bkvc_vecs = []
|
|
829
|
+
for i in range(kv_packing):
|
|
830
|
+
masked_bkvc_vec = bkvc_vec >> (i * bitwidth)
|
|
831
|
+
bkvc_vecs.append(masked_bkvc_vec)
|
|
832
|
+
concated_bkvc_vec = jnp.concatenate(bkvc_vecs, axis=-1)
|
|
833
|
+
concated_bkvc_vec = concated_bkvc_vec.reshape(bkv_sz, lkv_dim)
|
|
834
|
+
concated_bkvc_vec = lax.select(bkvc_mask, concated_bkvc_vec,
|
|
835
|
+
jnp.zeros_like(concated_bkvc_vec))
|
|
836
|
+
concated_bkvc_vec = pltpu.bitcast(concated_bkvc_vec.astype(repack_ty),
|
|
837
|
+
kv_dtype)
|
|
838
|
+
|
|
839
|
+
bkpe_ref = (bkpe_x2_ref.bitcast(jnp.uint32).at[bkv_sem_idx].reshape(
|
|
840
|
+
bkv_sz_per_kv_packing, r_dim))
|
|
841
|
+
bkpe_vec = bkpe_ref[...]
|
|
842
|
+
bkpe_vecs = []
|
|
843
|
+
for i in range(kv_packing):
|
|
844
|
+
masked_bkpe_vec = bkpe_vec >> (i * bitwidth)
|
|
845
|
+
bkpe_vecs.append(masked_bkpe_vec)
|
|
846
|
+
concated_bkpe_vec = jnp.concatenate(bkpe_vecs, axis=-1)
|
|
847
|
+
concated_bkpe_vec = concated_bkpe_vec.reshape(bkv_sz, r_dim)
|
|
848
|
+
concated_bkpe_vec = lax.select(bkpe_mask, concated_bkpe_vec,
|
|
849
|
+
jnp.zeros_like(concated_bkpe_vec))
|
|
850
|
+
concated_bkpe_vec = pltpu.bitcast(concated_bkpe_vec.astype(repack_ty),
|
|
851
|
+
kv_dtype)
|
|
852
|
+
|
|
853
|
+
return concated_bkvc_vec, concated_bkpe_vec
|
|
854
|
+
|
|
855
|
+
def broadcast_minor(src, shape):
|
|
856
|
+
if src.shape == shape:
|
|
857
|
+
return src
|
|
858
|
+
assert src.shape[:-1] == shape[:-1]
|
|
859
|
+
assert src.shape[-1] % 128 == 0
|
|
860
|
+
target_minor = align_to(shape[-1], src.shape[-1])
|
|
861
|
+
# no-op concatenation.
|
|
862
|
+
return jnp.concatenate(
|
|
863
|
+
[src for _ in range(target_minor // src.shape[-1])],
|
|
864
|
+
axis=-1)[..., :shape[-1]]
|
|
865
|
+
|
|
866
|
+
def process(static_q_len=None):
|
|
867
|
+
num_bkv = cdiv(kv_len, bkv_sz)
|
|
868
|
+
if static_q_len is None:
|
|
869
|
+
actual_bq_sz = bq_sz
|
|
870
|
+
num_bq = cdiv(q_len, actual_bq_sz)
|
|
871
|
+
else:
|
|
872
|
+
actual_bq_sz = min(bq_sz, static_q_len)
|
|
873
|
+
num_bq = cdiv(static_q_len, actual_bq_sz)
|
|
874
|
+
|
|
875
|
+
def get_next_bq_ids(seq_idx, bq_idx, bq_sem_idx):
|
|
876
|
+
next_bq_idx = bq_idx + 1
|
|
877
|
+
is_last_bq = next_bq_idx == num_bq
|
|
878
|
+
next_bq_idx = lax.select(is_last_bq, 0, next_bq_idx)
|
|
879
|
+
next_seq_idx = lax.select(is_last_bq, seq_idx + 1, seq_idx)
|
|
880
|
+
next_bq_sem_idx = lax.select(bq_sem_idx == 0, 1, 0)
|
|
881
|
+
return next_seq_idx, next_bq_idx, next_bq_sem_idx
|
|
882
|
+
|
|
883
|
+
def get_next_bkv_ids(seq_idx, bq_idx, bkv_idx, bkv_sem_idx):
|
|
884
|
+
next_bkv_idx = bkv_idx + 1
|
|
885
|
+
is_last_bkv = next_bkv_idx == num_bkv
|
|
886
|
+
next_bkv_idx = lax.select(is_last_bkv, 0, next_bkv_idx)
|
|
887
|
+
next_bq_idx = lax.select(is_last_bkv, bq_idx + 1, bq_idx)
|
|
888
|
+
is_last_bq = next_bq_idx == num_bq
|
|
889
|
+
next_bq_idx = lax.select(is_last_bq, 0, next_bq_idx)
|
|
890
|
+
next_seq_idx = lax.select(is_last_bq, seq_idx + 1, seq_idx)
|
|
891
|
+
next_bkv_sem_idx = lax.select(bkv_sem_idx == 0, 1, 0)
|
|
892
|
+
return next_seq_idx, next_bq_idx, next_bkv_idx, next_bkv_sem_idx
|
|
893
|
+
|
|
894
|
+
def compute_with_bq(bq_idx, _):
|
|
895
|
+
bq_sem_idx = sem_ids_ref[0]
|
|
896
|
+
next_seq_idx, next_bq_idx, next_bq_sem_idx = get_next_bq_ids(
|
|
897
|
+
seq_idx, bq_idx, bq_sem_idx)
|
|
898
|
+
|
|
899
|
+
# Prefetch next bq
|
|
900
|
+
@pl.when(next_seq_idx < num_seqs)
|
|
901
|
+
def prefetch_next_bq():
|
|
902
|
+
sem_ids_ref[0] = next_bq_sem_idx
|
|
903
|
+
start_fetch_bq(next_seq_idx, next_bq_idx, next_bq_sem_idx)
|
|
904
|
+
|
|
905
|
+
def compute_with_bkv(bkv_idx, _):
|
|
906
|
+
# Create bitmask for KV.
|
|
907
|
+
assert bkv_sz % kv_packing == 0
|
|
908
|
+
actual_bkv_sz = jnp.minimum(bkv_sz, kv_len - bkv_idx * bkv_sz)
|
|
909
|
+
bkvc_shape = (bkv_sz, lkv_dim)
|
|
910
|
+
bkvc_mask = (lax.broadcasted_iota(jnp.int32, bkvc_shape, 0)
|
|
911
|
+
< actual_bkv_sz)
|
|
912
|
+
bkpe_shape = (bkv_sz, r_dim)
|
|
913
|
+
bkpe_mask = (lax.broadcasted_iota(jnp.int32, bkpe_shape, 0)
|
|
914
|
+
< actual_bkv_sz)
|
|
915
|
+
|
|
916
|
+
# Get next bkv ids.
|
|
917
|
+
bkv_sem_idx = sem_ids_ref[1]
|
|
918
|
+
next_seq_idx, _, next_bkv_idx, next_bkv_sem_idx = get_next_bkv_ids(
|
|
919
|
+
seq_idx, bq_idx, bkv_idx, bkv_sem_idx)
|
|
920
|
+
|
|
921
|
+
# Prefetch next bkv
|
|
922
|
+
@pl.when(next_seq_idx < num_seqs)
|
|
923
|
+
def prefetch_next_bkv():
|
|
924
|
+
sem_ids_ref[1] = next_bkv_sem_idx
|
|
925
|
+
start_fetch_bkv(next_seq_idx, next_bkv_idx,
|
|
926
|
+
next_bkv_sem_idx)
|
|
927
|
+
|
|
928
|
+
# Wait for cur bq if not ready yet
|
|
929
|
+
@pl.when(bkv_idx == 0)
|
|
930
|
+
def wait_cur_bq():
|
|
931
|
+
wait_fetch_bq(seq_idx, bq_idx, bq_sem_idx)
|
|
932
|
+
|
|
933
|
+
# Wait for cur bkv
|
|
934
|
+
wait_fetch_bkv(seq_idx, bkv_idx, bkv_sem_idx)
|
|
935
|
+
|
|
936
|
+
debug_print(
|
|
937
|
+
"[RPA debug] -----------flash attention-----------")
|
|
938
|
+
debug_print("[RPA debug] seq_idx={}", seq_idx)
|
|
939
|
+
debug_print("[RPA debug] bq_idx={}", bq_idx)
|
|
940
|
+
debug_print("[RPA debug] bkv_idx={}", bkv_idx)
|
|
941
|
+
if debug_mode:
|
|
942
|
+
# Skip flash attention if debug mode is enabled.
|
|
943
|
+
return
|
|
944
|
+
|
|
945
|
+
# Flash attention with cur bkv and bq
|
|
946
|
+
bkvc, bkpe = load_bkv(bkv_sem_idx,
|
|
947
|
+
bkvc_mask=bkvc_mask,
|
|
948
|
+
bkpe_mask=bkpe_mask)
|
|
949
|
+
bq_nope_vec, bq_pe_vec = load_bq(bq_sem_idx,
|
|
950
|
+
actual_bq_sz=actual_bq_sz)
|
|
951
|
+
flash_attention(
|
|
952
|
+
bq_nope_vec,
|
|
953
|
+
bq_pe_vec,
|
|
954
|
+
bkvc,
|
|
955
|
+
bkpe,
|
|
956
|
+
bq_idx=bq_idx,
|
|
957
|
+
bkv_idx=bkv_idx,
|
|
958
|
+
)
|
|
959
|
+
|
|
960
|
+
lax.fori_loop(0, num_bkv, compute_with_bkv, None, unroll=False)
|
|
961
|
+
|
|
962
|
+
# Load acc and calculate final output.
|
|
963
|
+
acc = acc_ref[...]
|
|
964
|
+
l = broadcast_minor(l_ref[...], acc.shape) # noqa
|
|
965
|
+
out = (lax.div(acc, l) if q_dtype == jnp.float32 else
|
|
966
|
+
(acc * pl.reciprocal(l, approx=True)).astype(q_dtype))
|
|
967
|
+
|
|
968
|
+
# Wait for previous bo to be fully sent before storing new bo.
|
|
969
|
+
bo_sem_idx = sem_ids_ref[2]
|
|
970
|
+
sem_ids_ref[2] = lax.select(bo_sem_idx == 0, 1, 0)
|
|
971
|
+
wait_send_bo(bo_sem_idx)
|
|
972
|
+
|
|
973
|
+
# Store output from acc to bo.
|
|
974
|
+
bo_x2_ref.at[bo_sem_idx].bitcast(jnp.int32).reshape(
|
|
975
|
+
bq_sz * num_q_heads_per_q_packing,
|
|
976
|
+
lkv_dim,
|
|
977
|
+
)[...] = pltpu.bitcast(out, jnp.int32)
|
|
978
|
+
|
|
979
|
+
# Send cur bo
|
|
980
|
+
start_send_bo(seq_idx, bq_idx, bo_sem_idx)
|
|
981
|
+
|
|
982
|
+
lax.fori_loop(0, num_bq, compute_with_bq, None, unroll=False)
|
|
983
|
+
|
|
984
|
+
### ------- Kernel start ------- ###
|
|
985
|
+
|
|
986
|
+
@pl.when(seq_idx == 0)
|
|
987
|
+
def prologue():
|
|
988
|
+
start_fetch_bq(0, 0, 0)
|
|
989
|
+
start_fetch_bkv(0, 0, 0)
|
|
990
|
+
|
|
991
|
+
@pl.when(seq_idx < decode_end)
|
|
992
|
+
def process_decode():
|
|
993
|
+
process(static_q_len=1)
|
|
994
|
+
|
|
995
|
+
@pl.when(jnp.logical_and(decode_end <= seq_idx, seq_idx < prefill_end))
|
|
996
|
+
def process_prefill():
|
|
997
|
+
process(static_q_len=chunk_prefill_size)
|
|
998
|
+
|
|
999
|
+
@pl.when(jnp.logical_and(prefill_end <= seq_idx, seq_idx < mixed_end))
|
|
1000
|
+
def process_mixed():
|
|
1001
|
+
process()
|
|
1002
|
+
|
|
1003
|
+
@pl.when(seq_idx == num_seqs - 1)
|
|
1004
|
+
def epilogue():
|
|
1005
|
+
for i in range(2):
|
|
1006
|
+
wait_send_bo(i)
|
|
1007
|
+
|
|
1008
|
+
### ------- Kernel end ------- ###
|
|
1009
|
+
|
|
1010
|
+
|
|
1011
|
+
def prepare_q_inputs(
|
|
1012
|
+
q: jax.Array, # [max_num_tokens, actual_num_q_heads, actual_head_dim],
|
|
1013
|
+
):
|
|
1014
|
+
max_num_tokens, actual_num_q_heads, actual_head_dim = q.shape
|
|
1015
|
+
q_packing = get_dtype_packing(q.dtype)
|
|
1016
|
+
num_q_heads = align_to(actual_num_q_heads, q_packing)
|
|
1017
|
+
head_dim = align_to(actual_head_dim, 128)
|
|
1018
|
+
q = jnp.pad(
|
|
1019
|
+
q.reshape(
|
|
1020
|
+
max_num_tokens,
|
|
1021
|
+
actual_num_q_heads,
|
|
1022
|
+
actual_head_dim,
|
|
1023
|
+
),
|
|
1024
|
+
(
|
|
1025
|
+
(0, 0),
|
|
1026
|
+
(0, num_q_heads - actual_num_q_heads),
|
|
1027
|
+
(0, head_dim - actual_head_dim),
|
|
1028
|
+
),
|
|
1029
|
+
constant_values=0,
|
|
1030
|
+
).reshape(
|
|
1031
|
+
max_num_tokens,
|
|
1032
|
+
num_q_heads // q_packing,
|
|
1033
|
+
q_packing,
|
|
1034
|
+
head_dim,
|
|
1035
|
+
)
|
|
1036
|
+
return q
|
|
1037
|
+
|
|
1038
|
+
|
|
1039
|
+
def prepare_kv_inputs(
|
|
1040
|
+
kv: jax.Array, # [max_num_tokens, actual_head_dim],
|
|
1041
|
+
):
|
|
1042
|
+
max_num_tokens, actual_head_dim = kv.shape
|
|
1043
|
+
kv_packing = get_dtype_packing(kv.dtype)
|
|
1044
|
+
assert max_num_tokens % kv_packing == 0
|
|
1045
|
+
head_dim = align_to(actual_head_dim, 128)
|
|
1046
|
+
|
|
1047
|
+
kv = kv.reshape(max_num_tokens // kv_packing, kv_packing, actual_head_dim)
|
|
1048
|
+
kv = jnp.pad(kv, ((0, 0), (0, 0), (0, head_dim - actual_head_dim)),
|
|
1049
|
+
constant_values=0)
|
|
1050
|
+
|
|
1051
|
+
return kv
|
|
1052
|
+
|
|
1053
|
+
|
|
1054
|
+
def prepare_outputs(
|
|
1055
|
+
out, # [max_num_tokens, num_q_heads // q_packing, q_packing, head_dim]
|
|
1056
|
+
actual_num_q_heads: int,
|
|
1057
|
+
actual_head_dim: int,
|
|
1058
|
+
):
|
|
1059
|
+
(
|
|
1060
|
+
max_num_tokens,
|
|
1061
|
+
num_q_heads_per_q_packing,
|
|
1062
|
+
q_packing,
|
|
1063
|
+
head_dim,
|
|
1064
|
+
) = out.shape
|
|
1065
|
+
return out.reshape(
|
|
1066
|
+
max_num_tokens,
|
|
1067
|
+
num_q_heads_per_q_packing * q_packing,
|
|
1068
|
+
head_dim,
|
|
1069
|
+
)[:, :actual_num_q_heads, :actual_head_dim]
|
|
1070
|
+
|
|
1071
|
+
|
|
1072
|
+
@functools.partial(
|
|
1073
|
+
jax.jit,
|
|
1074
|
+
static_argnames=(
|
|
1075
|
+
"sm_scale",
|
|
1076
|
+
"sliding_window",
|
|
1077
|
+
"soft_cap",
|
|
1078
|
+
"mask_value",
|
|
1079
|
+
"chunk_prefill_size",
|
|
1080
|
+
"num_kv_pages_per_block",
|
|
1081
|
+
"num_queries_per_block",
|
|
1082
|
+
"vmem_limit_bytes",
|
|
1083
|
+
"debug_mode",
|
|
1084
|
+
),
|
|
1085
|
+
donate_argnames=("cache_kv_c", "cache_k_pe"),
|
|
1086
|
+
)
|
|
1087
|
+
def mla_ragged_paged_attention(
|
|
1088
|
+
ql_nope: jax.Array, # [max_num_tokens, actual_num_q_heads, actual_lkv_dim]
|
|
1089
|
+
q_pe: jax.Array, # [max_num_tokens, actual_num_q_heads, actual_r_dim]
|
|
1090
|
+
new_kv_c: jax.Array, # [max_num_tokens, actual_lkv_dim]
|
|
1091
|
+
new_k_pe: jax.Array, # [max_num_tokens, actual_r_dim]
|
|
1092
|
+
cache_kv_c: jax.
|
|
1093
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, lkv_dim]
|
|
1094
|
+
cache_k_pe: jax.
|
|
1095
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, r_dim]
|
|
1096
|
+
kv_lens: jax.Array, # i32[max_num_seqs]
|
|
1097
|
+
page_indices: jax.Array, # i32[max_num_seqs * pages_per_seq]
|
|
1098
|
+
cu_q_lens: jax.Array, # i32[max_num_seqs + 1]
|
|
1099
|
+
distribution: jax.Array, # i32[3]
|
|
1100
|
+
*,
|
|
1101
|
+
sm_scale: float = 1.0,
|
|
1102
|
+
sliding_window: int | None = None,
|
|
1103
|
+
soft_cap: float | None = None,
|
|
1104
|
+
mask_value: float | None = DEFAULT_MASK_VALUE,
|
|
1105
|
+
# Kernel optimization params.
|
|
1106
|
+
chunk_prefill_size: int | None = None,
|
|
1107
|
+
# Kernel tuning params.
|
|
1108
|
+
num_kv_pages_per_block: int | None = None,
|
|
1109
|
+
num_queries_per_block: int | None = None,
|
|
1110
|
+
vmem_limit_bytes: int | None = None,
|
|
1111
|
+
# Debug params.
|
|
1112
|
+
debug_mode: bool = False,
|
|
1113
|
+
) -> tuple[
|
|
1114
|
+
jax.Array, # [max_num_tokens, actual_num_q_heads, actual_lkv_dim]
|
|
1115
|
+
jax.
|
|
1116
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, lkv_dim]
|
|
1117
|
+
jax.
|
|
1118
|
+
Array, # [total_num_pages, page_size_per_kv_packing, kv_packing, r_dim]
|
|
1119
|
+
]:
|
|
1120
|
+
"""MLA Ragged paged attention that supports mixed prefill and decode.
|
|
1121
|
+
|
|
1122
|
+
Args:
|
|
1123
|
+
ql_nope: concatenated all sequences' queries.
|
|
1124
|
+
q_pe: concatenated all sequences' rope.
|
|
1125
|
+
new_kv_c: concatenated all sequences' kv_c values
|
|
1126
|
+
new_k_pe: concatenated all sequences' k_pe values
|
|
1127
|
+
cache_kv_c: the current kv_c cache.
|
|
1128
|
+
cache_k_pe: the current k_pe cache.
|
|
1129
|
+
kv_lens: the length of each sequence in the kv cache.
|
|
1130
|
+
page_indices: flattened page indices look-up table by (seq_id, page_id).
|
|
1131
|
+
cu_q_lens: the cumulative sum of the effective query lengths. Similar to
|
|
1132
|
+
kv_lens, only the first num_seqs+1 values are valid.
|
|
1133
|
+
distribution: (i, j, k) represents that sequences[0:i] are decode-only,
|
|
1134
|
+
sequences[i:j] are chunked-prefill-only, and sequences[j:k] are mixed. The
|
|
1135
|
+
k is also the total number of sequences.
|
|
1136
|
+
sm_scale: the softmax scale which will be applied to the Q@K^T.
|
|
1137
|
+
sliding_window: the sliding window size for the attention.
|
|
1138
|
+
soft_cap: the logit soft cap for the attention.
|
|
1139
|
+
mask_value: mask value for causal mask.
|
|
1140
|
+
num_kv_pages_per_block: number of kv pages to be processed in one flash
|
|
1141
|
+
attention block in the pallas kernel.
|
|
1142
|
+
num_queries_per_block: number of kv pages to be processed in one flash
|
|
1143
|
+
attention block in the pallas kernel.
|
|
1144
|
+
vmem_limit_bytes: the vmem limit for the pallas kernel.
|
|
1145
|
+
debug_mode: if true, RPA does not issue any DMAs or run flash attention but
|
|
1146
|
+
print debug info. Need to compile with `--xla_tpu_enable_log_recorder`.
|
|
1147
|
+
|
|
1148
|
+
Returns:
|
|
1149
|
+
The output of the attention.
|
|
1150
|
+
"""
|
|
1151
|
+
# TODO(chengjiyao): Support both autotuning table and heuristic logic to set
|
|
1152
|
+
# these kernel block sizes
|
|
1153
|
+
if num_kv_pages_per_block is None or num_queries_per_block is None:
|
|
1154
|
+
raise ValueError(
|
|
1155
|
+
"num_kv_pages_per_block and num_queries_per_block must be specified."
|
|
1156
|
+
)
|
|
1157
|
+
static_validate_inputs(
|
|
1158
|
+
ql_nope,
|
|
1159
|
+
q_pe,
|
|
1160
|
+
new_kv_c,
|
|
1161
|
+
new_k_pe,
|
|
1162
|
+
cache_kv_c,
|
|
1163
|
+
cache_k_pe,
|
|
1164
|
+
kv_lens,
|
|
1165
|
+
page_indices,
|
|
1166
|
+
cu_q_lens,
|
|
1167
|
+
distribution,
|
|
1168
|
+
sm_scale=sm_scale,
|
|
1169
|
+
sliding_window=sliding_window,
|
|
1170
|
+
soft_cap=soft_cap,
|
|
1171
|
+
mask_value=mask_value,
|
|
1172
|
+
chunk_prefill_size=chunk_prefill_size,
|
|
1173
|
+
num_kv_pages_per_block=num_kv_pages_per_block,
|
|
1174
|
+
num_queries_per_block=num_queries_per_block,
|
|
1175
|
+
vmem_limit_bytes=vmem_limit_bytes,
|
|
1176
|
+
debug_mode=debug_mode,
|
|
1177
|
+
)
|
|
1178
|
+
|
|
1179
|
+
# TODO(chengjiyao): fuse kv cache update into the kernel.
|
|
1180
|
+
cache_kv_c, cache_k_pe = update_kv_cache(
|
|
1181
|
+
new_kv_c,
|
|
1182
|
+
new_k_pe,
|
|
1183
|
+
cache_kv_c,
|
|
1184
|
+
cache_k_pe,
|
|
1185
|
+
kv_lens,
|
|
1186
|
+
page_indices,
|
|
1187
|
+
cu_q_lens,
|
|
1188
|
+
distribution,
|
|
1189
|
+
)
|
|
1190
|
+
|
|
1191
|
+
_, actual_num_q_heads, actual_lkv_dim = ql_nope.shape
|
|
1192
|
+
|
|
1193
|
+
ql_nope = prepare_q_inputs(
|
|
1194
|
+
ql_nope
|
|
1195
|
+
) # [max_num_tokens, num_q_heads_per_q_packing, q_packing, lkv_dim]
|
|
1196
|
+
q_pe = prepare_q_inputs(
|
|
1197
|
+
q_pe) # [max_num_tokens, num_q_heads_per_q_packing, q_packing, r_dim]
|
|
1198
|
+
new_kv_c = prepare_kv_inputs(
|
|
1199
|
+
new_kv_c) # [max_num_tokens_per_kv_packing, kv_packing, lkv_dim]
|
|
1200
|
+
new_k_pe = prepare_kv_inputs(
|
|
1201
|
+
new_k_pe) # [max_num_tokens_per_kv_packing, kv_packing, r_dim]
|
|
1202
|
+
lkv_dim = new_kv_c.shape[-1]
|
|
1203
|
+
r_dim = new_k_pe.shape[-1]
|
|
1204
|
+
|
|
1205
|
+
_, page_size_per_kv_packing, kv_packing, _ = cache_kv_c.shape
|
|
1206
|
+
page_size = page_size_per_kv_packing * kv_packing
|
|
1207
|
+
_, num_q_heads_per_q_packing, q_packing, _ = ql_nope.shape
|
|
1208
|
+
max_num_seqs = kv_lens.shape[0]
|
|
1209
|
+
num_page_indices = page_indices.shape[0]
|
|
1210
|
+
assert num_page_indices % max_num_seqs == 0
|
|
1211
|
+
num_q_heads = num_q_heads_per_q_packing * q_packing
|
|
1212
|
+
|
|
1213
|
+
bkv_p = num_kv_pages_per_block
|
|
1214
|
+
bq_sz = num_queries_per_block
|
|
1215
|
+
bkv_sz_per_kv_packing = bkv_p * page_size_per_kv_packing
|
|
1216
|
+
grid = (distribution[2], )
|
|
1217
|
+
|
|
1218
|
+
in_specs = [
|
|
1219
|
+
pl.BlockSpec(memory_space=pltpu.HBM),
|
|
1220
|
+
pl.BlockSpec(memory_space=pltpu.HBM),
|
|
1221
|
+
pl.BlockSpec(memory_space=pltpu.HBM),
|
|
1222
|
+
pl.BlockSpec(memory_space=pltpu.HBM),
|
|
1223
|
+
pl.BlockSpec(memory_space=pltpu.HBM),
|
|
1224
|
+
pl.BlockSpec(memory_space=pltpu.HBM),
|
|
1225
|
+
]
|
|
1226
|
+
|
|
1227
|
+
out_specs = [
|
|
1228
|
+
pl.BlockSpec(memory_space=pltpu.HBM),
|
|
1229
|
+
pl.BlockSpec(memory_space=pltpu.HBM),
|
|
1230
|
+
pl.BlockSpec(memory_space=pltpu.HBM),
|
|
1231
|
+
]
|
|
1232
|
+
|
|
1233
|
+
bkvc_double_buf = pltpu.VMEM(
|
|
1234
|
+
(2, bkv_sz_per_kv_packing, kv_packing, lkv_dim),
|
|
1235
|
+
cache_kv_c.dtype,
|
|
1236
|
+
)
|
|
1237
|
+
|
|
1238
|
+
bkpe_double_buf = pltpu.VMEM(
|
|
1239
|
+
(2, bkv_sz_per_kv_packing, kv_packing, r_dim),
|
|
1240
|
+
cache_k_pe.dtype,
|
|
1241
|
+
)
|
|
1242
|
+
|
|
1243
|
+
bq_nope_double_buf = pltpu.VMEM(
|
|
1244
|
+
(2, bq_sz, num_q_heads_per_q_packing, q_packing, lkv_dim),
|
|
1245
|
+
ql_nope.dtype,
|
|
1246
|
+
)
|
|
1247
|
+
|
|
1248
|
+
bq_rope_double_buf = pltpu.VMEM(
|
|
1249
|
+
(2, bq_sz, num_q_heads_per_q_packing, q_packing, r_dim),
|
|
1250
|
+
q_pe.dtype,
|
|
1251
|
+
)
|
|
1252
|
+
|
|
1253
|
+
bo_double_buf = bq_nope_double_buf
|
|
1254
|
+
|
|
1255
|
+
l_scratch = pltpu.VMEM(
|
|
1256
|
+
(bq_sz * num_q_heads, 128),
|
|
1257
|
+
jnp.float32,
|
|
1258
|
+
)
|
|
1259
|
+
m_scratch = l_scratch
|
|
1260
|
+
|
|
1261
|
+
acc_scratch = pltpu.VMEM(
|
|
1262
|
+
(bq_sz * num_q_heads, lkv_dim),
|
|
1263
|
+
jnp.float32,
|
|
1264
|
+
)
|
|
1265
|
+
|
|
1266
|
+
scratch_shapes = [
|
|
1267
|
+
bkvc_double_buf,
|
|
1268
|
+
bkpe_double_buf,
|
|
1269
|
+
bq_nope_double_buf,
|
|
1270
|
+
bq_rope_double_buf,
|
|
1271
|
+
bo_double_buf, # Double buffering for output block.
|
|
1272
|
+
# Semaphores for double buffering of bkv, bq, bo and bkv_update.
|
|
1273
|
+
pltpu.SemaphoreType.DMA((4, 2)),
|
|
1274
|
+
# Intermediate buffers per kv head for flash attention.
|
|
1275
|
+
l_scratch,
|
|
1276
|
+
m_scratch,
|
|
1277
|
+
acc_scratch,
|
|
1278
|
+
]
|
|
1279
|
+
|
|
1280
|
+
scalar_prefetches = (
|
|
1281
|
+
kv_lens,
|
|
1282
|
+
# TODO(jevinjiang): can we use ragged page_indices to save some smem?
|
|
1283
|
+
page_indices,
|
|
1284
|
+
cu_q_lens,
|
|
1285
|
+
distribution,
|
|
1286
|
+
# (bq_sem_idx, bkv_sem_idx, bo_sem_idx)
|
|
1287
|
+
jnp.zeros((3, ), jnp.int32),
|
|
1288
|
+
# (bo_sem_0_seq_idx, bo_sem_1_seq_idx, bo_sem_0_bo_idx, bo_sem_1_bo_idx)
|
|
1289
|
+
jnp.full((4, ), -1, jnp.int32),
|
|
1290
|
+
# (bkv_sem_0_seq_idx, bkv_sem_1_seq_idx, bkv_sem_0_offset, bkv_sem_1_offset, bkv_sem_0_sz, bkv_sem_1_sz)
|
|
1291
|
+
jnp.full((6, ), -1, jnp.int32),
|
|
1292
|
+
)
|
|
1293
|
+
|
|
1294
|
+
scope_name = f"MLA-RPA-bq_{bq_sz}-bkvp_{bkv_p}-p_{page_size}"
|
|
1295
|
+
kernel = jax.named_scope(scope_name)(
|
|
1296
|
+
pl.pallas_call(
|
|
1297
|
+
functools.partial(
|
|
1298
|
+
_mla_ragged_paged_attention_kernel,
|
|
1299
|
+
sm_scale=sm_scale,
|
|
1300
|
+
sliding_window=sliding_window,
|
|
1301
|
+
soft_cap=soft_cap,
|
|
1302
|
+
mask_value=mask_value,
|
|
1303
|
+
chunk_prefill_size=chunk_prefill_size,
|
|
1304
|
+
bq_sz=bq_sz,
|
|
1305
|
+
bkv_p=bkv_p,
|
|
1306
|
+
debug_mode=debug_mode,
|
|
1307
|
+
),
|
|
1308
|
+
grid_spec=pltpu.PrefetchScalarGridSpec(
|
|
1309
|
+
num_scalar_prefetch=len(scalar_prefetches),
|
|
1310
|
+
in_specs=in_specs,
|
|
1311
|
+
out_specs=out_specs,
|
|
1312
|
+
grid=grid,
|
|
1313
|
+
scratch_shapes=scratch_shapes,
|
|
1314
|
+
),
|
|
1315
|
+
compiler_params=pltpu.CompilerParams(
|
|
1316
|
+
# TODO(jevinjiang): since each sequence depends on the previous
|
|
1317
|
+
# one, we need some extra work to support Megacore mode.
|
|
1318
|
+
dimension_semantics=("arbitrary", ),
|
|
1319
|
+
vmem_limit_bytes=vmem_limit_bytes,
|
|
1320
|
+
),
|
|
1321
|
+
out_shape=[
|
|
1322
|
+
jax.ShapeDtypeStruct(shape=ql_nope.shape, dtype=ql_nope.dtype),
|
|
1323
|
+
jax.ShapeDtypeStruct(shape=cache_kv_c.shape,
|
|
1324
|
+
dtype=cache_kv_c.dtype),
|
|
1325
|
+
jax.ShapeDtypeStruct(shape=cache_k_pe.shape,
|
|
1326
|
+
dtype=cache_k_pe.dtype),
|
|
1327
|
+
],
|
|
1328
|
+
input_output_aliases={
|
|
1329
|
+
7: 0,
|
|
1330
|
+
11: 1,
|
|
1331
|
+
12: 2
|
|
1332
|
+
},
|
|
1333
|
+
name=scope_name,
|
|
1334
|
+
))
|
|
1335
|
+
|
|
1336
|
+
output, updated_kv_c, updated_k_pe = kernel(
|
|
1337
|
+
*scalar_prefetches,
|
|
1338
|
+
ql_nope,
|
|
1339
|
+
q_pe,
|
|
1340
|
+
new_kv_c,
|
|
1341
|
+
new_k_pe,
|
|
1342
|
+
cache_kv_c,
|
|
1343
|
+
cache_k_pe,
|
|
1344
|
+
)
|
|
1345
|
+
output = prepare_outputs(
|
|
1346
|
+
output, actual_num_q_heads,
|
|
1347
|
+
actual_lkv_dim) # [max_num_tokens, actual_num_q_heads, actual_lkv_dim]
|
|
1348
|
+
|
|
1349
|
+
return output, updated_kv_c, updated_k_pe
|