superquantx 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. superquantx/__init__.py +321 -0
  2. superquantx/algorithms/__init__.py +55 -0
  3. superquantx/algorithms/base_algorithm.py +413 -0
  4. superquantx/algorithms/hybrid_classifier.py +628 -0
  5. superquantx/algorithms/qaoa.py +406 -0
  6. superquantx/algorithms/quantum_agents.py +1006 -0
  7. superquantx/algorithms/quantum_kmeans.py +575 -0
  8. superquantx/algorithms/quantum_nn.py +544 -0
  9. superquantx/algorithms/quantum_pca.py +499 -0
  10. superquantx/algorithms/quantum_svm.py +346 -0
  11. superquantx/algorithms/vqe.py +553 -0
  12. superquantx/algorithms.py +863 -0
  13. superquantx/backends/__init__.py +265 -0
  14. superquantx/backends/base_backend.py +321 -0
  15. superquantx/backends/braket_backend.py +420 -0
  16. superquantx/backends/cirq_backend.py +466 -0
  17. superquantx/backends/ocean_backend.py +491 -0
  18. superquantx/backends/pennylane_backend.py +419 -0
  19. superquantx/backends/qiskit_backend.py +451 -0
  20. superquantx/backends/simulator_backend.py +455 -0
  21. superquantx/backends/tket_backend.py +519 -0
  22. superquantx/circuits.py +447 -0
  23. superquantx/cli/__init__.py +28 -0
  24. superquantx/cli/commands.py +528 -0
  25. superquantx/cli/main.py +254 -0
  26. superquantx/client.py +298 -0
  27. superquantx/config.py +326 -0
  28. superquantx/exceptions.py +287 -0
  29. superquantx/gates.py +588 -0
  30. superquantx/logging_config.py +347 -0
  31. superquantx/measurements.py +702 -0
  32. superquantx/ml.py +936 -0
  33. superquantx/noise.py +760 -0
  34. superquantx/utils/__init__.py +83 -0
  35. superquantx/utils/benchmarking.py +523 -0
  36. superquantx/utils/classical_utils.py +575 -0
  37. superquantx/utils/feature_mapping.py +467 -0
  38. superquantx/utils/optimization.py +410 -0
  39. superquantx/utils/quantum_utils.py +456 -0
  40. superquantx/utils/visualization.py +654 -0
  41. superquantx/version.py +33 -0
  42. superquantx-0.1.0.dist-info/METADATA +365 -0
  43. superquantx-0.1.0.dist-info/RECORD +46 -0
  44. superquantx-0.1.0.dist-info/WHEEL +4 -0
  45. superquantx-0.1.0.dist-info/entry_points.txt +2 -0
  46. superquantx-0.1.0.dist-info/licenses/LICENSE +21 -0
superquantx/noise.py ADDED
@@ -0,0 +1,760 @@
1
+ """Quantum noise models and error correction for SuperQuantX
2
+ """
3
+
4
+ from abc import ABC, abstractmethod
5
+ from typing import Any, Dict, List, Optional
6
+
7
+ import numpy as np
8
+ from pydantic import BaseModel, Field
9
+
10
+ from .circuits import QuantumCircuit, QuantumGate
11
+ from .gates import GateMatrix, PauliString
12
+
13
+
14
+ class NoiseChannel(ABC):
15
+ """Abstract base class for quantum noise channels
16
+ """
17
+
18
+ def __init__(self, probability: float):
19
+ """Initialize noise channel
20
+
21
+ Args:
22
+ probability: Noise probability (0 <= p <= 1)
23
+
24
+ """
25
+ if not 0 <= probability <= 1:
26
+ raise ValueError("Probability must be between 0 and 1")
27
+ self.probability = probability
28
+
29
+ @abstractmethod
30
+ def kraus_operators(self) -> List[np.ndarray]:
31
+ """Return Kraus operators for the noise channel"""
32
+ pass
33
+
34
+ @abstractmethod
35
+ def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
36
+ """Apply noise channel to density matrix"""
37
+ pass
38
+
39
+ def is_unital(self) -> bool:
40
+ """Check if channel is unital (maps identity to identity)"""
41
+ identity = np.eye(2, dtype=complex)
42
+ noisy_identity = self.apply_to_density_matrix(identity)
43
+ return np.allclose(noisy_identity, identity)
44
+
45
+
46
+ class BitFlipChannel(NoiseChannel):
47
+ """Bit flip (X) noise channel
48
+ """
49
+
50
+ def kraus_operators(self) -> List[np.ndarray]:
51
+ """Kraus operators for bit flip channel"""
52
+ sqrt_p = np.sqrt(self.probability)
53
+ sqrt_1_p = np.sqrt(1 - self.probability)
54
+
55
+ return [
56
+ sqrt_1_p * GateMatrix.I, # No error
57
+ sqrt_p * GateMatrix.X # Bit flip
58
+ ]
59
+
60
+ def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
61
+ """Apply bit flip noise to density matrix"""
62
+ kraus_ops = self.kraus_operators()
63
+ result = np.zeros_like(rho, dtype=complex)
64
+
65
+ for kraus in kraus_ops:
66
+ result += kraus @ rho @ kraus.conj().T
67
+
68
+ return result
69
+
70
+
71
+ class PhaseFlipChannel(NoiseChannel):
72
+ """Phase flip (Z) noise channel
73
+ """
74
+
75
+ def kraus_operators(self) -> List[np.ndarray]:
76
+ """Kraus operators for phase flip channel"""
77
+ sqrt_p = np.sqrt(self.probability)
78
+ sqrt_1_p = np.sqrt(1 - self.probability)
79
+
80
+ return [
81
+ sqrt_1_p * GateMatrix.I, # No error
82
+ sqrt_p * GateMatrix.Z # Phase flip
83
+ ]
84
+
85
+ def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
86
+ """Apply phase flip noise to density matrix"""
87
+ kraus_ops = self.kraus_operators()
88
+ result = np.zeros_like(rho, dtype=complex)
89
+
90
+ for kraus in kraus_ops:
91
+ result += kraus @ rho @ kraus.conj().T
92
+
93
+ return result
94
+
95
+
96
+ class BitPhaseFlipChannel(NoiseChannel):
97
+ """Bit-phase flip (Y) noise channel
98
+ """
99
+
100
+ def kraus_operators(self) -> List[np.ndarray]:
101
+ """Kraus operators for bit-phase flip channel"""
102
+ sqrt_p = np.sqrt(self.probability)
103
+ sqrt_1_p = np.sqrt(1 - self.probability)
104
+
105
+ return [
106
+ sqrt_1_p * GateMatrix.I, # No error
107
+ sqrt_p * GateMatrix.Y # Bit-phase flip
108
+ ]
109
+
110
+ def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
111
+ """Apply bit-phase flip noise to density matrix"""
112
+ kraus_ops = self.kraus_operators()
113
+ result = np.zeros_like(rho, dtype=complex)
114
+
115
+ for kraus in kraus_ops:
116
+ result += kraus @ rho @ kraus.conj().T
117
+
118
+ return result
119
+
120
+
121
+ class DepolarizingChannel(NoiseChannel):
122
+ """Depolarizing noise channel
123
+ """
124
+
125
+ def kraus_operators(self) -> List[np.ndarray]:
126
+ """Kraus operators for depolarizing channel"""
127
+ p = self.probability
128
+
129
+ return [
130
+ np.sqrt(1 - 3*p/4) * GateMatrix.I, # No error
131
+ np.sqrt(p/4) * GateMatrix.X, # X error
132
+ np.sqrt(p/4) * GateMatrix.Y, # Y error
133
+ np.sqrt(p/4) * GateMatrix.Z # Z error
134
+ ]
135
+
136
+ def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
137
+ """Apply depolarizing noise to density matrix"""
138
+ p = self.probability
139
+
140
+ # Direct formula: ρ → (1-p)ρ + p*I/2
141
+ identity = np.eye(rho.shape[0], dtype=complex)
142
+ return (1 - p) * rho + (p / rho.shape[0]) * identity
143
+
144
+
145
+ class AmplitudeDampingChannel(NoiseChannel):
146
+ """Amplitude damping noise channel (T1 decay)
147
+ """
148
+
149
+ def kraus_operators(self) -> List[np.ndarray]:
150
+ """Kraus operators for amplitude damping channel"""
151
+ gamma = self.probability
152
+
153
+ E0 = np.array([
154
+ [1, 0],
155
+ [0, np.sqrt(1 - gamma)]
156
+ ], dtype=complex)
157
+
158
+ E1 = np.array([
159
+ [0, np.sqrt(gamma)],
160
+ [0, 0]
161
+ ], dtype=complex)
162
+
163
+ return [E0, E1]
164
+
165
+ def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
166
+ """Apply amplitude damping noise to density matrix"""
167
+ kraus_ops = self.kraus_operators()
168
+ result = np.zeros_like(rho, dtype=complex)
169
+
170
+ for kraus in kraus_ops:
171
+ result += kraus @ rho @ kraus.conj().T
172
+
173
+ return result
174
+
175
+
176
+ class PhaseDampingChannel(NoiseChannel):
177
+ """Phase damping noise channel (T2 dephasing)
178
+ """
179
+
180
+ def kraus_operators(self) -> List[np.ndarray]:
181
+ """Kraus operators for phase damping channel"""
182
+ gamma = self.probability
183
+
184
+ E0 = np.array([
185
+ [1, 0],
186
+ [0, np.sqrt(1 - gamma)]
187
+ ], dtype=complex)
188
+
189
+ E1 = np.array([
190
+ [0, 0],
191
+ [0, np.sqrt(gamma)]
192
+ ], dtype=complex)
193
+
194
+ return [E0, E1]
195
+
196
+ def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
197
+ """Apply phase damping noise to density matrix"""
198
+ kraus_ops = self.kraus_operators()
199
+ result = np.zeros_like(rho, dtype=complex)
200
+
201
+ for kraus in kraus_ops:
202
+ result += kraus @ rho @ kraus.conj().T
203
+
204
+ return result
205
+
206
+
207
+ class TwoQubitDepolarizingChannel(NoiseChannel):
208
+ """Two-qubit depolarizing noise channel
209
+ """
210
+
211
+ def kraus_operators(self) -> List[np.ndarray]:
212
+ """Kraus operators for two-qubit depolarizing channel"""
213
+ p = self.probability
214
+
215
+ # Single-qubit Pauli operators
216
+ pauli_ops = [GateMatrix.I, GateMatrix.X, GateMatrix.Y, GateMatrix.Z]
217
+
218
+ kraus_ops = []
219
+
220
+ # All combinations of Pauli operators on two qubits
221
+ for i, p1 in enumerate(pauli_ops):
222
+ for j, p2 in enumerate(pauli_ops):
223
+ if i == 0 and j == 0:
224
+ # Identity case
225
+ coeff = np.sqrt(1 - 15*p/16)
226
+ else:
227
+ # Error cases
228
+ coeff = np.sqrt(p/16)
229
+
230
+ kraus_op = coeff * np.kron(p1, p2)
231
+ kraus_ops.append(kraus_op)
232
+
233
+ return kraus_ops
234
+
235
+ def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
236
+ """Apply two-qubit depolarizing noise to density matrix"""
237
+ kraus_ops = self.kraus_operators()
238
+ result = np.zeros_like(rho, dtype=complex)
239
+
240
+ for kraus in kraus_ops:
241
+ result += kraus @ rho @ kraus.conj().T
242
+
243
+ return result
244
+
245
+
246
+ class NoiseModel(BaseModel):
247
+ """Comprehensive noise model for quantum circuits
248
+ """
249
+
250
+ model_config = {"arbitrary_types_allowed": True}
251
+
252
+ single_qubit_error_rates: Dict[str, float] = Field(
253
+ default_factory=dict,
254
+ description="Error rates for single-qubit gates"
255
+ )
256
+
257
+ two_qubit_error_rates: Dict[str, float] = Field(
258
+ default_factory=dict,
259
+ description="Error rates for two-qubit gates"
260
+ )
261
+
262
+ readout_error_rates: Dict[int, float] = Field(
263
+ default_factory=dict,
264
+ description="Readout error rates per qubit"
265
+ )
266
+
267
+ coherence_times: Dict[str, Dict[int, float]] = Field(
268
+ default_factory=dict,
269
+ description="T1 and T2 times per qubit"
270
+ )
271
+
272
+ crosstalk_matrix: Optional[np.ndarray] = Field(
273
+ default=None,
274
+ description="Crosstalk coupling matrix"
275
+ )
276
+
277
+ def add_single_qubit_error(self, gate_name: str, error_rate: float) -> None:
278
+ """Add single-qubit gate error rate"""
279
+ self.single_qubit_error_rates[gate_name] = error_rate
280
+
281
+ def add_two_qubit_error(self, gate_name: str, error_rate: float) -> None:
282
+ """Add two-qubit gate error rate"""
283
+ self.two_qubit_error_rates[gate_name] = error_rate
284
+
285
+ def add_readout_error(self, qubit: int, error_rate: float) -> None:
286
+ """Add readout error rate for qubit"""
287
+ self.readout_error_rates[qubit] = error_rate
288
+
289
+ def set_coherence_time(self, qubit: int, t1: float, t2: float) -> None:
290
+ """Set T1 and T2 coherence times for qubit"""
291
+ if "T1" not in self.coherence_times:
292
+ self.coherence_times["T1"] = {}
293
+ if "T2" not in self.coherence_times:
294
+ self.coherence_times["T2"] = {}
295
+
296
+ self.coherence_times["T1"][qubit] = t1
297
+ self.coherence_times["T2"][qubit] = t2
298
+
299
+ def apply_to_circuit(self, circuit: QuantumCircuit) -> QuantumCircuit:
300
+ """Apply noise model to quantum circuit
301
+
302
+ Args:
303
+ circuit: Original circuit
304
+
305
+ Returns:
306
+ Noisy circuit with error channels
307
+
308
+ """
309
+ noisy_circuit = QuantumCircuit(circuit.num_qubits, circuit.num_classical_bits)
310
+
311
+ for gate in circuit.gates:
312
+ # Add original gate
313
+ noisy_circuit.gates.append(gate)
314
+
315
+ # Add noise after gate
316
+ self._add_gate_noise(noisy_circuit, gate)
317
+
318
+ # Add measurements with readout errors
319
+ for qubit, cbit in circuit.measurements:
320
+ self._add_readout_noise(noisy_circuit, qubit, cbit)
321
+
322
+ return noisy_circuit
323
+
324
+ def _add_gate_noise(self, circuit: QuantumCircuit, gate: QuantumGate) -> None:
325
+ """Add noise after a gate operation"""
326
+ if len(gate.qubits) == 1:
327
+ # Single-qubit gate noise
328
+ error_rate = self.single_qubit_error_rates.get(gate.name, 0.0)
329
+ if error_rate > 0:
330
+ qubit = gate.qubits[0]
331
+ # Add depolarizing noise (simplified)
332
+ circuit.gates.append(
333
+ QuantumGate(name="DEPOL", qubits=[qubit], parameters=[error_rate])
334
+ )
335
+
336
+ elif len(gate.qubits) == 2:
337
+ # Two-qubit gate noise
338
+ error_rate = self.two_qubit_error_rates.get(gate.name, 0.0)
339
+ if error_rate > 0:
340
+ qubits = gate.qubits
341
+ circuit.gates.append(
342
+ QuantumGate(name="DEPOL2", qubits=qubits, parameters=[error_rate])
343
+ )
344
+
345
+ def _add_readout_noise(self, circuit: QuantumCircuit, qubit: int, cbit: int) -> None:
346
+ """Add readout error to measurement"""
347
+ error_rate = self.readout_error_rates.get(qubit, 0.0)
348
+
349
+ # Add measurement with potential readout error
350
+ if error_rate > 0:
351
+ circuit.gates.append(
352
+ QuantumGate(name="READOUT_ERROR", qubits=[qubit], parameters=[error_rate])
353
+ )
354
+
355
+ circuit.measure(qubit, cbit)
356
+
357
+ @classmethod
358
+ def from_device_properties(
359
+ cls,
360
+ device_props: Dict[str, Any]
361
+ ) -> "NoiseModel":
362
+ """Create noise model from device properties
363
+
364
+ Args:
365
+ device_props: Device property dictionary
366
+
367
+ Returns:
368
+ Noise model based on device properties
369
+
370
+ """
371
+ noise_model = cls()
372
+
373
+ # Extract gate error rates
374
+ if "gates" in device_props:
375
+ for gate_info in device_props["gates"]:
376
+ gate_name = gate_info.get("gate")
377
+ error_rate = gate_info.get("error_rate", 0.0)
378
+ qubits = gate_info.get("qubits", [])
379
+
380
+ if len(qubits) == 1:
381
+ noise_model.add_single_qubit_error(gate_name, error_rate)
382
+ elif len(qubits) == 2:
383
+ noise_model.add_two_qubit_error(gate_name, error_rate)
384
+
385
+ # Extract readout errors
386
+ if "readout_errors" in device_props:
387
+ for qubit, error_rate in enumerate(device_props["readout_errors"]):
388
+ noise_model.add_readout_error(qubit, error_rate)
389
+
390
+ # Extract coherence times
391
+ if "coherence_times" in device_props:
392
+ t1_times = device_props["coherence_times"].get("T1", [])
393
+ t2_times = device_props["coherence_times"].get("T2", [])
394
+
395
+ for qubit, (t1, t2) in enumerate(zip(t1_times, t2_times)):
396
+ noise_model.set_coherence_time(qubit, t1, t2)
397
+
398
+ return noise_model
399
+
400
+ @classmethod
401
+ def ideal(cls) -> "NoiseModel":
402
+ """Create ideal (noiseless) noise model"""
403
+ return cls()
404
+
405
+ @classmethod
406
+ def basic_device_noise(
407
+ cls,
408
+ single_qubit_error: float = 1e-3,
409
+ two_qubit_error: float = 1e-2,
410
+ readout_error: float = 1e-2
411
+ ) -> "NoiseModel":
412
+ """Create basic device noise model
413
+
414
+ Args:
415
+ single_qubit_error: Single-qubit gate error rate
416
+ two_qubit_error: Two-qubit gate error rate
417
+ readout_error: Readout error rate
418
+
419
+ Returns:
420
+ Basic noise model
421
+
422
+ """
423
+ noise_model = cls()
424
+
425
+ # Common single-qubit gates
426
+ for gate in ["H", "X", "Y", "Z", "RX", "RY", "RZ", "U"]:
427
+ noise_model.add_single_qubit_error(gate, single_qubit_error)
428
+
429
+ # Common two-qubit gates
430
+ for gate in ["CNOT", "CZ", "SWAP"]:
431
+ noise_model.add_two_qubit_error(gate, two_qubit_error)
432
+
433
+ return noise_model
434
+
435
+
436
+ class QuantumErrorCorrection:
437
+ """Quantum error correction codes and syndromes
438
+ """
439
+
440
+ @staticmethod
441
+ def three_qubit_bit_flip_code() -> Dict[str, Any]:
442
+ """Three-qubit repetition code for bit flip errors
443
+
444
+ Returns:
445
+ Code properties and circuits
446
+
447
+ """
448
+ # Encoding circuit: |0⟩ → |000⟩, |1⟩ → |111⟩
449
+ encoding_circuit = QuantumCircuit(3)
450
+ encoding_circuit.cnot(0, 1)
451
+ encoding_circuit.cnot(0, 2)
452
+
453
+ # Syndrome measurement circuit
454
+ syndrome_circuit = QuantumCircuit(5, 2) # 3 data + 2 ancilla qubits
455
+ # Measure Z₀Z₁ and Z₁Z₂
456
+ syndrome_circuit.cnot(0, 3)
457
+ syndrome_circuit.cnot(1, 3)
458
+ syndrome_circuit.cnot(1, 4)
459
+ syndrome_circuit.cnot(2, 4)
460
+ syndrome_circuit.measure(3, 0)
461
+ syndrome_circuit.measure(4, 1)
462
+
463
+ # Error correction lookup table
464
+ correction_table = {
465
+ "00": None, # No error
466
+ "10": "X0", # Error on qubit 0
467
+ "11": "X1", # Error on qubit 1
468
+ "01": "X2" # Error on qubit 2
469
+ }
470
+
471
+ return {
472
+ "encoding_circuit": encoding_circuit,
473
+ "syndrome_circuit": syndrome_circuit,
474
+ "correction_table": correction_table,
475
+ "code_distance": 3,
476
+ "correctable_errors": 1
477
+ }
478
+
479
+ @staticmethod
480
+ def three_qubit_phase_flip_code() -> Dict[str, Any]:
481
+ """Three-qubit code for phase flip errors
482
+
483
+ Returns:
484
+ Code properties and circuits
485
+
486
+ """
487
+ # Encoding: |+⟩ → |+++⟩, |-⟩ → |---⟩
488
+ encoding_circuit = QuantumCircuit(3)
489
+ encoding_circuit.h(0)
490
+ encoding_circuit.h(1)
491
+ encoding_circuit.h(2)
492
+ encoding_circuit.cnot(0, 1)
493
+ encoding_circuit.cnot(0, 2)
494
+ encoding_circuit.h(0)
495
+ encoding_circuit.h(1)
496
+ encoding_circuit.h(2)
497
+
498
+ # Syndrome measurement in X basis
499
+ syndrome_circuit = QuantumCircuit(5, 2)
500
+ # Rotate to X basis
501
+ for i in range(3):
502
+ syndrome_circuit.h(i)
503
+
504
+ # Measure X₀X₁ and X₁X₂
505
+ syndrome_circuit.cnot(0, 3)
506
+ syndrome_circuit.cnot(1, 3)
507
+ syndrome_circuit.cnot(1, 4)
508
+ syndrome_circuit.cnot(2, 4)
509
+ syndrome_circuit.measure(3, 0)
510
+ syndrome_circuit.measure(4, 1)
511
+
512
+ correction_table = {
513
+ "00": None, # No error
514
+ "10": "Z0", # Error on qubit 0
515
+ "11": "Z1", # Error on qubit 1
516
+ "01": "Z2" # Error on qubit 2
517
+ }
518
+
519
+ return {
520
+ "encoding_circuit": encoding_circuit,
521
+ "syndrome_circuit": syndrome_circuit,
522
+ "correction_table": correction_table,
523
+ "code_distance": 3,
524
+ "correctable_errors": 1
525
+ }
526
+
527
+ @staticmethod
528
+ def nine_qubit_shor_code() -> Dict[str, Any]:
529
+ """Nine-qubit Shor code (corrects arbitrary single-qubit errors)
530
+
531
+ Returns:
532
+ Code properties and circuits
533
+
534
+ """
535
+ # Encoding circuit
536
+ encoding_circuit = QuantumCircuit(9)
537
+
538
+ # First level: bit flip encoding
539
+ encoding_circuit.cnot(0, 3)
540
+ encoding_circuit.cnot(0, 6)
541
+
542
+ # Second level: phase flip encoding within each block
543
+ for block_start in [0, 3, 6]:
544
+ encoding_circuit.h(block_start)
545
+ encoding_circuit.h(block_start + 1)
546
+ encoding_circuit.h(block_start + 2)
547
+ encoding_circuit.cnot(block_start, block_start + 1)
548
+ encoding_circuit.cnot(block_start, block_start + 2)
549
+ encoding_circuit.h(block_start)
550
+ encoding_circuit.h(block_start + 1)
551
+ encoding_circuit.h(block_start + 2)
552
+
553
+ # Syndrome measurement circuit (simplified)
554
+ syndrome_circuit = QuantumCircuit(15, 6) # 9 data + 6 ancilla
555
+
556
+ correction_table = {} # Would need full syndrome table
557
+
558
+ return {
559
+ "encoding_circuit": encoding_circuit,
560
+ "syndrome_circuit": syndrome_circuit,
561
+ "correction_table": correction_table,
562
+ "code_distance": 3,
563
+ "correctable_errors": 1,
564
+ "logical_qubits": 1,
565
+ "physical_qubits": 9
566
+ }
567
+
568
+ @staticmethod
569
+ def steane_code() -> Dict[str, Any]:
570
+ """7-qubit Steane code
571
+
572
+ Returns:
573
+ Code properties
574
+
575
+ """
576
+ # Generator matrix for Steane code
577
+ generator_matrix = np.array([
578
+ [1, 0, 0, 1, 0, 1, 1],
579
+ [0, 1, 0, 1, 1, 0, 1],
580
+ [0, 0, 1, 0, 1, 1, 1]
581
+ ])
582
+
583
+ # Parity check matrix
584
+ parity_check_matrix = np.array([
585
+ [1, 1, 0, 1, 0, 0, 0],
586
+ [0, 1, 1, 0, 1, 0, 0],
587
+ [1, 0, 1, 0, 0, 1, 0],
588
+ [1, 1, 1, 0, 0, 0, 1]
589
+ ])
590
+
591
+ return {
592
+ "generator_matrix": generator_matrix,
593
+ "parity_check_matrix": parity_check_matrix,
594
+ "code_distance": 3,
595
+ "correctable_errors": 1,
596
+ "logical_qubits": 1,
597
+ "physical_qubits": 7
598
+ }
599
+
600
+ @staticmethod
601
+ def decode_syndrome(syndrome: str, correction_table: Dict[str, str]) -> Optional[str]:
602
+ """Decode error syndrome to determine correction
603
+
604
+ Args:
605
+ syndrome: Measured syndrome bitstring
606
+ correction_table: Syndrome to correction mapping
607
+
608
+ Returns:
609
+ Correction operation or None if no error
610
+
611
+ """
612
+ return correction_table.get(syndrome)
613
+
614
+ @staticmethod
615
+ def apply_correction(
616
+ circuit: QuantumCircuit,
617
+ correction: str
618
+ ) -> QuantumCircuit:
619
+ """Apply error correction to circuit
620
+
621
+ Args:
622
+ circuit: Circuit to correct
623
+ correction: Correction operation (e.g., "X0", "Z2")
624
+
625
+ Returns:
626
+ Corrected circuit
627
+
628
+ """
629
+ if correction is None:
630
+ return circuit
631
+
632
+ corrected_circuit = circuit.copy()
633
+
634
+ # Parse correction operation
635
+ if correction.startswith("X"):
636
+ qubit = int(correction[1:])
637
+ corrected_circuit.x(qubit)
638
+ elif correction.startswith("Z"):
639
+ qubit = int(correction[1:])
640
+ corrected_circuit.z(qubit)
641
+ elif correction.startswith("Y"):
642
+ qubit = int(correction[1:])
643
+ corrected_circuit.y(qubit)
644
+
645
+ return corrected_circuit
646
+
647
+
648
+ class ErrorMitigation:
649
+ """Quantum error mitigation techniques
650
+ """
651
+
652
+ @staticmethod
653
+ def randomized_compiling(
654
+ circuit: QuantumCircuit,
655
+ num_random_circuits: int = 10,
656
+ random_seed: Optional[int] = None
657
+ ) -> List[QuantumCircuit]:
658
+ """Generate randomly compiled circuits for error mitigation
659
+
660
+ Args:
661
+ circuit: Original circuit
662
+ num_random_circuits: Number of random compilations
663
+ random_seed: Random seed for reproducibility
664
+
665
+ Returns:
666
+ List of randomly compiled circuits
667
+
668
+ """
669
+ if random_seed is not None:
670
+ np.random.seed(random_seed)
671
+
672
+ random_circuits = []
673
+
674
+ for _ in range(num_random_circuits):
675
+ # Create copy of circuit
676
+ random_circuit = circuit.copy()
677
+
678
+ # Apply random Pauli twirling
679
+ for gate in random_circuit.gates:
680
+ if len(gate.qubits) == 1:
681
+ # Add random Pauli before and after
682
+ qubit = gate.qubits[0]
683
+
684
+ # Random Pauli group element
685
+ pauli_choice = np.random.choice(['I', 'X', 'Y', 'Z'])
686
+
687
+ if pauli_choice == 'X':
688
+ # Add X before gate, X after gate (cancels out)
689
+ pass # Would add X gates in practice
690
+ elif pauli_choice == 'Y':
691
+ pass # Would add Y gates
692
+ elif pauli_choice == 'Z':
693
+ pass # Would add Z gates
694
+
695
+ random_circuits.append(random_circuit)
696
+
697
+ return random_circuits
698
+
699
+ @staticmethod
700
+ def clifford_data_regression(
701
+ noisy_results: List[float],
702
+ clifford_expectation_values: List[float]
703
+ ) -> float:
704
+ """Perform Clifford data regression for error mitigation
705
+
706
+ Args:
707
+ noisy_results: Noisy measurement results
708
+ clifford_expectation_values: Expected values from Clifford simulation
709
+
710
+ Returns:
711
+ Error-mitigated expectation value
712
+
713
+ """
714
+ # Simple linear regression to extrapolate ideal result
715
+ # In practice, would use more sophisticated regression
716
+
717
+ if len(noisy_results) != len(clifford_expectation_values):
718
+ raise ValueError("Result arrays must have same length")
719
+
720
+ # Fit linear model: noisy = a * ideal + b
721
+ ideal_values = np.array(clifford_expectation_values)
722
+ noisy_values = np.array(noisy_results)
723
+
724
+ # Least squares fit
725
+ A = np.vstack([ideal_values, np.ones(len(ideal_values))]).T
726
+ slope, intercept = np.linalg.lstsq(A, noisy_values, rcond=None)[0]
727
+
728
+ # Extrapolate: if noisy = a * ideal + b, then ideal = (noisy - b) / a
729
+ # But we want to correct the average
730
+ corrected_average = (np.mean(noisy_values) - intercept) / slope if slope != 0 else np.mean(noisy_values)
731
+
732
+ return float(corrected_average)
733
+
734
+ @staticmethod
735
+ def symmetry_verification(
736
+ circuit: QuantumCircuit,
737
+ symmetry_generators: List[PauliString]
738
+ ) -> Dict[str, Any]:
739
+ """Verify circuit preserves expected symmetries
740
+
741
+ Args:
742
+ circuit: Quantum circuit
743
+ symmetry_generators: List of Pauli symmetries to check
744
+
745
+ Returns:
746
+ Symmetry verification results
747
+
748
+ """
749
+ verification_results = {}
750
+
751
+ for i, generator in enumerate(symmetry_generators):
752
+ # In practice, would measure commutator [H, generator]
753
+ # For now, return placeholder
754
+ verification_results[f"symmetry_{i}"] = {
755
+ "generator": str(generator),
756
+ "violation": 0.0, # Placeholder
757
+ "verified": True
758
+ }
759
+
760
+ return verification_results