superquantx 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. superquantx/__init__.py +321 -0
  2. superquantx/algorithms/__init__.py +55 -0
  3. superquantx/algorithms/base_algorithm.py +413 -0
  4. superquantx/algorithms/hybrid_classifier.py +628 -0
  5. superquantx/algorithms/qaoa.py +406 -0
  6. superquantx/algorithms/quantum_agents.py +1006 -0
  7. superquantx/algorithms/quantum_kmeans.py +575 -0
  8. superquantx/algorithms/quantum_nn.py +544 -0
  9. superquantx/algorithms/quantum_pca.py +499 -0
  10. superquantx/algorithms/quantum_svm.py +346 -0
  11. superquantx/algorithms/vqe.py +553 -0
  12. superquantx/algorithms.py +863 -0
  13. superquantx/backends/__init__.py +265 -0
  14. superquantx/backends/base_backend.py +321 -0
  15. superquantx/backends/braket_backend.py +420 -0
  16. superquantx/backends/cirq_backend.py +466 -0
  17. superquantx/backends/ocean_backend.py +491 -0
  18. superquantx/backends/pennylane_backend.py +419 -0
  19. superquantx/backends/qiskit_backend.py +451 -0
  20. superquantx/backends/simulator_backend.py +455 -0
  21. superquantx/backends/tket_backend.py +519 -0
  22. superquantx/circuits.py +447 -0
  23. superquantx/cli/__init__.py +28 -0
  24. superquantx/cli/commands.py +528 -0
  25. superquantx/cli/main.py +254 -0
  26. superquantx/client.py +298 -0
  27. superquantx/config.py +326 -0
  28. superquantx/exceptions.py +287 -0
  29. superquantx/gates.py +588 -0
  30. superquantx/logging_config.py +347 -0
  31. superquantx/measurements.py +702 -0
  32. superquantx/ml.py +936 -0
  33. superquantx/noise.py +760 -0
  34. superquantx/utils/__init__.py +83 -0
  35. superquantx/utils/benchmarking.py +523 -0
  36. superquantx/utils/classical_utils.py +575 -0
  37. superquantx/utils/feature_mapping.py +467 -0
  38. superquantx/utils/optimization.py +410 -0
  39. superquantx/utils/quantum_utils.py +456 -0
  40. superquantx/utils/visualization.py +654 -0
  41. superquantx/version.py +33 -0
  42. superquantx-0.1.0.dist-info/METADATA +365 -0
  43. superquantx-0.1.0.dist-info/RECORD +46 -0
  44. superquantx-0.1.0.dist-info/WHEEL +4 -0
  45. superquantx-0.1.0.dist-info/entry_points.txt +2 -0
  46. superquantx-0.1.0.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,265 @@
1
+ """Quantum computing backends for SuperQuantX.
2
+
3
+ This module provides a unified interface to various quantum computing
4
+ platforms and simulators, including PennyLane, Qiskit, Cirq, and others.
5
+ """
6
+
7
+ import logging
8
+ from typing import Any, Dict, Optional, Union
9
+
10
+ from .base_backend import BaseBackend
11
+ from .simulator_backend import SimulatorBackend
12
+
13
+
14
+ # Import backends with graceful failure handling
15
+ try:
16
+ from .pennylane_backend import PennyLaneBackend
17
+ except ImportError:
18
+ PennyLaneBackend = None
19
+
20
+ try:
21
+ from .qiskit_backend import QiskitBackend
22
+ except ImportError:
23
+ QiskitBackend = None
24
+
25
+ try:
26
+ from .cirq_backend import CirqBackend
27
+ except ImportError:
28
+ CirqBackend = None
29
+
30
+ try:
31
+ from .braket_backend import BraketBackend
32
+ except ImportError:
33
+ BraketBackend = None
34
+
35
+ try:
36
+ from .tket_backend import TKETBackend
37
+ except ImportError:
38
+ TKETBackend = None
39
+
40
+ try:
41
+ from .ocean_backend import OceanBackend
42
+ except ImportError:
43
+ OceanBackend = None
44
+
45
+ logger = logging.getLogger(__name__)
46
+
47
+ # Registry of available backends
48
+ BACKEND_REGISTRY = {
49
+ 'simulator': SimulatorBackend,
50
+ 'auto': None, # Auto-selection
51
+ }
52
+
53
+ # Add backends if they were imported successfully
54
+ if PennyLaneBackend is not None:
55
+ BACKEND_REGISTRY['pennylane'] = PennyLaneBackend
56
+ if QiskitBackend is not None:
57
+ BACKEND_REGISTRY['qiskit'] = QiskitBackend
58
+ if CirqBackend is not None:
59
+ BACKEND_REGISTRY['cirq'] = CirqBackend
60
+ if BraketBackend is not None:
61
+ BACKEND_REGISTRY['braket'] = BraketBackend
62
+ if TKETBackend is not None:
63
+ BACKEND_REGISTRY['tket'] = TKETBackend
64
+ BACKEND_REGISTRY['quantinuum'] = TKETBackend # Alias for Quantinuum
65
+ if OceanBackend is not None:
66
+ BACKEND_REGISTRY['ocean'] = OceanBackend
67
+ BACKEND_REGISTRY['dwave'] = OceanBackend # Alias for D-Wave
68
+
69
+ # Aliases for common backends
70
+ BACKEND_ALIASES = {
71
+ 'pl': 'pennylane',
72
+ 'penny': 'pennylane',
73
+ 'qk': 'qiskit',
74
+ 'ibm': 'qiskit',
75
+ 'google': 'cirq',
76
+ 'aws': 'braket',
77
+ 'amazon': 'braket',
78
+ 'tk': 'tket',
79
+ 'pytket': 'tket',
80
+ 'h1': 'quantinuum', # Quantinuum H-Series
81
+ 'h2': 'quantinuum',
82
+ 'annealing': 'ocean',
83
+ 'quantum_annealing': 'ocean',
84
+ 'sim': 'simulator',
85
+ 'local': 'simulator',
86
+ }
87
+
88
+ def get_backend(backend: Union[str, BaseBackend], **kwargs) -> BaseBackend:
89
+ """Get a quantum backend instance.
90
+
91
+ Args:
92
+ backend: Backend name or instance
93
+ **kwargs: Backend configuration parameters
94
+
95
+ Returns:
96
+ Backend instance
97
+
98
+ Raises:
99
+ ValueError: If backend is not supported
100
+ ImportError: If backend dependencies are missing
101
+
102
+ Example:
103
+ >>> backend = get_backend('pennylane', device='default.qubit')
104
+ >>> backend = get_backend('qiskit', provider='IBMQ')
105
+
106
+ """
107
+ if isinstance(backend, BaseBackend):
108
+ return backend
109
+
110
+ if not isinstance(backend, str):
111
+ raise ValueError(f"Backend must be string or BaseBackend instance, got {type(backend)}")
112
+
113
+ # Resolve aliases
114
+ backend_name = BACKEND_ALIASES.get(backend.lower(), backend.lower())
115
+
116
+ # Auto-select backend if requested
117
+ if backend_name == 'auto':
118
+ backend_name = _auto_select_backend()
119
+
120
+ # Get backend class
121
+ if backend_name not in BACKEND_REGISTRY:
122
+ available = list(BACKEND_REGISTRY.keys())
123
+ raise ValueError(f"Backend '{backend_name}' not supported. Available: {available}")
124
+
125
+ backend_class = BACKEND_REGISTRY[backend_name]
126
+
127
+ try:
128
+ logger.info(f"Initializing {backend_name} backend")
129
+ return backend_class(**kwargs)
130
+ except ImportError as e:
131
+ logger.error(f"Failed to import {backend_name} backend: {e}")
132
+ raise ImportError(f"Backend '{backend_name}' requires additional dependencies: {e}")
133
+ except Exception as e:
134
+ logger.error(f"Failed to initialize {backend_name} backend: {e}")
135
+ raise
136
+
137
+ def _auto_select_backend() -> str:
138
+ """Automatically select the best available backend.
139
+
140
+ Returns:
141
+ Backend name
142
+
143
+ """
144
+ # Try backends in order of preference
145
+ preference_order = ['pennylane', 'qiskit', 'cirq', 'braket', 'tket', 'simulator']
146
+
147
+ for backend_name in preference_order:
148
+ try:
149
+ backend_class = BACKEND_REGISTRY[backend_name]
150
+ # Try to instantiate with minimal config
151
+ test_backend = backend_class()
152
+ logger.info(f"Auto-selected backend: {backend_name}")
153
+ return backend_name
154
+ except (ImportError, Exception) as e:
155
+ logger.debug(f"Backend {backend_name} not available: {e}")
156
+ continue
157
+
158
+ # Fallback to simulator
159
+ logger.warning("No preferred backends available, falling back to simulator")
160
+ return 'simulator'
161
+
162
+ def list_available_backends() -> Dict[str, Dict[str, Any]]:
163
+ """List all available backends and their status.
164
+
165
+ Returns:
166
+ Dictionary with backend information
167
+
168
+ """
169
+ backend_info = {}
170
+
171
+ for name, backend_class in BACKEND_REGISTRY.items():
172
+ if name == 'auto' or backend_class is None:
173
+ continue
174
+
175
+ try:
176
+ # Try to instantiate to check availability
177
+ test_instance = backend_class()
178
+ backend_info[name] = {
179
+ 'available': True,
180
+ 'class': backend_class.__name__,
181
+ 'description': getattr(backend_class, '__doc__', '').split('\n')[0] if backend_class.__doc__ else '',
182
+ 'capabilities': getattr(test_instance, 'capabilities', {}),
183
+ }
184
+ except ImportError:
185
+ backend_info[name] = {
186
+ 'available': False,
187
+ 'class': backend_class.__name__,
188
+ 'reason': 'Missing dependencies',
189
+ }
190
+ except Exception as e:
191
+ backend_info[name] = {
192
+ 'available': False,
193
+ 'class': backend_class.__name__,
194
+ 'reason': str(e),
195
+ }
196
+
197
+ return backend_info
198
+
199
+ def check_backend_compatibility(backend_name: str) -> Dict[str, Any]:
200
+ """Check compatibility and requirements for a specific backend.
201
+
202
+ Args:
203
+ backend_name: Name of the backend to check
204
+
205
+ Returns:
206
+ Compatibility information
207
+
208
+ """
209
+ backend_name = BACKEND_ALIASES.get(backend_name.lower(), backend_name.lower())
210
+
211
+ if backend_name not in BACKEND_REGISTRY:
212
+ return {'compatible': False, 'reason': 'Backend not supported'}
213
+
214
+ backend_class = BACKEND_REGISTRY[backend_name]
215
+
216
+ try:
217
+ # Try basic instantiation
218
+ test_backend = backend_class()
219
+
220
+ return {
221
+ 'compatible': True,
222
+ 'backend_class': backend_class.__name__,
223
+ 'requirements_met': True,
224
+ 'capabilities': getattr(test_backend, 'capabilities', {}),
225
+ 'version_info': getattr(test_backend, 'get_version_info', lambda: {})(),
226
+ }
227
+
228
+ except ImportError as e:
229
+ return {
230
+ 'compatible': False,
231
+ 'reason': 'Missing dependencies',
232
+ 'missing_packages': str(e),
233
+ 'requirements_met': False,
234
+ }
235
+ except Exception as e:
236
+ return {
237
+ 'compatible': False,
238
+ 'reason': str(e),
239
+ 'requirements_met': False,
240
+ }
241
+
242
+ # Make backend classes available at module level
243
+ __all__ = [
244
+ 'BaseBackend',
245
+ 'SimulatorBackend',
246
+ 'get_backend',
247
+ 'list_available_backends',
248
+ 'check_backend_compatibility',
249
+ 'BACKEND_REGISTRY',
250
+ 'BACKEND_ALIASES',
251
+ ]
252
+
253
+ # Add available backends to __all__
254
+ if PennyLaneBackend is not None:
255
+ __all__.append('PennyLaneBackend')
256
+ if QiskitBackend is not None:
257
+ __all__.append('QiskitBackend')
258
+ if CirqBackend is not None:
259
+ __all__.append('CirqBackend')
260
+ if BraketBackend is not None:
261
+ __all__.append('BraketBackend')
262
+ if TKETBackend is not None:
263
+ __all__.append('TKETBackend')
264
+ if OceanBackend is not None:
265
+ __all__.append('OceanBackend')
@@ -0,0 +1,321 @@
1
+ """Base backend interface for quantum computing platforms.
2
+
3
+ This module defines the abstract interface that all quantum backends
4
+ must implement to work with SuperQuantX algorithms.
5
+ """
6
+
7
+ import logging
8
+ from abc import ABC, abstractmethod
9
+ from typing import Any, Dict, List, Optional, Union
10
+
11
+ import numpy as np
12
+
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+ class BaseBackend(ABC):
17
+ """Abstract base class for quantum computing backends.
18
+
19
+ This class defines the interface that all quantum backends must implement
20
+ to provide quantum circuit execution, measurement, and algorithm-specific
21
+ operations for SuperQuantX.
22
+
23
+ Args:
24
+ device: Device or simulator to use
25
+ shots: Default number of measurement shots
26
+ **kwargs: Backend-specific configuration
27
+
28
+ """
29
+
30
+ def __init__(self, device: Optional[str] = None, shots: int = 1024, **kwargs):
31
+ self.device = device
32
+ self.shots = shots
33
+ self.config = kwargs
34
+ self.capabilities = {}
35
+
36
+ self._initialize_backend()
37
+
38
+ @abstractmethod
39
+ def _initialize_backend(self) -> None:
40
+ """Initialize backend-specific components."""
41
+ pass
42
+
43
+ # ========================================================================
44
+ # Core Circuit Operations
45
+ # ========================================================================
46
+
47
+ @abstractmethod
48
+ def create_circuit(self, n_qubits: int) -> Any:
49
+ """Create a quantum circuit with n qubits."""
50
+ pass
51
+
52
+ @abstractmethod
53
+ def add_gate(self, circuit: Any, gate: str, qubits: Union[int, List[int]],
54
+ params: Optional[List[float]] = None) -> Any:
55
+ """Add a quantum gate to the circuit."""
56
+ pass
57
+
58
+ @abstractmethod
59
+ def add_measurement(self, circuit: Any, qubits: Optional[List[int]] = None) -> Any:
60
+ """Add measurement operations to the circuit."""
61
+ pass
62
+
63
+ @abstractmethod
64
+ def execute_circuit(self, circuit: Any, shots: Optional[int] = None) -> Dict[str, Any]:
65
+ """Execute quantum circuit and return results."""
66
+ pass
67
+
68
+ @abstractmethod
69
+ def get_statevector(self, circuit: Any) -> np.ndarray:
70
+ """Get the statevector from a quantum circuit."""
71
+ pass
72
+
73
+ # ========================================================================
74
+ # Quantum Algorithm Support
75
+ # ========================================================================
76
+
77
+ def create_feature_map(self, n_features: int, feature_map: str, reps: int = 1) -> Any:
78
+ """Create quantum feature map for data encoding."""
79
+ logger.warning(f"Feature map '{feature_map}' not implemented in {self.__class__.__name__}")
80
+ return self.create_circuit(n_features)
81
+
82
+ def compute_kernel_matrix(self, X1: np.ndarray, X2: np.ndarray,
83
+ feature_map: Any, shots: Optional[int] = None) -> np.ndarray:
84
+ """Compute quantum kernel matrix between data points."""
85
+ logger.warning(f"Kernel matrix computation not implemented in {self.__class__.__name__}")
86
+ # Fallback to RBF kernel
87
+ from sklearn.metrics.pairwise import rbf_kernel
88
+ return rbf_kernel(X1, X2)
89
+
90
+ def create_ansatz(self, ansatz_type: str, n_qubits: int, params: np.ndarray,
91
+ include_custom_gates: bool = False) -> Any:
92
+ """Create parameterized ansatz circuit."""
93
+ logger.warning(f"Ansatz '{ansatz_type}' not implemented in {self.__class__.__name__}")
94
+ return self.create_circuit(n_qubits)
95
+
96
+ def compute_expectation(self, circuit: Any, hamiltonian: Any,
97
+ shots: Optional[int] = None) -> float:
98
+ """Compute expectation value of Hamiltonian."""
99
+ logger.warning(f"Expectation computation not implemented in {self.__class__.__name__}")
100
+ return 0.0
101
+
102
+ def create_qaoa_circuit(self, n_qubits: int, gammas: np.ndarray, betas: np.ndarray,
103
+ problem_hamiltonian: Any, mixer_hamiltonian: Any,
104
+ initial_state: Any, problem_instance: Any) -> Any:
105
+ """Create QAOA circuit with given parameters."""
106
+ logger.warning(f"QAOA circuit not implemented in {self.__class__.__name__}")
107
+ return self.create_circuit(n_qubits)
108
+
109
+ def execute_qaoa(self, circuit: Any, problem_hamiltonian: Any, problem_instance: Any,
110
+ shots: Optional[int] = None) -> float:
111
+ """Execute QAOA circuit and return expectation value."""
112
+ logger.warning(f"QAOA execution not implemented in {self.__class__.__name__}")
113
+ return 0.0
114
+
115
+ def sample_circuit(self, circuit: Any, shots: Optional[int] = None) -> np.ndarray:
116
+ """Sample bit strings from quantum circuit."""
117
+ result = self.execute_circuit(circuit, shots)
118
+ # Convert result to bit string array
119
+ return self._result_to_bitstrings(result)
120
+
121
+ # ========================================================================
122
+ # Data Encoding and Processing
123
+ # ========================================================================
124
+
125
+ def encode_data_point(self, data: np.ndarray, encoding: str, n_qubits: int) -> Any:
126
+ """Encode classical data into quantum state."""
127
+ circuit = self.create_circuit(n_qubits)
128
+
129
+ if encoding == 'amplitude':
130
+ return self._amplitude_encoding(circuit, data)
131
+ elif encoding == 'angle':
132
+ return self._angle_encoding(circuit, data)
133
+ elif encoding == 'basis':
134
+ return self._basis_encoding(circuit, data)
135
+ else:
136
+ logger.warning(f"Encoding '{encoding}' not implemented, using angle encoding")
137
+ return self._angle_encoding(circuit, data)
138
+
139
+ def _amplitude_encoding(self, circuit: Any, data: np.ndarray) -> Any:
140
+ """Amplitude encoding of data."""
141
+ # Normalize data
142
+ norm = np.linalg.norm(data)
143
+ if norm > 0:
144
+ normalized_data = data / norm
145
+ else:
146
+ normalized_data = data
147
+
148
+ # Simple implementation - would need proper state preparation
149
+ logger.warning("Amplitude encoding not fully implemented")
150
+ return circuit
151
+
152
+ def _angle_encoding(self, circuit: Any, data: np.ndarray) -> Any:
153
+ """Angle encoding of data into rotation gates."""
154
+ for i, value in enumerate(data):
155
+ if i < self._get_n_qubits(circuit):
156
+ self.add_gate(circuit, 'RY', i, [value])
157
+ return circuit
158
+
159
+ def _basis_encoding(self, circuit: Any, data: np.ndarray) -> Any:
160
+ """Basis encoding of data."""
161
+ # Convert to binary and encode
162
+ binary_data = np.unpackbits(data.astype(np.uint8))
163
+ for i, bit in enumerate(binary_data):
164
+ if i < self._get_n_qubits(circuit) and bit:
165
+ self.add_gate(circuit, 'X', i)
166
+ return circuit
167
+
168
+ # ========================================================================
169
+ # Machine Learning Specific Operations
170
+ # ========================================================================
171
+
172
+ def compute_quantum_distance(self, x1: np.ndarray, x2: np.ndarray, metric: str,
173
+ encoding: str, n_qubits: int, shots: int) -> float:
174
+ """Compute quantum distance between two data points."""
175
+ # Encode both data points
176
+ circuit1 = self.encode_data_point(x1, encoding, n_qubits)
177
+ circuit2 = self.encode_data_point(x2, encoding, n_qubits)
178
+
179
+ # Simple distance approximation using overlap
180
+ # This is a placeholder - actual implementation would use swap test or similar
181
+ if metric == 'euclidean':
182
+ return np.linalg.norm(x1 - x2)
183
+ elif metric == 'manhattan':
184
+ return np.sum(np.abs(x1 - x2))
185
+ else:
186
+ return np.linalg.norm(x1 - x2)
187
+
188
+ def execute_qnn(self, input_data: np.ndarray, weights: np.ndarray,
189
+ quantum_layers: List[Dict], classical_layers: List[Dict],
190
+ encoding: str, measurement: str, shots: int) -> np.ndarray:
191
+ """Execute quantum neural network."""
192
+ batch_size = input_data.shape[0]
193
+ n_qubits = len(weights) // len(quantum_layers) if quantum_layers else 1
194
+
195
+ # Get expected output size from classical layers
196
+ expected_output_size = None
197
+ if classical_layers:
198
+ for layer in classical_layers:
199
+ if 'units' in layer:
200
+ expected_output_size = layer['units']
201
+ break
202
+
203
+
204
+ outputs = []
205
+ for sample in input_data:
206
+ # Create circuit
207
+ circuit = self.create_circuit(n_qubits)
208
+
209
+ # Encode input data
210
+ circuit = self.encode_data_point(sample, encoding, n_qubits)
211
+
212
+ # Add variational layers
213
+ param_idx = 0
214
+ for layer in quantum_layers:
215
+ layer_params = weights[param_idx:param_idx + n_qubits * 2]
216
+ circuit = self._add_variational_layer(circuit, layer_params)
217
+ param_idx += n_qubits * 2
218
+
219
+ # Measure
220
+ if measurement == 'expectation':
221
+ # Compute expectation values
222
+ result = self._compute_pauli_expectation(circuit, ['Z'] * n_qubits)
223
+ else:
224
+ # Sample and get probabilities
225
+ result = self.execute_circuit(circuit, shots)
226
+ result = self._result_to_probabilities(result)
227
+
228
+ # Apply classical layers if present
229
+ original_length = len(result)
230
+ if classical_layers and expected_output_size:
231
+ # Simple linear transformation to get desired output size
232
+ if len(result) != expected_output_size:
233
+ # Reshape/transform the quantum output to match expected size
234
+ if len(result) > expected_output_size:
235
+ # Take first n elements or average
236
+ result = result[:expected_output_size]
237
+ else:
238
+ # Pad with zeros or repeat
239
+ result = np.pad(result, (0, expected_output_size - len(result)), mode='constant')
240
+
241
+ outputs.append(result)
242
+
243
+ return np.array(outputs)
244
+
245
+ def _add_variational_layer(self, circuit: Any, params: np.ndarray) -> Any:
246
+ """Add a variational layer to circuit."""
247
+ n_qubits = self._get_n_qubits(circuit)
248
+
249
+ # RY rotations
250
+ for i in range(n_qubits):
251
+ if i < len(params) // 2:
252
+ self.add_gate(circuit, 'RY', i, [params[i]])
253
+
254
+ # Entangling gates
255
+ for i in range(n_qubits - 1):
256
+ self.add_gate(circuit, 'CNOT', [i, i + 1])
257
+
258
+ # RZ rotations
259
+ for i in range(n_qubits):
260
+ if i + n_qubits < len(params):
261
+ self.add_gate(circuit, 'RZ', i, [params[i + n_qubits]])
262
+
263
+ return circuit
264
+
265
+ # ========================================================================
266
+ # Utility Methods
267
+ # ========================================================================
268
+
269
+ @abstractmethod
270
+ def _get_n_qubits(self, circuit: Any) -> int:
271
+ """Get number of qubits in circuit."""
272
+ pass
273
+
274
+ def _result_to_bitstrings(self, result: Dict[str, Any]) -> np.ndarray:
275
+ """Convert execution result to bit string array."""
276
+ # This is backend-specific and should be overridden
277
+ if 'counts' in result:
278
+ counts = result['counts']
279
+ bitstrings = []
280
+ for bitstring, count in counts.items():
281
+ for _ in range(count):
282
+ bitstrings.append([int(b) for b in bitstring])
283
+ return np.array(bitstrings)
284
+ else:
285
+ return np.array([[0, 1]]) # Placeholder
286
+
287
+ def _result_to_probabilities(self, result: Dict[str, Any]) -> np.ndarray:
288
+ """Convert execution result to probability array."""
289
+ if 'counts' in result:
290
+ counts = result['counts']
291
+ total_shots = sum(counts.values())
292
+ probs = []
293
+ for bitstring in sorted(counts.keys()):
294
+ probs.append(counts[bitstring] / total_shots)
295
+ return np.array(probs)
296
+ else:
297
+ return np.array([0.5, 0.5]) # Placeholder
298
+
299
+ def _compute_pauli_expectation(self, circuit: Any, pauli_strings: List[str]) -> np.ndarray:
300
+ """Compute expectation values of Pauli strings."""
301
+ # Placeholder implementation
302
+ return np.random.random(len(pauli_strings)) * 2 - 1
303
+
304
+ def get_version_info(self) -> Dict[str, Any]:
305
+ """Get backend version information."""
306
+ return {
307
+ 'backend_name': self.__class__.__name__,
308
+ 'device': self.device,
309
+ 'capabilities': self.capabilities,
310
+ }
311
+
312
+ def get_device_info(self) -> Dict[str, Any]:
313
+ """Get information about the quantum device."""
314
+ return {
315
+ 'device': self.device,
316
+ 'n_qubits': getattr(self, 'n_qubits', 'Unknown'),
317
+ 'topology': getattr(self, 'topology', 'Unknown'),
318
+ }
319
+
320
+ def __repr__(self) -> str:
321
+ return f"{self.__class__.__name__}(device='{self.device}', shots={self.shots})"