superquantx 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- superquantx/__init__.py +321 -0
- superquantx/algorithms/__init__.py +55 -0
- superquantx/algorithms/base_algorithm.py +413 -0
- superquantx/algorithms/hybrid_classifier.py +628 -0
- superquantx/algorithms/qaoa.py +406 -0
- superquantx/algorithms/quantum_agents.py +1006 -0
- superquantx/algorithms/quantum_kmeans.py +575 -0
- superquantx/algorithms/quantum_nn.py +544 -0
- superquantx/algorithms/quantum_pca.py +499 -0
- superquantx/algorithms/quantum_svm.py +346 -0
- superquantx/algorithms/vqe.py +553 -0
- superquantx/algorithms.py +863 -0
- superquantx/backends/__init__.py +265 -0
- superquantx/backends/base_backend.py +321 -0
- superquantx/backends/braket_backend.py +420 -0
- superquantx/backends/cirq_backend.py +466 -0
- superquantx/backends/ocean_backend.py +491 -0
- superquantx/backends/pennylane_backend.py +419 -0
- superquantx/backends/qiskit_backend.py +451 -0
- superquantx/backends/simulator_backend.py +455 -0
- superquantx/backends/tket_backend.py +519 -0
- superquantx/circuits.py +447 -0
- superquantx/cli/__init__.py +28 -0
- superquantx/cli/commands.py +528 -0
- superquantx/cli/main.py +254 -0
- superquantx/client.py +298 -0
- superquantx/config.py +326 -0
- superquantx/exceptions.py +287 -0
- superquantx/gates.py +588 -0
- superquantx/logging_config.py +347 -0
- superquantx/measurements.py +702 -0
- superquantx/ml.py +936 -0
- superquantx/noise.py +760 -0
- superquantx/utils/__init__.py +83 -0
- superquantx/utils/benchmarking.py +523 -0
- superquantx/utils/classical_utils.py +575 -0
- superquantx/utils/feature_mapping.py +467 -0
- superquantx/utils/optimization.py +410 -0
- superquantx/utils/quantum_utils.py +456 -0
- superquantx/utils/visualization.py +654 -0
- superquantx/version.py +33 -0
- superquantx-0.1.0.dist-info/METADATA +365 -0
- superquantx-0.1.0.dist-info/RECORD +46 -0
- superquantx-0.1.0.dist-info/WHEEL +4 -0
- superquantx-0.1.0.dist-info/entry_points.txt +2 -0
- superquantx-0.1.0.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,491 @@
|
|
1
|
+
"""D-Wave Ocean backend implementation for SuperQuantX.
|
2
|
+
|
3
|
+
This module provides integration with D-Wave Ocean SDK for quantum annealing
|
4
|
+
and optimization problems using D-Wave quantum annealing processors.
|
5
|
+
|
6
|
+
Note: This backend focuses on QUBO/Ising model problems rather than
|
7
|
+
gate-model quantum circuits.
|
8
|
+
"""
|
9
|
+
|
10
|
+
import logging
|
11
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
12
|
+
|
13
|
+
import numpy as np
|
14
|
+
|
15
|
+
from .base_backend import BaseBackend
|
16
|
+
|
17
|
+
|
18
|
+
logger = logging.getLogger(__name__)
|
19
|
+
|
20
|
+
# Try to import D-Wave Ocean
|
21
|
+
try:
|
22
|
+
import dimod
|
23
|
+
import networkx as nx
|
24
|
+
from dwave.embedding import embed_ising, unembed_sampleset
|
25
|
+
from dwave.samplers import SimulatedAnnealingSampler
|
26
|
+
from dwave.system import DWaveSampler, EmbeddingComposite, LeapHybridSampler
|
27
|
+
OCEAN_AVAILABLE = True
|
28
|
+
except ImportError:
|
29
|
+
OCEAN_AVAILABLE = False
|
30
|
+
dimod = None
|
31
|
+
DWaveSampler = None
|
32
|
+
LeapHybridSampler = None
|
33
|
+
SimulatedAnnealingSampler = None
|
34
|
+
nx = None
|
35
|
+
|
36
|
+
class OceanBackend(BaseBackend):
|
37
|
+
"""D-Wave Ocean backend for quantum annealing operations.
|
38
|
+
|
39
|
+
This backend provides access to D-Wave's quantum annealing systems
|
40
|
+
for solving optimization problems formulated as QUBO or Ising models.
|
41
|
+
|
42
|
+
Note: Unlike gate-model quantum computers, D-Wave systems solve optimization
|
43
|
+
problems rather than running quantum circuits.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
device: Sampler type ('DWave', 'hybrid', 'simulator', 'advantage')
|
47
|
+
solver: Specific solver name (optional)
|
48
|
+
token: D-Wave API token (required for hardware)
|
49
|
+
endpoint: D-Wave API endpoint
|
50
|
+
shots: Number of samples (reads)
|
51
|
+
**kwargs: Additional sampler configuration
|
52
|
+
|
53
|
+
Example:
|
54
|
+
>>> # Simulated annealing (no hardware required)
|
55
|
+
>>> backend = OceanBackend(device='simulator')
|
56
|
+
>>>
|
57
|
+
>>> # D-Wave hardware (requires API token)
|
58
|
+
>>> backend = OceanBackend(
|
59
|
+
... device='advantage',
|
60
|
+
... token='your-dwave-token'
|
61
|
+
... )
|
62
|
+
|
63
|
+
"""
|
64
|
+
|
65
|
+
def __init__(
|
66
|
+
self,
|
67
|
+
device: str = 'simulator',
|
68
|
+
solver: Optional[str] = None,
|
69
|
+
token: Optional[str] = None,
|
70
|
+
endpoint: Optional[str] = None,
|
71
|
+
shots: int = 1000, # Called "num_reads" in D-Wave
|
72
|
+
**kwargs
|
73
|
+
) -> None:
|
74
|
+
if not OCEAN_AVAILABLE:
|
75
|
+
raise ImportError(
|
76
|
+
"D-Wave Ocean not available. Install with: pip install dwave-ocean-sdk"
|
77
|
+
)
|
78
|
+
|
79
|
+
self.device_name = device
|
80
|
+
self.solver_name = solver
|
81
|
+
self.token = token
|
82
|
+
self.endpoint = endpoint
|
83
|
+
self.num_reads = shots
|
84
|
+
self._sampler = None
|
85
|
+
self._is_quantum_annealing = True # This backend is for annealing, not gates
|
86
|
+
|
87
|
+
super().__init__(device=device, shots=shots, **kwargs)
|
88
|
+
|
89
|
+
def _initialize_backend(self) -> None:
|
90
|
+
"""Initialize D-Wave Ocean backend and sampler."""
|
91
|
+
try:
|
92
|
+
if self.device_name == 'simulator':
|
93
|
+
# Simulated annealing sampler (classical simulation)
|
94
|
+
self._sampler = SimulatedAnnealingSampler()
|
95
|
+
logger.info("Initialized D-Wave simulated annealing sampler")
|
96
|
+
|
97
|
+
elif self.device_name in ['dwave', 'advantage', 'advantage2']:
|
98
|
+
# D-Wave quantum annealer
|
99
|
+
if not self.token:
|
100
|
+
logger.warning("No D-Wave token provided, attempting to use environment/config")
|
101
|
+
|
102
|
+
# Create base sampler
|
103
|
+
base_sampler = DWaveSampler(
|
104
|
+
solver=self.solver_name,
|
105
|
+
token=self.token,
|
106
|
+
endpoint=self.endpoint
|
107
|
+
)
|
108
|
+
|
109
|
+
# Wrap with embedding for automatic minor-embedding
|
110
|
+
self._sampler = EmbeddingComposite(base_sampler)
|
111
|
+
logger.info(f"Initialized D-Wave hardware sampler: {base_sampler.solver.name}")
|
112
|
+
|
113
|
+
elif self.device_name == 'hybrid':
|
114
|
+
# D-Wave Leap Hybrid solver
|
115
|
+
self._sampler = LeapHybridSampler(
|
116
|
+
token=self.token,
|
117
|
+
endpoint=self.endpoint
|
118
|
+
)
|
119
|
+
logger.info("Initialized D-Wave Leap Hybrid sampler")
|
120
|
+
|
121
|
+
else:
|
122
|
+
raise ValueError(f"Unknown D-Wave device: {self.device_name}")
|
123
|
+
|
124
|
+
self.capabilities = {
|
125
|
+
'supports_measurements': False, # Not applicable for annealing
|
126
|
+
'supports_parameterized_circuits': False, # Not applicable
|
127
|
+
'supports_classical_control': False,
|
128
|
+
'supports_optimization': True, # Main capability
|
129
|
+
'supports_qubo': True,
|
130
|
+
'supports_ising': True,
|
131
|
+
'max_variables': self._get_max_variables(),
|
132
|
+
'annealing_backend': True,
|
133
|
+
}
|
134
|
+
|
135
|
+
except Exception as e:
|
136
|
+
logger.error(f"Failed to initialize D-Wave Ocean backend: {e}")
|
137
|
+
raise
|
138
|
+
|
139
|
+
def _get_max_variables(self) -> int:
|
140
|
+
"""Get maximum number of variables for the sampler."""
|
141
|
+
if hasattr(self._sampler, 'properties'):
|
142
|
+
try:
|
143
|
+
return len(self._sampler.properties['qubits'])
|
144
|
+
except:
|
145
|
+
pass
|
146
|
+
|
147
|
+
# Default estimates
|
148
|
+
if self.device_name == 'simulator':
|
149
|
+
return 10000 # Simulated annealer can handle large problems
|
150
|
+
elif self.device_name in ['advantage', 'advantage2']:
|
151
|
+
return 5000 # Advantage systems have ~5000 qubits
|
152
|
+
else:
|
153
|
+
return 2000 # Conservative estimate
|
154
|
+
|
155
|
+
# ========================================================================
|
156
|
+
# Optimization Problem Interface (replaces circuit operations)
|
157
|
+
# ========================================================================
|
158
|
+
|
159
|
+
def solve_qubo(self, Q: Dict[Tuple[int, int], float], **kwargs) -> Dict[str, Any]:
|
160
|
+
"""Solve a Quadratic Unconstrained Binary Optimization (QUBO) problem.
|
161
|
+
|
162
|
+
Args:
|
163
|
+
Q: QUBO dictionary where keys are (i, j) variable pairs and values are coefficients
|
164
|
+
**kwargs: Additional solving parameters
|
165
|
+
|
166
|
+
Returns:
|
167
|
+
Solution results with energies and samples
|
168
|
+
|
169
|
+
"""
|
170
|
+
try:
|
171
|
+
num_reads = kwargs.get('num_reads', self.num_reads)
|
172
|
+
|
173
|
+
# Create BQM from QUBO
|
174
|
+
bqm = dimod.BinaryQuadraticModel.from_qubo(Q)
|
175
|
+
|
176
|
+
# Sample from the BQM
|
177
|
+
sampleset = self._sampler.sample(bqm, num_reads=num_reads, **kwargs)
|
178
|
+
|
179
|
+
# Convert results to standard format
|
180
|
+
results = {
|
181
|
+
'samples': [],
|
182
|
+
'energies': [],
|
183
|
+
'num_occurrences': [],
|
184
|
+
'success': True,
|
185
|
+
'num_reads': len(sampleset),
|
186
|
+
'timing': getattr(sampleset, 'info', {}).get('timing', {}),
|
187
|
+
'problem_type': 'QUBO'
|
188
|
+
}
|
189
|
+
|
190
|
+
for sample, energy, num_occur in sampleset.data(['sample', 'energy', 'num_occurrences']):
|
191
|
+
results['samples'].append(dict(sample))
|
192
|
+
results['energies'].append(energy)
|
193
|
+
results['num_occurrences'].append(num_occur)
|
194
|
+
|
195
|
+
return results
|
196
|
+
|
197
|
+
except Exception as e:
|
198
|
+
logger.error(f"QUBO solving failed: {e}")
|
199
|
+
return {
|
200
|
+
'samples': [],
|
201
|
+
'energies': [],
|
202
|
+
'success': False,
|
203
|
+
'error': str(e),
|
204
|
+
'problem_type': 'QUBO'
|
205
|
+
}
|
206
|
+
|
207
|
+
def solve_ising(self, h: Dict[int, float], J: Dict[Tuple[int, int], float], **kwargs) -> Dict[str, Any]:
|
208
|
+
"""Solve an Ising model problem.
|
209
|
+
|
210
|
+
Args:
|
211
|
+
h: Linear coefficients (bias terms) for each variable
|
212
|
+
J: Quadratic coefficients (coupling terms) between variables
|
213
|
+
**kwargs: Additional solving parameters
|
214
|
+
|
215
|
+
Returns:
|
216
|
+
Solution results with energies and samples
|
217
|
+
|
218
|
+
"""
|
219
|
+
try:
|
220
|
+
num_reads = kwargs.get('num_reads', self.num_reads)
|
221
|
+
|
222
|
+
# Create BQM from Ising model
|
223
|
+
bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
|
224
|
+
|
225
|
+
# Sample from the BQM
|
226
|
+
sampleset = self._sampler.sample(bqm, num_reads=num_reads, **kwargs)
|
227
|
+
|
228
|
+
# Convert results to standard format
|
229
|
+
results = {
|
230
|
+
'samples': [],
|
231
|
+
'energies': [],
|
232
|
+
'num_occurrences': [],
|
233
|
+
'success': True,
|
234
|
+
'num_reads': len(sampleset),
|
235
|
+
'timing': getattr(sampleset, 'info', {}).get('timing', {}),
|
236
|
+
'problem_type': 'Ising'
|
237
|
+
}
|
238
|
+
|
239
|
+
for sample, energy, num_occur in sampleset.data(['sample', 'energy', 'num_occurrences']):
|
240
|
+
results['samples'].append(dict(sample))
|
241
|
+
results['energies'].append(energy)
|
242
|
+
results['num_occurrences'].append(num_occur)
|
243
|
+
|
244
|
+
return results
|
245
|
+
|
246
|
+
except Exception as e:
|
247
|
+
logger.error(f"Ising model solving failed: {e}")
|
248
|
+
return {
|
249
|
+
'samples': [],
|
250
|
+
'energies': [],
|
251
|
+
'success': False,
|
252
|
+
'error': str(e),
|
253
|
+
'problem_type': 'Ising'
|
254
|
+
}
|
255
|
+
|
256
|
+
def solve_optimization_problem(self, problem: Union[Dict, Any], problem_type: str = 'auto') -> Dict[str, Any]:
|
257
|
+
"""Generic optimization problem solver.
|
258
|
+
|
259
|
+
Args:
|
260
|
+
problem: Problem specification (QUBO dict, Ising model, or BQM)
|
261
|
+
problem_type: Type of problem ('qubo', 'ising', 'bqm', 'auto')
|
262
|
+
|
263
|
+
Returns:
|
264
|
+
Solution results
|
265
|
+
|
266
|
+
"""
|
267
|
+
try:
|
268
|
+
if problem_type == 'auto':
|
269
|
+
# Try to detect problem type
|
270
|
+
if isinstance(problem, dict) and all(len(k) == 2 for k in problem.keys()):
|
271
|
+
problem_type = 'qubo'
|
272
|
+
elif hasattr(problem, 'linear') and hasattr(problem, 'quadratic'):
|
273
|
+
problem_type = 'bqm'
|
274
|
+
else:
|
275
|
+
raise ValueError("Cannot auto-detect problem type")
|
276
|
+
|
277
|
+
if problem_type == 'qubo':
|
278
|
+
return self.solve_qubo(problem)
|
279
|
+
elif problem_type == 'ising':
|
280
|
+
h, J = problem # Expecting tuple (h, J)
|
281
|
+
return self.solve_ising(h, J)
|
282
|
+
elif problem_type == 'bqm':
|
283
|
+
# Direct BQM solving
|
284
|
+
sampleset = self._sampler.sample(problem, num_reads=self.num_reads)
|
285
|
+
return self._convert_sampleset(sampleset, problem_type)
|
286
|
+
else:
|
287
|
+
raise ValueError(f"Unknown problem type: {problem_type}")
|
288
|
+
|
289
|
+
except Exception as e:
|
290
|
+
logger.error(f"Optimization problem solving failed: {e}")
|
291
|
+
return {
|
292
|
+
'samples': [],
|
293
|
+
'energies': [],
|
294
|
+
'success': False,
|
295
|
+
'error': str(e),
|
296
|
+
'problem_type': problem_type
|
297
|
+
}
|
298
|
+
|
299
|
+
def _convert_sampleset(self, sampleset, problem_type: str) -> Dict[str, Any]:
|
300
|
+
"""Convert D-Wave sampleset to standard format."""
|
301
|
+
results = {
|
302
|
+
'samples': [],
|
303
|
+
'energies': [],
|
304
|
+
'num_occurrences': [],
|
305
|
+
'success': True,
|
306
|
+
'num_reads': len(sampleset),
|
307
|
+
'timing': getattr(sampleset, 'info', {}).get('timing', {}),
|
308
|
+
'problem_type': problem_type
|
309
|
+
}
|
310
|
+
|
311
|
+
for sample, energy, num_occur in sampleset.data(['sample', 'energy', 'num_occurrences']):
|
312
|
+
results['samples'].append(dict(sample))
|
313
|
+
results['energies'].append(energy)
|
314
|
+
results['num_occurrences'].append(num_occur)
|
315
|
+
|
316
|
+
return results
|
317
|
+
|
318
|
+
# ========================================================================
|
319
|
+
# Gate Model Compatibility (Limited Support)
|
320
|
+
# ========================================================================
|
321
|
+
|
322
|
+
def create_circuit(self, n_qubits: int) -> Dict[str, Any]:
|
323
|
+
"""Limited circuit support for compatibility.
|
324
|
+
|
325
|
+
Note: D-Wave is not a gate-model quantum computer.
|
326
|
+
This returns a placeholder for optimization problems.
|
327
|
+
"""
|
328
|
+
logger.warning("D-Wave Ocean backend does not support gate-model circuits")
|
329
|
+
return {
|
330
|
+
'type': 'optimization_placeholder',
|
331
|
+
'n_variables': n_qubits,
|
332
|
+
'backend': 'ocean',
|
333
|
+
'problem': None
|
334
|
+
}
|
335
|
+
|
336
|
+
def add_gate(self, circuit: Dict, gate: str, qubits: Union[int, List[int]],
|
337
|
+
params: Optional[List[float]] = None) -> Dict:
|
338
|
+
"""Limited gate support - not applicable for annealing."""
|
339
|
+
logger.warning("Gate operations not supported on D-Wave annealing backend")
|
340
|
+
return circuit
|
341
|
+
|
342
|
+
def add_measurement(self, circuit: Dict, qubits: Union[int, List[int]]) -> Dict:
|
343
|
+
"""Limited measurement support - not applicable for annealing."""
|
344
|
+
logger.warning("Measurements not applicable for D-Wave annealing backend")
|
345
|
+
return circuit
|
346
|
+
|
347
|
+
def execute_circuit(self, circuit: Dict, shots: Optional[int] = None) -> Dict[str, Any]:
|
348
|
+
"""Limited circuit execution - redirects to optimization solving."""
|
349
|
+
logger.warning("Circuit execution not supported - use solve_qubo() or solve_ising() instead")
|
350
|
+
return {
|
351
|
+
'counts': {},
|
352
|
+
'shots': shots or self.shots,
|
353
|
+
'success': False,
|
354
|
+
'error': 'Use optimization problem methods instead of circuit execution',
|
355
|
+
'backend': 'ocean'
|
356
|
+
}
|
357
|
+
|
358
|
+
# ========================================================================
|
359
|
+
# Backend Information
|
360
|
+
# ========================================================================
|
361
|
+
|
362
|
+
def get_backend_info(self) -> Dict[str, Any]:
|
363
|
+
"""Get information about the D-Wave Ocean backend."""
|
364
|
+
info = {
|
365
|
+
'backend_name': 'ocean',
|
366
|
+
'device': self.device_name,
|
367
|
+
'provider': 'D-Wave Systems',
|
368
|
+
'num_reads': self.num_reads,
|
369
|
+
'capabilities': self.capabilities,
|
370
|
+
'quantum_annealing': True,
|
371
|
+
'gate_model': False,
|
372
|
+
}
|
373
|
+
|
374
|
+
if self._sampler and hasattr(self._sampler, 'properties'):
|
375
|
+
try:
|
376
|
+
props = self._sampler.properties
|
377
|
+
info.update({
|
378
|
+
'solver_name': getattr(self._sampler, 'solver', {}).get('name', 'unknown'),
|
379
|
+
'num_qubits': len(props.get('qubits', [])),
|
380
|
+
'connectivity': 'Chimera/Pegasus/Zephyr', # D-Wave topologies
|
381
|
+
})
|
382
|
+
except:
|
383
|
+
pass
|
384
|
+
|
385
|
+
return info
|
386
|
+
|
387
|
+
def get_version_info(self) -> Dict[str, str]:
|
388
|
+
"""Get version information for Ocean dependencies."""
|
389
|
+
version_info = {'backend_version': '1.0.0'}
|
390
|
+
|
391
|
+
try:
|
392
|
+
version_info['dimod'] = dimod.__version__
|
393
|
+
except:
|
394
|
+
pass
|
395
|
+
|
396
|
+
try:
|
397
|
+
import dwave.system
|
398
|
+
version_info['dwave_system'] = dwave.system.__version__
|
399
|
+
except:
|
400
|
+
pass
|
401
|
+
|
402
|
+
try:
|
403
|
+
import dwave.samplers
|
404
|
+
version_info['dwave_samplers'] = dwave.samplers.__version__
|
405
|
+
except:
|
406
|
+
pass
|
407
|
+
|
408
|
+
return version_info
|
409
|
+
|
410
|
+
def is_available(self) -> bool:
|
411
|
+
"""Check if the backend is available and properly configured."""
|
412
|
+
return OCEAN_AVAILABLE and self._sampler is not None
|
413
|
+
|
414
|
+
def get_circuit_info(self) -> Dict[str, Any]:
|
415
|
+
"""Get circuit capabilities (limited for annealing backend)."""
|
416
|
+
return {
|
417
|
+
'max_qubits': 0, # Not applicable
|
418
|
+
'max_variables': self._get_max_variables(),
|
419
|
+
'native_gates': [], # Not applicable
|
420
|
+
'supports_mid_circuit_measurement': False,
|
421
|
+
'supports_reset': False,
|
422
|
+
'supports_conditional': False,
|
423
|
+
'supports_optimization': True,
|
424
|
+
'quantum_annealing': True,
|
425
|
+
}
|
426
|
+
|
427
|
+
def _get_n_qubits(self, circuit: Dict) -> int:
|
428
|
+
"""Get number of qubits/variables (not applicable for annealing)."""
|
429
|
+
if isinstance(circuit, dict):
|
430
|
+
return circuit.get('n_variables', 0)
|
431
|
+
return 0
|
432
|
+
|
433
|
+
def get_statevector(self, circuit: Dict) -> np.ndarray:
|
434
|
+
"""Get statevector (not applicable for annealing backend)."""
|
435
|
+
logger.warning("Statevector not applicable for quantum annealing backend")
|
436
|
+
return np.array([1.0 + 0j]) # Dummy statevector
|
437
|
+
|
438
|
+
# ========================================================================
|
439
|
+
# Convenience Methods for Common Optimization Problems
|
440
|
+
# ========================================================================
|
441
|
+
|
442
|
+
def solve_max_cut(self, graph: Union[Any, List[Tuple]], **kwargs) -> Dict[str, Any]:
|
443
|
+
"""Solve Maximum Cut problem on a graph."""
|
444
|
+
try:
|
445
|
+
if not nx:
|
446
|
+
raise ImportError("NetworkX not available for graph operations")
|
447
|
+
|
448
|
+
if isinstance(graph, list):
|
449
|
+
# Convert edge list to networkx graph
|
450
|
+
G = nx.Graph()
|
451
|
+
G.add_edges_from(graph)
|
452
|
+
else:
|
453
|
+
G = graph
|
454
|
+
|
455
|
+
# Convert to QUBO formulation
|
456
|
+
Q = {}
|
457
|
+
for i, j in G.edges():
|
458
|
+
Q[(i, i)] = Q.get((i, i), 0) + 1
|
459
|
+
Q[(j, j)] = Q.get((j, j), 0) + 1
|
460
|
+
Q[(i, j)] = Q.get((i, j), 0) - 2
|
461
|
+
|
462
|
+
return self.solve_qubo(Q, **kwargs)
|
463
|
+
|
464
|
+
except Exception as e:
|
465
|
+
logger.error(f"Max Cut solving failed: {e}")
|
466
|
+
return {'success': False, 'error': str(e)}
|
467
|
+
|
468
|
+
def solve_tsp(self, distance_matrix: np.ndarray, **kwargs) -> Dict[str, Any]:
|
469
|
+
"""Solve Traveling Salesman Problem (simplified formulation)."""
|
470
|
+
try:
|
471
|
+
n_cities = len(distance_matrix)
|
472
|
+
|
473
|
+
# This is a simplified TSP formulation
|
474
|
+
# Full TSP requires more complex constraints
|
475
|
+
logger.warning("TSP formulation is simplified - may not give valid tours")
|
476
|
+
|
477
|
+
Q = {}
|
478
|
+
# Add distance costs
|
479
|
+
for i in range(n_cities):
|
480
|
+
for j in range(i+1, n_cities):
|
481
|
+
for t in range(n_cities):
|
482
|
+
# Variable x_it means city i is visited at time t
|
483
|
+
var_i = i * n_cities + t
|
484
|
+
var_j = j * n_cities + ((t + 1) % n_cities)
|
485
|
+
Q[(var_i, var_j)] = distance_matrix[i, j]
|
486
|
+
|
487
|
+
return self.solve_qubo(Q, **kwargs)
|
488
|
+
|
489
|
+
except Exception as e:
|
490
|
+
logger.error(f"TSP solving failed: {e}")
|
491
|
+
return {'success': False, 'error': str(e)}
|