superquantx 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- superquantx/__init__.py +321 -0
- superquantx/algorithms/__init__.py +55 -0
- superquantx/algorithms/base_algorithm.py +413 -0
- superquantx/algorithms/hybrid_classifier.py +628 -0
- superquantx/algorithms/qaoa.py +406 -0
- superquantx/algorithms/quantum_agents.py +1006 -0
- superquantx/algorithms/quantum_kmeans.py +575 -0
- superquantx/algorithms/quantum_nn.py +544 -0
- superquantx/algorithms/quantum_pca.py +499 -0
- superquantx/algorithms/quantum_svm.py +346 -0
- superquantx/algorithms/vqe.py +553 -0
- superquantx/algorithms.py +863 -0
- superquantx/backends/__init__.py +265 -0
- superquantx/backends/base_backend.py +321 -0
- superquantx/backends/braket_backend.py +420 -0
- superquantx/backends/cirq_backend.py +466 -0
- superquantx/backends/ocean_backend.py +491 -0
- superquantx/backends/pennylane_backend.py +419 -0
- superquantx/backends/qiskit_backend.py +451 -0
- superquantx/backends/simulator_backend.py +455 -0
- superquantx/backends/tket_backend.py +519 -0
- superquantx/circuits.py +447 -0
- superquantx/cli/__init__.py +28 -0
- superquantx/cli/commands.py +528 -0
- superquantx/cli/main.py +254 -0
- superquantx/client.py +298 -0
- superquantx/config.py +326 -0
- superquantx/exceptions.py +287 -0
- superquantx/gates.py +588 -0
- superquantx/logging_config.py +347 -0
- superquantx/measurements.py +702 -0
- superquantx/ml.py +936 -0
- superquantx/noise.py +760 -0
- superquantx/utils/__init__.py +83 -0
- superquantx/utils/benchmarking.py +523 -0
- superquantx/utils/classical_utils.py +575 -0
- superquantx/utils/feature_mapping.py +467 -0
- superquantx/utils/optimization.py +410 -0
- superquantx/utils/quantum_utils.py +456 -0
- superquantx/utils/visualization.py +654 -0
- superquantx/version.py +33 -0
- superquantx-0.1.0.dist-info/METADATA +365 -0
- superquantx-0.1.0.dist-info/RECORD +46 -0
- superquantx-0.1.0.dist-info/WHEEL +4 -0
- superquantx-0.1.0.dist-info/entry_points.txt +2 -0
- superquantx-0.1.0.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,863 @@
|
|
1
|
+
"""Quantum algorithms implementation for SuperQuantX
|
2
|
+
"""
|
3
|
+
|
4
|
+
from abc import ABC, abstractmethod
|
5
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple
|
6
|
+
|
7
|
+
import numpy as np
|
8
|
+
from scipy.optimize import minimize
|
9
|
+
from sklearn.base import BaseEstimator
|
10
|
+
|
11
|
+
from .circuits import QuantumCircuit
|
12
|
+
from .client import SuperQuantXClient
|
13
|
+
from .gates import Hamiltonian, PauliString
|
14
|
+
|
15
|
+
|
16
|
+
class QuantumAlgorithm(ABC):
|
17
|
+
"""Base class for quantum algorithms
|
18
|
+
"""
|
19
|
+
|
20
|
+
def __init__(self, client: Optional[SuperQuantXClient] = None):
|
21
|
+
"""Initialize quantum algorithm
|
22
|
+
|
23
|
+
Args:
|
24
|
+
client: SuperQuantX client for quantum execution
|
25
|
+
|
26
|
+
"""
|
27
|
+
self.client = client
|
28
|
+
self.result_history: List[Dict[str, Any]] = []
|
29
|
+
|
30
|
+
@abstractmethod
|
31
|
+
def run(self, *args, **kwargs) -> Dict[str, Any]:
|
32
|
+
"""Execute the quantum algorithm"""
|
33
|
+
pass
|
34
|
+
|
35
|
+
def set_client(self, client: SuperQuantXClient) -> None:
|
36
|
+
"""Set the quantum client"""
|
37
|
+
self.client = client
|
38
|
+
|
39
|
+
|
40
|
+
class VQE(QuantumAlgorithm):
|
41
|
+
"""Variational Quantum Eigensolver (VQE) for finding ground state energies
|
42
|
+
"""
|
43
|
+
|
44
|
+
def __init__(
|
45
|
+
self,
|
46
|
+
hamiltonian: Hamiltonian,
|
47
|
+
ansatz: Callable[[np.ndarray], QuantumCircuit],
|
48
|
+
client: Optional[SuperQuantXClient] = None,
|
49
|
+
optimizer: str = "SLSQP",
|
50
|
+
max_iterations: int = 1000,
|
51
|
+
tolerance: float = 1e-6
|
52
|
+
):
|
53
|
+
"""Initialize VQE algorithm
|
54
|
+
|
55
|
+
Args:
|
56
|
+
hamiltonian: Target Hamiltonian
|
57
|
+
ansatz: Parameterized quantum circuit ansatz
|
58
|
+
client: SuperQuantX client for execution
|
59
|
+
optimizer: Classical optimizer method
|
60
|
+
max_iterations: Maximum optimization iterations
|
61
|
+
tolerance: Convergence tolerance
|
62
|
+
|
63
|
+
"""
|
64
|
+
super().__init__(client)
|
65
|
+
self.hamiltonian = hamiltonian
|
66
|
+
self.ansatz = ansatz
|
67
|
+
self.optimizer = optimizer
|
68
|
+
self.max_iterations = max_iterations
|
69
|
+
self.tolerance = tolerance
|
70
|
+
|
71
|
+
self.optimal_parameters: Optional[np.ndarray] = None
|
72
|
+
self.optimal_energy: Optional[float] = None
|
73
|
+
self.optimization_history: List[float] = []
|
74
|
+
|
75
|
+
def cost_function(self, parameters: np.ndarray) -> float:
|
76
|
+
"""VQE cost function: expectation value of Hamiltonian
|
77
|
+
|
78
|
+
Args:
|
79
|
+
parameters: Ansatz parameters
|
80
|
+
|
81
|
+
Returns:
|
82
|
+
Energy expectation value
|
83
|
+
|
84
|
+
"""
|
85
|
+
circuit = self.ansatz(parameters)
|
86
|
+
|
87
|
+
if self.client is None:
|
88
|
+
# Simulate locally
|
89
|
+
energy = self._simulate_expectation_value(circuit, self.hamiltonian)
|
90
|
+
else:
|
91
|
+
# Execute on quantum backend
|
92
|
+
energy = self._execute_expectation_value(circuit, self.hamiltonian)
|
93
|
+
|
94
|
+
self.optimization_history.append(energy)
|
95
|
+
return energy
|
96
|
+
|
97
|
+
def _simulate_expectation_value(
|
98
|
+
self,
|
99
|
+
circuit: QuantumCircuit,
|
100
|
+
hamiltonian: Hamiltonian
|
101
|
+
) -> float:
|
102
|
+
"""Simulate expectation value locally"""
|
103
|
+
# This is a simplified simulation
|
104
|
+
# In practice, would use a quantum simulator
|
105
|
+
state = self._simulate_circuit(circuit)
|
106
|
+
return float(np.real(hamiltonian.expectation_value(state)))
|
107
|
+
|
108
|
+
def _simulate_circuit(self, circuit: QuantumCircuit) -> np.ndarray:
|
109
|
+
"""Simulate quantum circuit to get final state"""
|
110
|
+
# Initialize state |0⟩^n
|
111
|
+
state = np.zeros(2 ** circuit.num_qubits, dtype=complex)
|
112
|
+
state[0] = 1.0
|
113
|
+
|
114
|
+
# Apply gates (simplified simulation)
|
115
|
+
for gate in circuit.gates:
|
116
|
+
if gate.name == "RY" and len(gate.qubits) == 1:
|
117
|
+
# Apply single-qubit rotation
|
118
|
+
qubit = gate.qubits[0]
|
119
|
+
theta = gate.parameters[0]
|
120
|
+
|
121
|
+
# Create rotation matrix for full system
|
122
|
+
from .gates import GateMatrix
|
123
|
+
gate_matrix = GateMatrix.ry(theta)
|
124
|
+
|
125
|
+
# Apply to specific qubit (simplified)
|
126
|
+
state = self._apply_single_qubit_gate(state, gate_matrix, qubit, circuit.num_qubits)
|
127
|
+
elif gate.name == "CNOT" and len(gate.qubits) == 2:
|
128
|
+
# Apply CNOT gate
|
129
|
+
control, target = gate.qubits
|
130
|
+
state = self._apply_cnot(state, control, target, circuit.num_qubits)
|
131
|
+
|
132
|
+
return state
|
133
|
+
|
134
|
+
def _apply_single_qubit_gate(
|
135
|
+
self,
|
136
|
+
state: np.ndarray,
|
137
|
+
gate_matrix: np.ndarray,
|
138
|
+
qubit: int,
|
139
|
+
num_qubits: int
|
140
|
+
) -> np.ndarray:
|
141
|
+
"""Apply single-qubit gate to state vector"""
|
142
|
+
# This is a simplified implementation
|
143
|
+
# Would use more efficient tensor operations in practice
|
144
|
+
|
145
|
+
dim = 2 ** num_qubits
|
146
|
+
new_state = np.zeros_like(state)
|
147
|
+
|
148
|
+
for i in range(dim):
|
149
|
+
# Extract qubit state
|
150
|
+
qubit_state = (i >> qubit) & 1
|
151
|
+
|
152
|
+
for new_qubit_state in range(2):
|
153
|
+
# Apply gate matrix element
|
154
|
+
amplitude = gate_matrix[new_qubit_state, qubit_state]
|
155
|
+
if abs(amplitude) > 1e-12:
|
156
|
+
new_i = i ^ ((qubit_state ^ new_qubit_state) << qubit)
|
157
|
+
new_state[new_i] += amplitude * state[i]
|
158
|
+
|
159
|
+
return new_state
|
160
|
+
|
161
|
+
def _apply_cnot(
|
162
|
+
self,
|
163
|
+
state: np.ndarray,
|
164
|
+
control: int,
|
165
|
+
target: int,
|
166
|
+
num_qubits: int
|
167
|
+
) -> np.ndarray:
|
168
|
+
"""Apply CNOT gate to state vector"""
|
169
|
+
dim = 2 ** num_qubits
|
170
|
+
new_state = np.copy(state)
|
171
|
+
|
172
|
+
for i in range(dim):
|
173
|
+
control_bit = (i >> control) & 1
|
174
|
+
target_bit = (i >> target) & 1
|
175
|
+
|
176
|
+
if control_bit == 1:
|
177
|
+
# Flip target bit
|
178
|
+
flipped_i = i ^ (1 << target)
|
179
|
+
new_state[i], new_state[flipped_i] = state[flipped_i], state[i]
|
180
|
+
|
181
|
+
return new_state
|
182
|
+
|
183
|
+
def _execute_expectation_value(
|
184
|
+
self,
|
185
|
+
circuit: QuantumCircuit,
|
186
|
+
hamiltonian: Hamiltonian
|
187
|
+
) -> float:
|
188
|
+
"""Execute expectation value measurement on quantum backend"""
|
189
|
+
if self.client is None:
|
190
|
+
raise ValueError("Client required for quantum execution")
|
191
|
+
|
192
|
+
# Decompose Hamiltonian into measurable terms
|
193
|
+
total_expectation = 0.0
|
194
|
+
|
195
|
+
for pauli_string in hamiltonian.pauli_strings:
|
196
|
+
# Create measurement circuit for this Pauli string
|
197
|
+
measurement_circuit = self._create_measurement_circuit(circuit, pauli_string)
|
198
|
+
|
199
|
+
# Execute circuit
|
200
|
+
job = self.client.submit_job_sync(
|
201
|
+
circuit_data=measurement_circuit.to_dict(),
|
202
|
+
shots=1024
|
203
|
+
)
|
204
|
+
result = self.client.wait_for_job_sync(job.job_id)
|
205
|
+
|
206
|
+
# Calculate expectation value from measurement results
|
207
|
+
expectation = self._calculate_pauli_expectation(result.results, pauli_string)
|
208
|
+
total_expectation += expectation
|
209
|
+
|
210
|
+
return total_expectation
|
211
|
+
|
212
|
+
def _create_measurement_circuit(
|
213
|
+
self,
|
214
|
+
circuit: QuantumCircuit,
|
215
|
+
pauli_string: PauliString
|
216
|
+
) -> QuantumCircuit:
|
217
|
+
"""Create circuit with appropriate measurements for Pauli string"""
|
218
|
+
measurement_circuit = circuit.copy()
|
219
|
+
|
220
|
+
# Add rotation gates to measure in correct basis
|
221
|
+
for i, pauli_op in enumerate(pauli_string.pauli_ops):
|
222
|
+
if pauli_op == 'X':
|
223
|
+
measurement_circuit.ry(-np.pi/2, i) # Rotate Y→Z
|
224
|
+
elif pauli_op == 'Y':
|
225
|
+
measurement_circuit.rx(np.pi/2, i) # Rotate X→Z
|
226
|
+
# Z measurements don't need rotation
|
227
|
+
|
228
|
+
# Measure all qubits
|
229
|
+
measurement_circuit.measure_all()
|
230
|
+
|
231
|
+
return measurement_circuit
|
232
|
+
|
233
|
+
def _calculate_pauli_expectation(
|
234
|
+
self,
|
235
|
+
measurement_results: Dict[str, Any],
|
236
|
+
pauli_string: PauliString
|
237
|
+
) -> float:
|
238
|
+
"""Calculate expectation value from measurement results"""
|
239
|
+
counts = measurement_results.get("counts", {})
|
240
|
+
shots = sum(counts.values())
|
241
|
+
|
242
|
+
if shots == 0:
|
243
|
+
return 0.0
|
244
|
+
|
245
|
+
expectation = 0.0
|
246
|
+
|
247
|
+
for bitstring, count in counts.items():
|
248
|
+
# Calculate parity for non-identity Pauli operators
|
249
|
+
parity = 1
|
250
|
+
for i, pauli_op in enumerate(pauli_string.pauli_ops):
|
251
|
+
if pauli_op != 'I' and i < len(bitstring):
|
252
|
+
bit = int(bitstring[-(i+1)]) # Reverse order
|
253
|
+
parity *= (-1) ** bit
|
254
|
+
|
255
|
+
expectation += parity * count / shots
|
256
|
+
|
257
|
+
return float(np.real(pauli_string.coefficient * expectation))
|
258
|
+
|
259
|
+
def run(
|
260
|
+
self,
|
261
|
+
initial_parameters: Optional[np.ndarray] = None,
|
262
|
+
**optimizer_kwargs
|
263
|
+
) -> Dict[str, Any]:
|
264
|
+
"""Run VQE optimization
|
265
|
+
|
266
|
+
Args:
|
267
|
+
initial_parameters: Initial parameter values
|
268
|
+
**optimizer_kwargs: Additional optimizer parameters
|
269
|
+
|
270
|
+
Returns:
|
271
|
+
VQE results dictionary
|
272
|
+
|
273
|
+
"""
|
274
|
+
if initial_parameters is None:
|
275
|
+
# Random initialization
|
276
|
+
num_params = self._estimate_parameter_count()
|
277
|
+
initial_parameters = np.random.uniform(0, 2*np.pi, num_params)
|
278
|
+
|
279
|
+
self.optimization_history = []
|
280
|
+
|
281
|
+
# Run classical optimization
|
282
|
+
result = minimize(
|
283
|
+
fun=self.cost_function,
|
284
|
+
x0=initial_parameters,
|
285
|
+
method=self.optimizer,
|
286
|
+
options={'maxiter': self.max_iterations, 'ftol': self.tolerance},
|
287
|
+
**optimizer_kwargs
|
288
|
+
)
|
289
|
+
|
290
|
+
self.optimal_parameters = result.x
|
291
|
+
self.optimal_energy = result.fun
|
292
|
+
|
293
|
+
return {
|
294
|
+
"optimal_energy": self.optimal_energy,
|
295
|
+
"optimal_parameters": self.optimal_parameters,
|
296
|
+
"optimization_history": self.optimization_history,
|
297
|
+
"converged": result.success,
|
298
|
+
"num_iterations": result.nit,
|
299
|
+
"ground_state_energy_exact": self.hamiltonian.ground_state_energy()
|
300
|
+
}
|
301
|
+
|
302
|
+
def _estimate_parameter_count(self) -> int:
|
303
|
+
"""Estimate number of parameters needed for ansatz"""
|
304
|
+
# This is a heuristic - would depend on specific ansatz
|
305
|
+
return self.hamiltonian.num_qubits * 2
|
306
|
+
|
307
|
+
|
308
|
+
class QAOA(QuantumAlgorithm):
|
309
|
+
"""Quantum Approximate Optimization Algorithm (QAOA)
|
310
|
+
"""
|
311
|
+
|
312
|
+
def __init__(
|
313
|
+
self,
|
314
|
+
cost_hamiltonian: Hamiltonian,
|
315
|
+
mixer_hamiltonian: Optional[Hamiltonian] = None,
|
316
|
+
p: int = 1,
|
317
|
+
client: Optional[SuperQuantXClient] = None,
|
318
|
+
optimizer: str = "SLSQP"
|
319
|
+
):
|
320
|
+
"""Initialize QAOA
|
321
|
+
|
322
|
+
Args:
|
323
|
+
cost_hamiltonian: Problem Hamiltonian
|
324
|
+
mixer_hamiltonian: Mixer Hamiltonian (default: X on all qubits)
|
325
|
+
p: Number of QAOA layers
|
326
|
+
client: SuperQuantX client
|
327
|
+
optimizer: Classical optimizer
|
328
|
+
|
329
|
+
"""
|
330
|
+
super().__init__(client)
|
331
|
+
self.cost_hamiltonian = cost_hamiltonian
|
332
|
+
self.p = p
|
333
|
+
self.optimizer = optimizer
|
334
|
+
|
335
|
+
# Default mixer: transverse field
|
336
|
+
if mixer_hamiltonian is None:
|
337
|
+
pauli_strings = []
|
338
|
+
for i in range(cost_hamiltonian.num_qubits):
|
339
|
+
x_ops = ['I'] * cost_hamiltonian.num_qubits
|
340
|
+
x_ops[i] = 'X'
|
341
|
+
pauli_strings.append(PauliString(''.join(x_ops), 1.0))
|
342
|
+
self.mixer_hamiltonian = Hamiltonian(pauli_strings)
|
343
|
+
else:
|
344
|
+
self.mixer_hamiltonian = mixer_hamiltonian
|
345
|
+
|
346
|
+
def create_qaoa_circuit(self, parameters: np.ndarray) -> QuantumCircuit:
|
347
|
+
"""Create QAOA circuit with given parameters
|
348
|
+
|
349
|
+
Args:
|
350
|
+
parameters: [beta_1, gamma_1, beta_2, gamma_2, ...] for p layers
|
351
|
+
|
352
|
+
Returns:
|
353
|
+
QAOA quantum circuit
|
354
|
+
|
355
|
+
"""
|
356
|
+
if len(parameters) != 2 * self.p:
|
357
|
+
raise ValueError(f"Expected {2*self.p} parameters, got {len(parameters)}")
|
358
|
+
|
359
|
+
circuit = QuantumCircuit(self.cost_hamiltonian.num_qubits)
|
360
|
+
|
361
|
+
# Initialize in equal superposition
|
362
|
+
for i in range(circuit.num_qubits):
|
363
|
+
circuit.h(i)
|
364
|
+
|
365
|
+
# Apply QAOA layers
|
366
|
+
for layer in range(self.p):
|
367
|
+
gamma = parameters[2*layer]
|
368
|
+
beta = parameters[2*layer + 1]
|
369
|
+
|
370
|
+
# Apply cost Hamiltonian evolution: exp(-i γ H_C)
|
371
|
+
self._apply_hamiltonian_evolution(circuit, self.cost_hamiltonian, gamma)
|
372
|
+
|
373
|
+
# Apply mixer Hamiltonian evolution: exp(-i β H_M)
|
374
|
+
self._apply_hamiltonian_evolution(circuit, self.mixer_hamiltonian, beta)
|
375
|
+
|
376
|
+
return circuit
|
377
|
+
|
378
|
+
def _apply_hamiltonian_evolution(
|
379
|
+
self,
|
380
|
+
circuit: QuantumCircuit,
|
381
|
+
hamiltonian: Hamiltonian,
|
382
|
+
time: float
|
383
|
+
) -> None:
|
384
|
+
"""Apply Hamiltonian time evolution to circuit"""
|
385
|
+
for pauli_string in hamiltonian.pauli_strings:
|
386
|
+
angle = 2 * time * np.real(pauli_string.coefficient)
|
387
|
+
self._apply_pauli_rotation(circuit, pauli_string.pauli_ops, angle)
|
388
|
+
|
389
|
+
def _apply_pauli_rotation(
|
390
|
+
self,
|
391
|
+
circuit: QuantumCircuit,
|
392
|
+
pauli_ops: str,
|
393
|
+
angle: float
|
394
|
+
) -> None:
|
395
|
+
"""Apply Pauli string rotation to circuit"""
|
396
|
+
# Find qubits involved in non-identity operations
|
397
|
+
active_qubits = [i for i, op in enumerate(pauli_ops) if op != 'I']
|
398
|
+
|
399
|
+
if not active_qubits:
|
400
|
+
return # All identity, no rotation needed
|
401
|
+
|
402
|
+
# Change basis for X and Y measurements
|
403
|
+
for i in active_qubits:
|
404
|
+
if pauli_ops[i] == 'X':
|
405
|
+
circuit.h(i)
|
406
|
+
elif pauli_ops[i] == 'Y':
|
407
|
+
circuit.rx(np.pi/2, i)
|
408
|
+
|
409
|
+
# Apply ZZ...Z rotation using CNOT ladder
|
410
|
+
if len(active_qubits) == 1:
|
411
|
+
circuit.rz(angle, active_qubits[0])
|
412
|
+
else:
|
413
|
+
# CNOT ladder
|
414
|
+
for i in range(len(active_qubits) - 1):
|
415
|
+
circuit.cnot(active_qubits[i], active_qubits[-1])
|
416
|
+
|
417
|
+
# Rotation on last qubit
|
418
|
+
circuit.rz(angle, active_qubits[-1])
|
419
|
+
|
420
|
+
# Reverse CNOT ladder
|
421
|
+
for i in reversed(range(len(active_qubits) - 1)):
|
422
|
+
circuit.cnot(active_qubits[i], active_qubits[-1])
|
423
|
+
|
424
|
+
# Reverse basis change
|
425
|
+
for i in active_qubits:
|
426
|
+
if pauli_ops[i] == 'X':
|
427
|
+
circuit.h(i)
|
428
|
+
elif pauli_ops[i] == 'Y':
|
429
|
+
circuit.rx(-np.pi/2, i)
|
430
|
+
|
431
|
+
def cost_function(self, parameters: np.ndarray) -> float:
|
432
|
+
"""QAOA cost function"""
|
433
|
+
circuit = self.create_qaoa_circuit(parameters)
|
434
|
+
|
435
|
+
if self.client is None:
|
436
|
+
# Simulate locally
|
437
|
+
state = self._simulate_circuit(circuit)
|
438
|
+
energy = float(np.real(self.cost_hamiltonian.expectation_value(state)))
|
439
|
+
else:
|
440
|
+
# Execute on quantum backend
|
441
|
+
energy = self._execute_expectation_value(circuit, self.cost_hamiltonian)
|
442
|
+
|
443
|
+
return energy
|
444
|
+
|
445
|
+
def _simulate_circuit(self, circuit: QuantumCircuit) -> np.ndarray:
|
446
|
+
"""Simulate QAOA circuit"""
|
447
|
+
# Simplified simulation - would use proper quantum simulator
|
448
|
+
return np.ones(2 ** circuit.num_qubits, dtype=complex) / np.sqrt(2 ** circuit.num_qubits)
|
449
|
+
|
450
|
+
def _execute_expectation_value(
|
451
|
+
self,
|
452
|
+
circuit: QuantumCircuit,
|
453
|
+
hamiltonian: Hamiltonian
|
454
|
+
) -> float:
|
455
|
+
"""Execute expectation value on quantum backend"""
|
456
|
+
# Similar to VQE implementation
|
457
|
+
return 0.0 # Placeholder
|
458
|
+
|
459
|
+
def run(
|
460
|
+
self,
|
461
|
+
initial_parameters: Optional[np.ndarray] = None,
|
462
|
+
**optimizer_kwargs
|
463
|
+
) -> Dict[str, Any]:
|
464
|
+
"""Run QAOA optimization
|
465
|
+
|
466
|
+
Args:
|
467
|
+
initial_parameters: Initial [beta, gamma] parameters
|
468
|
+
**optimizer_kwargs: Additional optimizer options
|
469
|
+
|
470
|
+
Returns:
|
471
|
+
QAOA results
|
472
|
+
|
473
|
+
"""
|
474
|
+
if initial_parameters is None:
|
475
|
+
# Random initialization
|
476
|
+
initial_parameters = np.random.uniform(0, 2*np.pi, 2*self.p)
|
477
|
+
|
478
|
+
result = minimize(
|
479
|
+
fun=self.cost_function,
|
480
|
+
x0=initial_parameters,
|
481
|
+
method=self.optimizer,
|
482
|
+
**optimizer_kwargs
|
483
|
+
)
|
484
|
+
|
485
|
+
optimal_circuit = self.create_qaoa_circuit(result.x)
|
486
|
+
|
487
|
+
return {
|
488
|
+
"optimal_energy": result.fun,
|
489
|
+
"optimal_parameters": result.x,
|
490
|
+
"optimal_circuit": optimal_circuit,
|
491
|
+
"converged": result.success,
|
492
|
+
"num_iterations": result.nit
|
493
|
+
}
|
494
|
+
|
495
|
+
|
496
|
+
class QuantumNeuralNetwork(BaseEstimator):
|
497
|
+
"""Quantum Neural Network for machine learning tasks
|
498
|
+
"""
|
499
|
+
|
500
|
+
def __init__(
|
501
|
+
self,
|
502
|
+
num_qubits: int,
|
503
|
+
num_layers: int = 2,
|
504
|
+
entangling_gates: str = "CNOT",
|
505
|
+
client: Optional[SuperQuantXClient] = None,
|
506
|
+
optimizer: str = "SLSQP",
|
507
|
+
learning_rate: float = 0.01
|
508
|
+
):
|
509
|
+
"""Initialize Quantum Neural Network
|
510
|
+
|
511
|
+
Args:
|
512
|
+
num_qubits: Number of qubits
|
513
|
+
num_layers: Number of variational layers
|
514
|
+
entangling_gates: Type of entangling gates
|
515
|
+
client: SuperQuantX client
|
516
|
+
optimizer: Classical optimizer
|
517
|
+
learning_rate: Learning rate for optimization
|
518
|
+
|
519
|
+
"""
|
520
|
+
self.num_qubits = num_qubits
|
521
|
+
self.num_layers = num_layers
|
522
|
+
self.entangling_gates = entangling_gates
|
523
|
+
self.client = client
|
524
|
+
self.optimizer = optimizer
|
525
|
+
self.learning_rate = learning_rate
|
526
|
+
|
527
|
+
# Calculate number of parameters
|
528
|
+
self.num_parameters = num_qubits * num_layers * 3 # 3 rotation angles per qubit per layer
|
529
|
+
self.parameters: Optional[np.ndarray] = None
|
530
|
+
|
531
|
+
self.is_fitted_ = False
|
532
|
+
|
533
|
+
def create_ansatz(self, parameters: np.ndarray, x: Optional[np.ndarray] = None) -> QuantumCircuit:
|
534
|
+
"""Create parameterized quantum circuit ansatz
|
535
|
+
|
536
|
+
Args:
|
537
|
+
parameters: Variational parameters
|
538
|
+
x: Input data for encoding (optional)
|
539
|
+
|
540
|
+
Returns:
|
541
|
+
Quantum circuit
|
542
|
+
|
543
|
+
"""
|
544
|
+
circuit = QuantumCircuit(self.num_qubits)
|
545
|
+
|
546
|
+
# Data encoding (amplitude encoding)
|
547
|
+
if x is not None:
|
548
|
+
self._encode_data(circuit, x)
|
549
|
+
|
550
|
+
param_idx = 0
|
551
|
+
for layer in range(self.num_layers):
|
552
|
+
# Parameterized single-qubit rotations
|
553
|
+
for qubit in range(self.num_qubits):
|
554
|
+
circuit.rx(parameters[param_idx], qubit)
|
555
|
+
circuit.ry(parameters[param_idx + 1], qubit)
|
556
|
+
circuit.rz(parameters[param_idx + 2], qubit)
|
557
|
+
param_idx += 3
|
558
|
+
|
559
|
+
# Entangling gates
|
560
|
+
if layer < self.num_layers - 1: # No entangling on last layer
|
561
|
+
self._add_entangling_layer(circuit)
|
562
|
+
|
563
|
+
return circuit
|
564
|
+
|
565
|
+
def _encode_data(self, circuit: QuantumCircuit, x: np.ndarray) -> None:
|
566
|
+
"""Encode classical data into quantum circuit"""
|
567
|
+
# Simple angle encoding
|
568
|
+
for i, value in enumerate(x[:self.num_qubits]):
|
569
|
+
circuit.ry(value, i)
|
570
|
+
|
571
|
+
def _add_entangling_layer(self, circuit: QuantumCircuit) -> None:
|
572
|
+
"""Add entangling gates between qubits"""
|
573
|
+
if self.entangling_gates == "CNOT":
|
574
|
+
for i in range(self.num_qubits - 1):
|
575
|
+
circuit.cnot(i, i + 1)
|
576
|
+
elif self.entangling_gates == "CZ":
|
577
|
+
for i in range(self.num_qubits - 1):
|
578
|
+
circuit.cz(i, i + 1)
|
579
|
+
else:
|
580
|
+
raise ValueError(f"Unknown entangling gates: {self.entangling_gates}")
|
581
|
+
|
582
|
+
def forward(self, X: np.ndarray, parameters: np.ndarray) -> np.ndarray:
|
583
|
+
"""Forward pass through quantum neural network
|
584
|
+
|
585
|
+
Args:
|
586
|
+
X: Input data
|
587
|
+
parameters: Network parameters
|
588
|
+
|
589
|
+
Returns:
|
590
|
+
Output predictions
|
591
|
+
|
592
|
+
"""
|
593
|
+
predictions = []
|
594
|
+
|
595
|
+
for x in X:
|
596
|
+
circuit = self.create_ansatz(parameters, x)
|
597
|
+
|
598
|
+
# Add measurement
|
599
|
+
circuit.measure(0, 0) # Measure first qubit
|
600
|
+
|
601
|
+
if self.client is None:
|
602
|
+
# Simulate locally
|
603
|
+
prob_0 = self._simulate_measurement_probability(circuit)
|
604
|
+
else:
|
605
|
+
# Execute on quantum backend
|
606
|
+
prob_0 = self._execute_measurement_probability(circuit)
|
607
|
+
|
608
|
+
# Convert probability to prediction
|
609
|
+
prediction = 2 * prob_0 - 1 # Map [0,1] to [-1,1]
|
610
|
+
predictions.append(prediction)
|
611
|
+
|
612
|
+
return np.array(predictions)
|
613
|
+
|
614
|
+
def _simulate_measurement_probability(self, circuit: QuantumCircuit) -> float:
|
615
|
+
"""Simulate measurement probability"""
|
616
|
+
# Simplified simulation
|
617
|
+
return 0.5 # Placeholder
|
618
|
+
|
619
|
+
def _execute_measurement_probability(self, circuit: QuantumCircuit) -> float:
|
620
|
+
"""Execute measurement on quantum backend"""
|
621
|
+
if self.client is None:
|
622
|
+
raise ValueError("Client required for quantum execution")
|
623
|
+
|
624
|
+
job = self.client.submit_job_sync(
|
625
|
+
circuit_data=circuit.to_dict(),
|
626
|
+
shots=1024
|
627
|
+
)
|
628
|
+
result = self.client.wait_for_job_sync(job.job_id)
|
629
|
+
|
630
|
+
counts = result.results.get("counts", {})
|
631
|
+
total_shots = sum(counts.values())
|
632
|
+
|
633
|
+
# Probability of measuring |0⟩
|
634
|
+
prob_0 = counts.get("0", 0) / total_shots if total_shots > 0 else 0.5
|
635
|
+
return prob_0
|
636
|
+
|
637
|
+
def loss_function(self, parameters: np.ndarray, X: np.ndarray, y: np.ndarray) -> float:
|
638
|
+
"""Calculate loss function"""
|
639
|
+
predictions = self.forward(X, parameters)
|
640
|
+
# Mean squared error
|
641
|
+
return np.mean((predictions - y) ** 2)
|
642
|
+
|
643
|
+
def fit(self, X: np.ndarray, y: np.ndarray) -> "QuantumNeuralNetwork":
|
644
|
+
"""Fit the quantum neural network
|
645
|
+
|
646
|
+
Args:
|
647
|
+
X: Training data
|
648
|
+
y: Training labels
|
649
|
+
|
650
|
+
Returns:
|
651
|
+
Fitted model
|
652
|
+
|
653
|
+
"""
|
654
|
+
# Initialize parameters
|
655
|
+
initial_parameters = np.random.uniform(0, 2*np.pi, self.num_parameters)
|
656
|
+
|
657
|
+
# Optimize parameters
|
658
|
+
result = minimize(
|
659
|
+
fun=lambda params: self.loss_function(params, X, y),
|
660
|
+
x0=initial_parameters,
|
661
|
+
method=self.optimizer
|
662
|
+
)
|
663
|
+
|
664
|
+
self.parameters = result.x
|
665
|
+
self.is_fitted_ = True
|
666
|
+
|
667
|
+
return self
|
668
|
+
|
669
|
+
def predict(self, X: np.ndarray) -> np.ndarray:
|
670
|
+
"""Make predictions
|
671
|
+
|
672
|
+
Args:
|
673
|
+
X: Input data
|
674
|
+
|
675
|
+
Returns:
|
676
|
+
Predictions
|
677
|
+
|
678
|
+
"""
|
679
|
+
if not self.is_fitted_:
|
680
|
+
raise ValueError("Model must be fitted before making predictions")
|
681
|
+
|
682
|
+
return self.forward(X, self.parameters)
|
683
|
+
|
684
|
+
def score(self, X: np.ndarray, y: np.ndarray) -> float:
|
685
|
+
"""Calculate R² score
|
686
|
+
|
687
|
+
Args:
|
688
|
+
X: Test data
|
689
|
+
y: True labels
|
690
|
+
|
691
|
+
Returns:
|
692
|
+
R² score
|
693
|
+
|
694
|
+
"""
|
695
|
+
predictions = self.predict(X)
|
696
|
+
ss_res = np.sum((y - predictions) ** 2)
|
697
|
+
ss_tot = np.sum((y - np.mean(y)) ** 2)
|
698
|
+
return 1 - (ss_res / ss_tot) if ss_tot != 0 else 0.0
|
699
|
+
|
700
|
+
|
701
|
+
class QuantumFourierTransform(QuantumAlgorithm):
|
702
|
+
"""Quantum Fourier Transform implementation
|
703
|
+
"""
|
704
|
+
|
705
|
+
def __init__(self, num_qubits: int, client: Optional[SuperQuantXClient] = None):
|
706
|
+
"""Initialize QFT
|
707
|
+
|
708
|
+
Args:
|
709
|
+
num_qubits: Number of qubits
|
710
|
+
client: SuperQuantX client
|
711
|
+
|
712
|
+
"""
|
713
|
+
super().__init__(client)
|
714
|
+
self.num_qubits = num_qubits
|
715
|
+
|
716
|
+
def create_qft_circuit(self, inverse: bool = False) -> QuantumCircuit:
|
717
|
+
"""Create QFT circuit
|
718
|
+
|
719
|
+
Args:
|
720
|
+
inverse: Whether to create inverse QFT
|
721
|
+
|
722
|
+
Returns:
|
723
|
+
QFT circuit
|
724
|
+
|
725
|
+
"""
|
726
|
+
circuit = QuantumCircuit(self.num_qubits)
|
727
|
+
|
728
|
+
if inverse:
|
729
|
+
# Inverse QFT: reverse the forward QFT
|
730
|
+
qft_circuit = self.create_qft_circuit(inverse=False)
|
731
|
+
return qft_circuit.inverse()
|
732
|
+
|
733
|
+
# Forward QFT
|
734
|
+
for j in range(self.num_qubits):
|
735
|
+
# Apply Hadamard
|
736
|
+
circuit.h(j)
|
737
|
+
|
738
|
+
# Apply controlled phase rotations
|
739
|
+
for k in range(j + 1, self.num_qubits):
|
740
|
+
angle = np.pi / (2 ** (k - j))
|
741
|
+
circuit.crz(angle, k, j)
|
742
|
+
|
743
|
+
# Reverse qubit order
|
744
|
+
for i in range(self.num_qubits // 2):
|
745
|
+
circuit.swap(i, self.num_qubits - 1 - i)
|
746
|
+
|
747
|
+
return circuit
|
748
|
+
|
749
|
+
def run(self, initial_state: Optional[np.ndarray] = None) -> Dict[str, Any]:
|
750
|
+
"""Execute QFT
|
751
|
+
|
752
|
+
Args:
|
753
|
+
initial_state: Initial quantum state
|
754
|
+
|
755
|
+
Returns:
|
756
|
+
QFT results
|
757
|
+
|
758
|
+
"""
|
759
|
+
circuit = self.create_qft_circuit()
|
760
|
+
|
761
|
+
if self.client is None:
|
762
|
+
# Local simulation
|
763
|
+
if initial_state is None:
|
764
|
+
initial_state = np.zeros(2 ** self.num_qubits, dtype=complex)
|
765
|
+
initial_state[0] = 1.0
|
766
|
+
|
767
|
+
# Apply QFT (simplified)
|
768
|
+
fourier_state = np.fft.fft(initial_state) / np.sqrt(len(initial_state))
|
769
|
+
|
770
|
+
return {
|
771
|
+
"circuit": circuit,
|
772
|
+
"initial_state": initial_state,
|
773
|
+
"fourier_state": fourier_state
|
774
|
+
}
|
775
|
+
else:
|
776
|
+
# Execute on quantum backend
|
777
|
+
job = self.client.submit_job_sync(circuit_data=circuit.to_dict())
|
778
|
+
result = self.client.wait_for_job_sync(job.job_id)
|
779
|
+
|
780
|
+
return {
|
781
|
+
"circuit": circuit,
|
782
|
+
"job_result": result
|
783
|
+
}
|
784
|
+
|
785
|
+
|
786
|
+
# Factory functions for common algorithms
|
787
|
+
def create_vqe_for_molecule(
|
788
|
+
molecule_name: str,
|
789
|
+
basis_set: str = "sto-3g",
|
790
|
+
client: Optional[SuperQuantXClient] = None
|
791
|
+
) -> VQE:
|
792
|
+
"""Create VQE instance for molecular ground state calculation
|
793
|
+
|
794
|
+
Args:
|
795
|
+
molecule_name: Molecule identifier (e.g., "H2", "LiH")
|
796
|
+
basis_set: Quantum chemistry basis set
|
797
|
+
client: SuperQuantX client
|
798
|
+
|
799
|
+
Returns:
|
800
|
+
Configured VQE instance
|
801
|
+
|
802
|
+
"""
|
803
|
+
# This would interface with quantum chemistry libraries
|
804
|
+
# For now, create a simple Hamiltonian
|
805
|
+
|
806
|
+
if molecule_name.upper() == "H2":
|
807
|
+
# Simple H2 Hamiltonian (placeholder)
|
808
|
+
hamiltonian = Hamiltonian.from_dict({
|
809
|
+
"ZZ": -1.0523732,
|
810
|
+
"ZI": -0.39793742,
|
811
|
+
"IZ": -0.39793742,
|
812
|
+
"XX": -0.01128010,
|
813
|
+
"YY": 0.01128010
|
814
|
+
})
|
815
|
+
|
816
|
+
def h2_ansatz(params):
|
817
|
+
circuit = QuantumCircuit(2)
|
818
|
+
circuit.h(0)
|
819
|
+
circuit.h(1)
|
820
|
+
circuit.ry(params[0], 0)
|
821
|
+
circuit.ry(params[1], 1)
|
822
|
+
circuit.cnot(0, 1)
|
823
|
+
return circuit
|
824
|
+
|
825
|
+
return VQE(hamiltonian, h2_ansatz, client)
|
826
|
+
|
827
|
+
else:
|
828
|
+
raise ValueError(f"Molecule {molecule_name} not implemented")
|
829
|
+
|
830
|
+
|
831
|
+
def create_qaoa_for_max_cut(
|
832
|
+
graph_edges: List[Tuple[int, int]],
|
833
|
+
num_nodes: int,
|
834
|
+
p: int = 1,
|
835
|
+
client: Optional[SuperQuantXClient] = None
|
836
|
+
) -> QAOA:
|
837
|
+
"""Create QAOA instance for Max-Cut problem
|
838
|
+
|
839
|
+
Args:
|
840
|
+
graph_edges: List of graph edges as (node1, node2) tuples
|
841
|
+
num_nodes: Number of nodes in graph
|
842
|
+
p: QAOA depth parameter
|
843
|
+
client: SuperQuantX client
|
844
|
+
|
845
|
+
Returns:
|
846
|
+
Configured QAOA instance
|
847
|
+
|
848
|
+
"""
|
849
|
+
# Build Max-Cut Hamiltonian
|
850
|
+
pauli_strings = []
|
851
|
+
|
852
|
+
for edge in graph_edges:
|
853
|
+
i, j = edge
|
854
|
+
if i < num_nodes and j < num_nodes:
|
855
|
+
# Add ZZ term for edge (i,j)
|
856
|
+
zz_ops = ['I'] * num_nodes
|
857
|
+
zz_ops[i] = 'Z'
|
858
|
+
zz_ops[j] = 'Z'
|
859
|
+
pauli_strings.append(PauliString(''.join(zz_ops), 0.5))
|
860
|
+
|
861
|
+
cost_hamiltonian = Hamiltonian(pauli_strings)
|
862
|
+
|
863
|
+
return QAOA(cost_hamiltonian, p=p, client=client)
|