superquantx 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- superquantx/__init__.py +321 -0
- superquantx/algorithms/__init__.py +55 -0
- superquantx/algorithms/base_algorithm.py +413 -0
- superquantx/algorithms/hybrid_classifier.py +628 -0
- superquantx/algorithms/qaoa.py +406 -0
- superquantx/algorithms/quantum_agents.py +1006 -0
- superquantx/algorithms/quantum_kmeans.py +575 -0
- superquantx/algorithms/quantum_nn.py +544 -0
- superquantx/algorithms/quantum_pca.py +499 -0
- superquantx/algorithms/quantum_svm.py +346 -0
- superquantx/algorithms/vqe.py +553 -0
- superquantx/algorithms.py +863 -0
- superquantx/backends/__init__.py +265 -0
- superquantx/backends/base_backend.py +321 -0
- superquantx/backends/braket_backend.py +420 -0
- superquantx/backends/cirq_backend.py +466 -0
- superquantx/backends/ocean_backend.py +491 -0
- superquantx/backends/pennylane_backend.py +419 -0
- superquantx/backends/qiskit_backend.py +451 -0
- superquantx/backends/simulator_backend.py +455 -0
- superquantx/backends/tket_backend.py +519 -0
- superquantx/circuits.py +447 -0
- superquantx/cli/__init__.py +28 -0
- superquantx/cli/commands.py +528 -0
- superquantx/cli/main.py +254 -0
- superquantx/client.py +298 -0
- superquantx/config.py +326 -0
- superquantx/exceptions.py +287 -0
- superquantx/gates.py +588 -0
- superquantx/logging_config.py +347 -0
- superquantx/measurements.py +702 -0
- superquantx/ml.py +936 -0
- superquantx/noise.py +760 -0
- superquantx/utils/__init__.py +83 -0
- superquantx/utils/benchmarking.py +523 -0
- superquantx/utils/classical_utils.py +575 -0
- superquantx/utils/feature_mapping.py +467 -0
- superquantx/utils/optimization.py +410 -0
- superquantx/utils/quantum_utils.py +456 -0
- superquantx/utils/visualization.py +654 -0
- superquantx/version.py +33 -0
- superquantx-0.1.0.dist-info/METADATA +365 -0
- superquantx-0.1.0.dist-info/RECORD +46 -0
- superquantx-0.1.0.dist-info/WHEEL +4 -0
- superquantx-0.1.0.dist-info/entry_points.txt +2 -0
- superquantx-0.1.0.dist-info/licenses/LICENSE +21 -0
superquantx/noise.py
ADDED
@@ -0,0 +1,760 @@
|
|
1
|
+
"""Quantum noise models and error correction for SuperQuantX
|
2
|
+
"""
|
3
|
+
|
4
|
+
from abc import ABC, abstractmethod
|
5
|
+
from typing import Any, Dict, List, Optional
|
6
|
+
|
7
|
+
import numpy as np
|
8
|
+
from pydantic import BaseModel, Field
|
9
|
+
|
10
|
+
from .circuits import QuantumCircuit, QuantumGate
|
11
|
+
from .gates import GateMatrix, PauliString
|
12
|
+
|
13
|
+
|
14
|
+
class NoiseChannel(ABC):
|
15
|
+
"""Abstract base class for quantum noise channels
|
16
|
+
"""
|
17
|
+
|
18
|
+
def __init__(self, probability: float):
|
19
|
+
"""Initialize noise channel
|
20
|
+
|
21
|
+
Args:
|
22
|
+
probability: Noise probability (0 <= p <= 1)
|
23
|
+
|
24
|
+
"""
|
25
|
+
if not 0 <= probability <= 1:
|
26
|
+
raise ValueError("Probability must be between 0 and 1")
|
27
|
+
self.probability = probability
|
28
|
+
|
29
|
+
@abstractmethod
|
30
|
+
def kraus_operators(self) -> List[np.ndarray]:
|
31
|
+
"""Return Kraus operators for the noise channel"""
|
32
|
+
pass
|
33
|
+
|
34
|
+
@abstractmethod
|
35
|
+
def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
|
36
|
+
"""Apply noise channel to density matrix"""
|
37
|
+
pass
|
38
|
+
|
39
|
+
def is_unital(self) -> bool:
|
40
|
+
"""Check if channel is unital (maps identity to identity)"""
|
41
|
+
identity = np.eye(2, dtype=complex)
|
42
|
+
noisy_identity = self.apply_to_density_matrix(identity)
|
43
|
+
return np.allclose(noisy_identity, identity)
|
44
|
+
|
45
|
+
|
46
|
+
class BitFlipChannel(NoiseChannel):
|
47
|
+
"""Bit flip (X) noise channel
|
48
|
+
"""
|
49
|
+
|
50
|
+
def kraus_operators(self) -> List[np.ndarray]:
|
51
|
+
"""Kraus operators for bit flip channel"""
|
52
|
+
sqrt_p = np.sqrt(self.probability)
|
53
|
+
sqrt_1_p = np.sqrt(1 - self.probability)
|
54
|
+
|
55
|
+
return [
|
56
|
+
sqrt_1_p * GateMatrix.I, # No error
|
57
|
+
sqrt_p * GateMatrix.X # Bit flip
|
58
|
+
]
|
59
|
+
|
60
|
+
def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
|
61
|
+
"""Apply bit flip noise to density matrix"""
|
62
|
+
kraus_ops = self.kraus_operators()
|
63
|
+
result = np.zeros_like(rho, dtype=complex)
|
64
|
+
|
65
|
+
for kraus in kraus_ops:
|
66
|
+
result += kraus @ rho @ kraus.conj().T
|
67
|
+
|
68
|
+
return result
|
69
|
+
|
70
|
+
|
71
|
+
class PhaseFlipChannel(NoiseChannel):
|
72
|
+
"""Phase flip (Z) noise channel
|
73
|
+
"""
|
74
|
+
|
75
|
+
def kraus_operators(self) -> List[np.ndarray]:
|
76
|
+
"""Kraus operators for phase flip channel"""
|
77
|
+
sqrt_p = np.sqrt(self.probability)
|
78
|
+
sqrt_1_p = np.sqrt(1 - self.probability)
|
79
|
+
|
80
|
+
return [
|
81
|
+
sqrt_1_p * GateMatrix.I, # No error
|
82
|
+
sqrt_p * GateMatrix.Z # Phase flip
|
83
|
+
]
|
84
|
+
|
85
|
+
def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
|
86
|
+
"""Apply phase flip noise to density matrix"""
|
87
|
+
kraus_ops = self.kraus_operators()
|
88
|
+
result = np.zeros_like(rho, dtype=complex)
|
89
|
+
|
90
|
+
for kraus in kraus_ops:
|
91
|
+
result += kraus @ rho @ kraus.conj().T
|
92
|
+
|
93
|
+
return result
|
94
|
+
|
95
|
+
|
96
|
+
class BitPhaseFlipChannel(NoiseChannel):
|
97
|
+
"""Bit-phase flip (Y) noise channel
|
98
|
+
"""
|
99
|
+
|
100
|
+
def kraus_operators(self) -> List[np.ndarray]:
|
101
|
+
"""Kraus operators for bit-phase flip channel"""
|
102
|
+
sqrt_p = np.sqrt(self.probability)
|
103
|
+
sqrt_1_p = np.sqrt(1 - self.probability)
|
104
|
+
|
105
|
+
return [
|
106
|
+
sqrt_1_p * GateMatrix.I, # No error
|
107
|
+
sqrt_p * GateMatrix.Y # Bit-phase flip
|
108
|
+
]
|
109
|
+
|
110
|
+
def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
|
111
|
+
"""Apply bit-phase flip noise to density matrix"""
|
112
|
+
kraus_ops = self.kraus_operators()
|
113
|
+
result = np.zeros_like(rho, dtype=complex)
|
114
|
+
|
115
|
+
for kraus in kraus_ops:
|
116
|
+
result += kraus @ rho @ kraus.conj().T
|
117
|
+
|
118
|
+
return result
|
119
|
+
|
120
|
+
|
121
|
+
class DepolarizingChannel(NoiseChannel):
|
122
|
+
"""Depolarizing noise channel
|
123
|
+
"""
|
124
|
+
|
125
|
+
def kraus_operators(self) -> List[np.ndarray]:
|
126
|
+
"""Kraus operators for depolarizing channel"""
|
127
|
+
p = self.probability
|
128
|
+
|
129
|
+
return [
|
130
|
+
np.sqrt(1 - 3*p/4) * GateMatrix.I, # No error
|
131
|
+
np.sqrt(p/4) * GateMatrix.X, # X error
|
132
|
+
np.sqrt(p/4) * GateMatrix.Y, # Y error
|
133
|
+
np.sqrt(p/4) * GateMatrix.Z # Z error
|
134
|
+
]
|
135
|
+
|
136
|
+
def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
|
137
|
+
"""Apply depolarizing noise to density matrix"""
|
138
|
+
p = self.probability
|
139
|
+
|
140
|
+
# Direct formula: ρ → (1-p)ρ + p*I/2
|
141
|
+
identity = np.eye(rho.shape[0], dtype=complex)
|
142
|
+
return (1 - p) * rho + (p / rho.shape[0]) * identity
|
143
|
+
|
144
|
+
|
145
|
+
class AmplitudeDampingChannel(NoiseChannel):
|
146
|
+
"""Amplitude damping noise channel (T1 decay)
|
147
|
+
"""
|
148
|
+
|
149
|
+
def kraus_operators(self) -> List[np.ndarray]:
|
150
|
+
"""Kraus operators for amplitude damping channel"""
|
151
|
+
gamma = self.probability
|
152
|
+
|
153
|
+
E0 = np.array([
|
154
|
+
[1, 0],
|
155
|
+
[0, np.sqrt(1 - gamma)]
|
156
|
+
], dtype=complex)
|
157
|
+
|
158
|
+
E1 = np.array([
|
159
|
+
[0, np.sqrt(gamma)],
|
160
|
+
[0, 0]
|
161
|
+
], dtype=complex)
|
162
|
+
|
163
|
+
return [E0, E1]
|
164
|
+
|
165
|
+
def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
|
166
|
+
"""Apply amplitude damping noise to density matrix"""
|
167
|
+
kraus_ops = self.kraus_operators()
|
168
|
+
result = np.zeros_like(rho, dtype=complex)
|
169
|
+
|
170
|
+
for kraus in kraus_ops:
|
171
|
+
result += kraus @ rho @ kraus.conj().T
|
172
|
+
|
173
|
+
return result
|
174
|
+
|
175
|
+
|
176
|
+
class PhaseDampingChannel(NoiseChannel):
|
177
|
+
"""Phase damping noise channel (T2 dephasing)
|
178
|
+
"""
|
179
|
+
|
180
|
+
def kraus_operators(self) -> List[np.ndarray]:
|
181
|
+
"""Kraus operators for phase damping channel"""
|
182
|
+
gamma = self.probability
|
183
|
+
|
184
|
+
E0 = np.array([
|
185
|
+
[1, 0],
|
186
|
+
[0, np.sqrt(1 - gamma)]
|
187
|
+
], dtype=complex)
|
188
|
+
|
189
|
+
E1 = np.array([
|
190
|
+
[0, 0],
|
191
|
+
[0, np.sqrt(gamma)]
|
192
|
+
], dtype=complex)
|
193
|
+
|
194
|
+
return [E0, E1]
|
195
|
+
|
196
|
+
def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
|
197
|
+
"""Apply phase damping noise to density matrix"""
|
198
|
+
kraus_ops = self.kraus_operators()
|
199
|
+
result = np.zeros_like(rho, dtype=complex)
|
200
|
+
|
201
|
+
for kraus in kraus_ops:
|
202
|
+
result += kraus @ rho @ kraus.conj().T
|
203
|
+
|
204
|
+
return result
|
205
|
+
|
206
|
+
|
207
|
+
class TwoQubitDepolarizingChannel(NoiseChannel):
|
208
|
+
"""Two-qubit depolarizing noise channel
|
209
|
+
"""
|
210
|
+
|
211
|
+
def kraus_operators(self) -> List[np.ndarray]:
|
212
|
+
"""Kraus operators for two-qubit depolarizing channel"""
|
213
|
+
p = self.probability
|
214
|
+
|
215
|
+
# Single-qubit Pauli operators
|
216
|
+
pauli_ops = [GateMatrix.I, GateMatrix.X, GateMatrix.Y, GateMatrix.Z]
|
217
|
+
|
218
|
+
kraus_ops = []
|
219
|
+
|
220
|
+
# All combinations of Pauli operators on two qubits
|
221
|
+
for i, p1 in enumerate(pauli_ops):
|
222
|
+
for j, p2 in enumerate(pauli_ops):
|
223
|
+
if i == 0 and j == 0:
|
224
|
+
# Identity case
|
225
|
+
coeff = np.sqrt(1 - 15*p/16)
|
226
|
+
else:
|
227
|
+
# Error cases
|
228
|
+
coeff = np.sqrt(p/16)
|
229
|
+
|
230
|
+
kraus_op = coeff * np.kron(p1, p2)
|
231
|
+
kraus_ops.append(kraus_op)
|
232
|
+
|
233
|
+
return kraus_ops
|
234
|
+
|
235
|
+
def apply_to_density_matrix(self, rho: np.ndarray) -> np.ndarray:
|
236
|
+
"""Apply two-qubit depolarizing noise to density matrix"""
|
237
|
+
kraus_ops = self.kraus_operators()
|
238
|
+
result = np.zeros_like(rho, dtype=complex)
|
239
|
+
|
240
|
+
for kraus in kraus_ops:
|
241
|
+
result += kraus @ rho @ kraus.conj().T
|
242
|
+
|
243
|
+
return result
|
244
|
+
|
245
|
+
|
246
|
+
class NoiseModel(BaseModel):
|
247
|
+
"""Comprehensive noise model for quantum circuits
|
248
|
+
"""
|
249
|
+
|
250
|
+
model_config = {"arbitrary_types_allowed": True}
|
251
|
+
|
252
|
+
single_qubit_error_rates: Dict[str, float] = Field(
|
253
|
+
default_factory=dict,
|
254
|
+
description="Error rates for single-qubit gates"
|
255
|
+
)
|
256
|
+
|
257
|
+
two_qubit_error_rates: Dict[str, float] = Field(
|
258
|
+
default_factory=dict,
|
259
|
+
description="Error rates for two-qubit gates"
|
260
|
+
)
|
261
|
+
|
262
|
+
readout_error_rates: Dict[int, float] = Field(
|
263
|
+
default_factory=dict,
|
264
|
+
description="Readout error rates per qubit"
|
265
|
+
)
|
266
|
+
|
267
|
+
coherence_times: Dict[str, Dict[int, float]] = Field(
|
268
|
+
default_factory=dict,
|
269
|
+
description="T1 and T2 times per qubit"
|
270
|
+
)
|
271
|
+
|
272
|
+
crosstalk_matrix: Optional[np.ndarray] = Field(
|
273
|
+
default=None,
|
274
|
+
description="Crosstalk coupling matrix"
|
275
|
+
)
|
276
|
+
|
277
|
+
def add_single_qubit_error(self, gate_name: str, error_rate: float) -> None:
|
278
|
+
"""Add single-qubit gate error rate"""
|
279
|
+
self.single_qubit_error_rates[gate_name] = error_rate
|
280
|
+
|
281
|
+
def add_two_qubit_error(self, gate_name: str, error_rate: float) -> None:
|
282
|
+
"""Add two-qubit gate error rate"""
|
283
|
+
self.two_qubit_error_rates[gate_name] = error_rate
|
284
|
+
|
285
|
+
def add_readout_error(self, qubit: int, error_rate: float) -> None:
|
286
|
+
"""Add readout error rate for qubit"""
|
287
|
+
self.readout_error_rates[qubit] = error_rate
|
288
|
+
|
289
|
+
def set_coherence_time(self, qubit: int, t1: float, t2: float) -> None:
|
290
|
+
"""Set T1 and T2 coherence times for qubit"""
|
291
|
+
if "T1" not in self.coherence_times:
|
292
|
+
self.coherence_times["T1"] = {}
|
293
|
+
if "T2" not in self.coherence_times:
|
294
|
+
self.coherence_times["T2"] = {}
|
295
|
+
|
296
|
+
self.coherence_times["T1"][qubit] = t1
|
297
|
+
self.coherence_times["T2"][qubit] = t2
|
298
|
+
|
299
|
+
def apply_to_circuit(self, circuit: QuantumCircuit) -> QuantumCircuit:
|
300
|
+
"""Apply noise model to quantum circuit
|
301
|
+
|
302
|
+
Args:
|
303
|
+
circuit: Original circuit
|
304
|
+
|
305
|
+
Returns:
|
306
|
+
Noisy circuit with error channels
|
307
|
+
|
308
|
+
"""
|
309
|
+
noisy_circuit = QuantumCircuit(circuit.num_qubits, circuit.num_classical_bits)
|
310
|
+
|
311
|
+
for gate in circuit.gates:
|
312
|
+
# Add original gate
|
313
|
+
noisy_circuit.gates.append(gate)
|
314
|
+
|
315
|
+
# Add noise after gate
|
316
|
+
self._add_gate_noise(noisy_circuit, gate)
|
317
|
+
|
318
|
+
# Add measurements with readout errors
|
319
|
+
for qubit, cbit in circuit.measurements:
|
320
|
+
self._add_readout_noise(noisy_circuit, qubit, cbit)
|
321
|
+
|
322
|
+
return noisy_circuit
|
323
|
+
|
324
|
+
def _add_gate_noise(self, circuit: QuantumCircuit, gate: QuantumGate) -> None:
|
325
|
+
"""Add noise after a gate operation"""
|
326
|
+
if len(gate.qubits) == 1:
|
327
|
+
# Single-qubit gate noise
|
328
|
+
error_rate = self.single_qubit_error_rates.get(gate.name, 0.0)
|
329
|
+
if error_rate > 0:
|
330
|
+
qubit = gate.qubits[0]
|
331
|
+
# Add depolarizing noise (simplified)
|
332
|
+
circuit.gates.append(
|
333
|
+
QuantumGate(name="DEPOL", qubits=[qubit], parameters=[error_rate])
|
334
|
+
)
|
335
|
+
|
336
|
+
elif len(gate.qubits) == 2:
|
337
|
+
# Two-qubit gate noise
|
338
|
+
error_rate = self.two_qubit_error_rates.get(gate.name, 0.0)
|
339
|
+
if error_rate > 0:
|
340
|
+
qubits = gate.qubits
|
341
|
+
circuit.gates.append(
|
342
|
+
QuantumGate(name="DEPOL2", qubits=qubits, parameters=[error_rate])
|
343
|
+
)
|
344
|
+
|
345
|
+
def _add_readout_noise(self, circuit: QuantumCircuit, qubit: int, cbit: int) -> None:
|
346
|
+
"""Add readout error to measurement"""
|
347
|
+
error_rate = self.readout_error_rates.get(qubit, 0.0)
|
348
|
+
|
349
|
+
# Add measurement with potential readout error
|
350
|
+
if error_rate > 0:
|
351
|
+
circuit.gates.append(
|
352
|
+
QuantumGate(name="READOUT_ERROR", qubits=[qubit], parameters=[error_rate])
|
353
|
+
)
|
354
|
+
|
355
|
+
circuit.measure(qubit, cbit)
|
356
|
+
|
357
|
+
@classmethod
|
358
|
+
def from_device_properties(
|
359
|
+
cls,
|
360
|
+
device_props: Dict[str, Any]
|
361
|
+
) -> "NoiseModel":
|
362
|
+
"""Create noise model from device properties
|
363
|
+
|
364
|
+
Args:
|
365
|
+
device_props: Device property dictionary
|
366
|
+
|
367
|
+
Returns:
|
368
|
+
Noise model based on device properties
|
369
|
+
|
370
|
+
"""
|
371
|
+
noise_model = cls()
|
372
|
+
|
373
|
+
# Extract gate error rates
|
374
|
+
if "gates" in device_props:
|
375
|
+
for gate_info in device_props["gates"]:
|
376
|
+
gate_name = gate_info.get("gate")
|
377
|
+
error_rate = gate_info.get("error_rate", 0.0)
|
378
|
+
qubits = gate_info.get("qubits", [])
|
379
|
+
|
380
|
+
if len(qubits) == 1:
|
381
|
+
noise_model.add_single_qubit_error(gate_name, error_rate)
|
382
|
+
elif len(qubits) == 2:
|
383
|
+
noise_model.add_two_qubit_error(gate_name, error_rate)
|
384
|
+
|
385
|
+
# Extract readout errors
|
386
|
+
if "readout_errors" in device_props:
|
387
|
+
for qubit, error_rate in enumerate(device_props["readout_errors"]):
|
388
|
+
noise_model.add_readout_error(qubit, error_rate)
|
389
|
+
|
390
|
+
# Extract coherence times
|
391
|
+
if "coherence_times" in device_props:
|
392
|
+
t1_times = device_props["coherence_times"].get("T1", [])
|
393
|
+
t2_times = device_props["coherence_times"].get("T2", [])
|
394
|
+
|
395
|
+
for qubit, (t1, t2) in enumerate(zip(t1_times, t2_times)):
|
396
|
+
noise_model.set_coherence_time(qubit, t1, t2)
|
397
|
+
|
398
|
+
return noise_model
|
399
|
+
|
400
|
+
@classmethod
|
401
|
+
def ideal(cls) -> "NoiseModel":
|
402
|
+
"""Create ideal (noiseless) noise model"""
|
403
|
+
return cls()
|
404
|
+
|
405
|
+
@classmethod
|
406
|
+
def basic_device_noise(
|
407
|
+
cls,
|
408
|
+
single_qubit_error: float = 1e-3,
|
409
|
+
two_qubit_error: float = 1e-2,
|
410
|
+
readout_error: float = 1e-2
|
411
|
+
) -> "NoiseModel":
|
412
|
+
"""Create basic device noise model
|
413
|
+
|
414
|
+
Args:
|
415
|
+
single_qubit_error: Single-qubit gate error rate
|
416
|
+
two_qubit_error: Two-qubit gate error rate
|
417
|
+
readout_error: Readout error rate
|
418
|
+
|
419
|
+
Returns:
|
420
|
+
Basic noise model
|
421
|
+
|
422
|
+
"""
|
423
|
+
noise_model = cls()
|
424
|
+
|
425
|
+
# Common single-qubit gates
|
426
|
+
for gate in ["H", "X", "Y", "Z", "RX", "RY", "RZ", "U"]:
|
427
|
+
noise_model.add_single_qubit_error(gate, single_qubit_error)
|
428
|
+
|
429
|
+
# Common two-qubit gates
|
430
|
+
for gate in ["CNOT", "CZ", "SWAP"]:
|
431
|
+
noise_model.add_two_qubit_error(gate, two_qubit_error)
|
432
|
+
|
433
|
+
return noise_model
|
434
|
+
|
435
|
+
|
436
|
+
class QuantumErrorCorrection:
|
437
|
+
"""Quantum error correction codes and syndromes
|
438
|
+
"""
|
439
|
+
|
440
|
+
@staticmethod
|
441
|
+
def three_qubit_bit_flip_code() -> Dict[str, Any]:
|
442
|
+
"""Three-qubit repetition code for bit flip errors
|
443
|
+
|
444
|
+
Returns:
|
445
|
+
Code properties and circuits
|
446
|
+
|
447
|
+
"""
|
448
|
+
# Encoding circuit: |0⟩ → |000⟩, |1⟩ → |111⟩
|
449
|
+
encoding_circuit = QuantumCircuit(3)
|
450
|
+
encoding_circuit.cnot(0, 1)
|
451
|
+
encoding_circuit.cnot(0, 2)
|
452
|
+
|
453
|
+
# Syndrome measurement circuit
|
454
|
+
syndrome_circuit = QuantumCircuit(5, 2) # 3 data + 2 ancilla qubits
|
455
|
+
# Measure Z₀Z₁ and Z₁Z₂
|
456
|
+
syndrome_circuit.cnot(0, 3)
|
457
|
+
syndrome_circuit.cnot(1, 3)
|
458
|
+
syndrome_circuit.cnot(1, 4)
|
459
|
+
syndrome_circuit.cnot(2, 4)
|
460
|
+
syndrome_circuit.measure(3, 0)
|
461
|
+
syndrome_circuit.measure(4, 1)
|
462
|
+
|
463
|
+
# Error correction lookup table
|
464
|
+
correction_table = {
|
465
|
+
"00": None, # No error
|
466
|
+
"10": "X0", # Error on qubit 0
|
467
|
+
"11": "X1", # Error on qubit 1
|
468
|
+
"01": "X2" # Error on qubit 2
|
469
|
+
}
|
470
|
+
|
471
|
+
return {
|
472
|
+
"encoding_circuit": encoding_circuit,
|
473
|
+
"syndrome_circuit": syndrome_circuit,
|
474
|
+
"correction_table": correction_table,
|
475
|
+
"code_distance": 3,
|
476
|
+
"correctable_errors": 1
|
477
|
+
}
|
478
|
+
|
479
|
+
@staticmethod
|
480
|
+
def three_qubit_phase_flip_code() -> Dict[str, Any]:
|
481
|
+
"""Three-qubit code for phase flip errors
|
482
|
+
|
483
|
+
Returns:
|
484
|
+
Code properties and circuits
|
485
|
+
|
486
|
+
"""
|
487
|
+
# Encoding: |+⟩ → |+++⟩, |-⟩ → |---⟩
|
488
|
+
encoding_circuit = QuantumCircuit(3)
|
489
|
+
encoding_circuit.h(0)
|
490
|
+
encoding_circuit.h(1)
|
491
|
+
encoding_circuit.h(2)
|
492
|
+
encoding_circuit.cnot(0, 1)
|
493
|
+
encoding_circuit.cnot(0, 2)
|
494
|
+
encoding_circuit.h(0)
|
495
|
+
encoding_circuit.h(1)
|
496
|
+
encoding_circuit.h(2)
|
497
|
+
|
498
|
+
# Syndrome measurement in X basis
|
499
|
+
syndrome_circuit = QuantumCircuit(5, 2)
|
500
|
+
# Rotate to X basis
|
501
|
+
for i in range(3):
|
502
|
+
syndrome_circuit.h(i)
|
503
|
+
|
504
|
+
# Measure X₀X₁ and X₁X₂
|
505
|
+
syndrome_circuit.cnot(0, 3)
|
506
|
+
syndrome_circuit.cnot(1, 3)
|
507
|
+
syndrome_circuit.cnot(1, 4)
|
508
|
+
syndrome_circuit.cnot(2, 4)
|
509
|
+
syndrome_circuit.measure(3, 0)
|
510
|
+
syndrome_circuit.measure(4, 1)
|
511
|
+
|
512
|
+
correction_table = {
|
513
|
+
"00": None, # No error
|
514
|
+
"10": "Z0", # Error on qubit 0
|
515
|
+
"11": "Z1", # Error on qubit 1
|
516
|
+
"01": "Z2" # Error on qubit 2
|
517
|
+
}
|
518
|
+
|
519
|
+
return {
|
520
|
+
"encoding_circuit": encoding_circuit,
|
521
|
+
"syndrome_circuit": syndrome_circuit,
|
522
|
+
"correction_table": correction_table,
|
523
|
+
"code_distance": 3,
|
524
|
+
"correctable_errors": 1
|
525
|
+
}
|
526
|
+
|
527
|
+
@staticmethod
|
528
|
+
def nine_qubit_shor_code() -> Dict[str, Any]:
|
529
|
+
"""Nine-qubit Shor code (corrects arbitrary single-qubit errors)
|
530
|
+
|
531
|
+
Returns:
|
532
|
+
Code properties and circuits
|
533
|
+
|
534
|
+
"""
|
535
|
+
# Encoding circuit
|
536
|
+
encoding_circuit = QuantumCircuit(9)
|
537
|
+
|
538
|
+
# First level: bit flip encoding
|
539
|
+
encoding_circuit.cnot(0, 3)
|
540
|
+
encoding_circuit.cnot(0, 6)
|
541
|
+
|
542
|
+
# Second level: phase flip encoding within each block
|
543
|
+
for block_start in [0, 3, 6]:
|
544
|
+
encoding_circuit.h(block_start)
|
545
|
+
encoding_circuit.h(block_start + 1)
|
546
|
+
encoding_circuit.h(block_start + 2)
|
547
|
+
encoding_circuit.cnot(block_start, block_start + 1)
|
548
|
+
encoding_circuit.cnot(block_start, block_start + 2)
|
549
|
+
encoding_circuit.h(block_start)
|
550
|
+
encoding_circuit.h(block_start + 1)
|
551
|
+
encoding_circuit.h(block_start + 2)
|
552
|
+
|
553
|
+
# Syndrome measurement circuit (simplified)
|
554
|
+
syndrome_circuit = QuantumCircuit(15, 6) # 9 data + 6 ancilla
|
555
|
+
|
556
|
+
correction_table = {} # Would need full syndrome table
|
557
|
+
|
558
|
+
return {
|
559
|
+
"encoding_circuit": encoding_circuit,
|
560
|
+
"syndrome_circuit": syndrome_circuit,
|
561
|
+
"correction_table": correction_table,
|
562
|
+
"code_distance": 3,
|
563
|
+
"correctable_errors": 1,
|
564
|
+
"logical_qubits": 1,
|
565
|
+
"physical_qubits": 9
|
566
|
+
}
|
567
|
+
|
568
|
+
@staticmethod
|
569
|
+
def steane_code() -> Dict[str, Any]:
|
570
|
+
"""7-qubit Steane code
|
571
|
+
|
572
|
+
Returns:
|
573
|
+
Code properties
|
574
|
+
|
575
|
+
"""
|
576
|
+
# Generator matrix for Steane code
|
577
|
+
generator_matrix = np.array([
|
578
|
+
[1, 0, 0, 1, 0, 1, 1],
|
579
|
+
[0, 1, 0, 1, 1, 0, 1],
|
580
|
+
[0, 0, 1, 0, 1, 1, 1]
|
581
|
+
])
|
582
|
+
|
583
|
+
# Parity check matrix
|
584
|
+
parity_check_matrix = np.array([
|
585
|
+
[1, 1, 0, 1, 0, 0, 0],
|
586
|
+
[0, 1, 1, 0, 1, 0, 0],
|
587
|
+
[1, 0, 1, 0, 0, 1, 0],
|
588
|
+
[1, 1, 1, 0, 0, 0, 1]
|
589
|
+
])
|
590
|
+
|
591
|
+
return {
|
592
|
+
"generator_matrix": generator_matrix,
|
593
|
+
"parity_check_matrix": parity_check_matrix,
|
594
|
+
"code_distance": 3,
|
595
|
+
"correctable_errors": 1,
|
596
|
+
"logical_qubits": 1,
|
597
|
+
"physical_qubits": 7
|
598
|
+
}
|
599
|
+
|
600
|
+
@staticmethod
|
601
|
+
def decode_syndrome(syndrome: str, correction_table: Dict[str, str]) -> Optional[str]:
|
602
|
+
"""Decode error syndrome to determine correction
|
603
|
+
|
604
|
+
Args:
|
605
|
+
syndrome: Measured syndrome bitstring
|
606
|
+
correction_table: Syndrome to correction mapping
|
607
|
+
|
608
|
+
Returns:
|
609
|
+
Correction operation or None if no error
|
610
|
+
|
611
|
+
"""
|
612
|
+
return correction_table.get(syndrome)
|
613
|
+
|
614
|
+
@staticmethod
|
615
|
+
def apply_correction(
|
616
|
+
circuit: QuantumCircuit,
|
617
|
+
correction: str
|
618
|
+
) -> QuantumCircuit:
|
619
|
+
"""Apply error correction to circuit
|
620
|
+
|
621
|
+
Args:
|
622
|
+
circuit: Circuit to correct
|
623
|
+
correction: Correction operation (e.g., "X0", "Z2")
|
624
|
+
|
625
|
+
Returns:
|
626
|
+
Corrected circuit
|
627
|
+
|
628
|
+
"""
|
629
|
+
if correction is None:
|
630
|
+
return circuit
|
631
|
+
|
632
|
+
corrected_circuit = circuit.copy()
|
633
|
+
|
634
|
+
# Parse correction operation
|
635
|
+
if correction.startswith("X"):
|
636
|
+
qubit = int(correction[1:])
|
637
|
+
corrected_circuit.x(qubit)
|
638
|
+
elif correction.startswith("Z"):
|
639
|
+
qubit = int(correction[1:])
|
640
|
+
corrected_circuit.z(qubit)
|
641
|
+
elif correction.startswith("Y"):
|
642
|
+
qubit = int(correction[1:])
|
643
|
+
corrected_circuit.y(qubit)
|
644
|
+
|
645
|
+
return corrected_circuit
|
646
|
+
|
647
|
+
|
648
|
+
class ErrorMitigation:
|
649
|
+
"""Quantum error mitigation techniques
|
650
|
+
"""
|
651
|
+
|
652
|
+
@staticmethod
|
653
|
+
def randomized_compiling(
|
654
|
+
circuit: QuantumCircuit,
|
655
|
+
num_random_circuits: int = 10,
|
656
|
+
random_seed: Optional[int] = None
|
657
|
+
) -> List[QuantumCircuit]:
|
658
|
+
"""Generate randomly compiled circuits for error mitigation
|
659
|
+
|
660
|
+
Args:
|
661
|
+
circuit: Original circuit
|
662
|
+
num_random_circuits: Number of random compilations
|
663
|
+
random_seed: Random seed for reproducibility
|
664
|
+
|
665
|
+
Returns:
|
666
|
+
List of randomly compiled circuits
|
667
|
+
|
668
|
+
"""
|
669
|
+
if random_seed is not None:
|
670
|
+
np.random.seed(random_seed)
|
671
|
+
|
672
|
+
random_circuits = []
|
673
|
+
|
674
|
+
for _ in range(num_random_circuits):
|
675
|
+
# Create copy of circuit
|
676
|
+
random_circuit = circuit.copy()
|
677
|
+
|
678
|
+
# Apply random Pauli twirling
|
679
|
+
for gate in random_circuit.gates:
|
680
|
+
if len(gate.qubits) == 1:
|
681
|
+
# Add random Pauli before and after
|
682
|
+
qubit = gate.qubits[0]
|
683
|
+
|
684
|
+
# Random Pauli group element
|
685
|
+
pauli_choice = np.random.choice(['I', 'X', 'Y', 'Z'])
|
686
|
+
|
687
|
+
if pauli_choice == 'X':
|
688
|
+
# Add X before gate, X after gate (cancels out)
|
689
|
+
pass # Would add X gates in practice
|
690
|
+
elif pauli_choice == 'Y':
|
691
|
+
pass # Would add Y gates
|
692
|
+
elif pauli_choice == 'Z':
|
693
|
+
pass # Would add Z gates
|
694
|
+
|
695
|
+
random_circuits.append(random_circuit)
|
696
|
+
|
697
|
+
return random_circuits
|
698
|
+
|
699
|
+
@staticmethod
|
700
|
+
def clifford_data_regression(
|
701
|
+
noisy_results: List[float],
|
702
|
+
clifford_expectation_values: List[float]
|
703
|
+
) -> float:
|
704
|
+
"""Perform Clifford data regression for error mitigation
|
705
|
+
|
706
|
+
Args:
|
707
|
+
noisy_results: Noisy measurement results
|
708
|
+
clifford_expectation_values: Expected values from Clifford simulation
|
709
|
+
|
710
|
+
Returns:
|
711
|
+
Error-mitigated expectation value
|
712
|
+
|
713
|
+
"""
|
714
|
+
# Simple linear regression to extrapolate ideal result
|
715
|
+
# In practice, would use more sophisticated regression
|
716
|
+
|
717
|
+
if len(noisy_results) != len(clifford_expectation_values):
|
718
|
+
raise ValueError("Result arrays must have same length")
|
719
|
+
|
720
|
+
# Fit linear model: noisy = a * ideal + b
|
721
|
+
ideal_values = np.array(clifford_expectation_values)
|
722
|
+
noisy_values = np.array(noisy_results)
|
723
|
+
|
724
|
+
# Least squares fit
|
725
|
+
A = np.vstack([ideal_values, np.ones(len(ideal_values))]).T
|
726
|
+
slope, intercept = np.linalg.lstsq(A, noisy_values, rcond=None)[0]
|
727
|
+
|
728
|
+
# Extrapolate: if noisy = a * ideal + b, then ideal = (noisy - b) / a
|
729
|
+
# But we want to correct the average
|
730
|
+
corrected_average = (np.mean(noisy_values) - intercept) / slope if slope != 0 else np.mean(noisy_values)
|
731
|
+
|
732
|
+
return float(corrected_average)
|
733
|
+
|
734
|
+
@staticmethod
|
735
|
+
def symmetry_verification(
|
736
|
+
circuit: QuantumCircuit,
|
737
|
+
symmetry_generators: List[PauliString]
|
738
|
+
) -> Dict[str, Any]:
|
739
|
+
"""Verify circuit preserves expected symmetries
|
740
|
+
|
741
|
+
Args:
|
742
|
+
circuit: Quantum circuit
|
743
|
+
symmetry_generators: List of Pauli symmetries to check
|
744
|
+
|
745
|
+
Returns:
|
746
|
+
Symmetry verification results
|
747
|
+
|
748
|
+
"""
|
749
|
+
verification_results = {}
|
750
|
+
|
751
|
+
for i, generator in enumerate(symmetry_generators):
|
752
|
+
# In practice, would measure commutator [H, generator]
|
753
|
+
# For now, return placeholder
|
754
|
+
verification_results[f"symmetry_{i}"] = {
|
755
|
+
"generator": str(generator),
|
756
|
+
"violation": 0.0, # Placeholder
|
757
|
+
"verified": True
|
758
|
+
}
|
759
|
+
|
760
|
+
return verification_results
|