superquantx 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. superquantx/__init__.py +321 -0
  2. superquantx/algorithms/__init__.py +55 -0
  3. superquantx/algorithms/base_algorithm.py +413 -0
  4. superquantx/algorithms/hybrid_classifier.py +628 -0
  5. superquantx/algorithms/qaoa.py +406 -0
  6. superquantx/algorithms/quantum_agents.py +1006 -0
  7. superquantx/algorithms/quantum_kmeans.py +575 -0
  8. superquantx/algorithms/quantum_nn.py +544 -0
  9. superquantx/algorithms/quantum_pca.py +499 -0
  10. superquantx/algorithms/quantum_svm.py +346 -0
  11. superquantx/algorithms/vqe.py +553 -0
  12. superquantx/algorithms.py +863 -0
  13. superquantx/backends/__init__.py +265 -0
  14. superquantx/backends/base_backend.py +321 -0
  15. superquantx/backends/braket_backend.py +420 -0
  16. superquantx/backends/cirq_backend.py +466 -0
  17. superquantx/backends/ocean_backend.py +491 -0
  18. superquantx/backends/pennylane_backend.py +419 -0
  19. superquantx/backends/qiskit_backend.py +451 -0
  20. superquantx/backends/simulator_backend.py +455 -0
  21. superquantx/backends/tket_backend.py +519 -0
  22. superquantx/circuits.py +447 -0
  23. superquantx/cli/__init__.py +28 -0
  24. superquantx/cli/commands.py +528 -0
  25. superquantx/cli/main.py +254 -0
  26. superquantx/client.py +298 -0
  27. superquantx/config.py +326 -0
  28. superquantx/exceptions.py +287 -0
  29. superquantx/gates.py +588 -0
  30. superquantx/logging_config.py +347 -0
  31. superquantx/measurements.py +702 -0
  32. superquantx/ml.py +936 -0
  33. superquantx/noise.py +760 -0
  34. superquantx/utils/__init__.py +83 -0
  35. superquantx/utils/benchmarking.py +523 -0
  36. superquantx/utils/classical_utils.py +575 -0
  37. superquantx/utils/feature_mapping.py +467 -0
  38. superquantx/utils/optimization.py +410 -0
  39. superquantx/utils/quantum_utils.py +456 -0
  40. superquantx/utils/visualization.py +654 -0
  41. superquantx/version.py +33 -0
  42. superquantx-0.1.0.dist-info/METADATA +365 -0
  43. superquantx-0.1.0.dist-info/RECORD +46 -0
  44. superquantx-0.1.0.dist-info/WHEEL +4 -0
  45. superquantx-0.1.0.dist-info/entry_points.txt +2 -0
  46. superquantx-0.1.0.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,863 @@
1
+ """Quantum algorithms implementation for SuperQuantX
2
+ """
3
+
4
+ from abc import ABC, abstractmethod
5
+ from typing import Any, Callable, Dict, List, Optional, Tuple
6
+
7
+ import numpy as np
8
+ from scipy.optimize import minimize
9
+ from sklearn.base import BaseEstimator
10
+
11
+ from .circuits import QuantumCircuit
12
+ from .client import SuperQuantXClient
13
+ from .gates import Hamiltonian, PauliString
14
+
15
+
16
+ class QuantumAlgorithm(ABC):
17
+ """Base class for quantum algorithms
18
+ """
19
+
20
+ def __init__(self, client: Optional[SuperQuantXClient] = None):
21
+ """Initialize quantum algorithm
22
+
23
+ Args:
24
+ client: SuperQuantX client for quantum execution
25
+
26
+ """
27
+ self.client = client
28
+ self.result_history: List[Dict[str, Any]] = []
29
+
30
+ @abstractmethod
31
+ def run(self, *args, **kwargs) -> Dict[str, Any]:
32
+ """Execute the quantum algorithm"""
33
+ pass
34
+
35
+ def set_client(self, client: SuperQuantXClient) -> None:
36
+ """Set the quantum client"""
37
+ self.client = client
38
+
39
+
40
+ class VQE(QuantumAlgorithm):
41
+ """Variational Quantum Eigensolver (VQE) for finding ground state energies
42
+ """
43
+
44
+ def __init__(
45
+ self,
46
+ hamiltonian: Hamiltonian,
47
+ ansatz: Callable[[np.ndarray], QuantumCircuit],
48
+ client: Optional[SuperQuantXClient] = None,
49
+ optimizer: str = "SLSQP",
50
+ max_iterations: int = 1000,
51
+ tolerance: float = 1e-6
52
+ ):
53
+ """Initialize VQE algorithm
54
+
55
+ Args:
56
+ hamiltonian: Target Hamiltonian
57
+ ansatz: Parameterized quantum circuit ansatz
58
+ client: SuperQuantX client for execution
59
+ optimizer: Classical optimizer method
60
+ max_iterations: Maximum optimization iterations
61
+ tolerance: Convergence tolerance
62
+
63
+ """
64
+ super().__init__(client)
65
+ self.hamiltonian = hamiltonian
66
+ self.ansatz = ansatz
67
+ self.optimizer = optimizer
68
+ self.max_iterations = max_iterations
69
+ self.tolerance = tolerance
70
+
71
+ self.optimal_parameters: Optional[np.ndarray] = None
72
+ self.optimal_energy: Optional[float] = None
73
+ self.optimization_history: List[float] = []
74
+
75
+ def cost_function(self, parameters: np.ndarray) -> float:
76
+ """VQE cost function: expectation value of Hamiltonian
77
+
78
+ Args:
79
+ parameters: Ansatz parameters
80
+
81
+ Returns:
82
+ Energy expectation value
83
+
84
+ """
85
+ circuit = self.ansatz(parameters)
86
+
87
+ if self.client is None:
88
+ # Simulate locally
89
+ energy = self._simulate_expectation_value(circuit, self.hamiltonian)
90
+ else:
91
+ # Execute on quantum backend
92
+ energy = self._execute_expectation_value(circuit, self.hamiltonian)
93
+
94
+ self.optimization_history.append(energy)
95
+ return energy
96
+
97
+ def _simulate_expectation_value(
98
+ self,
99
+ circuit: QuantumCircuit,
100
+ hamiltonian: Hamiltonian
101
+ ) -> float:
102
+ """Simulate expectation value locally"""
103
+ # This is a simplified simulation
104
+ # In practice, would use a quantum simulator
105
+ state = self._simulate_circuit(circuit)
106
+ return float(np.real(hamiltonian.expectation_value(state)))
107
+
108
+ def _simulate_circuit(self, circuit: QuantumCircuit) -> np.ndarray:
109
+ """Simulate quantum circuit to get final state"""
110
+ # Initialize state |0⟩^n
111
+ state = np.zeros(2 ** circuit.num_qubits, dtype=complex)
112
+ state[0] = 1.0
113
+
114
+ # Apply gates (simplified simulation)
115
+ for gate in circuit.gates:
116
+ if gate.name == "RY" and len(gate.qubits) == 1:
117
+ # Apply single-qubit rotation
118
+ qubit = gate.qubits[0]
119
+ theta = gate.parameters[0]
120
+
121
+ # Create rotation matrix for full system
122
+ from .gates import GateMatrix
123
+ gate_matrix = GateMatrix.ry(theta)
124
+
125
+ # Apply to specific qubit (simplified)
126
+ state = self._apply_single_qubit_gate(state, gate_matrix, qubit, circuit.num_qubits)
127
+ elif gate.name == "CNOT" and len(gate.qubits) == 2:
128
+ # Apply CNOT gate
129
+ control, target = gate.qubits
130
+ state = self._apply_cnot(state, control, target, circuit.num_qubits)
131
+
132
+ return state
133
+
134
+ def _apply_single_qubit_gate(
135
+ self,
136
+ state: np.ndarray,
137
+ gate_matrix: np.ndarray,
138
+ qubit: int,
139
+ num_qubits: int
140
+ ) -> np.ndarray:
141
+ """Apply single-qubit gate to state vector"""
142
+ # This is a simplified implementation
143
+ # Would use more efficient tensor operations in practice
144
+
145
+ dim = 2 ** num_qubits
146
+ new_state = np.zeros_like(state)
147
+
148
+ for i in range(dim):
149
+ # Extract qubit state
150
+ qubit_state = (i >> qubit) & 1
151
+
152
+ for new_qubit_state in range(2):
153
+ # Apply gate matrix element
154
+ amplitude = gate_matrix[new_qubit_state, qubit_state]
155
+ if abs(amplitude) > 1e-12:
156
+ new_i = i ^ ((qubit_state ^ new_qubit_state) << qubit)
157
+ new_state[new_i] += amplitude * state[i]
158
+
159
+ return new_state
160
+
161
+ def _apply_cnot(
162
+ self,
163
+ state: np.ndarray,
164
+ control: int,
165
+ target: int,
166
+ num_qubits: int
167
+ ) -> np.ndarray:
168
+ """Apply CNOT gate to state vector"""
169
+ dim = 2 ** num_qubits
170
+ new_state = np.copy(state)
171
+
172
+ for i in range(dim):
173
+ control_bit = (i >> control) & 1
174
+ target_bit = (i >> target) & 1
175
+
176
+ if control_bit == 1:
177
+ # Flip target bit
178
+ flipped_i = i ^ (1 << target)
179
+ new_state[i], new_state[flipped_i] = state[flipped_i], state[i]
180
+
181
+ return new_state
182
+
183
+ def _execute_expectation_value(
184
+ self,
185
+ circuit: QuantumCircuit,
186
+ hamiltonian: Hamiltonian
187
+ ) -> float:
188
+ """Execute expectation value measurement on quantum backend"""
189
+ if self.client is None:
190
+ raise ValueError("Client required for quantum execution")
191
+
192
+ # Decompose Hamiltonian into measurable terms
193
+ total_expectation = 0.0
194
+
195
+ for pauli_string in hamiltonian.pauli_strings:
196
+ # Create measurement circuit for this Pauli string
197
+ measurement_circuit = self._create_measurement_circuit(circuit, pauli_string)
198
+
199
+ # Execute circuit
200
+ job = self.client.submit_job_sync(
201
+ circuit_data=measurement_circuit.to_dict(),
202
+ shots=1024
203
+ )
204
+ result = self.client.wait_for_job_sync(job.job_id)
205
+
206
+ # Calculate expectation value from measurement results
207
+ expectation = self._calculate_pauli_expectation(result.results, pauli_string)
208
+ total_expectation += expectation
209
+
210
+ return total_expectation
211
+
212
+ def _create_measurement_circuit(
213
+ self,
214
+ circuit: QuantumCircuit,
215
+ pauli_string: PauliString
216
+ ) -> QuantumCircuit:
217
+ """Create circuit with appropriate measurements for Pauli string"""
218
+ measurement_circuit = circuit.copy()
219
+
220
+ # Add rotation gates to measure in correct basis
221
+ for i, pauli_op in enumerate(pauli_string.pauli_ops):
222
+ if pauli_op == 'X':
223
+ measurement_circuit.ry(-np.pi/2, i) # Rotate Y→Z
224
+ elif pauli_op == 'Y':
225
+ measurement_circuit.rx(np.pi/2, i) # Rotate X→Z
226
+ # Z measurements don't need rotation
227
+
228
+ # Measure all qubits
229
+ measurement_circuit.measure_all()
230
+
231
+ return measurement_circuit
232
+
233
+ def _calculate_pauli_expectation(
234
+ self,
235
+ measurement_results: Dict[str, Any],
236
+ pauli_string: PauliString
237
+ ) -> float:
238
+ """Calculate expectation value from measurement results"""
239
+ counts = measurement_results.get("counts", {})
240
+ shots = sum(counts.values())
241
+
242
+ if shots == 0:
243
+ return 0.0
244
+
245
+ expectation = 0.0
246
+
247
+ for bitstring, count in counts.items():
248
+ # Calculate parity for non-identity Pauli operators
249
+ parity = 1
250
+ for i, pauli_op in enumerate(pauli_string.pauli_ops):
251
+ if pauli_op != 'I' and i < len(bitstring):
252
+ bit = int(bitstring[-(i+1)]) # Reverse order
253
+ parity *= (-1) ** bit
254
+
255
+ expectation += parity * count / shots
256
+
257
+ return float(np.real(pauli_string.coefficient * expectation))
258
+
259
+ def run(
260
+ self,
261
+ initial_parameters: Optional[np.ndarray] = None,
262
+ **optimizer_kwargs
263
+ ) -> Dict[str, Any]:
264
+ """Run VQE optimization
265
+
266
+ Args:
267
+ initial_parameters: Initial parameter values
268
+ **optimizer_kwargs: Additional optimizer parameters
269
+
270
+ Returns:
271
+ VQE results dictionary
272
+
273
+ """
274
+ if initial_parameters is None:
275
+ # Random initialization
276
+ num_params = self._estimate_parameter_count()
277
+ initial_parameters = np.random.uniform(0, 2*np.pi, num_params)
278
+
279
+ self.optimization_history = []
280
+
281
+ # Run classical optimization
282
+ result = minimize(
283
+ fun=self.cost_function,
284
+ x0=initial_parameters,
285
+ method=self.optimizer,
286
+ options={'maxiter': self.max_iterations, 'ftol': self.tolerance},
287
+ **optimizer_kwargs
288
+ )
289
+
290
+ self.optimal_parameters = result.x
291
+ self.optimal_energy = result.fun
292
+
293
+ return {
294
+ "optimal_energy": self.optimal_energy,
295
+ "optimal_parameters": self.optimal_parameters,
296
+ "optimization_history": self.optimization_history,
297
+ "converged": result.success,
298
+ "num_iterations": result.nit,
299
+ "ground_state_energy_exact": self.hamiltonian.ground_state_energy()
300
+ }
301
+
302
+ def _estimate_parameter_count(self) -> int:
303
+ """Estimate number of parameters needed for ansatz"""
304
+ # This is a heuristic - would depend on specific ansatz
305
+ return self.hamiltonian.num_qubits * 2
306
+
307
+
308
+ class QAOA(QuantumAlgorithm):
309
+ """Quantum Approximate Optimization Algorithm (QAOA)
310
+ """
311
+
312
+ def __init__(
313
+ self,
314
+ cost_hamiltonian: Hamiltonian,
315
+ mixer_hamiltonian: Optional[Hamiltonian] = None,
316
+ p: int = 1,
317
+ client: Optional[SuperQuantXClient] = None,
318
+ optimizer: str = "SLSQP"
319
+ ):
320
+ """Initialize QAOA
321
+
322
+ Args:
323
+ cost_hamiltonian: Problem Hamiltonian
324
+ mixer_hamiltonian: Mixer Hamiltonian (default: X on all qubits)
325
+ p: Number of QAOA layers
326
+ client: SuperQuantX client
327
+ optimizer: Classical optimizer
328
+
329
+ """
330
+ super().__init__(client)
331
+ self.cost_hamiltonian = cost_hamiltonian
332
+ self.p = p
333
+ self.optimizer = optimizer
334
+
335
+ # Default mixer: transverse field
336
+ if mixer_hamiltonian is None:
337
+ pauli_strings = []
338
+ for i in range(cost_hamiltonian.num_qubits):
339
+ x_ops = ['I'] * cost_hamiltonian.num_qubits
340
+ x_ops[i] = 'X'
341
+ pauli_strings.append(PauliString(''.join(x_ops), 1.0))
342
+ self.mixer_hamiltonian = Hamiltonian(pauli_strings)
343
+ else:
344
+ self.mixer_hamiltonian = mixer_hamiltonian
345
+
346
+ def create_qaoa_circuit(self, parameters: np.ndarray) -> QuantumCircuit:
347
+ """Create QAOA circuit with given parameters
348
+
349
+ Args:
350
+ parameters: [beta_1, gamma_1, beta_2, gamma_2, ...] for p layers
351
+
352
+ Returns:
353
+ QAOA quantum circuit
354
+
355
+ """
356
+ if len(parameters) != 2 * self.p:
357
+ raise ValueError(f"Expected {2*self.p} parameters, got {len(parameters)}")
358
+
359
+ circuit = QuantumCircuit(self.cost_hamiltonian.num_qubits)
360
+
361
+ # Initialize in equal superposition
362
+ for i in range(circuit.num_qubits):
363
+ circuit.h(i)
364
+
365
+ # Apply QAOA layers
366
+ for layer in range(self.p):
367
+ gamma = parameters[2*layer]
368
+ beta = parameters[2*layer + 1]
369
+
370
+ # Apply cost Hamiltonian evolution: exp(-i γ H_C)
371
+ self._apply_hamiltonian_evolution(circuit, self.cost_hamiltonian, gamma)
372
+
373
+ # Apply mixer Hamiltonian evolution: exp(-i β H_M)
374
+ self._apply_hamiltonian_evolution(circuit, self.mixer_hamiltonian, beta)
375
+
376
+ return circuit
377
+
378
+ def _apply_hamiltonian_evolution(
379
+ self,
380
+ circuit: QuantumCircuit,
381
+ hamiltonian: Hamiltonian,
382
+ time: float
383
+ ) -> None:
384
+ """Apply Hamiltonian time evolution to circuit"""
385
+ for pauli_string in hamiltonian.pauli_strings:
386
+ angle = 2 * time * np.real(pauli_string.coefficient)
387
+ self._apply_pauli_rotation(circuit, pauli_string.pauli_ops, angle)
388
+
389
+ def _apply_pauli_rotation(
390
+ self,
391
+ circuit: QuantumCircuit,
392
+ pauli_ops: str,
393
+ angle: float
394
+ ) -> None:
395
+ """Apply Pauli string rotation to circuit"""
396
+ # Find qubits involved in non-identity operations
397
+ active_qubits = [i for i, op in enumerate(pauli_ops) if op != 'I']
398
+
399
+ if not active_qubits:
400
+ return # All identity, no rotation needed
401
+
402
+ # Change basis for X and Y measurements
403
+ for i in active_qubits:
404
+ if pauli_ops[i] == 'X':
405
+ circuit.h(i)
406
+ elif pauli_ops[i] == 'Y':
407
+ circuit.rx(np.pi/2, i)
408
+
409
+ # Apply ZZ...Z rotation using CNOT ladder
410
+ if len(active_qubits) == 1:
411
+ circuit.rz(angle, active_qubits[0])
412
+ else:
413
+ # CNOT ladder
414
+ for i in range(len(active_qubits) - 1):
415
+ circuit.cnot(active_qubits[i], active_qubits[-1])
416
+
417
+ # Rotation on last qubit
418
+ circuit.rz(angle, active_qubits[-1])
419
+
420
+ # Reverse CNOT ladder
421
+ for i in reversed(range(len(active_qubits) - 1)):
422
+ circuit.cnot(active_qubits[i], active_qubits[-1])
423
+
424
+ # Reverse basis change
425
+ for i in active_qubits:
426
+ if pauli_ops[i] == 'X':
427
+ circuit.h(i)
428
+ elif pauli_ops[i] == 'Y':
429
+ circuit.rx(-np.pi/2, i)
430
+
431
+ def cost_function(self, parameters: np.ndarray) -> float:
432
+ """QAOA cost function"""
433
+ circuit = self.create_qaoa_circuit(parameters)
434
+
435
+ if self.client is None:
436
+ # Simulate locally
437
+ state = self._simulate_circuit(circuit)
438
+ energy = float(np.real(self.cost_hamiltonian.expectation_value(state)))
439
+ else:
440
+ # Execute on quantum backend
441
+ energy = self._execute_expectation_value(circuit, self.cost_hamiltonian)
442
+
443
+ return energy
444
+
445
+ def _simulate_circuit(self, circuit: QuantumCircuit) -> np.ndarray:
446
+ """Simulate QAOA circuit"""
447
+ # Simplified simulation - would use proper quantum simulator
448
+ return np.ones(2 ** circuit.num_qubits, dtype=complex) / np.sqrt(2 ** circuit.num_qubits)
449
+
450
+ def _execute_expectation_value(
451
+ self,
452
+ circuit: QuantumCircuit,
453
+ hamiltonian: Hamiltonian
454
+ ) -> float:
455
+ """Execute expectation value on quantum backend"""
456
+ # Similar to VQE implementation
457
+ return 0.0 # Placeholder
458
+
459
+ def run(
460
+ self,
461
+ initial_parameters: Optional[np.ndarray] = None,
462
+ **optimizer_kwargs
463
+ ) -> Dict[str, Any]:
464
+ """Run QAOA optimization
465
+
466
+ Args:
467
+ initial_parameters: Initial [beta, gamma] parameters
468
+ **optimizer_kwargs: Additional optimizer options
469
+
470
+ Returns:
471
+ QAOA results
472
+
473
+ """
474
+ if initial_parameters is None:
475
+ # Random initialization
476
+ initial_parameters = np.random.uniform(0, 2*np.pi, 2*self.p)
477
+
478
+ result = minimize(
479
+ fun=self.cost_function,
480
+ x0=initial_parameters,
481
+ method=self.optimizer,
482
+ **optimizer_kwargs
483
+ )
484
+
485
+ optimal_circuit = self.create_qaoa_circuit(result.x)
486
+
487
+ return {
488
+ "optimal_energy": result.fun,
489
+ "optimal_parameters": result.x,
490
+ "optimal_circuit": optimal_circuit,
491
+ "converged": result.success,
492
+ "num_iterations": result.nit
493
+ }
494
+
495
+
496
+ class QuantumNeuralNetwork(BaseEstimator):
497
+ """Quantum Neural Network for machine learning tasks
498
+ """
499
+
500
+ def __init__(
501
+ self,
502
+ num_qubits: int,
503
+ num_layers: int = 2,
504
+ entangling_gates: str = "CNOT",
505
+ client: Optional[SuperQuantXClient] = None,
506
+ optimizer: str = "SLSQP",
507
+ learning_rate: float = 0.01
508
+ ):
509
+ """Initialize Quantum Neural Network
510
+
511
+ Args:
512
+ num_qubits: Number of qubits
513
+ num_layers: Number of variational layers
514
+ entangling_gates: Type of entangling gates
515
+ client: SuperQuantX client
516
+ optimizer: Classical optimizer
517
+ learning_rate: Learning rate for optimization
518
+
519
+ """
520
+ self.num_qubits = num_qubits
521
+ self.num_layers = num_layers
522
+ self.entangling_gates = entangling_gates
523
+ self.client = client
524
+ self.optimizer = optimizer
525
+ self.learning_rate = learning_rate
526
+
527
+ # Calculate number of parameters
528
+ self.num_parameters = num_qubits * num_layers * 3 # 3 rotation angles per qubit per layer
529
+ self.parameters: Optional[np.ndarray] = None
530
+
531
+ self.is_fitted_ = False
532
+
533
+ def create_ansatz(self, parameters: np.ndarray, x: Optional[np.ndarray] = None) -> QuantumCircuit:
534
+ """Create parameterized quantum circuit ansatz
535
+
536
+ Args:
537
+ parameters: Variational parameters
538
+ x: Input data for encoding (optional)
539
+
540
+ Returns:
541
+ Quantum circuit
542
+
543
+ """
544
+ circuit = QuantumCircuit(self.num_qubits)
545
+
546
+ # Data encoding (amplitude encoding)
547
+ if x is not None:
548
+ self._encode_data(circuit, x)
549
+
550
+ param_idx = 0
551
+ for layer in range(self.num_layers):
552
+ # Parameterized single-qubit rotations
553
+ for qubit in range(self.num_qubits):
554
+ circuit.rx(parameters[param_idx], qubit)
555
+ circuit.ry(parameters[param_idx + 1], qubit)
556
+ circuit.rz(parameters[param_idx + 2], qubit)
557
+ param_idx += 3
558
+
559
+ # Entangling gates
560
+ if layer < self.num_layers - 1: # No entangling on last layer
561
+ self._add_entangling_layer(circuit)
562
+
563
+ return circuit
564
+
565
+ def _encode_data(self, circuit: QuantumCircuit, x: np.ndarray) -> None:
566
+ """Encode classical data into quantum circuit"""
567
+ # Simple angle encoding
568
+ for i, value in enumerate(x[:self.num_qubits]):
569
+ circuit.ry(value, i)
570
+
571
+ def _add_entangling_layer(self, circuit: QuantumCircuit) -> None:
572
+ """Add entangling gates between qubits"""
573
+ if self.entangling_gates == "CNOT":
574
+ for i in range(self.num_qubits - 1):
575
+ circuit.cnot(i, i + 1)
576
+ elif self.entangling_gates == "CZ":
577
+ for i in range(self.num_qubits - 1):
578
+ circuit.cz(i, i + 1)
579
+ else:
580
+ raise ValueError(f"Unknown entangling gates: {self.entangling_gates}")
581
+
582
+ def forward(self, X: np.ndarray, parameters: np.ndarray) -> np.ndarray:
583
+ """Forward pass through quantum neural network
584
+
585
+ Args:
586
+ X: Input data
587
+ parameters: Network parameters
588
+
589
+ Returns:
590
+ Output predictions
591
+
592
+ """
593
+ predictions = []
594
+
595
+ for x in X:
596
+ circuit = self.create_ansatz(parameters, x)
597
+
598
+ # Add measurement
599
+ circuit.measure(0, 0) # Measure first qubit
600
+
601
+ if self.client is None:
602
+ # Simulate locally
603
+ prob_0 = self._simulate_measurement_probability(circuit)
604
+ else:
605
+ # Execute on quantum backend
606
+ prob_0 = self._execute_measurement_probability(circuit)
607
+
608
+ # Convert probability to prediction
609
+ prediction = 2 * prob_0 - 1 # Map [0,1] to [-1,1]
610
+ predictions.append(prediction)
611
+
612
+ return np.array(predictions)
613
+
614
+ def _simulate_measurement_probability(self, circuit: QuantumCircuit) -> float:
615
+ """Simulate measurement probability"""
616
+ # Simplified simulation
617
+ return 0.5 # Placeholder
618
+
619
+ def _execute_measurement_probability(self, circuit: QuantumCircuit) -> float:
620
+ """Execute measurement on quantum backend"""
621
+ if self.client is None:
622
+ raise ValueError("Client required for quantum execution")
623
+
624
+ job = self.client.submit_job_sync(
625
+ circuit_data=circuit.to_dict(),
626
+ shots=1024
627
+ )
628
+ result = self.client.wait_for_job_sync(job.job_id)
629
+
630
+ counts = result.results.get("counts", {})
631
+ total_shots = sum(counts.values())
632
+
633
+ # Probability of measuring |0⟩
634
+ prob_0 = counts.get("0", 0) / total_shots if total_shots > 0 else 0.5
635
+ return prob_0
636
+
637
+ def loss_function(self, parameters: np.ndarray, X: np.ndarray, y: np.ndarray) -> float:
638
+ """Calculate loss function"""
639
+ predictions = self.forward(X, parameters)
640
+ # Mean squared error
641
+ return np.mean((predictions - y) ** 2)
642
+
643
+ def fit(self, X: np.ndarray, y: np.ndarray) -> "QuantumNeuralNetwork":
644
+ """Fit the quantum neural network
645
+
646
+ Args:
647
+ X: Training data
648
+ y: Training labels
649
+
650
+ Returns:
651
+ Fitted model
652
+
653
+ """
654
+ # Initialize parameters
655
+ initial_parameters = np.random.uniform(0, 2*np.pi, self.num_parameters)
656
+
657
+ # Optimize parameters
658
+ result = minimize(
659
+ fun=lambda params: self.loss_function(params, X, y),
660
+ x0=initial_parameters,
661
+ method=self.optimizer
662
+ )
663
+
664
+ self.parameters = result.x
665
+ self.is_fitted_ = True
666
+
667
+ return self
668
+
669
+ def predict(self, X: np.ndarray) -> np.ndarray:
670
+ """Make predictions
671
+
672
+ Args:
673
+ X: Input data
674
+
675
+ Returns:
676
+ Predictions
677
+
678
+ """
679
+ if not self.is_fitted_:
680
+ raise ValueError("Model must be fitted before making predictions")
681
+
682
+ return self.forward(X, self.parameters)
683
+
684
+ def score(self, X: np.ndarray, y: np.ndarray) -> float:
685
+ """Calculate R² score
686
+
687
+ Args:
688
+ X: Test data
689
+ y: True labels
690
+
691
+ Returns:
692
+ R² score
693
+
694
+ """
695
+ predictions = self.predict(X)
696
+ ss_res = np.sum((y - predictions) ** 2)
697
+ ss_tot = np.sum((y - np.mean(y)) ** 2)
698
+ return 1 - (ss_res / ss_tot) if ss_tot != 0 else 0.0
699
+
700
+
701
+ class QuantumFourierTransform(QuantumAlgorithm):
702
+ """Quantum Fourier Transform implementation
703
+ """
704
+
705
+ def __init__(self, num_qubits: int, client: Optional[SuperQuantXClient] = None):
706
+ """Initialize QFT
707
+
708
+ Args:
709
+ num_qubits: Number of qubits
710
+ client: SuperQuantX client
711
+
712
+ """
713
+ super().__init__(client)
714
+ self.num_qubits = num_qubits
715
+
716
+ def create_qft_circuit(self, inverse: bool = False) -> QuantumCircuit:
717
+ """Create QFT circuit
718
+
719
+ Args:
720
+ inverse: Whether to create inverse QFT
721
+
722
+ Returns:
723
+ QFT circuit
724
+
725
+ """
726
+ circuit = QuantumCircuit(self.num_qubits)
727
+
728
+ if inverse:
729
+ # Inverse QFT: reverse the forward QFT
730
+ qft_circuit = self.create_qft_circuit(inverse=False)
731
+ return qft_circuit.inverse()
732
+
733
+ # Forward QFT
734
+ for j in range(self.num_qubits):
735
+ # Apply Hadamard
736
+ circuit.h(j)
737
+
738
+ # Apply controlled phase rotations
739
+ for k in range(j + 1, self.num_qubits):
740
+ angle = np.pi / (2 ** (k - j))
741
+ circuit.crz(angle, k, j)
742
+
743
+ # Reverse qubit order
744
+ for i in range(self.num_qubits // 2):
745
+ circuit.swap(i, self.num_qubits - 1 - i)
746
+
747
+ return circuit
748
+
749
+ def run(self, initial_state: Optional[np.ndarray] = None) -> Dict[str, Any]:
750
+ """Execute QFT
751
+
752
+ Args:
753
+ initial_state: Initial quantum state
754
+
755
+ Returns:
756
+ QFT results
757
+
758
+ """
759
+ circuit = self.create_qft_circuit()
760
+
761
+ if self.client is None:
762
+ # Local simulation
763
+ if initial_state is None:
764
+ initial_state = np.zeros(2 ** self.num_qubits, dtype=complex)
765
+ initial_state[0] = 1.0
766
+
767
+ # Apply QFT (simplified)
768
+ fourier_state = np.fft.fft(initial_state) / np.sqrt(len(initial_state))
769
+
770
+ return {
771
+ "circuit": circuit,
772
+ "initial_state": initial_state,
773
+ "fourier_state": fourier_state
774
+ }
775
+ else:
776
+ # Execute on quantum backend
777
+ job = self.client.submit_job_sync(circuit_data=circuit.to_dict())
778
+ result = self.client.wait_for_job_sync(job.job_id)
779
+
780
+ return {
781
+ "circuit": circuit,
782
+ "job_result": result
783
+ }
784
+
785
+
786
+ # Factory functions for common algorithms
787
+ def create_vqe_for_molecule(
788
+ molecule_name: str,
789
+ basis_set: str = "sto-3g",
790
+ client: Optional[SuperQuantXClient] = None
791
+ ) -> VQE:
792
+ """Create VQE instance for molecular ground state calculation
793
+
794
+ Args:
795
+ molecule_name: Molecule identifier (e.g., "H2", "LiH")
796
+ basis_set: Quantum chemistry basis set
797
+ client: SuperQuantX client
798
+
799
+ Returns:
800
+ Configured VQE instance
801
+
802
+ """
803
+ # This would interface with quantum chemistry libraries
804
+ # For now, create a simple Hamiltonian
805
+
806
+ if molecule_name.upper() == "H2":
807
+ # Simple H2 Hamiltonian (placeholder)
808
+ hamiltonian = Hamiltonian.from_dict({
809
+ "ZZ": -1.0523732,
810
+ "ZI": -0.39793742,
811
+ "IZ": -0.39793742,
812
+ "XX": -0.01128010,
813
+ "YY": 0.01128010
814
+ })
815
+
816
+ def h2_ansatz(params):
817
+ circuit = QuantumCircuit(2)
818
+ circuit.h(0)
819
+ circuit.h(1)
820
+ circuit.ry(params[0], 0)
821
+ circuit.ry(params[1], 1)
822
+ circuit.cnot(0, 1)
823
+ return circuit
824
+
825
+ return VQE(hamiltonian, h2_ansatz, client)
826
+
827
+ else:
828
+ raise ValueError(f"Molecule {molecule_name} not implemented")
829
+
830
+
831
+ def create_qaoa_for_max_cut(
832
+ graph_edges: List[Tuple[int, int]],
833
+ num_nodes: int,
834
+ p: int = 1,
835
+ client: Optional[SuperQuantXClient] = None
836
+ ) -> QAOA:
837
+ """Create QAOA instance for Max-Cut problem
838
+
839
+ Args:
840
+ graph_edges: List of graph edges as (node1, node2) tuples
841
+ num_nodes: Number of nodes in graph
842
+ p: QAOA depth parameter
843
+ client: SuperQuantX client
844
+
845
+ Returns:
846
+ Configured QAOA instance
847
+
848
+ """
849
+ # Build Max-Cut Hamiltonian
850
+ pauli_strings = []
851
+
852
+ for edge in graph_edges:
853
+ i, j = edge
854
+ if i < num_nodes and j < num_nodes:
855
+ # Add ZZ term for edge (i,j)
856
+ zz_ops = ['I'] * num_nodes
857
+ zz_ops[i] = 'Z'
858
+ zz_ops[j] = 'Z'
859
+ pauli_strings.append(PauliString(''.join(zz_ops), 0.5))
860
+
861
+ cost_hamiltonian = Hamiltonian(pauli_strings)
862
+
863
+ return QAOA(cost_hamiltonian, p=p, client=client)