superquantx 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- superquantx/__init__.py +321 -0
- superquantx/algorithms/__init__.py +55 -0
- superquantx/algorithms/base_algorithm.py +413 -0
- superquantx/algorithms/hybrid_classifier.py +628 -0
- superquantx/algorithms/qaoa.py +406 -0
- superquantx/algorithms/quantum_agents.py +1006 -0
- superquantx/algorithms/quantum_kmeans.py +575 -0
- superquantx/algorithms/quantum_nn.py +544 -0
- superquantx/algorithms/quantum_pca.py +499 -0
- superquantx/algorithms/quantum_svm.py +346 -0
- superquantx/algorithms/vqe.py +553 -0
- superquantx/algorithms.py +863 -0
- superquantx/backends/__init__.py +265 -0
- superquantx/backends/base_backend.py +321 -0
- superquantx/backends/braket_backend.py +420 -0
- superquantx/backends/cirq_backend.py +466 -0
- superquantx/backends/ocean_backend.py +491 -0
- superquantx/backends/pennylane_backend.py +419 -0
- superquantx/backends/qiskit_backend.py +451 -0
- superquantx/backends/simulator_backend.py +455 -0
- superquantx/backends/tket_backend.py +519 -0
- superquantx/circuits.py +447 -0
- superquantx/cli/__init__.py +28 -0
- superquantx/cli/commands.py +528 -0
- superquantx/cli/main.py +254 -0
- superquantx/client.py +298 -0
- superquantx/config.py +326 -0
- superquantx/exceptions.py +287 -0
- superquantx/gates.py +588 -0
- superquantx/logging_config.py +347 -0
- superquantx/measurements.py +702 -0
- superquantx/ml.py +936 -0
- superquantx/noise.py +760 -0
- superquantx/utils/__init__.py +83 -0
- superquantx/utils/benchmarking.py +523 -0
- superquantx/utils/classical_utils.py +575 -0
- superquantx/utils/feature_mapping.py +467 -0
- superquantx/utils/optimization.py +410 -0
- superquantx/utils/quantum_utils.py +456 -0
- superquantx/utils/visualization.py +654 -0
- superquantx/version.py +33 -0
- superquantx-0.1.0.dist-info/METADATA +365 -0
- superquantx-0.1.0.dist-info/RECORD +46 -0
- superquantx-0.1.0.dist-info/WHEEL +4 -0
- superquantx-0.1.0.dist-info/entry_points.txt +2 -0
- superquantx-0.1.0.dist-info/licenses/LICENSE +21 -0
superquantx/ml.py
ADDED
@@ -0,0 +1,936 @@
|
|
1
|
+
"""Quantum Machine Learning utilities for SuperQuantX
|
2
|
+
"""
|
3
|
+
|
4
|
+
from abc import ABC, abstractmethod
|
5
|
+
from typing import Dict, List, Optional
|
6
|
+
|
7
|
+
import numpy as np
|
8
|
+
from scipy.optimize import minimize
|
9
|
+
from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin
|
10
|
+
from sklearn.metrics import mean_squared_error
|
11
|
+
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
12
|
+
|
13
|
+
from .circuits import QuantumCircuit
|
14
|
+
from .client import SuperQuantXClient
|
15
|
+
|
16
|
+
|
17
|
+
class QuantumFeatureMap(ABC):
|
18
|
+
"""Abstract base class for quantum feature maps
|
19
|
+
"""
|
20
|
+
|
21
|
+
def __init__(self, num_qubits: int, num_features: int):
|
22
|
+
"""Initialize feature map
|
23
|
+
|
24
|
+
Args:
|
25
|
+
num_qubits: Number of qubits
|
26
|
+
num_features: Number of input features
|
27
|
+
|
28
|
+
"""
|
29
|
+
self.num_qubits = num_qubits
|
30
|
+
self.num_features = num_features
|
31
|
+
|
32
|
+
@abstractmethod
|
33
|
+
def map_features(self, x: np.ndarray) -> QuantumCircuit:
|
34
|
+
"""Map classical features to quantum state
|
35
|
+
|
36
|
+
Args:
|
37
|
+
x: Feature vector
|
38
|
+
|
39
|
+
Returns:
|
40
|
+
Quantum circuit encoding the features
|
41
|
+
|
42
|
+
"""
|
43
|
+
pass
|
44
|
+
|
45
|
+
|
46
|
+
class AngleEmbeddingFeatureMap(QuantumFeatureMap):
|
47
|
+
"""Angle embedding feature map
|
48
|
+
"""
|
49
|
+
|
50
|
+
def __init__(
|
51
|
+
self,
|
52
|
+
num_qubits: int,
|
53
|
+
num_features: int,
|
54
|
+
rotation_gates: List[str] = None
|
55
|
+
):
|
56
|
+
"""Initialize angle embedding
|
57
|
+
|
58
|
+
Args:
|
59
|
+
num_qubits: Number of qubits
|
60
|
+
num_features: Number of features
|
61
|
+
rotation_gates: Rotation gates to use (default: ['RY'])
|
62
|
+
|
63
|
+
"""
|
64
|
+
super().__init__(num_qubits, num_features)
|
65
|
+
self.rotation_gates = rotation_gates or ['RY']
|
66
|
+
|
67
|
+
def map_features(self, x: np.ndarray) -> QuantumCircuit:
|
68
|
+
"""Map features using angle encoding"""
|
69
|
+
circuit = QuantumCircuit(self.num_qubits)
|
70
|
+
|
71
|
+
for i in range(min(self.num_features, self.num_qubits)):
|
72
|
+
if 'RX' in self.rotation_gates:
|
73
|
+
circuit.rx(x[i], i)
|
74
|
+
if 'RY' in self.rotation_gates:
|
75
|
+
circuit.ry(x[i], i)
|
76
|
+
if 'RZ' in self.rotation_gates:
|
77
|
+
circuit.rz(x[i], i)
|
78
|
+
|
79
|
+
return circuit
|
80
|
+
|
81
|
+
|
82
|
+
class AmplitudeEmbeddingFeatureMap(QuantumFeatureMap):
|
83
|
+
"""Amplitude embedding feature map
|
84
|
+
"""
|
85
|
+
|
86
|
+
def map_features(self, x: np.ndarray) -> QuantumCircuit:
|
87
|
+
"""Map features using amplitude encoding"""
|
88
|
+
# Normalize features
|
89
|
+
norm = np.linalg.norm(x)
|
90
|
+
if norm > 0:
|
91
|
+
normalized_x = x / norm
|
92
|
+
else:
|
93
|
+
normalized_x = x
|
94
|
+
|
95
|
+
# Pad with zeros if needed
|
96
|
+
padded_size = 2 ** self.num_qubits
|
97
|
+
if len(normalized_x) < padded_size:
|
98
|
+
padded_x = np.pad(normalized_x, (0, padded_size - len(normalized_x)))
|
99
|
+
else:
|
100
|
+
padded_x = normalized_x[:padded_size]
|
101
|
+
|
102
|
+
# Create circuit with amplitude encoding
|
103
|
+
circuit = QuantumCircuit(self.num_qubits)
|
104
|
+
|
105
|
+
# This would require sophisticated state preparation
|
106
|
+
# For now, use a simplified approximation
|
107
|
+
for i in range(self.num_qubits):
|
108
|
+
if i < len(x):
|
109
|
+
circuit.ry(2 * np.arcsin(np.sqrt(abs(padded_x[i]))), i)
|
110
|
+
|
111
|
+
return circuit
|
112
|
+
|
113
|
+
|
114
|
+
class IQPFeatureMap(QuantumFeatureMap):
|
115
|
+
"""Instantaneous Quantum Polynomial (IQP) feature map
|
116
|
+
"""
|
117
|
+
|
118
|
+
def __init__(self, num_qubits: int, num_features: int, degree: int = 2):
|
119
|
+
"""Initialize IQP feature map
|
120
|
+
|
121
|
+
Args:
|
122
|
+
num_qubits: Number of qubits
|
123
|
+
num_features: Number of features
|
124
|
+
degree: Polynomial degree
|
125
|
+
|
126
|
+
"""
|
127
|
+
super().__init__(num_qubits, num_features)
|
128
|
+
self.degree = degree
|
129
|
+
|
130
|
+
def map_features(self, x: np.ndarray) -> QuantumCircuit:
|
131
|
+
"""Map features using IQP encoding"""
|
132
|
+
circuit = QuantumCircuit(self.num_qubits)
|
133
|
+
|
134
|
+
# Initialize in superposition
|
135
|
+
for i in range(self.num_qubits):
|
136
|
+
circuit.h(i)
|
137
|
+
|
138
|
+
# First-order terms
|
139
|
+
for i in range(min(self.num_features, self.num_qubits)):
|
140
|
+
circuit.rz(x[i], i)
|
141
|
+
|
142
|
+
# Second-order terms (if degree >= 2)
|
143
|
+
if self.degree >= 2:
|
144
|
+
for i in range(self.num_qubits - 1):
|
145
|
+
for j in range(i + 1, min(self.num_qubits, self.num_features)):
|
146
|
+
if i < len(x) and j < len(x):
|
147
|
+
circuit.cnot(i, j)
|
148
|
+
circuit.rz(x[i] * x[j], j)
|
149
|
+
circuit.cnot(i, j)
|
150
|
+
|
151
|
+
return circuit
|
152
|
+
|
153
|
+
|
154
|
+
class QuantumKernel:
|
155
|
+
"""Quantum kernel for kernel-based machine learning
|
156
|
+
"""
|
157
|
+
|
158
|
+
def __init__(
|
159
|
+
self,
|
160
|
+
feature_map: QuantumFeatureMap,
|
161
|
+
client: Optional[SuperQuantXClient] = None
|
162
|
+
):
|
163
|
+
"""Initialize quantum kernel
|
164
|
+
|
165
|
+
Args:
|
166
|
+
feature_map: Quantum feature map
|
167
|
+
client: SuperQuantX client for execution
|
168
|
+
|
169
|
+
"""
|
170
|
+
self.feature_map = feature_map
|
171
|
+
self.client = client
|
172
|
+
|
173
|
+
def kernel_matrix(self, X1: np.ndarray, X2: np.ndarray = None) -> np.ndarray:
|
174
|
+
"""Compute quantum kernel matrix
|
175
|
+
|
176
|
+
Args:
|
177
|
+
X1: First set of data points
|
178
|
+
X2: Second set of data points (default: same as X1)
|
179
|
+
|
180
|
+
Returns:
|
181
|
+
Kernel matrix K[i,j] = ⟨φ(x_i)|φ(x_j)⟩
|
182
|
+
|
183
|
+
"""
|
184
|
+
if X2 is None:
|
185
|
+
X2 = X1
|
186
|
+
|
187
|
+
kernel_matrix = np.zeros((len(X1), len(X2)))
|
188
|
+
|
189
|
+
for i, x1 in enumerate(X1):
|
190
|
+
for j, x2 in enumerate(X2):
|
191
|
+
kernel_matrix[i, j] = self._kernel_value(x1, x2)
|
192
|
+
|
193
|
+
return kernel_matrix
|
194
|
+
|
195
|
+
def _kernel_value(self, x1: np.ndarray, x2: np.ndarray) -> float:
|
196
|
+
"""Compute kernel value between two data points
|
197
|
+
|
198
|
+
Args:
|
199
|
+
x1: First data point
|
200
|
+
x2: Second data point
|
201
|
+
|
202
|
+
Returns:
|
203
|
+
Kernel value ⟨φ(x1)|φ(x2)⟩
|
204
|
+
|
205
|
+
"""
|
206
|
+
# Create circuits for both feature vectors
|
207
|
+
circuit1 = self.feature_map.map_features(x1)
|
208
|
+
circuit2 = self.feature_map.map_features(x2)
|
209
|
+
|
210
|
+
# Create kernel estimation circuit
|
211
|
+
kernel_circuit = self._create_kernel_circuit(circuit1, circuit2)
|
212
|
+
|
213
|
+
if self.client is None:
|
214
|
+
# Simulate kernel value
|
215
|
+
return self._simulate_kernel_value(kernel_circuit)
|
216
|
+
else:
|
217
|
+
# Execute on quantum backend
|
218
|
+
return self._execute_kernel_value(kernel_circuit)
|
219
|
+
|
220
|
+
def _create_kernel_circuit(
|
221
|
+
self,
|
222
|
+
circuit1: QuantumCircuit,
|
223
|
+
circuit2: QuantumCircuit
|
224
|
+
) -> QuantumCircuit:
|
225
|
+
"""Create circuit for kernel estimation"""
|
226
|
+
# This creates a circuit that computes |⟨φ(x1)|φ(x2)⟩|²
|
227
|
+
|
228
|
+
num_qubits = circuit1.num_qubits
|
229
|
+
kernel_circuit = QuantumCircuit(2 * num_qubits + 1) # +1 for ancilla
|
230
|
+
|
231
|
+
# Apply feature map to first register
|
232
|
+
for gate in circuit1.gates:
|
233
|
+
new_gate = QuantumGate(
|
234
|
+
name=gate.name,
|
235
|
+
qubits=gate.qubits,
|
236
|
+
parameters=gate.parameters
|
237
|
+
)
|
238
|
+
kernel_circuit.gates.append(new_gate)
|
239
|
+
|
240
|
+
# Apply inverse feature map to second register
|
241
|
+
for gate in reversed(circuit2.gates):
|
242
|
+
# Map qubits to second register
|
243
|
+
mapped_qubits = [q + num_qubits for q in gate.qubits]
|
244
|
+
|
245
|
+
# Create inverse gate
|
246
|
+
inv_gate = self._inverse_gate(gate, mapped_qubits)
|
247
|
+
kernel_circuit.gates.append(inv_gate)
|
248
|
+
|
249
|
+
# Swap test between registers
|
250
|
+
ancilla = 2 * num_qubits
|
251
|
+
kernel_circuit.h(ancilla)
|
252
|
+
|
253
|
+
for i in range(num_qubits):
|
254
|
+
kernel_circuit.gates.append(
|
255
|
+
QuantumGate(name="CSWAP", qubits=[ancilla, i, i + num_qubits])
|
256
|
+
)
|
257
|
+
|
258
|
+
kernel_circuit.h(ancilla)
|
259
|
+
kernel_circuit.measure(ancilla, 0)
|
260
|
+
|
261
|
+
return kernel_circuit
|
262
|
+
|
263
|
+
def _inverse_gate(self, gate: QuantumGate, mapped_qubits: List[int]) -> QuantumGate:
|
264
|
+
"""Create inverse gate with mapped qubits"""
|
265
|
+
# Simplified inverse gate creation
|
266
|
+
inverse_params = [-p for p in gate.parameters] if gate.parameters else []
|
267
|
+
|
268
|
+
return QuantumGate(
|
269
|
+
name=gate.name, # Would need proper inverse mapping
|
270
|
+
qubits=mapped_qubits,
|
271
|
+
parameters=inverse_params
|
272
|
+
)
|
273
|
+
|
274
|
+
def _simulate_kernel_value(self, circuit: QuantumCircuit) -> float:
|
275
|
+
"""Simulate kernel value computation"""
|
276
|
+
# Simplified simulation
|
277
|
+
return np.random.uniform(0, 1) # Placeholder
|
278
|
+
|
279
|
+
def _execute_kernel_value(self, circuit: QuantumCircuit) -> float:
|
280
|
+
"""Execute kernel computation on quantum backend"""
|
281
|
+
if self.client is None:
|
282
|
+
raise ValueError("Client required for quantum execution")
|
283
|
+
|
284
|
+
job = self.client.submit_job_sync(circuit_data=circuit.to_dict())
|
285
|
+
result = self.client.wait_for_job_sync(job.job_id)
|
286
|
+
|
287
|
+
# Extract kernel value from measurement statistics
|
288
|
+
counts = result.results.get("counts", {})
|
289
|
+
total_shots = sum(counts.values())
|
290
|
+
|
291
|
+
# Probability of measuring |0⟩ on ancilla qubit
|
292
|
+
prob_0 = counts.get("0", 0) / total_shots if total_shots > 0 else 0.5
|
293
|
+
|
294
|
+
# Kernel value: K = 2 * P(0) - 1
|
295
|
+
return 2 * prob_0 - 1
|
296
|
+
|
297
|
+
|
298
|
+
class QuantumSVM(BaseEstimator, ClassifierMixin):
|
299
|
+
"""Quantum Support Vector Machine
|
300
|
+
"""
|
301
|
+
|
302
|
+
def __init__(
|
303
|
+
self,
|
304
|
+
quantum_kernel: QuantumKernel,
|
305
|
+
C: float = 1.0
|
306
|
+
):
|
307
|
+
"""Initialize Quantum SVM
|
308
|
+
|
309
|
+
Args:
|
310
|
+
quantum_kernel: Quantum kernel for classification
|
311
|
+
C: Regularization parameter
|
312
|
+
|
313
|
+
"""
|
314
|
+
self.quantum_kernel = quantum_kernel
|
315
|
+
self.C = C
|
316
|
+
self.is_fitted_ = False
|
317
|
+
|
318
|
+
# Will be set during training
|
319
|
+
self.support_vectors_: Optional[np.ndarray] = None
|
320
|
+
self.support_: Optional[np.ndarray] = None
|
321
|
+
self.alpha_: Optional[np.ndarray] = None
|
322
|
+
self.intercept_: Optional[float] = None
|
323
|
+
self.classes_: Optional[np.ndarray] = None
|
324
|
+
|
325
|
+
def fit(self, X: np.ndarray, y: np.ndarray) -> "QuantumSVM":
|
326
|
+
"""Fit Quantum SVM
|
327
|
+
|
328
|
+
Args:
|
329
|
+
X: Training data
|
330
|
+
y: Training labels
|
331
|
+
|
332
|
+
Returns:
|
333
|
+
Fitted model
|
334
|
+
|
335
|
+
"""
|
336
|
+
# Encode labels to {-1, 1}
|
337
|
+
self.classes_ = np.unique(y)
|
338
|
+
if len(self.classes_) != 2:
|
339
|
+
raise ValueError("QuantumSVM supports binary classification only")
|
340
|
+
|
341
|
+
y_encoded = np.where(y == self.classes_[0], -1, 1)
|
342
|
+
|
343
|
+
# Compute quantum kernel matrix
|
344
|
+
K = self.quantum_kernel.kernel_matrix(X)
|
345
|
+
|
346
|
+
# Solve SVM dual optimization problem
|
347
|
+
# This is a simplified implementation - would use proper QP solver
|
348
|
+
n_samples = len(X)
|
349
|
+
|
350
|
+
# Objective function for dual SVM problem
|
351
|
+
def objective(alpha):
|
352
|
+
return 0.5 * np.sum(alpha[:, None] * alpha[None, :] * y_encoded[:, None] * y_encoded[None, :] * K) - np.sum(alpha)
|
353
|
+
|
354
|
+
# Constraints: 0 <= alpha_i <= C and sum(alpha_i * y_i) = 0
|
355
|
+
from scipy.optimize import minimize
|
356
|
+
|
357
|
+
constraints = [
|
358
|
+
{'type': 'eq', 'fun': lambda alpha: np.sum(alpha * y_encoded)},
|
359
|
+
]
|
360
|
+
|
361
|
+
bounds = [(0, self.C) for _ in range(n_samples)]
|
362
|
+
|
363
|
+
# Initial guess
|
364
|
+
alpha_init = np.zeros(n_samples)
|
365
|
+
|
366
|
+
# Solve optimization
|
367
|
+
result = minimize(
|
368
|
+
objective,
|
369
|
+
alpha_init,
|
370
|
+
method='SLSQP',
|
371
|
+
bounds=bounds,
|
372
|
+
constraints=constraints
|
373
|
+
)
|
374
|
+
|
375
|
+
self.alpha_ = result.x
|
376
|
+
|
377
|
+
# Find support vectors (alpha > 0)
|
378
|
+
support_indices = np.where(self.alpha_ > 1e-6)[0]
|
379
|
+
self.support_ = support_indices
|
380
|
+
self.support_vectors_ = X[support_indices]
|
381
|
+
|
382
|
+
# Compute intercept
|
383
|
+
if len(support_indices) > 0:
|
384
|
+
# Use free support vectors (0 < alpha < C)
|
385
|
+
free_sv_indices = support_indices[
|
386
|
+
(self.alpha_[support_indices] > 1e-6) &
|
387
|
+
(self.alpha_[support_indices] < self.C - 1e-6)
|
388
|
+
]
|
389
|
+
|
390
|
+
if len(free_sv_indices) > 0:
|
391
|
+
# Compute intercept using free support vectors
|
392
|
+
intercept_values = []
|
393
|
+
for idx in free_sv_indices:
|
394
|
+
kernel_values = self.quantum_kernel.kernel_matrix(
|
395
|
+
X[support_indices], X[idx:idx+1]
|
396
|
+
)[:, 0]
|
397
|
+
|
398
|
+
intercept_val = y_encoded[idx] - np.sum(
|
399
|
+
self.alpha_[support_indices] * y_encoded[support_indices] * kernel_values
|
400
|
+
)
|
401
|
+
intercept_values.append(intercept_val)
|
402
|
+
|
403
|
+
self.intercept_ = np.mean(intercept_values)
|
404
|
+
else:
|
405
|
+
self.intercept_ = 0.0
|
406
|
+
else:
|
407
|
+
self.intercept_ = 0.0
|
408
|
+
|
409
|
+
self.is_fitted_ = True
|
410
|
+
return self
|
411
|
+
|
412
|
+
def decision_function(self, X: np.ndarray) -> np.ndarray:
|
413
|
+
"""Compute decision function
|
414
|
+
|
415
|
+
Args:
|
416
|
+
X: Input data
|
417
|
+
|
418
|
+
Returns:
|
419
|
+
Decision function values
|
420
|
+
|
421
|
+
"""
|
422
|
+
if not self.is_fitted_:
|
423
|
+
raise ValueError("Model must be fitted before prediction")
|
424
|
+
|
425
|
+
if len(self.support_) == 0:
|
426
|
+
return np.zeros(len(X))
|
427
|
+
|
428
|
+
# Compute kernel matrix between test data and support vectors
|
429
|
+
K_test = self.quantum_kernel.kernel_matrix(X, self.support_vectors_)
|
430
|
+
|
431
|
+
# Compute decision function
|
432
|
+
y_support = np.where(
|
433
|
+
np.isin(range(len(self.alpha_)), self.support_),
|
434
|
+
np.where(np.arange(len(self.classes_)) == 0, -1, 1)[0],
|
435
|
+
0
|
436
|
+
)
|
437
|
+
|
438
|
+
decision = np.sum(
|
439
|
+
self.alpha_[self.support_] * y_support[self.support_] * K_test.T,
|
440
|
+
axis=0
|
441
|
+
) + self.intercept_
|
442
|
+
|
443
|
+
return decision
|
444
|
+
|
445
|
+
def predict(self, X: np.ndarray) -> np.ndarray:
|
446
|
+
"""Make predictions
|
447
|
+
|
448
|
+
Args:
|
449
|
+
X: Input data
|
450
|
+
|
451
|
+
Returns:
|
452
|
+
Predicted labels
|
453
|
+
|
454
|
+
"""
|
455
|
+
decision = self.decision_function(X)
|
456
|
+
binary_pred = np.where(decision >= 0, 1, -1)
|
457
|
+
|
458
|
+
# Convert back to original labels
|
459
|
+
return np.where(binary_pred == -1, self.classes_[0], self.classes_[1])
|
460
|
+
|
461
|
+
|
462
|
+
class QuantumClassifier(BaseEstimator, ClassifierMixin):
|
463
|
+
"""General quantum classifier using variational quantum circuits
|
464
|
+
"""
|
465
|
+
|
466
|
+
def __init__(
|
467
|
+
self,
|
468
|
+
feature_map: QuantumFeatureMap,
|
469
|
+
ansatz_layers: int = 2,
|
470
|
+
client: Optional[SuperQuantXClient] = None,
|
471
|
+
optimizer: str = "SLSQP",
|
472
|
+
max_iter: int = 1000
|
473
|
+
):
|
474
|
+
"""Initialize quantum classifier
|
475
|
+
|
476
|
+
Args:
|
477
|
+
feature_map: Quantum feature map
|
478
|
+
ansatz_layers: Number of variational layers
|
479
|
+
client: SuperQuantX client
|
480
|
+
optimizer: Classical optimizer
|
481
|
+
max_iter: Maximum optimization iterations
|
482
|
+
|
483
|
+
"""
|
484
|
+
self.feature_map = feature_map
|
485
|
+
self.ansatz_layers = ansatz_layers
|
486
|
+
self.client = client
|
487
|
+
self.optimizer = optimizer
|
488
|
+
self.max_iter = max_iter
|
489
|
+
|
490
|
+
self.is_fitted_ = False
|
491
|
+
self.parameters_: Optional[np.ndarray] = None
|
492
|
+
self.classes_: Optional[np.ndarray] = None
|
493
|
+
self.label_encoder_ = LabelEncoder()
|
494
|
+
|
495
|
+
def _create_circuit(self, x: np.ndarray, parameters: np.ndarray) -> QuantumCircuit:
|
496
|
+
"""Create quantum circuit for given input and parameters"""
|
497
|
+
# Feature encoding
|
498
|
+
circuit = self.feature_map.map_features(x)
|
499
|
+
|
500
|
+
# Variational ansatz
|
501
|
+
num_qubits = circuit.num_qubits
|
502
|
+
param_idx = 0
|
503
|
+
|
504
|
+
for layer in range(self.ansatz_layers):
|
505
|
+
# Parameterized rotations
|
506
|
+
for qubit in range(num_qubits):
|
507
|
+
if param_idx < len(parameters):
|
508
|
+
circuit.ry(parameters[param_idx], qubit)
|
509
|
+
param_idx += 1
|
510
|
+
if param_idx < len(parameters):
|
511
|
+
circuit.rz(parameters[param_idx], qubit)
|
512
|
+
param_idx += 1
|
513
|
+
|
514
|
+
# Entangling gates
|
515
|
+
for qubit in range(num_qubits - 1):
|
516
|
+
circuit.cnot(qubit, qubit + 1)
|
517
|
+
|
518
|
+
return circuit
|
519
|
+
|
520
|
+
def _cost_function(self, parameters: np.ndarray, X: np.ndarray, y: np.ndarray) -> float:
|
521
|
+
"""Cost function for optimization"""
|
522
|
+
predictions = self._predict_proba_raw(X, parameters)
|
523
|
+
|
524
|
+
# Cross-entropy loss
|
525
|
+
loss = 0.0
|
526
|
+
for i, pred in enumerate(predictions):
|
527
|
+
true_label = y[i]
|
528
|
+
# Avoid log(0)
|
529
|
+
pred_clipped = np.clip(pred, 1e-15, 1 - 1e-15)
|
530
|
+
loss -= np.log(pred_clipped[true_label])
|
531
|
+
|
532
|
+
return loss / len(y)
|
533
|
+
|
534
|
+
def _predict_proba_raw(self, X: np.ndarray, parameters: np.ndarray) -> np.ndarray:
|
535
|
+
"""Predict class probabilities using given parameters"""
|
536
|
+
num_classes = len(self.classes_) if self.classes_ is not None else 2
|
537
|
+
probabilities = np.zeros((len(X), num_classes))
|
538
|
+
|
539
|
+
for i, x in enumerate(X):
|
540
|
+
circuit = self._create_circuit(x, parameters)
|
541
|
+
|
542
|
+
if self.client is None:
|
543
|
+
# Simulate measurement
|
544
|
+
probs = self._simulate_measurement_probabilities(circuit)
|
545
|
+
else:
|
546
|
+
# Execute on quantum backend
|
547
|
+
probs = self._execute_measurement_probabilities(circuit)
|
548
|
+
|
549
|
+
probabilities[i] = probs
|
550
|
+
|
551
|
+
return probabilities
|
552
|
+
|
553
|
+
def _simulate_measurement_probabilities(self, circuit: QuantumCircuit) -> np.ndarray:
|
554
|
+
"""Simulate measurement probabilities"""
|
555
|
+
# Placeholder - would use quantum simulator
|
556
|
+
num_classes = len(self.classes_) if self.classes_ is not None else 2
|
557
|
+
return np.random.dirichlet(np.ones(num_classes))
|
558
|
+
|
559
|
+
def _execute_measurement_probabilities(self, circuit: QuantumCircuit) -> np.ndarray:
|
560
|
+
"""Execute measurement on quantum backend"""
|
561
|
+
# Add measurements
|
562
|
+
measurement_circuit = circuit.copy()
|
563
|
+
measurement_circuit.measure_all()
|
564
|
+
|
565
|
+
job = self.client.submit_job_sync(circuit_data=measurement_circuit.to_dict())
|
566
|
+
result = self.client.wait_for_job_sync(job.job_id)
|
567
|
+
|
568
|
+
counts = result.results.get("counts", {})
|
569
|
+
total_shots = sum(counts.values())
|
570
|
+
|
571
|
+
# Convert counts to probabilities
|
572
|
+
num_classes = len(self.classes_)
|
573
|
+
probabilities = np.zeros(num_classes)
|
574
|
+
|
575
|
+
for outcome, count in counts.items():
|
576
|
+
# Map bitstring to class (simplified)
|
577
|
+
class_idx = int(outcome, 2) % num_classes
|
578
|
+
probabilities[class_idx] += count / total_shots
|
579
|
+
|
580
|
+
return probabilities
|
581
|
+
|
582
|
+
def fit(self, X: np.ndarray, y: np.ndarray) -> "QuantumClassifier":
|
583
|
+
"""Fit quantum classifier
|
584
|
+
|
585
|
+
Args:
|
586
|
+
X: Training data
|
587
|
+
y: Training labels
|
588
|
+
|
589
|
+
Returns:
|
590
|
+
Fitted model
|
591
|
+
|
592
|
+
"""
|
593
|
+
# Encode labels
|
594
|
+
y_encoded = self.label_encoder_.fit_transform(y)
|
595
|
+
self.classes_ = self.label_encoder_.classes_
|
596
|
+
|
597
|
+
# Initialize parameters
|
598
|
+
num_params = self.ansatz_layers * self.feature_map.num_qubits * 2
|
599
|
+
initial_params = np.random.uniform(0, 2*np.pi, num_params)
|
600
|
+
|
601
|
+
# Optimize parameters
|
602
|
+
result = minimize(
|
603
|
+
fun=lambda params: self._cost_function(params, X, y_encoded),
|
604
|
+
x0=initial_params,
|
605
|
+
method=self.optimizer,
|
606
|
+
options={'maxiter': self.max_iter}
|
607
|
+
)
|
608
|
+
|
609
|
+
self.parameters_ = result.x
|
610
|
+
self.is_fitted_ = True
|
611
|
+
|
612
|
+
return self
|
613
|
+
|
614
|
+
def predict_proba(self, X: np.ndarray) -> np.ndarray:
|
615
|
+
"""Predict class probabilities
|
616
|
+
|
617
|
+
Args:
|
618
|
+
X: Input data
|
619
|
+
|
620
|
+
Returns:
|
621
|
+
Class probabilities
|
622
|
+
|
623
|
+
"""
|
624
|
+
if not self.is_fitted_:
|
625
|
+
raise ValueError("Model must be fitted before prediction")
|
626
|
+
|
627
|
+
return self._predict_proba_raw(X, self.parameters_)
|
628
|
+
|
629
|
+
def predict(self, X: np.ndarray) -> np.ndarray:
|
630
|
+
"""Make predictions
|
631
|
+
|
632
|
+
Args:
|
633
|
+
X: Input data
|
634
|
+
|
635
|
+
Returns:
|
636
|
+
Predicted labels
|
637
|
+
|
638
|
+
"""
|
639
|
+
probabilities = self.predict_proba(X)
|
640
|
+
class_indices = np.argmax(probabilities, axis=1)
|
641
|
+
return self.label_encoder_.inverse_transform(class_indices)
|
642
|
+
|
643
|
+
|
644
|
+
class QuantumRegressor(BaseEstimator, RegressorMixin):
|
645
|
+
"""Quantum regressor using variational quantum circuits
|
646
|
+
"""
|
647
|
+
|
648
|
+
def __init__(
|
649
|
+
self,
|
650
|
+
feature_map: QuantumFeatureMap,
|
651
|
+
ansatz_layers: int = 2,
|
652
|
+
client: Optional[SuperQuantXClient] = None,
|
653
|
+
optimizer: str = "SLSQP"
|
654
|
+
):
|
655
|
+
"""Initialize quantum regressor
|
656
|
+
|
657
|
+
Args:
|
658
|
+
feature_map: Quantum feature map
|
659
|
+
ansatz_layers: Number of variational layers
|
660
|
+
client: SuperQuantX client
|
661
|
+
optimizer: Classical optimizer
|
662
|
+
|
663
|
+
"""
|
664
|
+
self.feature_map = feature_map
|
665
|
+
self.ansatz_layers = ansatz_layers
|
666
|
+
self.client = client
|
667
|
+
self.optimizer = optimizer
|
668
|
+
|
669
|
+
self.is_fitted_ = False
|
670
|
+
self.parameters_: Optional[np.ndarray] = None
|
671
|
+
self.scaler_ = StandardScaler()
|
672
|
+
|
673
|
+
def _create_circuit(self, x: np.ndarray, parameters: np.ndarray) -> QuantumCircuit:
|
674
|
+
"""Create quantum circuit for regression"""
|
675
|
+
# Similar to classifier but optimized for regression
|
676
|
+
circuit = self.feature_map.map_features(x)
|
677
|
+
|
678
|
+
num_qubits = circuit.num_qubits
|
679
|
+
param_idx = 0
|
680
|
+
|
681
|
+
for layer in range(self.ansatz_layers):
|
682
|
+
for qubit in range(num_qubits):
|
683
|
+
if param_idx < len(parameters):
|
684
|
+
circuit.ry(parameters[param_idx], qubit)
|
685
|
+
param_idx += 1
|
686
|
+
|
687
|
+
# Entangling layer
|
688
|
+
for qubit in range(num_qubits - 1):
|
689
|
+
circuit.cnot(qubit, qubit + 1)
|
690
|
+
|
691
|
+
return circuit
|
692
|
+
|
693
|
+
def _predict_single(self, x: np.ndarray, parameters: np.ndarray) -> float:
|
694
|
+
"""Predict single value"""
|
695
|
+
circuit = self._create_circuit(x, parameters)
|
696
|
+
|
697
|
+
if self.client is None:
|
698
|
+
# Simulate expectation value
|
699
|
+
return np.random.uniform(-1, 1) # Placeholder
|
700
|
+
else:
|
701
|
+
# Execute on quantum backend
|
702
|
+
return self._execute_expectation_value(circuit)
|
703
|
+
|
704
|
+
def _execute_expectation_value(self, circuit: QuantumCircuit) -> float:
|
705
|
+
"""Execute expectation value measurement"""
|
706
|
+
measurement_circuit = circuit.copy()
|
707
|
+
measurement_circuit.measure(0, 0) # Measure first qubit
|
708
|
+
|
709
|
+
job = self.client.submit_job_sync(circuit_data=measurement_circuit.to_dict())
|
710
|
+
result = self.client.wait_for_job_sync(job.job_id)
|
711
|
+
|
712
|
+
counts = result.results.get("counts", {})
|
713
|
+
total_shots = sum(counts.values())
|
714
|
+
|
715
|
+
# Expectation value of Z on first qubit
|
716
|
+
prob_0 = counts.get("0", 0) / total_shots if total_shots > 0 else 0.5
|
717
|
+
expectation = 2 * prob_0 - 1
|
718
|
+
|
719
|
+
return expectation
|
720
|
+
|
721
|
+
def fit(self, X: np.ndarray, y: np.ndarray) -> "QuantumRegressor":
|
722
|
+
"""Fit quantum regressor
|
723
|
+
|
724
|
+
Args:
|
725
|
+
X: Training data
|
726
|
+
y: Training targets
|
727
|
+
|
728
|
+
Returns:
|
729
|
+
Fitted model
|
730
|
+
|
731
|
+
"""
|
732
|
+
# Scale targets
|
733
|
+
y_scaled = self.scaler_.fit_transform(y.reshape(-1, 1)).flatten()
|
734
|
+
|
735
|
+
# Initialize parameters
|
736
|
+
num_params = self.ansatz_layers * self.feature_map.num_qubits
|
737
|
+
initial_params = np.random.uniform(0, 2*np.pi, num_params)
|
738
|
+
|
739
|
+
# Cost function
|
740
|
+
def cost_function(params):
|
741
|
+
predictions = [self._predict_single(x, params) for x in X]
|
742
|
+
return mean_squared_error(y_scaled, predictions)
|
743
|
+
|
744
|
+
# Optimize
|
745
|
+
result = minimize(
|
746
|
+
cost_function,
|
747
|
+
initial_params,
|
748
|
+
method=self.optimizer
|
749
|
+
)
|
750
|
+
|
751
|
+
self.parameters_ = result.x
|
752
|
+
self.is_fitted_ = True
|
753
|
+
|
754
|
+
return self
|
755
|
+
|
756
|
+
def predict(self, X: np.ndarray) -> np.ndarray:
|
757
|
+
"""Make predictions
|
758
|
+
|
759
|
+
Args:
|
760
|
+
X: Input data
|
761
|
+
|
762
|
+
Returns:
|
763
|
+
Predicted values
|
764
|
+
|
765
|
+
"""
|
766
|
+
if not self.is_fitted_:
|
767
|
+
raise ValueError("Model must be fitted before prediction")
|
768
|
+
|
769
|
+
scaled_predictions = [self._predict_single(x, self.parameters_) for x in X]
|
770
|
+
predictions = self.scaler_.inverse_transform(
|
771
|
+
np.array(scaled_predictions).reshape(-1, 1)
|
772
|
+
).flatten()
|
773
|
+
|
774
|
+
return predictions
|
775
|
+
|
776
|
+
|
777
|
+
class QuantumGAN:
|
778
|
+
"""Quantum Generative Adversarial Network
|
779
|
+
"""
|
780
|
+
|
781
|
+
def __init__(
|
782
|
+
self,
|
783
|
+
num_qubits: int,
|
784
|
+
generator_layers: int = 3,
|
785
|
+
discriminator_layers: int = 2,
|
786
|
+
client: Optional[SuperQuantXClient] = None
|
787
|
+
):
|
788
|
+
"""Initialize Quantum GAN
|
789
|
+
|
790
|
+
Args:
|
791
|
+
num_qubits: Number of qubits
|
792
|
+
generator_layers: Generator circuit depth
|
793
|
+
discriminator_layers: Discriminator circuit depth
|
794
|
+
client: SuperQuantX client
|
795
|
+
|
796
|
+
"""
|
797
|
+
self.num_qubits = num_qubits
|
798
|
+
self.generator_layers = generator_layers
|
799
|
+
self.discriminator_layers = discriminator_layers
|
800
|
+
self.client = client
|
801
|
+
|
802
|
+
# Parameters will be set during training
|
803
|
+
self.generator_params: Optional[np.ndarray] = None
|
804
|
+
self.discriminator_params: Optional[np.ndarray] = None
|
805
|
+
|
806
|
+
def create_generator(self, noise: np.ndarray, params: np.ndarray) -> QuantumCircuit:
|
807
|
+
"""Create generator circuit"""
|
808
|
+
circuit = QuantumCircuit(self.num_qubits)
|
809
|
+
|
810
|
+
# Noise encoding
|
811
|
+
for i, noise_val in enumerate(noise[:self.num_qubits]):
|
812
|
+
circuit.ry(noise_val, i)
|
813
|
+
|
814
|
+
# Variational layers
|
815
|
+
param_idx = 0
|
816
|
+
for layer in range(self.generator_layers):
|
817
|
+
for qubit in range(self.num_qubits):
|
818
|
+
if param_idx < len(params):
|
819
|
+
circuit.ry(params[param_idx], qubit)
|
820
|
+
param_idx += 1
|
821
|
+
|
822
|
+
# Entangling
|
823
|
+
for qubit in range(self.num_qubits - 1):
|
824
|
+
circuit.cnot(qubit, qubit + 1)
|
825
|
+
|
826
|
+
return circuit
|
827
|
+
|
828
|
+
def create_discriminator(self, data_circuit: QuantumCircuit, params: np.ndarray) -> float:
|
829
|
+
"""Create discriminator and return probability of real data"""
|
830
|
+
# Simplified discriminator - would be more complex in practice
|
831
|
+
|
832
|
+
# Apply discriminator ansatz
|
833
|
+
discriminator_circuit = data_circuit.copy()
|
834
|
+
|
835
|
+
param_idx = 0
|
836
|
+
for layer in range(self.discriminator_layers):
|
837
|
+
for qubit in range(self.num_qubits):
|
838
|
+
if param_idx < len(params):
|
839
|
+
discriminator_circuit.rz(params[param_idx], qubit)
|
840
|
+
param_idx += 1
|
841
|
+
|
842
|
+
# Measure and return probability
|
843
|
+
if self.client is None:
|
844
|
+
return np.random.uniform(0, 1) # Placeholder
|
845
|
+
else:
|
846
|
+
discriminator_circuit.measure(0, 0)
|
847
|
+
job = self.client.submit_job_sync(discriminator_circuit.to_dict())
|
848
|
+
result = self.client.wait_for_job_sync(job.job_id)
|
849
|
+
|
850
|
+
counts = result.results.get("counts", {})
|
851
|
+
total = sum(counts.values())
|
852
|
+
prob_real = counts.get("0", 0) / total if total > 0 else 0.5
|
853
|
+
|
854
|
+
return prob_real
|
855
|
+
|
856
|
+
def train(
|
857
|
+
self,
|
858
|
+
training_data: np.ndarray,
|
859
|
+
num_epochs: int = 100,
|
860
|
+
learning_rate: float = 0.01
|
861
|
+
) -> Dict[str, List[float]]:
|
862
|
+
"""Train Quantum GAN
|
863
|
+
|
864
|
+
Args:
|
865
|
+
training_data: Real training data
|
866
|
+
num_epochs: Number of training epochs
|
867
|
+
learning_rate: Learning rate
|
868
|
+
|
869
|
+
Returns:
|
870
|
+
Training history
|
871
|
+
|
872
|
+
"""
|
873
|
+
# Initialize parameters
|
874
|
+
gen_params = np.random.uniform(0, 2*np.pi, self.generator_layers * self.num_qubits)
|
875
|
+
disc_params = np.random.uniform(0, 2*np.pi, self.discriminator_layers * self.num_qubits)
|
876
|
+
|
877
|
+
history = {"generator_loss": [], "discriminator_loss": []}
|
878
|
+
|
879
|
+
for epoch in range(num_epochs):
|
880
|
+
# Train discriminator
|
881
|
+
real_data_sample = training_data[np.random.randint(len(training_data))]
|
882
|
+
noise = np.random.uniform(0, 2*np.pi, self.num_qubits)
|
883
|
+
|
884
|
+
# Generate fake data
|
885
|
+
fake_circuit = self.create_generator(noise, gen_params)
|
886
|
+
|
887
|
+
# Discriminator loss (simplified)
|
888
|
+
real_prob = self.create_discriminator(
|
889
|
+
self._data_to_circuit(real_data_sample), disc_params
|
890
|
+
)
|
891
|
+
fake_prob = self.create_discriminator(fake_circuit, disc_params)
|
892
|
+
|
893
|
+
disc_loss = -np.log(real_prob) - np.log(1 - fake_prob)
|
894
|
+
|
895
|
+
# Train generator
|
896
|
+
gen_loss = -np.log(fake_prob)
|
897
|
+
|
898
|
+
# Update parameters (simplified gradient descent)
|
899
|
+
# In practice, would compute proper gradients
|
900
|
+
disc_params += learning_rate * np.random.normal(0, 0.1, len(disc_params))
|
901
|
+
gen_params += learning_rate * np.random.normal(0, 0.1, len(gen_params))
|
902
|
+
|
903
|
+
history["generator_loss"].append(gen_loss)
|
904
|
+
history["discriminator_loss"].append(disc_loss)
|
905
|
+
|
906
|
+
self.generator_params = gen_params
|
907
|
+
self.discriminator_params = disc_params
|
908
|
+
|
909
|
+
return history
|
910
|
+
|
911
|
+
def _data_to_circuit(self, data: np.ndarray) -> QuantumCircuit:
|
912
|
+
"""Convert data to quantum circuit"""
|
913
|
+
circuit = QuantumCircuit(self.num_qubits)
|
914
|
+
|
915
|
+
# Simple data encoding
|
916
|
+
for i, val in enumerate(data[:self.num_qubits]):
|
917
|
+
circuit.ry(val, i)
|
918
|
+
|
919
|
+
return circuit
|
920
|
+
|
921
|
+
def generate_samples(self, num_samples: int) -> List[np.ndarray]:
|
922
|
+
"""Generate samples using trained generator"""
|
923
|
+
if self.generator_params is None:
|
924
|
+
raise ValueError("GAN must be trained before generating samples")
|
925
|
+
|
926
|
+
samples = []
|
927
|
+
for _ in range(num_samples):
|
928
|
+
noise = np.random.uniform(0, 2*np.pi, self.num_qubits)
|
929
|
+
generator_circuit = self.create_generator(noise, self.generator_params)
|
930
|
+
|
931
|
+
# Extract generated sample (simplified)
|
932
|
+
# Would measure and extract amplitudes in practice
|
933
|
+
sample = np.random.uniform(0, 1, self.num_qubits) # Placeholder
|
934
|
+
samples.append(sample)
|
935
|
+
|
936
|
+
return samples
|