superquantx 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. superquantx/__init__.py +321 -0
  2. superquantx/algorithms/__init__.py +55 -0
  3. superquantx/algorithms/base_algorithm.py +413 -0
  4. superquantx/algorithms/hybrid_classifier.py +628 -0
  5. superquantx/algorithms/qaoa.py +406 -0
  6. superquantx/algorithms/quantum_agents.py +1006 -0
  7. superquantx/algorithms/quantum_kmeans.py +575 -0
  8. superquantx/algorithms/quantum_nn.py +544 -0
  9. superquantx/algorithms/quantum_pca.py +499 -0
  10. superquantx/algorithms/quantum_svm.py +346 -0
  11. superquantx/algorithms/vqe.py +553 -0
  12. superquantx/algorithms.py +863 -0
  13. superquantx/backends/__init__.py +265 -0
  14. superquantx/backends/base_backend.py +321 -0
  15. superquantx/backends/braket_backend.py +420 -0
  16. superquantx/backends/cirq_backend.py +466 -0
  17. superquantx/backends/ocean_backend.py +491 -0
  18. superquantx/backends/pennylane_backend.py +419 -0
  19. superquantx/backends/qiskit_backend.py +451 -0
  20. superquantx/backends/simulator_backend.py +455 -0
  21. superquantx/backends/tket_backend.py +519 -0
  22. superquantx/circuits.py +447 -0
  23. superquantx/cli/__init__.py +28 -0
  24. superquantx/cli/commands.py +528 -0
  25. superquantx/cli/main.py +254 -0
  26. superquantx/client.py +298 -0
  27. superquantx/config.py +326 -0
  28. superquantx/exceptions.py +287 -0
  29. superquantx/gates.py +588 -0
  30. superquantx/logging_config.py +347 -0
  31. superquantx/measurements.py +702 -0
  32. superquantx/ml.py +936 -0
  33. superquantx/noise.py +760 -0
  34. superquantx/utils/__init__.py +83 -0
  35. superquantx/utils/benchmarking.py +523 -0
  36. superquantx/utils/classical_utils.py +575 -0
  37. superquantx/utils/feature_mapping.py +467 -0
  38. superquantx/utils/optimization.py +410 -0
  39. superquantx/utils/quantum_utils.py +456 -0
  40. superquantx/utils/visualization.py +654 -0
  41. superquantx/version.py +33 -0
  42. superquantx-0.1.0.dist-info/METADATA +365 -0
  43. superquantx-0.1.0.dist-info/RECORD +46 -0
  44. superquantx-0.1.0.dist-info/WHEEL +4 -0
  45. superquantx-0.1.0.dist-info/entry_points.txt +2 -0
  46. superquantx-0.1.0.dist-info/licenses/LICENSE +21 -0
superquantx/ml.py ADDED
@@ -0,0 +1,936 @@
1
+ """Quantum Machine Learning utilities for SuperQuantX
2
+ """
3
+
4
+ from abc import ABC, abstractmethod
5
+ from typing import Dict, List, Optional
6
+
7
+ import numpy as np
8
+ from scipy.optimize import minimize
9
+ from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin
10
+ from sklearn.metrics import mean_squared_error
11
+ from sklearn.preprocessing import LabelEncoder, StandardScaler
12
+
13
+ from .circuits import QuantumCircuit
14
+ from .client import SuperQuantXClient
15
+
16
+
17
+ class QuantumFeatureMap(ABC):
18
+ """Abstract base class for quantum feature maps
19
+ """
20
+
21
+ def __init__(self, num_qubits: int, num_features: int):
22
+ """Initialize feature map
23
+
24
+ Args:
25
+ num_qubits: Number of qubits
26
+ num_features: Number of input features
27
+
28
+ """
29
+ self.num_qubits = num_qubits
30
+ self.num_features = num_features
31
+
32
+ @abstractmethod
33
+ def map_features(self, x: np.ndarray) -> QuantumCircuit:
34
+ """Map classical features to quantum state
35
+
36
+ Args:
37
+ x: Feature vector
38
+
39
+ Returns:
40
+ Quantum circuit encoding the features
41
+
42
+ """
43
+ pass
44
+
45
+
46
+ class AngleEmbeddingFeatureMap(QuantumFeatureMap):
47
+ """Angle embedding feature map
48
+ """
49
+
50
+ def __init__(
51
+ self,
52
+ num_qubits: int,
53
+ num_features: int,
54
+ rotation_gates: List[str] = None
55
+ ):
56
+ """Initialize angle embedding
57
+
58
+ Args:
59
+ num_qubits: Number of qubits
60
+ num_features: Number of features
61
+ rotation_gates: Rotation gates to use (default: ['RY'])
62
+
63
+ """
64
+ super().__init__(num_qubits, num_features)
65
+ self.rotation_gates = rotation_gates or ['RY']
66
+
67
+ def map_features(self, x: np.ndarray) -> QuantumCircuit:
68
+ """Map features using angle encoding"""
69
+ circuit = QuantumCircuit(self.num_qubits)
70
+
71
+ for i in range(min(self.num_features, self.num_qubits)):
72
+ if 'RX' in self.rotation_gates:
73
+ circuit.rx(x[i], i)
74
+ if 'RY' in self.rotation_gates:
75
+ circuit.ry(x[i], i)
76
+ if 'RZ' in self.rotation_gates:
77
+ circuit.rz(x[i], i)
78
+
79
+ return circuit
80
+
81
+
82
+ class AmplitudeEmbeddingFeatureMap(QuantumFeatureMap):
83
+ """Amplitude embedding feature map
84
+ """
85
+
86
+ def map_features(self, x: np.ndarray) -> QuantumCircuit:
87
+ """Map features using amplitude encoding"""
88
+ # Normalize features
89
+ norm = np.linalg.norm(x)
90
+ if norm > 0:
91
+ normalized_x = x / norm
92
+ else:
93
+ normalized_x = x
94
+
95
+ # Pad with zeros if needed
96
+ padded_size = 2 ** self.num_qubits
97
+ if len(normalized_x) < padded_size:
98
+ padded_x = np.pad(normalized_x, (0, padded_size - len(normalized_x)))
99
+ else:
100
+ padded_x = normalized_x[:padded_size]
101
+
102
+ # Create circuit with amplitude encoding
103
+ circuit = QuantumCircuit(self.num_qubits)
104
+
105
+ # This would require sophisticated state preparation
106
+ # For now, use a simplified approximation
107
+ for i in range(self.num_qubits):
108
+ if i < len(x):
109
+ circuit.ry(2 * np.arcsin(np.sqrt(abs(padded_x[i]))), i)
110
+
111
+ return circuit
112
+
113
+
114
+ class IQPFeatureMap(QuantumFeatureMap):
115
+ """Instantaneous Quantum Polynomial (IQP) feature map
116
+ """
117
+
118
+ def __init__(self, num_qubits: int, num_features: int, degree: int = 2):
119
+ """Initialize IQP feature map
120
+
121
+ Args:
122
+ num_qubits: Number of qubits
123
+ num_features: Number of features
124
+ degree: Polynomial degree
125
+
126
+ """
127
+ super().__init__(num_qubits, num_features)
128
+ self.degree = degree
129
+
130
+ def map_features(self, x: np.ndarray) -> QuantumCircuit:
131
+ """Map features using IQP encoding"""
132
+ circuit = QuantumCircuit(self.num_qubits)
133
+
134
+ # Initialize in superposition
135
+ for i in range(self.num_qubits):
136
+ circuit.h(i)
137
+
138
+ # First-order terms
139
+ for i in range(min(self.num_features, self.num_qubits)):
140
+ circuit.rz(x[i], i)
141
+
142
+ # Second-order terms (if degree >= 2)
143
+ if self.degree >= 2:
144
+ for i in range(self.num_qubits - 1):
145
+ for j in range(i + 1, min(self.num_qubits, self.num_features)):
146
+ if i < len(x) and j < len(x):
147
+ circuit.cnot(i, j)
148
+ circuit.rz(x[i] * x[j], j)
149
+ circuit.cnot(i, j)
150
+
151
+ return circuit
152
+
153
+
154
+ class QuantumKernel:
155
+ """Quantum kernel for kernel-based machine learning
156
+ """
157
+
158
+ def __init__(
159
+ self,
160
+ feature_map: QuantumFeatureMap,
161
+ client: Optional[SuperQuantXClient] = None
162
+ ):
163
+ """Initialize quantum kernel
164
+
165
+ Args:
166
+ feature_map: Quantum feature map
167
+ client: SuperQuantX client for execution
168
+
169
+ """
170
+ self.feature_map = feature_map
171
+ self.client = client
172
+
173
+ def kernel_matrix(self, X1: np.ndarray, X2: np.ndarray = None) -> np.ndarray:
174
+ """Compute quantum kernel matrix
175
+
176
+ Args:
177
+ X1: First set of data points
178
+ X2: Second set of data points (default: same as X1)
179
+
180
+ Returns:
181
+ Kernel matrix K[i,j] = ⟨φ(x_i)|φ(x_j)⟩
182
+
183
+ """
184
+ if X2 is None:
185
+ X2 = X1
186
+
187
+ kernel_matrix = np.zeros((len(X1), len(X2)))
188
+
189
+ for i, x1 in enumerate(X1):
190
+ for j, x2 in enumerate(X2):
191
+ kernel_matrix[i, j] = self._kernel_value(x1, x2)
192
+
193
+ return kernel_matrix
194
+
195
+ def _kernel_value(self, x1: np.ndarray, x2: np.ndarray) -> float:
196
+ """Compute kernel value between two data points
197
+
198
+ Args:
199
+ x1: First data point
200
+ x2: Second data point
201
+
202
+ Returns:
203
+ Kernel value ⟨φ(x1)|φ(x2)⟩
204
+
205
+ """
206
+ # Create circuits for both feature vectors
207
+ circuit1 = self.feature_map.map_features(x1)
208
+ circuit2 = self.feature_map.map_features(x2)
209
+
210
+ # Create kernel estimation circuit
211
+ kernel_circuit = self._create_kernel_circuit(circuit1, circuit2)
212
+
213
+ if self.client is None:
214
+ # Simulate kernel value
215
+ return self._simulate_kernel_value(kernel_circuit)
216
+ else:
217
+ # Execute on quantum backend
218
+ return self._execute_kernel_value(kernel_circuit)
219
+
220
+ def _create_kernel_circuit(
221
+ self,
222
+ circuit1: QuantumCircuit,
223
+ circuit2: QuantumCircuit
224
+ ) -> QuantumCircuit:
225
+ """Create circuit for kernel estimation"""
226
+ # This creates a circuit that computes |⟨φ(x1)|φ(x2)⟩|²
227
+
228
+ num_qubits = circuit1.num_qubits
229
+ kernel_circuit = QuantumCircuit(2 * num_qubits + 1) # +1 for ancilla
230
+
231
+ # Apply feature map to first register
232
+ for gate in circuit1.gates:
233
+ new_gate = QuantumGate(
234
+ name=gate.name,
235
+ qubits=gate.qubits,
236
+ parameters=gate.parameters
237
+ )
238
+ kernel_circuit.gates.append(new_gate)
239
+
240
+ # Apply inverse feature map to second register
241
+ for gate in reversed(circuit2.gates):
242
+ # Map qubits to second register
243
+ mapped_qubits = [q + num_qubits for q in gate.qubits]
244
+
245
+ # Create inverse gate
246
+ inv_gate = self._inverse_gate(gate, mapped_qubits)
247
+ kernel_circuit.gates.append(inv_gate)
248
+
249
+ # Swap test between registers
250
+ ancilla = 2 * num_qubits
251
+ kernel_circuit.h(ancilla)
252
+
253
+ for i in range(num_qubits):
254
+ kernel_circuit.gates.append(
255
+ QuantumGate(name="CSWAP", qubits=[ancilla, i, i + num_qubits])
256
+ )
257
+
258
+ kernel_circuit.h(ancilla)
259
+ kernel_circuit.measure(ancilla, 0)
260
+
261
+ return kernel_circuit
262
+
263
+ def _inverse_gate(self, gate: QuantumGate, mapped_qubits: List[int]) -> QuantumGate:
264
+ """Create inverse gate with mapped qubits"""
265
+ # Simplified inverse gate creation
266
+ inverse_params = [-p for p in gate.parameters] if gate.parameters else []
267
+
268
+ return QuantumGate(
269
+ name=gate.name, # Would need proper inverse mapping
270
+ qubits=mapped_qubits,
271
+ parameters=inverse_params
272
+ )
273
+
274
+ def _simulate_kernel_value(self, circuit: QuantumCircuit) -> float:
275
+ """Simulate kernel value computation"""
276
+ # Simplified simulation
277
+ return np.random.uniform(0, 1) # Placeholder
278
+
279
+ def _execute_kernel_value(self, circuit: QuantumCircuit) -> float:
280
+ """Execute kernel computation on quantum backend"""
281
+ if self.client is None:
282
+ raise ValueError("Client required for quantum execution")
283
+
284
+ job = self.client.submit_job_sync(circuit_data=circuit.to_dict())
285
+ result = self.client.wait_for_job_sync(job.job_id)
286
+
287
+ # Extract kernel value from measurement statistics
288
+ counts = result.results.get("counts", {})
289
+ total_shots = sum(counts.values())
290
+
291
+ # Probability of measuring |0⟩ on ancilla qubit
292
+ prob_0 = counts.get("0", 0) / total_shots if total_shots > 0 else 0.5
293
+
294
+ # Kernel value: K = 2 * P(0) - 1
295
+ return 2 * prob_0 - 1
296
+
297
+
298
+ class QuantumSVM(BaseEstimator, ClassifierMixin):
299
+ """Quantum Support Vector Machine
300
+ """
301
+
302
+ def __init__(
303
+ self,
304
+ quantum_kernel: QuantumKernel,
305
+ C: float = 1.0
306
+ ):
307
+ """Initialize Quantum SVM
308
+
309
+ Args:
310
+ quantum_kernel: Quantum kernel for classification
311
+ C: Regularization parameter
312
+
313
+ """
314
+ self.quantum_kernel = quantum_kernel
315
+ self.C = C
316
+ self.is_fitted_ = False
317
+
318
+ # Will be set during training
319
+ self.support_vectors_: Optional[np.ndarray] = None
320
+ self.support_: Optional[np.ndarray] = None
321
+ self.alpha_: Optional[np.ndarray] = None
322
+ self.intercept_: Optional[float] = None
323
+ self.classes_: Optional[np.ndarray] = None
324
+
325
+ def fit(self, X: np.ndarray, y: np.ndarray) -> "QuantumSVM":
326
+ """Fit Quantum SVM
327
+
328
+ Args:
329
+ X: Training data
330
+ y: Training labels
331
+
332
+ Returns:
333
+ Fitted model
334
+
335
+ """
336
+ # Encode labels to {-1, 1}
337
+ self.classes_ = np.unique(y)
338
+ if len(self.classes_) != 2:
339
+ raise ValueError("QuantumSVM supports binary classification only")
340
+
341
+ y_encoded = np.where(y == self.classes_[0], -1, 1)
342
+
343
+ # Compute quantum kernel matrix
344
+ K = self.quantum_kernel.kernel_matrix(X)
345
+
346
+ # Solve SVM dual optimization problem
347
+ # This is a simplified implementation - would use proper QP solver
348
+ n_samples = len(X)
349
+
350
+ # Objective function for dual SVM problem
351
+ def objective(alpha):
352
+ return 0.5 * np.sum(alpha[:, None] * alpha[None, :] * y_encoded[:, None] * y_encoded[None, :] * K) - np.sum(alpha)
353
+
354
+ # Constraints: 0 <= alpha_i <= C and sum(alpha_i * y_i) = 0
355
+ from scipy.optimize import minimize
356
+
357
+ constraints = [
358
+ {'type': 'eq', 'fun': lambda alpha: np.sum(alpha * y_encoded)},
359
+ ]
360
+
361
+ bounds = [(0, self.C) for _ in range(n_samples)]
362
+
363
+ # Initial guess
364
+ alpha_init = np.zeros(n_samples)
365
+
366
+ # Solve optimization
367
+ result = minimize(
368
+ objective,
369
+ alpha_init,
370
+ method='SLSQP',
371
+ bounds=bounds,
372
+ constraints=constraints
373
+ )
374
+
375
+ self.alpha_ = result.x
376
+
377
+ # Find support vectors (alpha > 0)
378
+ support_indices = np.where(self.alpha_ > 1e-6)[0]
379
+ self.support_ = support_indices
380
+ self.support_vectors_ = X[support_indices]
381
+
382
+ # Compute intercept
383
+ if len(support_indices) > 0:
384
+ # Use free support vectors (0 < alpha < C)
385
+ free_sv_indices = support_indices[
386
+ (self.alpha_[support_indices] > 1e-6) &
387
+ (self.alpha_[support_indices] < self.C - 1e-6)
388
+ ]
389
+
390
+ if len(free_sv_indices) > 0:
391
+ # Compute intercept using free support vectors
392
+ intercept_values = []
393
+ for idx in free_sv_indices:
394
+ kernel_values = self.quantum_kernel.kernel_matrix(
395
+ X[support_indices], X[idx:idx+1]
396
+ )[:, 0]
397
+
398
+ intercept_val = y_encoded[idx] - np.sum(
399
+ self.alpha_[support_indices] * y_encoded[support_indices] * kernel_values
400
+ )
401
+ intercept_values.append(intercept_val)
402
+
403
+ self.intercept_ = np.mean(intercept_values)
404
+ else:
405
+ self.intercept_ = 0.0
406
+ else:
407
+ self.intercept_ = 0.0
408
+
409
+ self.is_fitted_ = True
410
+ return self
411
+
412
+ def decision_function(self, X: np.ndarray) -> np.ndarray:
413
+ """Compute decision function
414
+
415
+ Args:
416
+ X: Input data
417
+
418
+ Returns:
419
+ Decision function values
420
+
421
+ """
422
+ if not self.is_fitted_:
423
+ raise ValueError("Model must be fitted before prediction")
424
+
425
+ if len(self.support_) == 0:
426
+ return np.zeros(len(X))
427
+
428
+ # Compute kernel matrix between test data and support vectors
429
+ K_test = self.quantum_kernel.kernel_matrix(X, self.support_vectors_)
430
+
431
+ # Compute decision function
432
+ y_support = np.where(
433
+ np.isin(range(len(self.alpha_)), self.support_),
434
+ np.where(np.arange(len(self.classes_)) == 0, -1, 1)[0],
435
+ 0
436
+ )
437
+
438
+ decision = np.sum(
439
+ self.alpha_[self.support_] * y_support[self.support_] * K_test.T,
440
+ axis=0
441
+ ) + self.intercept_
442
+
443
+ return decision
444
+
445
+ def predict(self, X: np.ndarray) -> np.ndarray:
446
+ """Make predictions
447
+
448
+ Args:
449
+ X: Input data
450
+
451
+ Returns:
452
+ Predicted labels
453
+
454
+ """
455
+ decision = self.decision_function(X)
456
+ binary_pred = np.where(decision >= 0, 1, -1)
457
+
458
+ # Convert back to original labels
459
+ return np.where(binary_pred == -1, self.classes_[0], self.classes_[1])
460
+
461
+
462
+ class QuantumClassifier(BaseEstimator, ClassifierMixin):
463
+ """General quantum classifier using variational quantum circuits
464
+ """
465
+
466
+ def __init__(
467
+ self,
468
+ feature_map: QuantumFeatureMap,
469
+ ansatz_layers: int = 2,
470
+ client: Optional[SuperQuantXClient] = None,
471
+ optimizer: str = "SLSQP",
472
+ max_iter: int = 1000
473
+ ):
474
+ """Initialize quantum classifier
475
+
476
+ Args:
477
+ feature_map: Quantum feature map
478
+ ansatz_layers: Number of variational layers
479
+ client: SuperQuantX client
480
+ optimizer: Classical optimizer
481
+ max_iter: Maximum optimization iterations
482
+
483
+ """
484
+ self.feature_map = feature_map
485
+ self.ansatz_layers = ansatz_layers
486
+ self.client = client
487
+ self.optimizer = optimizer
488
+ self.max_iter = max_iter
489
+
490
+ self.is_fitted_ = False
491
+ self.parameters_: Optional[np.ndarray] = None
492
+ self.classes_: Optional[np.ndarray] = None
493
+ self.label_encoder_ = LabelEncoder()
494
+
495
+ def _create_circuit(self, x: np.ndarray, parameters: np.ndarray) -> QuantumCircuit:
496
+ """Create quantum circuit for given input and parameters"""
497
+ # Feature encoding
498
+ circuit = self.feature_map.map_features(x)
499
+
500
+ # Variational ansatz
501
+ num_qubits = circuit.num_qubits
502
+ param_idx = 0
503
+
504
+ for layer in range(self.ansatz_layers):
505
+ # Parameterized rotations
506
+ for qubit in range(num_qubits):
507
+ if param_idx < len(parameters):
508
+ circuit.ry(parameters[param_idx], qubit)
509
+ param_idx += 1
510
+ if param_idx < len(parameters):
511
+ circuit.rz(parameters[param_idx], qubit)
512
+ param_idx += 1
513
+
514
+ # Entangling gates
515
+ for qubit in range(num_qubits - 1):
516
+ circuit.cnot(qubit, qubit + 1)
517
+
518
+ return circuit
519
+
520
+ def _cost_function(self, parameters: np.ndarray, X: np.ndarray, y: np.ndarray) -> float:
521
+ """Cost function for optimization"""
522
+ predictions = self._predict_proba_raw(X, parameters)
523
+
524
+ # Cross-entropy loss
525
+ loss = 0.0
526
+ for i, pred in enumerate(predictions):
527
+ true_label = y[i]
528
+ # Avoid log(0)
529
+ pred_clipped = np.clip(pred, 1e-15, 1 - 1e-15)
530
+ loss -= np.log(pred_clipped[true_label])
531
+
532
+ return loss / len(y)
533
+
534
+ def _predict_proba_raw(self, X: np.ndarray, parameters: np.ndarray) -> np.ndarray:
535
+ """Predict class probabilities using given parameters"""
536
+ num_classes = len(self.classes_) if self.classes_ is not None else 2
537
+ probabilities = np.zeros((len(X), num_classes))
538
+
539
+ for i, x in enumerate(X):
540
+ circuit = self._create_circuit(x, parameters)
541
+
542
+ if self.client is None:
543
+ # Simulate measurement
544
+ probs = self._simulate_measurement_probabilities(circuit)
545
+ else:
546
+ # Execute on quantum backend
547
+ probs = self._execute_measurement_probabilities(circuit)
548
+
549
+ probabilities[i] = probs
550
+
551
+ return probabilities
552
+
553
+ def _simulate_measurement_probabilities(self, circuit: QuantumCircuit) -> np.ndarray:
554
+ """Simulate measurement probabilities"""
555
+ # Placeholder - would use quantum simulator
556
+ num_classes = len(self.classes_) if self.classes_ is not None else 2
557
+ return np.random.dirichlet(np.ones(num_classes))
558
+
559
+ def _execute_measurement_probabilities(self, circuit: QuantumCircuit) -> np.ndarray:
560
+ """Execute measurement on quantum backend"""
561
+ # Add measurements
562
+ measurement_circuit = circuit.copy()
563
+ measurement_circuit.measure_all()
564
+
565
+ job = self.client.submit_job_sync(circuit_data=measurement_circuit.to_dict())
566
+ result = self.client.wait_for_job_sync(job.job_id)
567
+
568
+ counts = result.results.get("counts", {})
569
+ total_shots = sum(counts.values())
570
+
571
+ # Convert counts to probabilities
572
+ num_classes = len(self.classes_)
573
+ probabilities = np.zeros(num_classes)
574
+
575
+ for outcome, count in counts.items():
576
+ # Map bitstring to class (simplified)
577
+ class_idx = int(outcome, 2) % num_classes
578
+ probabilities[class_idx] += count / total_shots
579
+
580
+ return probabilities
581
+
582
+ def fit(self, X: np.ndarray, y: np.ndarray) -> "QuantumClassifier":
583
+ """Fit quantum classifier
584
+
585
+ Args:
586
+ X: Training data
587
+ y: Training labels
588
+
589
+ Returns:
590
+ Fitted model
591
+
592
+ """
593
+ # Encode labels
594
+ y_encoded = self.label_encoder_.fit_transform(y)
595
+ self.classes_ = self.label_encoder_.classes_
596
+
597
+ # Initialize parameters
598
+ num_params = self.ansatz_layers * self.feature_map.num_qubits * 2
599
+ initial_params = np.random.uniform(0, 2*np.pi, num_params)
600
+
601
+ # Optimize parameters
602
+ result = minimize(
603
+ fun=lambda params: self._cost_function(params, X, y_encoded),
604
+ x0=initial_params,
605
+ method=self.optimizer,
606
+ options={'maxiter': self.max_iter}
607
+ )
608
+
609
+ self.parameters_ = result.x
610
+ self.is_fitted_ = True
611
+
612
+ return self
613
+
614
+ def predict_proba(self, X: np.ndarray) -> np.ndarray:
615
+ """Predict class probabilities
616
+
617
+ Args:
618
+ X: Input data
619
+
620
+ Returns:
621
+ Class probabilities
622
+
623
+ """
624
+ if not self.is_fitted_:
625
+ raise ValueError("Model must be fitted before prediction")
626
+
627
+ return self._predict_proba_raw(X, self.parameters_)
628
+
629
+ def predict(self, X: np.ndarray) -> np.ndarray:
630
+ """Make predictions
631
+
632
+ Args:
633
+ X: Input data
634
+
635
+ Returns:
636
+ Predicted labels
637
+
638
+ """
639
+ probabilities = self.predict_proba(X)
640
+ class_indices = np.argmax(probabilities, axis=1)
641
+ return self.label_encoder_.inverse_transform(class_indices)
642
+
643
+
644
+ class QuantumRegressor(BaseEstimator, RegressorMixin):
645
+ """Quantum regressor using variational quantum circuits
646
+ """
647
+
648
+ def __init__(
649
+ self,
650
+ feature_map: QuantumFeatureMap,
651
+ ansatz_layers: int = 2,
652
+ client: Optional[SuperQuantXClient] = None,
653
+ optimizer: str = "SLSQP"
654
+ ):
655
+ """Initialize quantum regressor
656
+
657
+ Args:
658
+ feature_map: Quantum feature map
659
+ ansatz_layers: Number of variational layers
660
+ client: SuperQuantX client
661
+ optimizer: Classical optimizer
662
+
663
+ """
664
+ self.feature_map = feature_map
665
+ self.ansatz_layers = ansatz_layers
666
+ self.client = client
667
+ self.optimizer = optimizer
668
+
669
+ self.is_fitted_ = False
670
+ self.parameters_: Optional[np.ndarray] = None
671
+ self.scaler_ = StandardScaler()
672
+
673
+ def _create_circuit(self, x: np.ndarray, parameters: np.ndarray) -> QuantumCircuit:
674
+ """Create quantum circuit for regression"""
675
+ # Similar to classifier but optimized for regression
676
+ circuit = self.feature_map.map_features(x)
677
+
678
+ num_qubits = circuit.num_qubits
679
+ param_idx = 0
680
+
681
+ for layer in range(self.ansatz_layers):
682
+ for qubit in range(num_qubits):
683
+ if param_idx < len(parameters):
684
+ circuit.ry(parameters[param_idx], qubit)
685
+ param_idx += 1
686
+
687
+ # Entangling layer
688
+ for qubit in range(num_qubits - 1):
689
+ circuit.cnot(qubit, qubit + 1)
690
+
691
+ return circuit
692
+
693
+ def _predict_single(self, x: np.ndarray, parameters: np.ndarray) -> float:
694
+ """Predict single value"""
695
+ circuit = self._create_circuit(x, parameters)
696
+
697
+ if self.client is None:
698
+ # Simulate expectation value
699
+ return np.random.uniform(-1, 1) # Placeholder
700
+ else:
701
+ # Execute on quantum backend
702
+ return self._execute_expectation_value(circuit)
703
+
704
+ def _execute_expectation_value(self, circuit: QuantumCircuit) -> float:
705
+ """Execute expectation value measurement"""
706
+ measurement_circuit = circuit.copy()
707
+ measurement_circuit.measure(0, 0) # Measure first qubit
708
+
709
+ job = self.client.submit_job_sync(circuit_data=measurement_circuit.to_dict())
710
+ result = self.client.wait_for_job_sync(job.job_id)
711
+
712
+ counts = result.results.get("counts", {})
713
+ total_shots = sum(counts.values())
714
+
715
+ # Expectation value of Z on first qubit
716
+ prob_0 = counts.get("0", 0) / total_shots if total_shots > 0 else 0.5
717
+ expectation = 2 * prob_0 - 1
718
+
719
+ return expectation
720
+
721
+ def fit(self, X: np.ndarray, y: np.ndarray) -> "QuantumRegressor":
722
+ """Fit quantum regressor
723
+
724
+ Args:
725
+ X: Training data
726
+ y: Training targets
727
+
728
+ Returns:
729
+ Fitted model
730
+
731
+ """
732
+ # Scale targets
733
+ y_scaled = self.scaler_.fit_transform(y.reshape(-1, 1)).flatten()
734
+
735
+ # Initialize parameters
736
+ num_params = self.ansatz_layers * self.feature_map.num_qubits
737
+ initial_params = np.random.uniform(0, 2*np.pi, num_params)
738
+
739
+ # Cost function
740
+ def cost_function(params):
741
+ predictions = [self._predict_single(x, params) for x in X]
742
+ return mean_squared_error(y_scaled, predictions)
743
+
744
+ # Optimize
745
+ result = minimize(
746
+ cost_function,
747
+ initial_params,
748
+ method=self.optimizer
749
+ )
750
+
751
+ self.parameters_ = result.x
752
+ self.is_fitted_ = True
753
+
754
+ return self
755
+
756
+ def predict(self, X: np.ndarray) -> np.ndarray:
757
+ """Make predictions
758
+
759
+ Args:
760
+ X: Input data
761
+
762
+ Returns:
763
+ Predicted values
764
+
765
+ """
766
+ if not self.is_fitted_:
767
+ raise ValueError("Model must be fitted before prediction")
768
+
769
+ scaled_predictions = [self._predict_single(x, self.parameters_) for x in X]
770
+ predictions = self.scaler_.inverse_transform(
771
+ np.array(scaled_predictions).reshape(-1, 1)
772
+ ).flatten()
773
+
774
+ return predictions
775
+
776
+
777
+ class QuantumGAN:
778
+ """Quantum Generative Adversarial Network
779
+ """
780
+
781
+ def __init__(
782
+ self,
783
+ num_qubits: int,
784
+ generator_layers: int = 3,
785
+ discriminator_layers: int = 2,
786
+ client: Optional[SuperQuantXClient] = None
787
+ ):
788
+ """Initialize Quantum GAN
789
+
790
+ Args:
791
+ num_qubits: Number of qubits
792
+ generator_layers: Generator circuit depth
793
+ discriminator_layers: Discriminator circuit depth
794
+ client: SuperQuantX client
795
+
796
+ """
797
+ self.num_qubits = num_qubits
798
+ self.generator_layers = generator_layers
799
+ self.discriminator_layers = discriminator_layers
800
+ self.client = client
801
+
802
+ # Parameters will be set during training
803
+ self.generator_params: Optional[np.ndarray] = None
804
+ self.discriminator_params: Optional[np.ndarray] = None
805
+
806
+ def create_generator(self, noise: np.ndarray, params: np.ndarray) -> QuantumCircuit:
807
+ """Create generator circuit"""
808
+ circuit = QuantumCircuit(self.num_qubits)
809
+
810
+ # Noise encoding
811
+ for i, noise_val in enumerate(noise[:self.num_qubits]):
812
+ circuit.ry(noise_val, i)
813
+
814
+ # Variational layers
815
+ param_idx = 0
816
+ for layer in range(self.generator_layers):
817
+ for qubit in range(self.num_qubits):
818
+ if param_idx < len(params):
819
+ circuit.ry(params[param_idx], qubit)
820
+ param_idx += 1
821
+
822
+ # Entangling
823
+ for qubit in range(self.num_qubits - 1):
824
+ circuit.cnot(qubit, qubit + 1)
825
+
826
+ return circuit
827
+
828
+ def create_discriminator(self, data_circuit: QuantumCircuit, params: np.ndarray) -> float:
829
+ """Create discriminator and return probability of real data"""
830
+ # Simplified discriminator - would be more complex in practice
831
+
832
+ # Apply discriminator ansatz
833
+ discriminator_circuit = data_circuit.copy()
834
+
835
+ param_idx = 0
836
+ for layer in range(self.discriminator_layers):
837
+ for qubit in range(self.num_qubits):
838
+ if param_idx < len(params):
839
+ discriminator_circuit.rz(params[param_idx], qubit)
840
+ param_idx += 1
841
+
842
+ # Measure and return probability
843
+ if self.client is None:
844
+ return np.random.uniform(0, 1) # Placeholder
845
+ else:
846
+ discriminator_circuit.measure(0, 0)
847
+ job = self.client.submit_job_sync(discriminator_circuit.to_dict())
848
+ result = self.client.wait_for_job_sync(job.job_id)
849
+
850
+ counts = result.results.get("counts", {})
851
+ total = sum(counts.values())
852
+ prob_real = counts.get("0", 0) / total if total > 0 else 0.5
853
+
854
+ return prob_real
855
+
856
+ def train(
857
+ self,
858
+ training_data: np.ndarray,
859
+ num_epochs: int = 100,
860
+ learning_rate: float = 0.01
861
+ ) -> Dict[str, List[float]]:
862
+ """Train Quantum GAN
863
+
864
+ Args:
865
+ training_data: Real training data
866
+ num_epochs: Number of training epochs
867
+ learning_rate: Learning rate
868
+
869
+ Returns:
870
+ Training history
871
+
872
+ """
873
+ # Initialize parameters
874
+ gen_params = np.random.uniform(0, 2*np.pi, self.generator_layers * self.num_qubits)
875
+ disc_params = np.random.uniform(0, 2*np.pi, self.discriminator_layers * self.num_qubits)
876
+
877
+ history = {"generator_loss": [], "discriminator_loss": []}
878
+
879
+ for epoch in range(num_epochs):
880
+ # Train discriminator
881
+ real_data_sample = training_data[np.random.randint(len(training_data))]
882
+ noise = np.random.uniform(0, 2*np.pi, self.num_qubits)
883
+
884
+ # Generate fake data
885
+ fake_circuit = self.create_generator(noise, gen_params)
886
+
887
+ # Discriminator loss (simplified)
888
+ real_prob = self.create_discriminator(
889
+ self._data_to_circuit(real_data_sample), disc_params
890
+ )
891
+ fake_prob = self.create_discriminator(fake_circuit, disc_params)
892
+
893
+ disc_loss = -np.log(real_prob) - np.log(1 - fake_prob)
894
+
895
+ # Train generator
896
+ gen_loss = -np.log(fake_prob)
897
+
898
+ # Update parameters (simplified gradient descent)
899
+ # In practice, would compute proper gradients
900
+ disc_params += learning_rate * np.random.normal(0, 0.1, len(disc_params))
901
+ gen_params += learning_rate * np.random.normal(0, 0.1, len(gen_params))
902
+
903
+ history["generator_loss"].append(gen_loss)
904
+ history["discriminator_loss"].append(disc_loss)
905
+
906
+ self.generator_params = gen_params
907
+ self.discriminator_params = disc_params
908
+
909
+ return history
910
+
911
+ def _data_to_circuit(self, data: np.ndarray) -> QuantumCircuit:
912
+ """Convert data to quantum circuit"""
913
+ circuit = QuantumCircuit(self.num_qubits)
914
+
915
+ # Simple data encoding
916
+ for i, val in enumerate(data[:self.num_qubits]):
917
+ circuit.ry(val, i)
918
+
919
+ return circuit
920
+
921
+ def generate_samples(self, num_samples: int) -> List[np.ndarray]:
922
+ """Generate samples using trained generator"""
923
+ if self.generator_params is None:
924
+ raise ValueError("GAN must be trained before generating samples")
925
+
926
+ samples = []
927
+ for _ in range(num_samples):
928
+ noise = np.random.uniform(0, 2*np.pi, self.num_qubits)
929
+ generator_circuit = self.create_generator(noise, self.generator_params)
930
+
931
+ # Extract generated sample (simplified)
932
+ # Would measure and extract amplitudes in practice
933
+ sample = np.random.uniform(0, 1, self.num_qubits) # Placeholder
934
+ samples.append(sample)
935
+
936
+ return samples