passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-modules might be problematic. Click here for more details.

Files changed (807) hide show
  1. passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
  2. passagemath_modules-10.6.31rc3.dist-info/RECORD +807 -0
  3. passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
  4. passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
  5. passagemath_modules.libs/libgcc_s-2d945d6c.so.1 +0 -0
  6. passagemath_modules.libs/libgfortran-67378ab2.so.5.0.0 +0 -0
  7. passagemath_modules.libs/libgmp-28992bcb.so.10.5.0 +0 -0
  8. passagemath_modules.libs/libgsl-23768756.so.28.0.0 +0 -0
  9. passagemath_modules.libs/libmpc-7897025b.so.3.3.1 +0 -0
  10. passagemath_modules.libs/libmpfr-e34bb864.so.6.2.1 +0 -0
  11. passagemath_modules.libs/libopenblasp-r0-503f0c35.3.29.so +0 -0
  12. sage/algebras/all__sagemath_modules.py +20 -0
  13. sage/algebras/catalog.py +148 -0
  14. sage/algebras/clifford_algebra.py +3107 -0
  15. sage/algebras/clifford_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
  16. sage/algebras/clifford_algebra_element.pxd +16 -0
  17. sage/algebras/clifford_algebra_element.pyx +997 -0
  18. sage/algebras/commutative_dga.py +4252 -0
  19. sage/algebras/exterior_algebra_groebner.cpython-314-aarch64-linux-musl.so +0 -0
  20. sage/algebras/exterior_algebra_groebner.pxd +55 -0
  21. sage/algebras/exterior_algebra_groebner.pyx +727 -0
  22. sage/algebras/finite_dimensional_algebras/all.py +2 -0
  23. sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
  24. sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
  25. sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
  26. sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
  27. sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
  28. sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
  29. sage/algebras/finite_gca.py +528 -0
  30. sage/algebras/group_algebra.py +232 -0
  31. sage/algebras/lie_algebras/abelian.py +197 -0
  32. sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
  33. sage/algebras/lie_algebras/all.py +25 -0
  34. sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
  35. sage/algebras/lie_algebras/bch.py +177 -0
  36. sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
  37. sage/algebras/lie_algebras/bgg_resolution.py +232 -0
  38. sage/algebras/lie_algebras/center_uea.py +767 -0
  39. sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
  40. sage/algebras/lie_algebras/examples.py +683 -0
  41. sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
  42. sage/algebras/lie_algebras/heisenberg.py +820 -0
  43. sage/algebras/lie_algebras/lie_algebra.py +1562 -0
  44. sage/algebras/lie_algebras/lie_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
  45. sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
  46. sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
  47. sage/algebras/lie_algebras/morphism.py +661 -0
  48. sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
  49. sage/algebras/lie_algebras/onsager.py +1324 -0
  50. sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
  51. sage/algebras/lie_algebras/quotient.py +462 -0
  52. sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
  53. sage/algebras/lie_algebras/representation.py +1040 -0
  54. sage/algebras/lie_algebras/structure_coefficients.py +459 -0
  55. sage/algebras/lie_algebras/subalgebra.py +967 -0
  56. sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
  57. sage/algebras/lie_algebras/verma_module.py +1630 -0
  58. sage/algebras/lie_algebras/virasoro.py +1186 -0
  59. sage/algebras/octonion_algebra.cpython-314-aarch64-linux-musl.so +0 -0
  60. sage/algebras/octonion_algebra.pxd +20 -0
  61. sage/algebras/octonion_algebra.pyx +987 -0
  62. sage/algebras/orlik_solomon.py +907 -0
  63. sage/algebras/orlik_terao.py +779 -0
  64. sage/algebras/steenrod/all.py +7 -0
  65. sage/algebras/steenrod/steenrod_algebra.py +4258 -0
  66. sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
  67. sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
  68. sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
  69. sage/algebras/weyl_algebra.py +1126 -0
  70. sage/all__sagemath_modules.py +62 -0
  71. sage/calculus/all__sagemath_modules.py +19 -0
  72. sage/calculus/expr.py +205 -0
  73. sage/calculus/integration.cpython-314-aarch64-linux-musl.so +0 -0
  74. sage/calculus/integration.pyx +698 -0
  75. sage/calculus/interpolation.cpython-314-aarch64-linux-musl.so +0 -0
  76. sage/calculus/interpolation.pxd +13 -0
  77. sage/calculus/interpolation.pyx +387 -0
  78. sage/calculus/interpolators.cpython-314-aarch64-linux-musl.so +0 -0
  79. sage/calculus/interpolators.pyx +326 -0
  80. sage/calculus/ode.cpython-314-aarch64-linux-musl.so +0 -0
  81. sage/calculus/ode.pxd +5 -0
  82. sage/calculus/ode.pyx +610 -0
  83. sage/calculus/riemann.cpython-314-aarch64-linux-musl.so +0 -0
  84. sage/calculus/riemann.pyx +1521 -0
  85. sage/calculus/test_sympy.py +201 -0
  86. sage/calculus/transforms/all.py +7 -0
  87. sage/calculus/transforms/dft.py +844 -0
  88. sage/calculus/transforms/dwt.cpython-314-aarch64-linux-musl.so +0 -0
  89. sage/calculus/transforms/dwt.pxd +7 -0
  90. sage/calculus/transforms/dwt.pyx +160 -0
  91. sage/calculus/transforms/fft.cpython-314-aarch64-linux-musl.so +0 -0
  92. sage/calculus/transforms/fft.pxd +12 -0
  93. sage/calculus/transforms/fft.pyx +487 -0
  94. sage/calculus/wester.py +662 -0
  95. sage/coding/abstract_code.py +1108 -0
  96. sage/coding/ag_code.py +868 -0
  97. sage/coding/ag_code_decoders.cpython-314-aarch64-linux-musl.so +0 -0
  98. sage/coding/ag_code_decoders.pyx +2639 -0
  99. sage/coding/all.py +15 -0
  100. sage/coding/bch_code.py +494 -0
  101. sage/coding/binary_code.cpython-314-aarch64-linux-musl.so +0 -0
  102. sage/coding/binary_code.pxd +124 -0
  103. sage/coding/binary_code.pyx +4139 -0
  104. sage/coding/bounds_catalog.py +43 -0
  105. sage/coding/channel.py +819 -0
  106. sage/coding/channels_catalog.py +29 -0
  107. sage/coding/code_bounds.py +755 -0
  108. sage/coding/code_constructions.py +804 -0
  109. sage/coding/codes_catalog.py +111 -0
  110. sage/coding/cyclic_code.py +1329 -0
  111. sage/coding/databases.py +316 -0
  112. sage/coding/decoder.py +373 -0
  113. sage/coding/decoders_catalog.py +88 -0
  114. sage/coding/delsarte_bounds.py +709 -0
  115. sage/coding/encoder.py +390 -0
  116. sage/coding/encoders_catalog.py +64 -0
  117. sage/coding/extended_code.py +468 -0
  118. sage/coding/gabidulin_code.py +1058 -0
  119. sage/coding/golay_code.py +404 -0
  120. sage/coding/goppa_code.py +441 -0
  121. sage/coding/grs_code.py +2371 -0
  122. sage/coding/guava.py +107 -0
  123. sage/coding/guruswami_sudan/all.py +1 -0
  124. sage/coding/guruswami_sudan/gs_decoder.py +897 -0
  125. sage/coding/guruswami_sudan/interpolation.py +409 -0
  126. sage/coding/guruswami_sudan/utils.py +176 -0
  127. sage/coding/hamming_code.py +176 -0
  128. sage/coding/information_set_decoder.py +1032 -0
  129. sage/coding/kasami_codes.cpython-314-aarch64-linux-musl.so +0 -0
  130. sage/coding/kasami_codes.pyx +351 -0
  131. sage/coding/linear_code.py +3067 -0
  132. sage/coding/linear_code_no_metric.py +1354 -0
  133. sage/coding/linear_rank_metric.py +961 -0
  134. sage/coding/parity_check_code.py +353 -0
  135. sage/coding/punctured_code.py +719 -0
  136. sage/coding/reed_muller_code.py +999 -0
  137. sage/coding/self_dual_codes.py +942 -0
  138. sage/coding/source_coding/all.py +2 -0
  139. sage/coding/source_coding/huffman.py +553 -0
  140. sage/coding/subfield_subcode.py +423 -0
  141. sage/coding/two_weight_db.py +399 -0
  142. sage/combinat/all__sagemath_modules.py +7 -0
  143. sage/combinat/cartesian_product.py +347 -0
  144. sage/combinat/family.py +11 -0
  145. sage/combinat/free_module.py +1977 -0
  146. sage/combinat/root_system/all.py +147 -0
  147. sage/combinat/root_system/ambient_space.py +527 -0
  148. sage/combinat/root_system/associahedron.py +471 -0
  149. sage/combinat/root_system/braid_move_calculator.py +143 -0
  150. sage/combinat/root_system/braid_orbit.cpython-314-aarch64-linux-musl.so +0 -0
  151. sage/combinat/root_system/braid_orbit.pyx +144 -0
  152. sage/combinat/root_system/branching_rules.py +2301 -0
  153. sage/combinat/root_system/cartan_matrix.py +1245 -0
  154. sage/combinat/root_system/cartan_type.py +3069 -0
  155. sage/combinat/root_system/coxeter_group.py +162 -0
  156. sage/combinat/root_system/coxeter_matrix.py +1261 -0
  157. sage/combinat/root_system/coxeter_type.py +681 -0
  158. sage/combinat/root_system/dynkin_diagram.py +900 -0
  159. sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
  160. sage/combinat/root_system/fundamental_group.py +795 -0
  161. sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
  162. sage/combinat/root_system/integrable_representations.py +1227 -0
  163. sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
  164. sage/combinat/root_system/pieri_factors.py +1147 -0
  165. sage/combinat/root_system/plot.py +1615 -0
  166. sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
  167. sage/combinat/root_system/root_lattice_realizations.py +4628 -0
  168. sage/combinat/root_system/root_space.py +487 -0
  169. sage/combinat/root_system/root_system.py +882 -0
  170. sage/combinat/root_system/type_A.py +348 -0
  171. sage/combinat/root_system/type_A_affine.py +227 -0
  172. sage/combinat/root_system/type_A_infinity.py +241 -0
  173. sage/combinat/root_system/type_B.py +347 -0
  174. sage/combinat/root_system/type_BC_affine.py +287 -0
  175. sage/combinat/root_system/type_B_affine.py +216 -0
  176. sage/combinat/root_system/type_C.py +317 -0
  177. sage/combinat/root_system/type_C_affine.py +188 -0
  178. sage/combinat/root_system/type_D.py +357 -0
  179. sage/combinat/root_system/type_D_affine.py +208 -0
  180. sage/combinat/root_system/type_E.py +641 -0
  181. sage/combinat/root_system/type_E_affine.py +231 -0
  182. sage/combinat/root_system/type_F.py +387 -0
  183. sage/combinat/root_system/type_F_affine.py +137 -0
  184. sage/combinat/root_system/type_G.py +293 -0
  185. sage/combinat/root_system/type_G_affine.py +132 -0
  186. sage/combinat/root_system/type_H.py +105 -0
  187. sage/combinat/root_system/type_I.py +110 -0
  188. sage/combinat/root_system/type_Q.py +150 -0
  189. sage/combinat/root_system/type_affine.py +509 -0
  190. sage/combinat/root_system/type_dual.py +704 -0
  191. sage/combinat/root_system/type_folded.py +301 -0
  192. sage/combinat/root_system/type_marked.py +748 -0
  193. sage/combinat/root_system/type_reducible.py +601 -0
  194. sage/combinat/root_system/type_relabel.py +730 -0
  195. sage/combinat/root_system/type_super_A.py +837 -0
  196. sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
  197. sage/combinat/root_system/weight_space.py +639 -0
  198. sage/combinat/root_system/weyl_characters.py +2238 -0
  199. sage/crypto/__init__.py +4 -0
  200. sage/crypto/all.py +28 -0
  201. sage/crypto/block_cipher/all.py +7 -0
  202. sage/crypto/block_cipher/des.py +1065 -0
  203. sage/crypto/block_cipher/miniaes.py +2171 -0
  204. sage/crypto/block_cipher/present.py +909 -0
  205. sage/crypto/block_cipher/sdes.py +1527 -0
  206. sage/crypto/boolean_function.cpython-314-aarch64-linux-musl.so +0 -0
  207. sage/crypto/boolean_function.pxd +10 -0
  208. sage/crypto/boolean_function.pyx +1487 -0
  209. sage/crypto/cipher.py +78 -0
  210. sage/crypto/classical.py +3668 -0
  211. sage/crypto/classical_cipher.py +569 -0
  212. sage/crypto/cryptosystem.py +387 -0
  213. sage/crypto/key_exchange/all.py +7 -0
  214. sage/crypto/key_exchange/catalog.py +24 -0
  215. sage/crypto/key_exchange/diffie_hellman.py +323 -0
  216. sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
  217. sage/crypto/lattice.py +312 -0
  218. sage/crypto/lfsr.py +295 -0
  219. sage/crypto/lwe.py +840 -0
  220. sage/crypto/mq/__init__.py +4 -0
  221. sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
  222. sage/crypto/mq/rijndael_gf.py +2345 -0
  223. sage/crypto/mq/sbox.py +7 -0
  224. sage/crypto/mq/sr.py +3344 -0
  225. sage/crypto/public_key/all.py +5 -0
  226. sage/crypto/public_key/blum_goldwasser.py +776 -0
  227. sage/crypto/sbox.cpython-314-aarch64-linux-musl.so +0 -0
  228. sage/crypto/sbox.pyx +2090 -0
  229. sage/crypto/sboxes.py +2090 -0
  230. sage/crypto/stream.py +390 -0
  231. sage/crypto/stream_cipher.py +297 -0
  232. sage/crypto/util.py +519 -0
  233. sage/ext/all__sagemath_modules.py +1 -0
  234. sage/ext/interpreters/__init__.py +1 -0
  235. sage/ext/interpreters/all__sagemath_modules.py +2 -0
  236. sage/ext/interpreters/wrapper_cc.cpython-314-aarch64-linux-musl.so +0 -0
  237. sage/ext/interpreters/wrapper_cc.pxd +30 -0
  238. sage/ext/interpreters/wrapper_cc.pyx +252 -0
  239. sage/ext/interpreters/wrapper_cdf.cpython-314-aarch64-linux-musl.so +0 -0
  240. sage/ext/interpreters/wrapper_cdf.pxd +26 -0
  241. sage/ext/interpreters/wrapper_cdf.pyx +245 -0
  242. sage/ext/interpreters/wrapper_rdf.cpython-314-aarch64-linux-musl.so +0 -0
  243. sage/ext/interpreters/wrapper_rdf.pxd +23 -0
  244. sage/ext/interpreters/wrapper_rdf.pyx +221 -0
  245. sage/ext/interpreters/wrapper_rr.cpython-314-aarch64-linux-musl.so +0 -0
  246. sage/ext/interpreters/wrapper_rr.pxd +28 -0
  247. sage/ext/interpreters/wrapper_rr.pyx +335 -0
  248. sage/geometry/all__sagemath_modules.py +5 -0
  249. sage/geometry/toric_lattice.py +1745 -0
  250. sage/geometry/toric_lattice_element.cpython-314-aarch64-linux-musl.so +0 -0
  251. sage/geometry/toric_lattice_element.pyx +432 -0
  252. sage/groups/abelian_gps/abelian_group.py +1925 -0
  253. sage/groups/abelian_gps/abelian_group_element.py +164 -0
  254. sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
  255. sage/groups/abelian_gps/dual_abelian_group.py +421 -0
  256. sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
  257. sage/groups/abelian_gps/element_base.py +341 -0
  258. sage/groups/abelian_gps/values.py +488 -0
  259. sage/groups/additive_abelian/additive_abelian_group.py +476 -0
  260. sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
  261. sage/groups/additive_abelian/all.py +4 -0
  262. sage/groups/additive_abelian/qmodnz.py +231 -0
  263. sage/groups/additive_abelian/qmodnz_element.py +349 -0
  264. sage/groups/affine_gps/affine_group.py +535 -0
  265. sage/groups/affine_gps/all.py +1 -0
  266. sage/groups/affine_gps/catalog.py +17 -0
  267. sage/groups/affine_gps/euclidean_group.py +246 -0
  268. sage/groups/affine_gps/group_element.py +562 -0
  269. sage/groups/all__sagemath_modules.py +12 -0
  270. sage/groups/galois_group.py +479 -0
  271. sage/groups/matrix_gps/all.py +4 -0
  272. sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
  273. sage/groups/matrix_gps/catalog.py +26 -0
  274. sage/groups/matrix_gps/coxeter_group.py +927 -0
  275. sage/groups/matrix_gps/finitely_generated.py +487 -0
  276. sage/groups/matrix_gps/group_element.cpython-314-aarch64-linux-musl.so +0 -0
  277. sage/groups/matrix_gps/group_element.pxd +11 -0
  278. sage/groups/matrix_gps/group_element.pyx +431 -0
  279. sage/groups/matrix_gps/linear.py +440 -0
  280. sage/groups/matrix_gps/matrix_group.py +617 -0
  281. sage/groups/matrix_gps/named_group.py +296 -0
  282. sage/groups/matrix_gps/orthogonal.py +544 -0
  283. sage/groups/matrix_gps/symplectic.py +251 -0
  284. sage/groups/matrix_gps/unitary.py +436 -0
  285. sage/groups/misc_gps/all__sagemath_modules.py +1 -0
  286. sage/groups/misc_gps/argument_groups.py +1905 -0
  287. sage/groups/misc_gps/imaginary_groups.py +479 -0
  288. sage/groups/perm_gps/all__sagemath_modules.py +1 -0
  289. sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
  290. sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-aarch64-linux-musl.so +0 -0
  291. sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
  292. sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
  293. sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-aarch64-linux-musl.so +0 -0
  294. sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
  295. sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
  296. sage/homology/algebraic_topological_model.py +595 -0
  297. sage/homology/all.py +2 -0
  298. sage/homology/all__sagemath_modules.py +8 -0
  299. sage/homology/chain_complex.py +2148 -0
  300. sage/homology/chain_complex_homspace.py +165 -0
  301. sage/homology/chain_complex_morphism.py +629 -0
  302. sage/homology/chain_homotopy.py +604 -0
  303. sage/homology/chains.py +653 -0
  304. sage/homology/free_resolution.py +923 -0
  305. sage/homology/graded_resolution.py +567 -0
  306. sage/homology/hochschild_complex.py +756 -0
  307. sage/homology/homology_group.py +188 -0
  308. sage/homology/homology_morphism.py +422 -0
  309. sage/homology/homology_vector_space_with_basis.py +1454 -0
  310. sage/homology/koszul_complex.py +169 -0
  311. sage/homology/matrix_utils.py +205 -0
  312. sage/libs/all__sagemath_modules.py +1 -0
  313. sage/libs/gsl/__init__.py +1 -0
  314. sage/libs/gsl/airy.pxd +56 -0
  315. sage/libs/gsl/all.pxd +66 -0
  316. sage/libs/gsl/array.cpython-314-aarch64-linux-musl.so +0 -0
  317. sage/libs/gsl/array.pxd +5 -0
  318. sage/libs/gsl/array.pyx +102 -0
  319. sage/libs/gsl/bessel.pxd +208 -0
  320. sage/libs/gsl/blas.pxd +116 -0
  321. sage/libs/gsl/blas_types.pxd +34 -0
  322. sage/libs/gsl/block.pxd +52 -0
  323. sage/libs/gsl/chebyshev.pxd +37 -0
  324. sage/libs/gsl/clausen.pxd +12 -0
  325. sage/libs/gsl/combination.pxd +47 -0
  326. sage/libs/gsl/complex.pxd +151 -0
  327. sage/libs/gsl/coulomb.pxd +30 -0
  328. sage/libs/gsl/coupling.pxd +21 -0
  329. sage/libs/gsl/dawson.pxd +12 -0
  330. sage/libs/gsl/debye.pxd +24 -0
  331. sage/libs/gsl/dilog.pxd +14 -0
  332. sage/libs/gsl/eigen.pxd +46 -0
  333. sage/libs/gsl/elementary.pxd +12 -0
  334. sage/libs/gsl/ellint.pxd +48 -0
  335. sage/libs/gsl/elljac.pxd +8 -0
  336. sage/libs/gsl/erf.pxd +32 -0
  337. sage/libs/gsl/errno.pxd +26 -0
  338. sage/libs/gsl/exp.pxd +44 -0
  339. sage/libs/gsl/expint.pxd +44 -0
  340. sage/libs/gsl/fermi_dirac.pxd +44 -0
  341. sage/libs/gsl/fft.pxd +121 -0
  342. sage/libs/gsl/fit.pxd +50 -0
  343. sage/libs/gsl/gamma.pxd +94 -0
  344. sage/libs/gsl/gegenbauer.pxd +26 -0
  345. sage/libs/gsl/histogram.pxd +176 -0
  346. sage/libs/gsl/hyperg.pxd +52 -0
  347. sage/libs/gsl/integration.pxd +69 -0
  348. sage/libs/gsl/interp.pxd +109 -0
  349. sage/libs/gsl/laguerre.pxd +24 -0
  350. sage/libs/gsl/lambert.pxd +16 -0
  351. sage/libs/gsl/legendre.pxd +90 -0
  352. sage/libs/gsl/linalg.pxd +185 -0
  353. sage/libs/gsl/log.pxd +26 -0
  354. sage/libs/gsl/math.pxd +43 -0
  355. sage/libs/gsl/matrix.pxd +143 -0
  356. sage/libs/gsl/matrix_complex.pxd +130 -0
  357. sage/libs/gsl/min.pxd +67 -0
  358. sage/libs/gsl/monte.pxd +56 -0
  359. sage/libs/gsl/ntuple.pxd +32 -0
  360. sage/libs/gsl/odeiv.pxd +70 -0
  361. sage/libs/gsl/permutation.pxd +78 -0
  362. sage/libs/gsl/poly.pxd +40 -0
  363. sage/libs/gsl/pow_int.pxd +12 -0
  364. sage/libs/gsl/psi.pxd +28 -0
  365. sage/libs/gsl/qrng.pxd +29 -0
  366. sage/libs/gsl/random.pxd +257 -0
  367. sage/libs/gsl/rng.pxd +100 -0
  368. sage/libs/gsl/roots.pxd +72 -0
  369. sage/libs/gsl/sort.pxd +36 -0
  370. sage/libs/gsl/statistics.pxd +59 -0
  371. sage/libs/gsl/sum.pxd +55 -0
  372. sage/libs/gsl/synchrotron.pxd +16 -0
  373. sage/libs/gsl/transport.pxd +24 -0
  374. sage/libs/gsl/trig.pxd +58 -0
  375. sage/libs/gsl/types.pxd +137 -0
  376. sage/libs/gsl/vector.pxd +101 -0
  377. sage/libs/gsl/vector_complex.pxd +83 -0
  378. sage/libs/gsl/wavelet.pxd +49 -0
  379. sage/libs/gsl/zeta.pxd +28 -0
  380. sage/libs/mpc/__init__.pxd +114 -0
  381. sage/libs/mpc/types.pxd +28 -0
  382. sage/libs/mpfr/__init__.pxd +299 -0
  383. sage/libs/mpfr/types.pxd +26 -0
  384. sage/libs/mpmath/__init__.py +1 -0
  385. sage/libs/mpmath/all.py +27 -0
  386. sage/libs/mpmath/all__sagemath_modules.py +1 -0
  387. sage/libs/mpmath/utils.cpython-314-aarch64-linux-musl.so +0 -0
  388. sage/libs/mpmath/utils.pxd +4 -0
  389. sage/libs/mpmath/utils.pyx +319 -0
  390. sage/matrix/action.cpython-314-aarch64-linux-musl.so +0 -0
  391. sage/matrix/action.pxd +26 -0
  392. sage/matrix/action.pyx +596 -0
  393. sage/matrix/all.py +9 -0
  394. sage/matrix/args.cpython-314-aarch64-linux-musl.so +0 -0
  395. sage/matrix/args.pxd +144 -0
  396. sage/matrix/args.pyx +1668 -0
  397. sage/matrix/benchmark.py +1258 -0
  398. sage/matrix/berlekamp_massey.py +95 -0
  399. sage/matrix/compute_J_ideal.py +926 -0
  400. sage/matrix/constructor.cpython-314-aarch64-linux-musl.so +0 -0
  401. sage/matrix/constructor.pyx +750 -0
  402. sage/matrix/docs.py +430 -0
  403. sage/matrix/echelon_matrix.cpython-314-aarch64-linux-musl.so +0 -0
  404. sage/matrix/echelon_matrix.pyx +155 -0
  405. sage/matrix/matrix.pxd +2 -0
  406. sage/matrix/matrix0.cpython-314-aarch64-linux-musl.so +0 -0
  407. sage/matrix/matrix0.pxd +68 -0
  408. sage/matrix/matrix0.pyx +6324 -0
  409. sage/matrix/matrix1.cpython-314-aarch64-linux-musl.so +0 -0
  410. sage/matrix/matrix1.pxd +8 -0
  411. sage/matrix/matrix1.pyx +2851 -0
  412. sage/matrix/matrix2.cpython-314-aarch64-linux-musl.so +0 -0
  413. sage/matrix/matrix2.pxd +25 -0
  414. sage/matrix/matrix2.pyx +20181 -0
  415. sage/matrix/matrix_cdv.cpython-314-aarch64-linux-musl.so +0 -0
  416. sage/matrix/matrix_cdv.pxd +4 -0
  417. sage/matrix/matrix_cdv.pyx +93 -0
  418. sage/matrix/matrix_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
  419. sage/matrix/matrix_complex_double_dense.pxd +5 -0
  420. sage/matrix/matrix_complex_double_dense.pyx +98 -0
  421. sage/matrix/matrix_dense.cpython-314-aarch64-linux-musl.so +0 -0
  422. sage/matrix/matrix_dense.pxd +5 -0
  423. sage/matrix/matrix_dense.pyx +343 -0
  424. sage/matrix/matrix_domain_dense.pxd +5 -0
  425. sage/matrix/matrix_domain_sparse.pxd +5 -0
  426. sage/matrix/matrix_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
  427. sage/matrix/matrix_double_dense.pxd +7 -0
  428. sage/matrix/matrix_double_dense.pyx +3906 -0
  429. sage/matrix/matrix_double_sparse.cpython-314-aarch64-linux-musl.so +0 -0
  430. sage/matrix/matrix_double_sparse.pxd +6 -0
  431. sage/matrix/matrix_double_sparse.pyx +248 -0
  432. sage/matrix/matrix_generic_dense.cpython-314-aarch64-linux-musl.so +0 -0
  433. sage/matrix/matrix_generic_dense.pxd +7 -0
  434. sage/matrix/matrix_generic_dense.pyx +354 -0
  435. sage/matrix/matrix_generic_sparse.cpython-314-aarch64-linux-musl.so +0 -0
  436. sage/matrix/matrix_generic_sparse.pxd +7 -0
  437. sage/matrix/matrix_generic_sparse.pyx +461 -0
  438. sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
  439. sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
  440. sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
  441. sage/matrix/matrix_misc.py +313 -0
  442. sage/matrix/matrix_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
  443. sage/matrix/matrix_numpy_dense.pxd +14 -0
  444. sage/matrix/matrix_numpy_dense.pyx +450 -0
  445. sage/matrix/matrix_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
  446. sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
  447. sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
  448. sage/matrix/matrix_polynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
  449. sage/matrix/matrix_polynomial_dense.pxd +5 -0
  450. sage/matrix/matrix_polynomial_dense.pyx +5341 -0
  451. sage/matrix/matrix_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
  452. sage/matrix/matrix_real_double_dense.pxd +7 -0
  453. sage/matrix/matrix_real_double_dense.pyx +122 -0
  454. sage/matrix/matrix_space.py +2848 -0
  455. sage/matrix/matrix_sparse.cpython-314-aarch64-linux-musl.so +0 -0
  456. sage/matrix/matrix_sparse.pxd +5 -0
  457. sage/matrix/matrix_sparse.pyx +1222 -0
  458. sage/matrix/matrix_window.cpython-314-aarch64-linux-musl.so +0 -0
  459. sage/matrix/matrix_window.pxd +37 -0
  460. sage/matrix/matrix_window.pyx +242 -0
  461. sage/matrix/misc_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
  462. sage/matrix/misc_mpfr.pyx +80 -0
  463. sage/matrix/operation_table.py +1182 -0
  464. sage/matrix/special.py +3666 -0
  465. sage/matrix/strassen.cpython-314-aarch64-linux-musl.so +0 -0
  466. sage/matrix/strassen.pyx +851 -0
  467. sage/matrix/symplectic_basis.py +541 -0
  468. sage/matrix/template.pxd +6 -0
  469. sage/matrix/tests.py +71 -0
  470. sage/matroids/advanced.py +77 -0
  471. sage/matroids/all.py +13 -0
  472. sage/matroids/basis_exchange_matroid.cpython-314-aarch64-linux-musl.so +0 -0
  473. sage/matroids/basis_exchange_matroid.pxd +96 -0
  474. sage/matroids/basis_exchange_matroid.pyx +2344 -0
  475. sage/matroids/basis_matroid.cpython-314-aarch64-linux-musl.so +0 -0
  476. sage/matroids/basis_matroid.pxd +45 -0
  477. sage/matroids/basis_matroid.pyx +1217 -0
  478. sage/matroids/catalog.py +44 -0
  479. sage/matroids/chow_ring.py +473 -0
  480. sage/matroids/chow_ring_ideal.py +849 -0
  481. sage/matroids/circuit_closures_matroid.cpython-314-aarch64-linux-musl.so +0 -0
  482. sage/matroids/circuit_closures_matroid.pxd +16 -0
  483. sage/matroids/circuit_closures_matroid.pyx +559 -0
  484. sage/matroids/circuits_matroid.cpython-314-aarch64-linux-musl.so +0 -0
  485. sage/matroids/circuits_matroid.pxd +38 -0
  486. sage/matroids/circuits_matroid.pyx +947 -0
  487. sage/matroids/constructor.py +1086 -0
  488. sage/matroids/database_collections.py +365 -0
  489. sage/matroids/database_matroids.py +5338 -0
  490. sage/matroids/dual_matroid.py +583 -0
  491. sage/matroids/extension.cpython-314-aarch64-linux-musl.so +0 -0
  492. sage/matroids/extension.pxd +34 -0
  493. sage/matroids/extension.pyx +519 -0
  494. sage/matroids/flats_matroid.cpython-314-aarch64-linux-musl.so +0 -0
  495. sage/matroids/flats_matroid.pxd +28 -0
  496. sage/matroids/flats_matroid.pyx +715 -0
  497. sage/matroids/gammoid.py +600 -0
  498. sage/matroids/graphic_matroid.cpython-314-aarch64-linux-musl.so +0 -0
  499. sage/matroids/graphic_matroid.pxd +39 -0
  500. sage/matroids/graphic_matroid.pyx +2024 -0
  501. sage/matroids/lean_matrix.cpython-314-aarch64-linux-musl.so +0 -0
  502. sage/matroids/lean_matrix.pxd +126 -0
  503. sage/matroids/lean_matrix.pyx +3667 -0
  504. sage/matroids/linear_matroid.cpython-314-aarch64-linux-musl.so +0 -0
  505. sage/matroids/linear_matroid.pxd +180 -0
  506. sage/matroids/linear_matroid.pyx +6649 -0
  507. sage/matroids/matroid.cpython-314-aarch64-linux-musl.so +0 -0
  508. sage/matroids/matroid.pxd +243 -0
  509. sage/matroids/matroid.pyx +8759 -0
  510. sage/matroids/matroids_catalog.py +190 -0
  511. sage/matroids/matroids_plot_helpers.py +890 -0
  512. sage/matroids/minor_matroid.py +480 -0
  513. sage/matroids/minorfix.h +9 -0
  514. sage/matroids/named_matroids.py +5 -0
  515. sage/matroids/rank_matroid.py +268 -0
  516. sage/matroids/set_system.cpython-314-aarch64-linux-musl.so +0 -0
  517. sage/matroids/set_system.pxd +38 -0
  518. sage/matroids/set_system.pyx +800 -0
  519. sage/matroids/transversal_matroid.cpython-314-aarch64-linux-musl.so +0 -0
  520. sage/matroids/transversal_matroid.pxd +14 -0
  521. sage/matroids/transversal_matroid.pyx +893 -0
  522. sage/matroids/union_matroid.cpython-314-aarch64-linux-musl.so +0 -0
  523. sage/matroids/union_matroid.pxd +20 -0
  524. sage/matroids/union_matroid.pyx +331 -0
  525. sage/matroids/unpickling.cpython-314-aarch64-linux-musl.so +0 -0
  526. sage/matroids/unpickling.pyx +843 -0
  527. sage/matroids/utilities.py +809 -0
  528. sage/misc/all__sagemath_modules.py +20 -0
  529. sage/misc/c3.cpython-314-aarch64-linux-musl.so +0 -0
  530. sage/misc/c3.pyx +238 -0
  531. sage/misc/compat.py +87 -0
  532. sage/misc/element_with_label.py +173 -0
  533. sage/misc/func_persist.py +79 -0
  534. sage/misc/pickle_old.cpython-314-aarch64-linux-musl.so +0 -0
  535. sage/misc/pickle_old.pyx +19 -0
  536. sage/misc/proof.py +7 -0
  537. sage/misc/replace_dot_all.py +472 -0
  538. sage/misc/sagedoc_conf.py +168 -0
  539. sage/misc/sphinxify.py +167 -0
  540. sage/misc/test_class_pickling.py +85 -0
  541. sage/modules/all.py +42 -0
  542. sage/modules/complex_double_vector.py +25 -0
  543. sage/modules/diamond_cutting.py +380 -0
  544. sage/modules/fg_pid/all.py +1 -0
  545. sage/modules/fg_pid/fgp_element.py +456 -0
  546. sage/modules/fg_pid/fgp_module.py +2091 -0
  547. sage/modules/fg_pid/fgp_morphism.py +550 -0
  548. sage/modules/filtered_vector_space.py +1271 -0
  549. sage/modules/finite_submodule_iter.cpython-314-aarch64-linux-musl.so +0 -0
  550. sage/modules/finite_submodule_iter.pxd +27 -0
  551. sage/modules/finite_submodule_iter.pyx +452 -0
  552. sage/modules/fp_graded/all.py +1 -0
  553. sage/modules/fp_graded/element.py +346 -0
  554. sage/modules/fp_graded/free_element.py +298 -0
  555. sage/modules/fp_graded/free_homspace.py +53 -0
  556. sage/modules/fp_graded/free_module.py +1060 -0
  557. sage/modules/fp_graded/free_morphism.py +217 -0
  558. sage/modules/fp_graded/homspace.py +563 -0
  559. sage/modules/fp_graded/module.py +1340 -0
  560. sage/modules/fp_graded/morphism.py +1990 -0
  561. sage/modules/fp_graded/steenrod/all.py +1 -0
  562. sage/modules/fp_graded/steenrod/homspace.py +65 -0
  563. sage/modules/fp_graded/steenrod/module.py +477 -0
  564. sage/modules/fp_graded/steenrod/morphism.py +404 -0
  565. sage/modules/fp_graded/steenrod/profile.py +241 -0
  566. sage/modules/free_module.py +8447 -0
  567. sage/modules/free_module_element.cpython-314-aarch64-linux-musl.so +0 -0
  568. sage/modules/free_module_element.pxd +22 -0
  569. sage/modules/free_module_element.pyx +5445 -0
  570. sage/modules/free_module_homspace.py +369 -0
  571. sage/modules/free_module_integer.py +896 -0
  572. sage/modules/free_module_morphism.py +823 -0
  573. sage/modules/free_module_pseudohomspace.py +352 -0
  574. sage/modules/free_module_pseudomorphism.py +578 -0
  575. sage/modules/free_quadratic_module.py +1706 -0
  576. sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
  577. sage/modules/matrix_morphism.py +1745 -0
  578. sage/modules/misc.py +103 -0
  579. sage/modules/module_functors.py +192 -0
  580. sage/modules/multi_filtered_vector_space.py +719 -0
  581. sage/modules/ore_module.py +2208 -0
  582. sage/modules/ore_module_element.py +178 -0
  583. sage/modules/ore_module_homspace.py +147 -0
  584. sage/modules/ore_module_morphism.py +968 -0
  585. sage/modules/quotient_module.py +699 -0
  586. sage/modules/real_double_vector.py +22 -0
  587. sage/modules/submodule.py +255 -0
  588. sage/modules/tensor_operations.py +567 -0
  589. sage/modules/torsion_quadratic_module.py +1352 -0
  590. sage/modules/tutorial_free_modules.py +248 -0
  591. sage/modules/vector_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
  592. sage/modules/vector_complex_double_dense.pxd +6 -0
  593. sage/modules/vector_complex_double_dense.pyx +117 -0
  594. sage/modules/vector_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
  595. sage/modules/vector_double_dense.pxd +6 -0
  596. sage/modules/vector_double_dense.pyx +604 -0
  597. sage/modules/vector_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
  598. sage/modules/vector_integer_dense.pxd +15 -0
  599. sage/modules/vector_integer_dense.pyx +361 -0
  600. sage/modules/vector_integer_sparse.cpython-314-aarch64-linux-musl.so +0 -0
  601. sage/modules/vector_integer_sparse.pxd +29 -0
  602. sage/modules/vector_integer_sparse.pyx +406 -0
  603. sage/modules/vector_modn_dense.cpython-314-aarch64-linux-musl.so +0 -0
  604. sage/modules/vector_modn_dense.pxd +12 -0
  605. sage/modules/vector_modn_dense.pyx +394 -0
  606. sage/modules/vector_modn_sparse.cpython-314-aarch64-linux-musl.so +0 -0
  607. sage/modules/vector_modn_sparse.pxd +21 -0
  608. sage/modules/vector_modn_sparse.pyx +298 -0
  609. sage/modules/vector_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
  610. sage/modules/vector_numpy_dense.pxd +15 -0
  611. sage/modules/vector_numpy_dense.pyx +304 -0
  612. sage/modules/vector_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
  613. sage/modules/vector_numpy_integer_dense.pxd +7 -0
  614. sage/modules/vector_numpy_integer_dense.pyx +54 -0
  615. sage/modules/vector_rational_dense.cpython-314-aarch64-linux-musl.so +0 -0
  616. sage/modules/vector_rational_dense.pxd +15 -0
  617. sage/modules/vector_rational_dense.pyx +387 -0
  618. sage/modules/vector_rational_sparse.cpython-314-aarch64-linux-musl.so +0 -0
  619. sage/modules/vector_rational_sparse.pxd +30 -0
  620. sage/modules/vector_rational_sparse.pyx +413 -0
  621. sage/modules/vector_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
  622. sage/modules/vector_real_double_dense.pxd +6 -0
  623. sage/modules/vector_real_double_dense.pyx +126 -0
  624. sage/modules/vector_space_homspace.py +430 -0
  625. sage/modules/vector_space_morphism.py +989 -0
  626. sage/modules/with_basis/all.py +15 -0
  627. sage/modules/with_basis/cell_module.py +494 -0
  628. sage/modules/with_basis/indexed_element.cpython-314-aarch64-linux-musl.so +0 -0
  629. sage/modules/with_basis/indexed_element.pxd +13 -0
  630. sage/modules/with_basis/indexed_element.pyx +1058 -0
  631. sage/modules/with_basis/invariant.py +1075 -0
  632. sage/modules/with_basis/morphism.py +1636 -0
  633. sage/modules/with_basis/representation.py +2939 -0
  634. sage/modules/with_basis/subquotient.py +685 -0
  635. sage/numerical/all__sagemath_modules.py +6 -0
  636. sage/numerical/gauss_legendre.cpython-314-aarch64-linux-musl.so +0 -0
  637. sage/numerical/gauss_legendre.pyx +381 -0
  638. sage/numerical/optimize.py +910 -0
  639. sage/probability/all.py +10 -0
  640. sage/probability/probability_distribution.cpython-314-aarch64-linux-musl.so +0 -0
  641. sage/probability/probability_distribution.pyx +1242 -0
  642. sage/probability/random_variable.py +411 -0
  643. sage/quadratic_forms/all.py +4 -0
  644. sage/quadratic_forms/all__sagemath_modules.py +15 -0
  645. sage/quadratic_forms/binary_qf.py +2042 -0
  646. sage/quadratic_forms/bqf_class_group.py +748 -0
  647. sage/quadratic_forms/constructions.py +93 -0
  648. sage/quadratic_forms/count_local_2.cpython-314-aarch64-linux-musl.so +0 -0
  649. sage/quadratic_forms/count_local_2.pyx +365 -0
  650. sage/quadratic_forms/extras.py +195 -0
  651. sage/quadratic_forms/quadratic_form.py +1753 -0
  652. sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
  653. sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
  654. sage/quadratic_forms/quadratic_form__evaluate.cpython-314-aarch64-linux-musl.so +0 -0
  655. sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
  656. sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
  657. sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
  658. sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
  659. sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
  660. sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
  661. sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
  662. sage/quadratic_forms/quadratic_form__theta.py +352 -0
  663. sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
  664. sage/quadratic_forms/random_quadraticform.py +209 -0
  665. sage/quadratic_forms/ternary.cpython-314-aarch64-linux-musl.so +0 -0
  666. sage/quadratic_forms/ternary.pyx +1154 -0
  667. sage/quadratic_forms/ternary_qf.py +2027 -0
  668. sage/rings/all__sagemath_modules.py +28 -0
  669. sage/rings/asymptotic/all__sagemath_modules.py +1 -0
  670. sage/rings/asymptotic/misc.py +1252 -0
  671. sage/rings/cc.py +4 -0
  672. sage/rings/cfinite_sequence.py +1306 -0
  673. sage/rings/complex_conversion.cpython-314-aarch64-linux-musl.so +0 -0
  674. sage/rings/complex_conversion.pxd +8 -0
  675. sage/rings/complex_conversion.pyx +23 -0
  676. sage/rings/complex_double.cpython-314-aarch64-linux-musl.so +0 -0
  677. sage/rings/complex_double.pxd +21 -0
  678. sage/rings/complex_double.pyx +2654 -0
  679. sage/rings/complex_mpc.cpython-314-aarch64-linux-musl.so +0 -0
  680. sage/rings/complex_mpc.pxd +21 -0
  681. sage/rings/complex_mpc.pyx +2576 -0
  682. sage/rings/complex_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
  683. sage/rings/complex_mpfr.pxd +18 -0
  684. sage/rings/complex_mpfr.pyx +3602 -0
  685. sage/rings/derivation.py +2334 -0
  686. sage/rings/finite_rings/all__sagemath_modules.py +1 -0
  687. sage/rings/finite_rings/maps_finite_field.py +191 -0
  688. sage/rings/function_field/all__sagemath_modules.py +8 -0
  689. sage/rings/function_field/derivations.py +102 -0
  690. sage/rings/function_field/derivations_rational.py +132 -0
  691. sage/rings/function_field/differential.py +853 -0
  692. sage/rings/function_field/divisor.py +1107 -0
  693. sage/rings/function_field/drinfeld_modules/action.py +199 -0
  694. sage/rings/function_field/drinfeld_modules/all.py +1 -0
  695. sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
  696. sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
  697. sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
  698. sage/rings/function_field/drinfeld_modules/homset.py +420 -0
  699. sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
  700. sage/rings/function_field/hermite_form_polynomial.cpython-314-aarch64-linux-musl.so +0 -0
  701. sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
  702. sage/rings/function_field/khuri_makdisi.cpython-314-aarch64-linux-musl.so +0 -0
  703. sage/rings/function_field/khuri_makdisi.pyx +935 -0
  704. sage/rings/invariants/all.py +4 -0
  705. sage/rings/invariants/invariant_theory.py +4597 -0
  706. sage/rings/invariants/reconstruction.py +395 -0
  707. sage/rings/polynomial/all__sagemath_modules.py +17 -0
  708. sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
  709. sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-aarch64-linux-musl.so +0 -0
  710. sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
  711. sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
  712. sage/rings/polynomial/ore_function_element.py +952 -0
  713. sage/rings/polynomial/ore_function_field.py +1028 -0
  714. sage/rings/polynomial/ore_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
  715. sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
  716. sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
  717. sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
  718. sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-aarch64-linux-musl.so +0 -0
  719. sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
  720. sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
  721. sage/rings/polynomial/skew_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
  722. sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
  723. sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
  724. sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-aarch64-linux-musl.so +0 -0
  725. sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
  726. sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
  727. sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-aarch64-linux-musl.so +0 -0
  728. sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
  729. sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
  730. sage/rings/polynomial/skew_polynomial_ring.py +908 -0
  731. sage/rings/real_double_element_gsl.cpython-314-aarch64-linux-musl.so +0 -0
  732. sage/rings/real_double_element_gsl.pxd +8 -0
  733. sage/rings/real_double_element_gsl.pyx +794 -0
  734. sage/rings/real_field.py +58 -0
  735. sage/rings/real_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
  736. sage/rings/real_mpfr.pxd +29 -0
  737. sage/rings/real_mpfr.pyx +6122 -0
  738. sage/rings/ring_extension.cpython-314-aarch64-linux-musl.so +0 -0
  739. sage/rings/ring_extension.pxd +42 -0
  740. sage/rings/ring_extension.pyx +2779 -0
  741. sage/rings/ring_extension_conversion.cpython-314-aarch64-linux-musl.so +0 -0
  742. sage/rings/ring_extension_conversion.pxd +16 -0
  743. sage/rings/ring_extension_conversion.pyx +462 -0
  744. sage/rings/ring_extension_element.cpython-314-aarch64-linux-musl.so +0 -0
  745. sage/rings/ring_extension_element.pxd +21 -0
  746. sage/rings/ring_extension_element.pyx +1635 -0
  747. sage/rings/ring_extension_homset.py +64 -0
  748. sage/rings/ring_extension_morphism.cpython-314-aarch64-linux-musl.so +0 -0
  749. sage/rings/ring_extension_morphism.pxd +35 -0
  750. sage/rings/ring_extension_morphism.pyx +920 -0
  751. sage/schemes/all__sagemath_modules.py +1 -0
  752. sage/schemes/projective/all__sagemath_modules.py +1 -0
  753. sage/schemes/projective/coherent_sheaf.py +300 -0
  754. sage/schemes/projective/cohomology.py +510 -0
  755. sage/stats/all.py +15 -0
  756. sage/stats/basic_stats.py +489 -0
  757. sage/stats/distributions/all.py +7 -0
  758. sage/stats/distributions/catalog.py +34 -0
  759. sage/stats/distributions/dgs.h +50 -0
  760. sage/stats/distributions/dgs.pxd +111 -0
  761. sage/stats/distributions/dgs_bern.h +400 -0
  762. sage/stats/distributions/dgs_gauss.h +614 -0
  763. sage/stats/distributions/dgs_misc.h +104 -0
  764. sage/stats/distributions/discrete_gaussian_integer.cpython-314-aarch64-linux-musl.so +0 -0
  765. sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
  766. sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
  767. sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
  768. sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
  769. sage/stats/hmm/all.py +15 -0
  770. sage/stats/hmm/chmm.cpython-314-aarch64-linux-musl.so +0 -0
  771. sage/stats/hmm/chmm.pyx +1595 -0
  772. sage/stats/hmm/distributions.cpython-314-aarch64-linux-musl.so +0 -0
  773. sage/stats/hmm/distributions.pxd +29 -0
  774. sage/stats/hmm/distributions.pyx +531 -0
  775. sage/stats/hmm/hmm.cpython-314-aarch64-linux-musl.so +0 -0
  776. sage/stats/hmm/hmm.pxd +17 -0
  777. sage/stats/hmm/hmm.pyx +1388 -0
  778. sage/stats/hmm/util.cpython-314-aarch64-linux-musl.so +0 -0
  779. sage/stats/hmm/util.pxd +7 -0
  780. sage/stats/hmm/util.pyx +165 -0
  781. sage/stats/intlist.cpython-314-aarch64-linux-musl.so +0 -0
  782. sage/stats/intlist.pxd +14 -0
  783. sage/stats/intlist.pyx +588 -0
  784. sage/stats/r.py +49 -0
  785. sage/stats/time_series.cpython-314-aarch64-linux-musl.so +0 -0
  786. sage/stats/time_series.pxd +6 -0
  787. sage/stats/time_series.pyx +2546 -0
  788. sage/tensor/all.py +2 -0
  789. sage/tensor/modules/all.py +8 -0
  790. sage/tensor/modules/alternating_contr_tensor.py +761 -0
  791. sage/tensor/modules/comp.py +5598 -0
  792. sage/tensor/modules/ext_pow_free_module.py +824 -0
  793. sage/tensor/modules/finite_rank_free_module.py +3589 -0
  794. sage/tensor/modules/format_utilities.py +333 -0
  795. sage/tensor/modules/free_module_alt_form.py +858 -0
  796. sage/tensor/modules/free_module_automorphism.py +1207 -0
  797. sage/tensor/modules/free_module_basis.py +1074 -0
  798. sage/tensor/modules/free_module_element.py +284 -0
  799. sage/tensor/modules/free_module_homset.py +652 -0
  800. sage/tensor/modules/free_module_linear_group.py +564 -0
  801. sage/tensor/modules/free_module_morphism.py +1581 -0
  802. sage/tensor/modules/free_module_tensor.py +3289 -0
  803. sage/tensor/modules/reflexive_module.py +386 -0
  804. sage/tensor/modules/tensor_free_module.py +780 -0
  805. sage/tensor/modules/tensor_free_submodule.py +538 -0
  806. sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
  807. sage/tensor/modules/tensor_with_indices.py +1043 -0
@@ -0,0 +1,942 @@
1
+ # sage_setup: distribution = sagemath-modules
2
+ # sage.doctest: needs sage.groups sage.modules
3
+ r"""
4
+ Enumerating binary self-dual codes
5
+
6
+ This module implements functions useful for studying binary self-dual codes.
7
+ The main function is ``self_dual_binary_codes``, which is a case-by-case list
8
+ of entries, each represented by a Python dictionary.
9
+
10
+ Format of each entry: a Python dictionary with keys ``'order autgp'``, ``'spectrum'``,
11
+ ``'code'``, ``'Comment'``, ``'Type'``, where
12
+
13
+ - ``'code'`` -- a sd code `C` of length `n`, dim `n/2`, over `\GF{2}`
14
+
15
+ - ``'order autgp'`` -- order of the permutation automorphism group of `C`
16
+
17
+ - ``'Type'`` -- the type of `C` (which can be ``'I'`` or ``'II'``, in the binary case)
18
+
19
+ - ``'spectrum'`` -- the spectrum `[A_0,A_1,...,A_n]`
20
+
21
+ - ``'Comment'`` -- possibly an empty string
22
+
23
+ Python dictionaries were used since they seemed to be both
24
+ human-readable and allow others to update the database easiest.
25
+
26
+ - The following double ``for`` loop can be time-consuming but should
27
+ be run once in a while for testing purposes. It should only print
28
+ ``True`` and have no trace-back errors::
29
+
30
+ sage: for n in [4,6,8,10,12,14,16,18,20,22]: # not tested
31
+ ....: C = self_dual_binary_codes(n); m = len(C.keys())
32
+ ....: for i in range(m):
33
+ ....: C0 = C["%s"%n]["%s"%i]["code"]
34
+ ....: print([n,i,C["%s"%n]["%s"%i]["spectrum"] == C0.spectrum()])
35
+ ....: print(C0 == C0.dual_code())
36
+ ....: G = C0.automorphism_group_binary_code()
37
+ ....: print(C["%s" % n]["%s" % i]["order autgp"] == G.order())
38
+
39
+ - To check if the "Riemann hypothesis" holds, run the following
40
+ code::
41
+
42
+ sage: R = PolynomialRing(CC,"T") # not tested
43
+ sage: T = R.gen() # not tested
44
+ sage: for n in [4,6,8,10,12,14,16,18,20,22]: # not tested
45
+ ....: C = self_dual_binary_codes(n); m = len(C["%s"%n].keys())
46
+ ....: for i in range(m):
47
+ ....: C0 = C["%s"%n]["%s"%i]["code"]
48
+ ....: if C0.minimum_distance()>2:
49
+ ....: f = R(C0.sd_zeta_polynomial())
50
+ ....: print([n,i,[z[0].abs() for z in f.roots()]])
51
+
52
+ You should get lists of numbers equal to 0.707106781186548.
53
+
54
+ Here's a rather naive construction of self-dual codes in the binary
55
+ case:
56
+
57
+ For even `m`, let `A_m` denote the `m\times m` matrix over `\GF{2}`
58
+ given by adding the all 1s matrix to the identity matrix (in
59
+ ``MatrixSpace(GF(2),m,m)`` of course). If `M_1, ..., M_r` are square
60
+ matrices, let `diag(M_1,M_2,...,M_r)` denote the "block diagonal"
61
+ matrix with the matrices `M_i` on the diagonal and 0s elsewhere. Let
62
+ `C(m_1,...,m_r,s)` denote the linear code with generator matrix
63
+ having block form `G = (I, A)`, where
64
+ `A = diag(A_{m_1},A_{m_2},...,A_{m_r},I_s)`, for some
65
+ (even) `m_i`'s and `s`, where
66
+ `m_1+m_2+...+m_r+s=n/2`. Note: Such codes
67
+ `C(m_1,...,m_r,s)` are SD.
68
+
69
+ SD codes not of this form will be called (for the purpose of
70
+ documenting the code below) "exceptional". Except when `n` is
71
+ "small", most sd codes are exceptional (based on a counting
72
+ argument and table 9.1 in the Huffman+Pless [HP2003]_, page 347).
73
+
74
+ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
75
+
76
+ AUTHORS:
77
+
78
+ - David Joyner (2007-08-11)
79
+
80
+ REFERENCES:
81
+
82
+ - [HP2003] \W. C. Huffman, V. Pless, Fundamentals of
83
+ Error-Correcting Codes, Cambridge Univ. Press, 2003.
84
+
85
+ - [P] \V. Pless, *A classification of self-orthogonal codes over GF(2)*,
86
+ Discrete Math 3 (1972) 209-246.
87
+ """
88
+
89
+ from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF
90
+ from sage.matrix.matrix_space import MatrixSpace
91
+ from sage.matrix.constructor import matrix
92
+ from sage.matrix.constructor import block_diagonal_matrix
93
+ from sage.rings.integer_ring import ZZ
94
+ from sage.groups.perm_gps.permgroup import PermutationGroup
95
+ from sage.misc.cachefunc import cached_function
96
+
97
+ from sage.coding.linear_code import LinearCode
98
+
99
+ _F = GF(2)
100
+
101
+
102
+ def _MS(n):
103
+ r"""
104
+ For internal use; returns the floor(n/2) x n matrix space over GF(2).
105
+
106
+ EXAMPLES::
107
+
108
+ sage: import sage.coding.self_dual_codes as self_dual_codes
109
+ sage: self_dual_codes._MS(2)
110
+ Full MatrixSpace of 1 by 2 dense matrices over Finite Field of size 2
111
+ sage: self_dual_codes._MS(3)
112
+ Full MatrixSpace of 1 by 3 dense matrices over Finite Field of size 2
113
+ sage: self_dual_codes._MS(8)
114
+ Full MatrixSpace of 4 by 8 dense matrices over Finite Field of size 2
115
+ """
116
+ n2 = ZZ(n)/2
117
+ return MatrixSpace(_F, n2, n)
118
+
119
+
120
+ def _matA(n):
121
+ r"""
122
+ For internal use; returns a list of square matrices over GF(2) `(a_{ij})`
123
+ of sizes 0 x 0, 1 x 1, ..., n x n which are of the form
124
+ `(a_{ij} = 1) + (a_{ij} = \delta_{ij})`.
125
+
126
+ EXAMPLES::
127
+
128
+ sage: import sage.coding.self_dual_codes as self_dual_codes
129
+ sage: self_dual_codes._matA(4)
130
+ [
131
+ [0 1 1]
132
+ [0 1] [1 0 1]
133
+ [], [0], [1 0], [1 1 0]
134
+ ]
135
+ """
136
+ A = []
137
+ n2 = n.quo_rem(2)[0]
138
+ for j in range(n2+2):
139
+ MS0 = MatrixSpace(_F, j, j)
140
+ I = MS0.identity_matrix()
141
+ O = MS0(j*j*[1])
142
+ A.append(I+O)
143
+ return A
144
+
145
+
146
+ def _matId(n):
147
+ r"""
148
+ For internal use; returns a list of identity matrices over GF(2)
149
+ of sizes (floor(n/2)-j) x (floor(n/2)-j) for j = 0 ... (floor(n/2)-1).
150
+
151
+ EXAMPLES::
152
+
153
+ sage: import sage.coding.self_dual_codes as self_dual_codes
154
+ sage: self_dual_codes._matId(6)
155
+ [
156
+ [1 0 0]
157
+ [0 1 0] [1 0]
158
+ [0 0 1], [0 1], [1]
159
+ ]
160
+ """
161
+ Id = []
162
+ n2 = n.quo_rem(2)[0]
163
+ for j in range(n2):
164
+ MSn = MatrixSpace(_F, n2-j, n2-j)
165
+ Id.append(MSn.identity_matrix())
166
+ return Id
167
+
168
+
169
+ def _MS2(n):
170
+ r"""
171
+ For internal use; returns the floor(n/2) x floor(n/2) matrix space over GF(2).
172
+
173
+ EXAMPLES::
174
+
175
+ sage: import sage.coding.self_dual_codes as self_dual_codes
176
+ sage: self_dual_codes._MS2(8)
177
+ Full MatrixSpace of 4 by 4 dense matrices over Finite Field of size 2
178
+ """
179
+ n2 = n.quo_rem(2)[0]
180
+ return MatrixSpace(_F, n2, n2)
181
+
182
+
183
+ def _I2(n):
184
+ r"""
185
+ Internal function.
186
+
187
+ EXAMPLES::
188
+
189
+ sage: from sage.coding.self_dual_codes import _I2
190
+ sage: _I2(3)
191
+ [1]
192
+ sage: _I2(5)
193
+ [1 0]
194
+ [0 1]
195
+ sage: _I2(7)
196
+ [1 0 0]
197
+ [0 1 0]
198
+ [0 0 1]
199
+ """
200
+ return _MS2(n).identity_matrix()
201
+
202
+
203
+ @cached_function
204
+ def _And7():
205
+ """
206
+ Auxiliary matrix And7.
207
+
208
+ EXAMPLES::
209
+
210
+ sage: from sage.coding.self_dual_codes import _And7
211
+ sage: _And7()
212
+ [1 1 1 0 0 1 1]
213
+ [1 1 1 0 1 0 1]
214
+ [1 1 1 0 1 1 0]
215
+ [0 0 0 0 1 1 1]
216
+ [0 1 1 1 0 0 0]
217
+ [1 0 1 1 0 0 0]
218
+ [1 1 0 1 0 0 0]
219
+ """
220
+ return matrix(_F, [[1, 1, 1, 0, 0, 1, 1],
221
+ [1, 1, 1, 0, 1, 0, 1],
222
+ [1, 1, 1, 0, 1, 1, 0],
223
+ [0, 0, 0, 0, 1, 1, 1],
224
+ [0, 1, 1, 1, 0, 0, 0],
225
+ [1, 0, 1, 1, 0, 0, 0],
226
+ [1, 1, 0, 1, 0, 0, 0]])
227
+
228
+
229
+ @cached_function
230
+ def _H8():
231
+ """
232
+ Auxiliary matrix H8.
233
+
234
+ EXAMPLES::
235
+
236
+ sage: from sage.coding.self_dual_codes import _H8
237
+ sage: _H8()
238
+ [ 1 1 1 1 1 1 1 1]
239
+ [ 1 -1 1 -1 1 -1 1 -1]
240
+ [ 1 1 -1 -1 1 1 -1 -1]
241
+ [ 1 -1 -1 1 1 -1 -1 1]
242
+ [ 1 1 1 1 -1 -1 -1 -1]
243
+ [ 1 -1 1 -1 -1 1 -1 1]
244
+ [ 1 1 -1 -1 -1 -1 1 1]
245
+ [ 1 -1 -1 1 -1 1 1 -1]
246
+ """
247
+ return matrix(ZZ, [[1, 1, 1, 1, 1, 1, 1, 1],
248
+ [1, -1, 1, -1, 1, -1, 1, -1],
249
+ [1, 1, -1, -1, 1, 1, -1, -1],
250
+ [1, -1, -1, 1, 1, -1, -1, 1],
251
+ [1, 1, 1, 1, -1, -1, -1, -1],
252
+ [1, -1, 1, -1, -1, 1, -1, 1],
253
+ [1, 1, -1, -1, -1, -1, 1, 1],
254
+ [1, -1, -1, 1, -1, 1, 1, -1]]) # from Guava's Hadamard matrices database
255
+
256
+ # Remark: The above matrix constructions aid in computing some "small" self-dual codes.
257
+
258
+ ############## main functions ##############
259
+
260
+
261
+ def self_dual_binary_codes(n):
262
+ r"""
263
+ Return the dictionary of inequivalent binary self dual codes of length `n`.
264
+
265
+ For `n=4` even, returns the sd codes of a given length, up to (perm)
266
+ equivalence, the (perm) aut gp, and the type.
267
+
268
+ The number of inequivalent "diagonal" sd binary codes in the database of
269
+ length n is ("diagonal" is defined by the conjecture above) is the
270
+ same as the restricted partition number of `n`, where only integers
271
+ from the set 1, 4, 6, 8, ... are allowed. This is the coefficient of
272
+ `x^n` in the series expansion
273
+ `(1-x)^{-1}\prod_{2^\infty (1-x^{2j})^{-1}}`. Typing the
274
+ command ``f = (1-x)(-1)\*prod([(1-x(2\*j))(-1) for j in range(2,18)])``
275
+ into Sage, we obtain for the coeffs of `x^4`,
276
+ `x^6`, ... [1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 15, 15,
277
+ 22, 22, 30, 30, 42, 42, 56, 56, 77, 77, 101, 101, 135, 135, 176,
278
+ 176, 231] These numbers grow too slowly to account for all the sd
279
+ codes (see Huffman+Pless' Table 9.1, referenced above). In fact, in
280
+ Table 9.10 of [HP2003]_, the number `B_n` of inequivalent sd binary codes
281
+ of length `n` is given::
282
+
283
+ n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
284
+ B_n 1 1 1 2 2 3 4 7 9 16 25 55 103 261 731
285
+
286
+ According to http://oeis.org/classic/A003179,
287
+ the next 2 entries are: 3295, 24147.
288
+
289
+ EXAMPLES::
290
+
291
+ sage: C = codes.databases.self_dual_binary_codes(10)
292
+ sage: C["10"]["0"]["code"] == C["10"]["0"]["code"].dual_code()
293
+ True
294
+ sage: C["10"]["1"]["code"] == C["10"]["1"]["code"].dual_code()
295
+ True
296
+ sage: len(C["10"].keys()) # number of inequiv sd codes of length 10
297
+ 2
298
+ sage: C = codes.databases.self_dual_binary_codes(12)
299
+ sage: C["12"]["0"]["code"] == C["12"]["0"]["code"].dual_code()
300
+ True
301
+ sage: C["12"]["1"]["code"] == C["12"]["1"]["code"].dual_code()
302
+ True
303
+ sage: C["12"]["2"]["code"] == C["12"]["2"]["code"].dual_code()
304
+ True
305
+ """
306
+ self_dual_codes = {}
307
+
308
+ if n == 4:
309
+ # this code is Type I
310
+ # [4,0]:
311
+ genmat = _I2(n).augment(_I2(n))
312
+ # G = PermutationGroup([ "(2,4)", "(1,2)(3,4)" ])
313
+ spectrum = [1, 0, 2, 0, 1]
314
+ self_dual_codes_4_0 = {"order autgp":8,"code":LinearCode(genmat),"spectrum":spectrum,
315
+ "Type":"I","Comment":"Unique."}
316
+ self_dual_codes["4"] = {"0":self_dual_codes_4_0}
317
+ return self_dual_codes
318
+
319
+ if n == 6:
320
+ # this is Type I
321
+ # [6,0]:
322
+ genmat = _I2(n).augment(_I2(n))
323
+ # G = PermutationGroup( ["(3,6)", "(2,3)(5,6)", "(1,2)(4,5)"] )
324
+ spectrum = [1, 0, 3, 0, 3, 0, 1]
325
+ self_dual_codes_6_0 = {"order autgp":48,"code":LinearCode(genmat),"spectrum":spectrum,
326
+ "Type":"I","Comment":"Unique"}
327
+ self_dual_codes["6"] = {"0":self_dual_codes_6_0}
328
+ return self_dual_codes
329
+
330
+ if n == 8:
331
+ # the first code is Type I, the second is Type II
332
+ # the second code is equiv to the extended Hamming [8,4,4] code.
333
+ # [8,0]:
334
+ genmat = _I2(n).augment(_I2(n))
335
+ # G = PermutationGroup( ["(4,8)", "(3,4)(7,8)", "(2,3)(6,7)", "(1,2)(5,6)"] )
336
+ spectrum = [1, 0, 4, 0, 6, 0, 4, 0, 1]
337
+ self_dual_codes_8_0 = {"order autgp":384,"code":LinearCode(genmat),"spectrum":spectrum,
338
+ "Type":"I","Comment":"Unique Type I of this length."}
339
+ # [8,1]:
340
+ genmat = _I2(n).augment(_matA(n)[4])
341
+ # G = PermutationGroup( ["(4,5)(6,7)", "(4,6)(5,7)", "(3,4)(7,8)",\
342
+ # "(2,3)(6,7)", "(1,2)(5,6)"] )
343
+ spectrum = [1, 0, 0, 0, 14, 0, 0, 0, 1]
344
+ self_dual_codes_8_1 = {"order autgp":1344,"code":LinearCode(genmat),"spectrum":spectrum,
345
+ "Type":"II","Comment":"Unique Type II of this length."}
346
+ self_dual_codes["8"] = {"0":self_dual_codes_8_0,"1":self_dual_codes_8_1}
347
+ return self_dual_codes
348
+
349
+ if n == 10:
350
+ # Both of these are Type I; one has a unique lowest weight codeword
351
+ # [10,0]:
352
+ genmat = _I2(n).augment(_I2(n))
353
+ # G = PermutationGroup( ["(5,10)", "(4,5)(9,10)", "(3,4)(8,9)",\
354
+ # "(2,3)(7,8)", "(1,2)(6,7)"] )
355
+ spectrum = [1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1]
356
+ self_dual_codes_10_0 = {"order autgp":3840,"code":LinearCode(genmat),"spectrum":spectrum,
357
+ "Type":"I","Comment":"No Type II of this length."}
358
+ # [10,1]:
359
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
360
+ # G = PermutationGroup( ["(5,10)", "(4,6)(7,8)", "(4,7)(6,8)", "(3,4)(8,9)",\
361
+ # "(2,3)(7,8)", "(1,2)(6,7)"] )
362
+ spectrum = [1, 0, 1, 0, 14, 0, 14, 0, 1, 0, 1]
363
+ self_dual_codes_10_1 = {"order autgp":2688,"code":LinearCode(genmat),"spectrum":spectrum,
364
+ "Type":"I","Comment":"Unique lowest weight nonzero codeword."}
365
+ self_dual_codes["10"] = {"0":self_dual_codes_10_0,"1":self_dual_codes_10_1}
366
+ return self_dual_codes
367
+
368
+ if n == 12:
369
+ # all of these are Type I
370
+ # [12,0]:
371
+ genmat = _I2(n).augment(_I2(n))
372
+ # G = PermutationGroup( ["(6,12)", "(5,6)(11,12)", "(4,5)(10,11)", "(3,4)(9,10)",\
373
+ # "(2,3)(8,9)", "(1,2)(7,8)"] )
374
+ spectrum = [1, 0, 6, 0, 15, 0, 20, 0, 15, 0, 6, 0, 1]
375
+ self_dual_codes_12_0 = {"order autgp":48080,"code":LinearCode(genmat),"spectrum":spectrum,
376
+ "Type":"I","Comment":"No Type II of this length."}
377
+ # [12,1]:
378
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
379
+ # G = PermutationGroup( ["(2,3)(4,7)", "(2,4)(3,7)", "(2,4,9)(3,7,8)", "(2,4,8,10)(3,9)",\
380
+ # "(1,2,4,7,8,10)(3,9)", "(2,4,8,10)(3,9)(6,12)", "(2,4,8,10)(3,9)(5,6,11,12)"] )
381
+ spectrum = [1, 0, 2, 0, 15, 0, 28, 0, 15, 0, 2, 0, 1]
382
+ self_dual_codes_12_1 = {"order autgp":10752,"code":LinearCode(genmat),"spectrum":spectrum,
383
+ "Type":"I","Comment":"Smallest automorphism group of these."}
384
+ # [12,2]:
385
+ genmat = _I2(n).augment(_matA(n)[6])
386
+ # G = PermutationGroup( ["(5,6)(11,12)", "(5,11)(6,12)", "(4,5)(10,11)", "(3,4)(9,10)",\
387
+ # "(2,3)(8,9)", "(1,2)(7,8)"] )
388
+ spectrum = [1, 0, 0, 0, 15, 0, 32, 0, 15, 0, 0, 0, 1]
389
+ self_dual_codes_12_2 = {"order autgp":23040,"code":LinearCode(genmat),"spectrum":spectrum,
390
+ "Type":"I","Comment":"Largest minimum distance of these."}
391
+ self_dual_codes["12"] = {"0":self_dual_codes_12_0,"1":self_dual_codes_12_1,"2":self_dual_codes_12_2}
392
+ return self_dual_codes
393
+
394
+ if n == 14:
395
+ # all of these are Type I; one has a unique lowest weight codeword
396
+ # (there are 4 total inequiv sd codes of n = 14, by Table 9.10 [HP2003])
397
+ # [14,0]:
398
+ genmat = _I2(n).augment(_I2(n))
399
+ # G = PermutationGroup( ["(7,14)", "(6,7)(13,14)", "(5,6)(12,13)", "(4,5)(11,12)",\
400
+ # "(3,4)(10,11)", "(2,3)(9,10)", "(1,2)(8,9)"] )
401
+ spectrum = [1, 0, 7, 0, 21, 0, 35, 0, 35, 0, 21, 0, 7, 0, 1]
402
+ self_dual_codes_14_0 = {"order autgp":645120,"code":LinearCode(genmat),"spectrum":spectrum,
403
+ "Type":"I","Comment":"No Type II of this length. Huge aut gp."}
404
+ # [14,1]:
405
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
406
+ # G = PermutationGroup( ["(7,14)", "(6,7)(13,14)", "(5,6)(12,13)", "(4,8)(9,10)",\
407
+ # "(4,9)(8,10)", "(3,4)(10,11)", "(2,3)(9,10)", "(1,2)(8,9)"] )
408
+ spectrum = [1, 0, 3, 0, 17, 0, 43, 0, 43, 0, 17, 0, 3, 0, 1]
409
+ self_dual_codes_14_1 = {"order autgp":64512,"code":LinearCode(genmat),"spectrum":spectrum,
410
+ "Type":"I","Comment":"Automorphism group has order 64512."}
411
+ # [14,2]:
412
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
413
+ # G = PermutationGroup( ["(7,14)", "(5,6)(12,13)", "(5,12)(6,13)", "(4,5)(11,12)",\
414
+ # "(3,4)(10,11)", "(2,3)(9,10)", "(1,2)(8,9)"] )
415
+ spectrum = [1, 0, 1, 0, 15, 0, 47, 0, 47, 0, 15, 0, 1, 0, 1]
416
+ self_dual_codes_14_2 = {"order autgp":46080,"code":LinearCode(genmat),"spectrum":spectrum,
417
+ "Type":"I","Comment":"Unique codeword of weight 2."}
418
+ # [14,3]:
419
+ genmat = _I2(n).augment(_And7())
420
+ # G = PermutationGroup( ["(7,11)(12,13)", "(7,12)(11,13)", "(6,9)(10,14)",\
421
+ # "(6,10)(9,14)", "(5,6)(8,9)", "(4,5)(9,10), (2,3)(11,12)", "(2,7)(3,13)",\
422
+ # "(1,2)(12,13)", "(1,4)(2,5)(3,8)(6,7)(9,13)(10,12)(11,14)"])
423
+ spectrum = [1, 0, 0, 0, 14, 0, 49, 0, 49, 0, 14, 0, 0, 0, 1]
424
+ self_dual_codes_14_3 = {"order autgp":56448,"code":LinearCode(genmat),"spectrum":spectrum,
425
+ "Type":"I","Comment":"Largest minimum distance of these."}
426
+ self_dual_codes["14"] = {"0":self_dual_codes_14_0,"1":self_dual_codes_14_1,"2":self_dual_codes_14_2,
427
+ "3":self_dual_codes_14_3}
428
+ return self_dual_codes
429
+
430
+ if n == 16:
431
+ # 4 of these are Type I, 2 are Type II. The 2 Type II codes
432
+ # are formally equivalent but with different automorphism groups
433
+ # [16,0]:
434
+ genmat = _I2(n).augment(_I2(n))
435
+ # G = PermutationGroup( [ "(8,16)", "(7,8)(15,16)", "(6,7)(14,15)", "(5,6)(13,14)",
436
+ # "(4,5)(12,13)", "(3,4)(11,12)", "(2,3)(10,11)", "(1,2)(9,10)"] )
437
+ spectrum = [1, 0, 8, 0, 28, 0, 56, 0, 70, 0, 56, 0, 28, 0, 8, 0, 1]
438
+ self_dual_codes_16_0 = {"order autgp":10321920,"code":LinearCode(genmat),"spectrum":spectrum,
439
+ "Type":"I","Comment":"Huge aut gp."}
440
+ # [16,1]:
441
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
442
+ # G = PermutationGroup( [ "(8,16)", "(7,8)(15,16)", "(6,7)(14,15)", "(5,6)(13,14)",\
443
+ # "(4,9)(10,11)", "(4,10)(9,11)", "(3,4)(11,12)", "(2,3)(10,11)", "(1,2)(9,10)"] )
444
+ spectrum = [1, 0, 4, 0, 20, 0, 60, 0, 86, 0, 60, 0, 20, 0, 4, 0, 1]
445
+ self_dual_codes_16_1 = {"order autgp":516096,"code":LinearCode(genmat),"spectrum":spectrum,
446
+ "Type":"I","Comment":""}
447
+ # [16,2]:
448
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matA(n)[4]]))
449
+ # G = PermutationGroup( [ "(8,13)(14,15)", "(8,14)(13,15)", "(7,8)(15,16)", "(6,7)(14,15)",\
450
+ # "(5,6)(13,14)", "(4,9)(10,11)", "(4,10)(9,11)", "(3,4)(11,12)", "(2,3)(10,11)",\
451
+ # "(1,2)(9,10)","(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)"] )
452
+ spectrum = [1, 0, 0, 0, 28, 0, 0, 0, 198, 0, 0, 0, 28, 0, 0, 0, 1]
453
+ self_dual_codes_16_2 = {"order autgp":3612672,"code":LinearCode(genmat),"spectrum":spectrum,
454
+ "Type":"II","Comment":"Same spectrum as the other Type II code."}
455
+ # [16,3]:
456
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
457
+ # G = PermutationGroup( [ "(8,16)", "(7,8)(15,16)", "(5,6)(13,14)", "(5,13)(6,14)",\
458
+ # "(4,5)(12,13)", "(3,4)(11,12)", "(2,3)(10,11)", "(1,2)(9,10)"] )
459
+ spectrum = [1, 0, 2, 0, 16, 0, 62, 0, 94, 0, 62, 0, 16, 0, 2, 0, 1]
460
+ self_dual_codes_16_3 = {"order autgp":184320,"code":LinearCode(genmat),"spectrum":spectrum,
461
+ "Type":"I","Comment":""}
462
+ # [16,4]:
463
+ genmat = _I2(n).augment(_matA(n)[8])
464
+ # an equivalent form: See also [20,8] using A[10]
465
+ # [(1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1),
466
+ # (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1),
467
+ # (0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0),
468
+ # (0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0),
469
+ # (0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0),
470
+ # (0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0),
471
+ # (0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0),
472
+ # (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1)]
473
+ # G = PermutationGroup( [ "(7,8)(15,16)", "(7,15)(8,16)", "(6,7)(14,15)",\
474
+ # "(5,6)(13,14)","(4,5)(12,13)","(3,4)(11,12)", "(2,3)(10,11)", "(1,2)(9,10)"] )
475
+ spectrum = [1, 0, 0, 0, 28, 0, 0, 0, 198, 0, 0, 0, 28, 0, 0, 0, 1]
476
+ self_dual_codes_16_4 = {"order autgp":5160960,"code":LinearCode(genmat),"spectrum":spectrum,
477
+ "Type":"II","Comment":"Same spectrum as the other Type II code. Large aut gp."}
478
+ # [16,5]:
479
+ genmat = _I2(n).augment(block_diagonal_matrix([_And7(),_matId(n)[7]]))
480
+ # G = PermutationGroup( [ "(8,16)", "(7,12)(13,14)", "(7,13)(12,14)",\
481
+ # "(6,10)(11,15)", "(6,11)(10,15)", "(5,6)(9,10)", "(4,5)(10,11)",\
482
+ # "(2,3)(12,13)", "(2,7)(3,14)", "(1,2)(13,14)",\
483
+ # "(1,4)(2,5)(3,9)(6,7)(10,14)(11,13)(12,15)" ] )
484
+ spectrum = [1, 0, 1, 0, 14, 0, 63, 0, 98, 0, 63, 0, 14, 0, 1, 0, 1]
485
+ self_dual_codes_16_5 = {"order autgp":112896,"code":LinearCode(genmat),"spectrum":spectrum,
486
+ "Type":"I","Comment":"'Exceptional' construction."}
487
+ # [16,6]:
488
+ J8 = MatrixSpace(ZZ,8,8)(64*[1])
489
+ genmat = _I2(n).augment(_I2(n)+_MS2(n)((_H8()+J8)/2))
490
+ # G = PermutationGroup( [ "(7,9)(10,16)", "(7,10)(9,16)", "(6,7)(10,11)",\
491
+ # "(4,6)(11,13)", "(3,5)(12,14)", "(3,12)(5,14)", "(2,3)(14,15)",\
492
+ # "(1,2)(8,15)", "(1,4)(2,6)(3,7)(5,16)(8,13)(9,12)(10,14)(11,15)" ] )
493
+ spectrum = [1, 0, 0, 0, 12, 0, 64, 0, 102, 0, 64, 0, 12, 0, 0, 0, 1]
494
+ self_dual_codes_16_6 = {"order autgp":73728,"code":LinearCode(genmat),"spectrum":spectrum,
495
+ "Type":"I","Comment":"'Exceptional' construction. Min dist 4."}
496
+ self_dual_codes["16"] = {"0":self_dual_codes_16_0,"1":self_dual_codes_16_1,"2":self_dual_codes_16_2,
497
+ "3":self_dual_codes_16_3,"4":self_dual_codes_16_4,"5":self_dual_codes_16_5,"6":self_dual_codes_16_6}
498
+ return self_dual_codes
499
+
500
+ if n == 18:
501
+ # all of these are Type I, all are "extensions" of the n=16 codes
502
+ # [18,3] and [18,4] each has a unique lowest weight codeword. Also, they
503
+ # are formally equivalent but with different automorphism groups
504
+ # [18,0]:
505
+ genmat = _I2(n).augment(_I2(n))
506
+ # G = PermutationGroup( [ "(9,18)", "(8,9)(17,18)", "(7,8)(16,17)", "(6,7)(15,16)",\
507
+ # "(5,6)(14,15)", "(4,5)(13,14)", "(3,4)(12,13)", "(2,3)(11,12)", "(1,2)(10,11)" ] )
508
+ spectrum = [1, 0, 9, 0, 36, 0, 84, 0, 126, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1]
509
+ self_dual_codes_18_0 = {"order autgp":185794560,"code":LinearCode(genmat),"spectrum":spectrum,
510
+ "Type":"I","Comment": "Huge aut gp. S_9x(ZZ/2ZZ)^9?"}
511
+ # [18,1]:
512
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
513
+ # G = PermutationGroup( [ "(9,18)", "(8,9)(17,18)", "(7,8)(16,17)", "(6,7)(15,16)",\
514
+ # "(5,6)(14,15)", "(4,10)(11,12)", "(4,11)(10,12)", "(3,4)(12,13)",\
515
+ # "(2,3)(11,12)", "(1,2)(10,11)" ] )
516
+ spectrum = [1, 0, 5, 0, 24, 0, 80, 0, 146, 0, 146, 0, 80, 0, 24, 0, 5, 0, 1]
517
+ self_dual_codes_18_1 = {"order autgp":5160960,"code":LinearCode(genmat),"spectrum":spectrum,
518
+ "Type":"I","Comment": "Large aut gp."}
519
+ # [18,2]:
520
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
521
+ # G = PermutationGroup( [ "(9,18)", "(8,9)(17,18)", "(7,8)(16,17)", "(5,6)(14,15)",\
522
+ # "(5,14)(6,15)","(4,5)(13,14)", "(3,4)(12,13)", "(2,3)(11,12)", "(1,2)(10,11)"] )
523
+ spectrum = [1, 0, 3, 0, 18, 0, 78, 0, 156, 0, 156, 0, 78, 0, 18, 0, 3, 0, 1]
524
+ self_dual_codes_18_2 = {"order autgp":1105920,"code":LinearCode(genmat),"spectrum":spectrum,
525
+ "Type":"I","Comment": ""}
526
+ # [18,3]:
527
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matA(n)[4],_matId(n)[8]]))
528
+ # G = PermutationGroup( [ "(9,18)", "(8,14)(15,16)", "(8,15)(14,16)", "(7,8)(16,17)",\
529
+ # "(6,7)(15,16)","(5,6)(14,15)", "(4,10)(11,12)", "(4,11)(10,12)",\
530
+ # "(3,4)(12,13)", "(2,3)(11,12)","(1,2)(10,11)",\
531
+ # "(1,5)(2,6)(3,7)(4,8)(10,14)(11,15)(12,16)(13,17)" ] )
532
+ spectrum = [1, 0, 1, 0, 28, 0, 28, 0, 198, 0, 198, 0, 28, 0, 28, 0, 1, 0, 1]
533
+ self_dual_codes_18_3 = {"order autgp":7225344,"code":LinearCode(genmat),"spectrum":spectrum,
534
+ "Type":"I","Comment": "Large aut gp. Unique codeword of smallest nonzero wt.\
535
+ Same spectrum as '[18,4]' sd code."}
536
+ # [18,4]:
537
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[8],_matId(n)[8]]))
538
+ # G = PermutationGroup( [ "(9,18)", "(7,8)(16,17)", "(7,16)(8,17)", "(6,7)(15,16)", \
539
+ # "(5,6)(14,15)", "(4,5)(13,14)", "(3,4)(12,13)", "(2,3)(11,12)", "(1,2)(10,11)" ] )
540
+ spectrum = [1, 0, 1, 0, 28, 0, 28, 0, 198, 0, 198, 0, 28, 0, 28, 0, 1, 0, 1]
541
+ self_dual_codes_18_4 = {"order autgp":10321920,"code":LinearCode(genmat),"spectrum":spectrum,
542
+ "Type":"I","Comment": "Huge aut gp. Unique codeword of smallest nonzero wt.\
543
+ Same spectrum as '[18,3]' sd code."}
544
+ # [18,5]:
545
+ C = self_dual_binary_codes(n-2)["%s" % (n-2)]["5"]["code"]
546
+ A0 = C.redundancy_matrix()
547
+ genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[8]]))
548
+ # G = PermutationGroup( [ "(5,10)(6,11)", "(5,11)(6,10)", "(5,11,12)(6,7,10)",\
549
+ # "(5,11,10,7,12,6,13)", "(2,15)(3,16)(5,11,10,7,12,6,13)",\
550
+ # "(2,16)(3,15)(5,11,10,7,12,6,13)", "(2,16,14)(3,15,4)(5,11,10,7,12,6,13)",\
551
+ # "(1,2,16,15,4,3,14)(5,11,10,7,12,6,13)", "(1,5,14,6,16,11,15,7,3,10,4,12,2,13)",\
552
+ # "(2,16,14)(3,15,4)(5,11,10,7,12,6,13)(9,18)",\
553
+ # "(2,16,14)(3,15,4)(5,11,10,7,12,6,13)(8,9,17,18)" ] )
554
+ spectrum = [1, 0, 2, 0, 15, 0, 77, 0, 161, 0, 161, 0, 77, 0, 15, 0, 2, 0, 1]
555
+ self_dual_codes_18_5 = {"order autgp":451584,"code":LinearCode(genmat),"spectrum":spectrum,
556
+ "Type":"I","Comment": "'Exceptional' construction."}
557
+ # [18,6]:
558
+ C = self_dual_binary_codes(n-2)["%s" % (n-2)]["6"]["code"]
559
+ A0 = C.redundancy_matrix()
560
+ genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[8]]))
561
+ G = PermutationGroup( [ "(9,18)", "(7,10)(11,17)", "(7,11)(10,17)", "(6,7)(11,12)",
562
+ "(4,6)(12,14)", "(3,5)(13,15)", "(3,13)(5,15)", "(2,3)(15,16)", "(1,2)(8,16)",
563
+ "(1,4)(2,6)(3,7)(5,17)(8,14)(10,13)(11,15)(12,16)" ] )
564
+ spectrum = [1, 0, 1, 0, 12, 0, 76, 0, 166, 0, 166, 0, 76, 0, 12, 0, 1, 0, 1]
565
+ self_dual_codes_18_6 = {"order autgp":147456,"code":LinearCode(genmat),"spectrum":spectrum,
566
+ "Type":"I","Comment": "'Exceptional'. Unique codeword of smallest nonzero wt."}
567
+ # [18,7] (equiv to H18 in [P])
568
+ genmat = _MS(n)([[1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0],
569
+ [0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,1],
570
+ [0,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1],
571
+ [0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1],
572
+ [0,0,0,0,1,0,0,0,0,1,1,0,0,1,0,1,1,0],
573
+ [0,0,0,0,0,1,0,0,0,1,0,1,0,1,0,1,1,0],
574
+ [0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,0],
575
+ [0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,1],
576
+ [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1]])
577
+ # G = PermutationGroup( [ "(9,10)(16,18)", "(9,16)(10,18)", "(8,9)(14,16)",\
578
+ # "(7,11)(12,17)", "(7,12)(11,17)", "(5,6)(11,12)", "(5,7)(6,17)",\
579
+ # "(4,13)(5,8)(6,14)(7,9)(10,12)(11,18)(16,17)", "(3,4)(13,15)",\
580
+ # "(1,2)(5,8)(6,14)(7,9)(10,12)(11,18)(16,17)", "(1,3)(2,15)",\
581
+ # "(1,5)(2,6)(3,7)(4,11)(10,18)(12,13)(15,17)" ] )
582
+ spectrum = [1, 0, 0, 0, 9, 0, 75, 0, 171, 0, 171, 0, 75, 0, 9, 0, 0, 0, 1]
583
+ self_dual_codes_18_7 = {"order autgp":82944,"code":LinearCode(genmat),"spectrum":spectrum,
584
+ "Type":"I","Comment": "'Exceptional' construction. Min dist 4."}
585
+ # [18, 8] (equiv to I18 in [P])
586
+ I18 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
587
+ [0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
588
+ [0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
589
+ [0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
590
+ [1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0],
591
+ [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0],
592
+ [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],
593
+ [0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1],
594
+ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]])
595
+ genmat = _MS(n)([[1,0,0,0,0,0,0,0,0, 1, 1, 1, 1, 1, 0, 0, 0, 0],
596
+ [0,1,0,0,0,0,0,0,0, 1, 0, 1, 1, 1, 0, 1, 1, 1],
597
+ [0,0,1,0,0,0,0,0,0, 0, 1, 1, 0, 0, 0, 1, 1, 1],
598
+ [0,0,0,1,0,0,0,0,0, 0, 1, 0, 0, 1, 0, 1, 1, 1],
599
+ [0,0,0,0,1,0,0,0,0, 0, 1, 0, 1, 0, 0, 1, 1, 1],
600
+ [0,0,0,0,0,1,0,0,0, 1, 1, 0, 0, 0, 0, 1, 1, 1],
601
+ [0,0,0,0,0,0,1,0,0, 0, 0, 0, 0, 0, 1, 0, 1, 1],
602
+ [0,0,0,0,0,0,0,1,0, 0, 0, 0, 0, 0, 1, 1, 0, 1],
603
+ [0,0,0,0,0,0,0,0,1, 0, 0, 0, 0, 0, 1, 1, 1, 0]])
604
+ G = PermutationGroup( [ "(9,15)(16,17)", "(9,16)(15,17)", "(8,9)(17,18)",
605
+ "(7,8)(16,17)", "(5,6)(10,13)", "(5,10)(6,13)", "(4,5)(13,14)",
606
+ "(3,4)(12,14)", "(1,2)(6,10)", "(1,3)(2,12)" ] )
607
+ spectrum = [1, 0, 0, 0, 17, 0, 51, 0, 187, 0, 187, 0, 51, 0, 17, 0, 0, 0, 1]
608
+ self_dual_codes_18_8 = {"order autgp":322560,"code":LinearCode(genmat),"spectrum":spectrum,
609
+ "Type":"I","Comment": "'Exceptional' construction. Min dist 4."}
610
+ self_dual_codes["18"] = {"0":self_dual_codes_18_0,"1":self_dual_codes_18_1,"2":self_dual_codes_18_2,
611
+ "3":self_dual_codes_18_3,"4":self_dual_codes_18_4,"5":self_dual_codes_18_5,
612
+ "6":self_dual_codes_18_6,"7":self_dual_codes_18_7,"8":self_dual_codes_18_8}
613
+ return self_dual_codes
614
+
615
+ if n == 20:
616
+ # all of these of these are Type I; 2 of these codes
617
+ # are formally equivalent but with different automorphism groups;
618
+ # one of these has a unique codeword of lowest weight
619
+ A10 = MatrixSpace(_F, 10, 10)([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
620
+ [1, 1, 1, 0, 1, 0, 1, 0, 1, 1],
621
+ [1, 0, 0, 1, 0, 1, 0, 1, 0, 1],
622
+ [0, 0, 0, 1, 1, 1, 0, 1, 0, 1],
623
+ [0, 0, 1, 1, 0, 1, 0, 1, 0, 1],
624
+ [0, 0, 0, 1, 0, 1, 1, 1, 0, 1],
625
+ [0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
626
+ [0, 0, 0, 1, 0, 0, 0, 0, 1, 1],
627
+ [0, 0, 0, 0, 0, 1, 0, 0, 1, 1],
628
+ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]])
629
+ # [20,0]:
630
+ genmat = _I2(n).augment(_I2(n))
631
+ # G = PermutationGroup( ["(10,20)", "(9,10)(19,20)", "(8,9)(18,19)", "(7,8)(17,18)", "(6,7)(16,17)",\
632
+ # "(5,6)(15,16)", "(4,5)(14,15)", "(3,4)(13,14)", "(2,3)(12,13)", "(1,2)(11,12)"] )
633
+ spectrum = [1, 0, 10, 0, 45, 0, 120, 0, 210, 0, 252, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1]
634
+ self_dual_codes_20_0 = {"order autgp":3715891200,"code":LinearCode(genmat),"spectrum":spectrum,
635
+ "Type":"I","Comment": "Huge aut gp"}
636
+ # [20,1]:
637
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
638
+ # G = PermutationGroup( [ "(10,20)", "(9,10)(19,20)", "(8,9)(18,19)", "(7,8)(17,18)", "(6,7)(16,17)",\
639
+ # "(5,6)(15,16)", "(4,11)(12,13)", "(4,12)(11,13)", "(3,4)(13,14)",\
640
+ # "(2,3)(12,13)", "(1,2)(11,12)"] )
641
+ spectrum = [1, 0, 6, 0, 29, 0, 104, 0, 226, 0, 292, 0, 226, 0, 104, 0, 29, 0, 6, 0, 1]
642
+ self_dual_codes_20_1 = {"order autgp":61931520,"code":LinearCode(genmat),"spectrum":spectrum,
643
+ "Type":"I","Comment":""}
644
+ # [20,2]:
645
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
646
+ # G = PermutationGroup( [ "(10,20)", "(9,10)(19,20)", "(8,9)(18,19)", "(7,8)(17,18)",\
647
+ # "(5,6)(15,16)", "(5,15)(6,16)", "(4,5)(14,15)", "(3,4)(13,14)",\
648
+ # "(2,3)(12,13)", "(1,2)(11,12)"] )
649
+ spectrum = [1, 0, 4, 0, 21, 0, 96, 0, 234, 0, 312, 0, 234, 0, 96, 0, 21, 0, 4, 0, 1]
650
+ self_dual_codes_20_2 = {"order autgp":8847360,"code":LinearCode(genmat),"spectrum":spectrum,
651
+ "Type":"I","Comment":""}
652
+ # [20,3]:
653
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matA(n)[4]]))
654
+ # G = PermutationGroup( [ "(5,6)(15,16)", "(5,15)(6,16)", "(4,5)(14,15)", "(3,4)(13,14)",\
655
+ # "(2,3)(12,13)", "(1,2)(11,12)", "(8,17)(9,10)", "(8,10)(9,17)", "(8,10,20)(9,19,17)",\
656
+ # "(8,19,20,9,17,10,18)", "(7,8,19,20,9,18)(10,17)"] )
657
+ spectrum = [1, 0, 0, 0, 29, 0, 32, 0, 226, 0, 448, 0, 226, 0, 32, 0, 29, 0, 0, 0, 1]
658
+ self_dual_codes_20_3 = {"order autgp":30965760,"code":LinearCode(genmat),"spectrum":spectrum,
659
+ "Type":"I","Comment":"Min dist 4."}
660
+ # [20,4]:
661
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matA(n)[4],_matId(n)[8]]))
662
+ # G = PermutationGroup( [ "(5,15)(6,16)", "(5,16)(6,15)", "(5,16,7)(6,17,15)", "(5,15,8)(6,17,7)",\
663
+ # "(5,17,18)(6,15,8), (3,14)(4,13)(5,17,18)(6,15,8)", "(3,13)(4,14)(5,17,18)(6,15,8)",\
664
+ # "(2,3,14)(4,13,11)(5,17,18)(6,15,8)"," (2,3,12)(4,11,14)(5,17,18)(6,15,8)",\
665
+ # "(1,2,3,11,14,4,12)(5,17,18)(6,15,8)", "(1,5,13,17,14,8,2,7,3,16,12,6,11,18)(4,15)",\
666
+ # "(2,3,12)(4,11,14)(5,17,18)(6,15,8)(10,20)",\
667
+ # "(2,3,12)(4,11,14)(5,17,18)(6,15,8)(9,10,19,20)"] )
668
+ spectrum = [1, 0, 2, 0, 29, 0, 56, 0, 226, 0, 396, 0, 226, 0, 56, 0, 29, 0, 2, 0, 1]
669
+ self_dual_codes_20_4 = {"order autgp":28901376,"code":LinearCode(genmat),"spectrum":spectrum,
670
+ "Type":"I","Comment":""}
671
+ # [20,5]:
672
+ genmat = _I2(n).augment(block_diagonal_matrix([_And7(),_matId(n)[7]]))
673
+ # G = PermutationGroup( [ "(10,20)", "(9,10)(19,20)", "(8,9)(18,19)",\
674
+ # "(7,11)(12,14)", "(7,12)(11,14)", "(6,7)(12,13)", "(5,6)(11,12)",\
675
+ # "(4,15)(16,17)", "(4,16)(15,17)", "(2,3)(16,17)", "(2,4)(3,15)",\
676
+ # "(1,2)(15,16)", "(1,5)(2,6)(3,13)(4,7)(11,16)(12,15)(14,17)" ] ) # order 2709504
677
+ spectrum = [1, 0, 3, 0, 17, 0, 92, 0, 238, 0, 322, 0, 238, 0, 92, 0, 17, 0, 3, 0, 1]
678
+ self_dual_codes_20_5 = {"order autgp":2709504,"code":LinearCode(genmat),"spectrum":spectrum,
679
+ "Type":"I","Comment": "'Exceptional' construction."}
680
+ # [20,6]:
681
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[8],_matId(n)[8]]))
682
+ # G = PermutationGroup( [ "(7,8)(17,18)", "(7,17)(8,18)", "(6,7)(16,17)", "(5,6)(15,16)",\
683
+ # "(4,5)(14,15)", "(3,4)(13,14)", "(2,3)(12,13)", "(1,2)(11,12)",\
684
+ # "(10,20)", "(9,10,19,20)"] )
685
+ spectrum = [1, 0, 2, 0, 29, 0, 56, 0, 226, 0, 396, 0, 226, 0, 56, 0, 29, 0, 2, 0, 1]
686
+ self_dual_codes_20_6 = {"order autgp":41287680,"code":LinearCode(genmat),"spectrum":spectrum,
687
+ "Type":"I","Comment":""}
688
+ # [20,7]:
689
+ A0 = self_dual_binary_codes(n-4)["16"]["6"]["code"].redundancy_matrix()
690
+ genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[8]]))
691
+ # G = PermutationGroup( [ "(10,20)", "(9,10)(19,20)", "(7,11)(12,18)",\
692
+ # "(7,12)(11,18)", "(6,7)(12,13)", "(4,6)(13,15)", "(3,5)(14,16)",\
693
+ # "(3,14)(5,16)", "(2,3)(16,17)", "(1,2)(8,17)",\
694
+ # "(1,4)(2,6)(3,7)(5,18)(8,15)(11,14)(12,16)(13,17)" ] )
695
+ spectrum = [1,0,2,0,13,0,88,0,242,0,332,0,242,0,88,0,13,0,2,0,1]
696
+ self_dual_codes_20_7 = {"order autgp":589824,"code":LinearCode(genmat),"spectrum":spectrum,
697
+ "Type":"I","Comment":"'Exceptional' construction."}
698
+ # [20,8]: (genmat, J20, and genmat2 are all equiv)
699
+ genmat = _I2(n).augment(_matA(n)[10])
700
+ J20 = _MS(n)([[1,1,1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
701
+ [0,0,1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
702
+ [0,0,0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
703
+ [0,0,0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
704
+ [0,0,0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
705
+ [0,0,0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
706
+ [0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
707
+ [0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0],
708
+ [0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
709
+ [1,0,1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]])
710
+ genmat2 = _MS(n)([[1,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
711
+ [0,1,0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1],
712
+ [0,0,1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
713
+ [0,0,0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0],
714
+ [0,0,0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0],
715
+ [0,0,0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0],
716
+ [0,0,0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0],
717
+ [0,0,0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0],
718
+ [0,0,0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0],
719
+ [0,0,0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1]])
720
+ # G = PermutationGroup( [ "(9,10)(19,20)", "(9,19)(10,20)", "(8,9)(18,19)", "(7,8)(17,18)",\
721
+ # "(6,7)(16,17)", "(5,6)(15,16)", "(4,5)(14,15)", "(3,4)(13,14)",\
722
+ # "(2,3)(12,13)", "(1,2)(11,12)"] )
723
+ spectrum = [1, 0, 0, 0, 45, 0, 0, 0, 210, 0, 512, 0, 210, 0, 0, 0, 45, 0, 0, 0, 1]
724
+ self_dual_codes_20_8 = {"order autgp":1857945600,"code":LinearCode(genmat),"spectrum":spectrum,
725
+ "Type":"I","Comment":"Huge aut gp. Min dist 4."}
726
+ # [20,9]: (genmat, K20 are equiv)
727
+ genmat = _I2(n).augment(A10)
728
+ K20 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
729
+ [0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
730
+ [0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
731
+ [0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
732
+ [0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
733
+ [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
734
+ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
735
+ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
736
+ [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0],
737
+ [0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,0,1,0]])
738
+ #genmat = K20 # not in standard form
739
+ # G = PermutationGroup( [ "(4,13)(5,15)", "(4,15)(5,13)", "(3,4,13)(5,11,15)",
740
+ # "(3,4,6,11,15,17)(5,13)", "(3,5,17,4,12)(6,15,7,11,13)",
741
+ # "(1,2)(3,5,17,4,7,11,13,6,15,12)", "(1,3,5,17,4,12)(2,11,13,6,15,7)",
742
+ # "(3,5,17,4,12)(6,15,7,11,13)(10,18)(19,20)", "(3,5,17,4,12)(6,15,7,11,13)(10,19)(18,20)",
743
+ # "(3,5,17,4,12)(6,15,7,11,13)(9,10)(16,18)",
744
+ # "(3,5,17,4,12)(6,15,7,11,13)(8,9)(14,16)" ] )
745
+ spectrum = [1, 0, 0, 0, 21, 0, 48, 0, 234, 0, 416, 0, 234, 0, 48, 0, 21, 0, 0, 0, 1]
746
+ self_dual_codes_20_9 = {"order autgp":4423680,"code":LinearCode(genmat),"spectrum":spectrum,
747
+ "Type":"I","Comment": "Min dist 4."}
748
+ # [20,10]
749
+ L20 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
750
+ [0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
751
+ [1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
752
+ [0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0],
753
+ [0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0],
754
+ [0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0],
755
+ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
756
+ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
757
+ [0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0],
758
+ [0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0]])
759
+ genmat = L20 # not in standard form
760
+ # G = PermutationGroup( [ "(17,18)(19,20)", "(17,19)(18,20)", "(15,16)(19,20)",
761
+ # "(15,17)(16,18)", "(10,11)(12,13)", "(10,12)(11,13)", "(9,10)(13,14)",
762
+ # "(8,9)(12,13)", "(3,4)(5,6)", "(3,5)(4,6)", "(2,3)(6,7)", "(1,2)(5,6)",
763
+ # "(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(19,20)" ] ) # order 1354752
764
+ spectrum = [1, 0, 0, 0, 17, 0, 56, 0, 238, 0, 400, 0, 238, 0, 56, 0, 17, 0, 0, 0, 1]
765
+ self_dual_codes_20_10 = {"order autgp":1354752,"code":LinearCode(genmat),"spectrum":spectrum,
766
+ "Type":"I","Comment": "Min dist 4."}
767
+ # [20,11]
768
+ S20 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
769
+ [0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
770
+ [0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
771
+ [0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
772
+ [0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
773
+ [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
774
+ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
775
+ [1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,1,1,0,0],
776
+ [1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0],
777
+ [1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,1,0]] )
778
+ genmat = S20 # not in standard form
779
+ # G = PermutationGroup( [ "(17,18)(19,20)", "(17,19)(18,20)", "(13,14)(15,16)",
780
+ # "(13,15)(14,16)", "(11,12)(15,16)", "(11,13)(12,14)", "(9,10)(15,16)",
781
+ # "(9,11)(10,12)", "(5,6)(7,8)", "(5,7)(6,8)", "(3,4)(7,8)", "(3,5)(4,6)",
782
+ # "(1,2)(7,8)", "(1,3)(2,4)", "(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)" ] )
783
+ # G.order() = 294912
784
+ spectrum = [1, 0, 0, 0, 13, 0, 64, 0, 242, 0, 384, 0, 242, 0, 64, 0, 13, 0, 0, 0, 1]
785
+ self_dual_codes_20_11 = {"order autgp":294912,"code":LinearCode(genmat),"spectrum":spectrum,
786
+ "Type":"I","Comment":"Min dist 4."}
787
+ # [20,12]
788
+ R20 = _MS(n)([[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
789
+ [0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
790
+ [0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
791
+ [0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
792
+ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
793
+ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
794
+ [0,1,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0],
795
+ [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0],
796
+ [1,1,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1],
797
+ [1,1,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,1,1]])
798
+ genmat = R20 # not in standard form
799
+ # G = PermutationGroup( [ "(17,18)(19,20)", "(17,19)(18,20)", "(15,16)(19,20)",
800
+ # "(15,17)(16,18)", "(11,12)(13,14)", "(11,13)(12,14)", "(9,10)(13,14)",
801
+ # "(9,11)(10,12)", "(5,6)(7,8)", "(5,7)(6,8)", "(3,4)(7,8)", "(3,5)(4,6)",
802
+ # "(3,9,15)(4,10,16)(5,11,17)(6,12,18)(7,14,19)(8,13,20)",
803
+ # "(1,2)(7,8)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)" ] ) # order 82944
804
+ spectrum = [1, 0, 0, 0, 9, 0, 72, 0, 246, 0, 368, 0, 246, 0, 72, 0, 9, 0, 0, 0, 1]
805
+ self_dual_codes_20_12 = {"order autgp":82944,"code":LinearCode(genmat),"spectrum":spectrum,
806
+ "Type":"I","Comment":"Min dist 4."}
807
+ # [20,13]
808
+ M20 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
809
+ [0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
810
+ [0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
811
+ [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
812
+ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
813
+ [0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0],
814
+ [1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0],
815
+ [0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
816
+ [0,0,1,1,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0],
817
+ [0,0,0,0,0,0,1,1,0,1,1,0,1,0,0,1,0,0,0,0]])
818
+ genmat = M20 # not in standard form
819
+ # G = PermutationGroup( [ "(17,18)(19,20)", "(17,19)(18,20)", "(13,14)(15,16)",
820
+ # "(13,15)(14,16)", "(9,10)(11,12)", "(9,11)(10,12)", "(5,6)(7,8)",
821
+ # "(5,7)(6,8)", "(5,9)(6,11)(7,12)(8,10)(13,17)(14,19)(15,18)(16,20)",
822
+ # "(5,13)(6,15)(7,14)(8,16)(9,17)(10,20)(11,18)(12,19)",
823
+ # "(3,4)(6,7)(11,12)(13,17)(14,18)(15,19)(16,20)",
824
+ # "(2,3)(7,8)(9,13)(10,14)(11,15)(12,16)(19,20)",
825
+ # "(1,2)(6,7)(11,12)(13,17)(14,18)(15,19)(16,20)",
826
+ # "(1,5)(2,6)(3,7)(4,8)(9,17)(10,18)(11,19)(12,20)" ] )
827
+ spectrum = [1, 0, 0, 0, 5, 0, 80, 0, 250, 0, 352, 0, 250, 0, 80, 0, 5, 0, 0, 0, 1]
828
+ self_dual_codes_20_13 = {"order autgp":122880,"code":LinearCode(genmat),"spectrum":spectrum,
829
+ "Type":"I","Comment": "Min dist 4."}
830
+ # [20,14]: # aut gp of this computed using a program by Robert Miller
831
+ A0 = self_dual_binary_codes(n-2)["18"]["8"]["code"].redundancy_matrix()
832
+ genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[9]]))
833
+ # [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
834
+ # [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
835
+ # [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0],
836
+ # [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0],
837
+ # [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0],
838
+ # [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0],
839
+ # [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0],
840
+ # [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0],
841
+ # [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
842
+ # [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]
843
+ # G = PermutationGroup( [ "(8,19)(16,17)", "(8,16)(17,19)", "(9,18)(16,17)", "(8,9)(18,19)",
844
+ # "(7,8)(17,18)", "(4,15)(5,14)", "(4,5)(14,15)", "(4,15)(6,11)", "(5,6)(11,14)",
845
+ # "(3,13)(4,15)", "(3,15)(4,13)", "(1,2)(4,15)", "(1,4)(2,15)(3,5)(13,14)", "(10,20)" ] )
846
+ spectrum = [1, 0, 1, 0, 17, 0, 68, 0, 238, 0, 374, 0, 238, 0, 68, 0, 17, 0, 1, 0, 1]
847
+ self_dual_codes_20_14 = {"order autgp":645120,"code":LinearCode(genmat),"spectrum":spectrum,
848
+ "Type":"I","Comment": "'Exceptional' construction."}
849
+ # [20,15]:
850
+ A0 = self_dual_binary_codes(n-2)["18"]["7"]["code"].redundancy_matrix()
851
+ genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[9]]))
852
+ # [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
853
+ # [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0],
854
+ # [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0],
855
+ # [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0],
856
+ # [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0],
857
+ # [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0],
858
+ # [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0],
859
+ # [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0],
860
+ # [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0],
861
+ # [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]
862
+ # G = PermutationGroup( [ "(10,20)", "(9,11)(17,19)", "(9,17)(11,19)", "(8,9)(15,17)",
863
+ # "(7,12)(13,18)", "(7,13)(12,18)", "(5,6)(12,13)", "(5,7)(6,18)",
864
+ # "(4,14)(5,8)(6,15)(7,9)(11,13)(12,19)(17,18)", "(3,4)(14,16)",
865
+ # "(1,2)(5,8)(6,15)(7,9)(11,13)(12,19)(17,18)", "(1,3)(2,16)",
866
+ # "(1,5)(2,6)(3,7)(4,12)(11,19)(13,14)(16,18)" ] ) # order 165888
867
+ spectrum = [1, 0, 1, 0, 9, 0, 84, 0, 246, 0, 342, 0, 246, 0, 84, 0, 9, 0, 1, 0, 1]
868
+ self_dual_codes_20_15 = {"order autgp":165888,"code":LinearCode(genmat),"spectrum":spectrum,
869
+ "Type":"I","Comment":"'Exceptional' construction. Unique lowest wt codeword."}
870
+ self_dual_codes["20"] = {"0":self_dual_codes_20_0,"1":self_dual_codes_20_1,"2":self_dual_codes_20_2,
871
+ "3":self_dual_codes_20_3,"4":self_dual_codes_20_4,"5":self_dual_codes_20_5,
872
+ "6":self_dual_codes_20_6,"7":self_dual_codes_20_7,"8":self_dual_codes_20_8,
873
+ "9":self_dual_codes_20_9,"10":self_dual_codes_20_10,"11":self_dual_codes_20_11,
874
+ "12":self_dual_codes_20_12,"13":self_dual_codes_20_13,"14":self_dual_codes_20_14,
875
+ "15":self_dual_codes_20_15}
876
+ return self_dual_codes
877
+
878
+ if n == 22:
879
+ # all of these of these are Type I; 2 of these codes
880
+ # are formally equivalent but with different automorphism groups
881
+ # *** Incomplete *** (7 out of 25)
882
+ # [22,0]:
883
+ genmat = _I2(n).augment(_I2(n))
884
+ # G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
885
+ # "(8,9)(19,20)", "(7,8)(18,19)", "(6,7)(17,18)", "(5,6)(16,17)",\
886
+ # "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] ) # S_11x(ZZ/2ZZ)^11??
887
+ spectrum = [1, 0, 11, 0, 55, 0, 165, 0, 330, 0, 462, 0, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1]
888
+ self_dual_codes_22_0 = {"order autgp":81749606400,"code":LinearCode(genmat),"spectrum":spectrum,
889
+ "Type":"I","Comment":"Huge aut gp."}
890
+ # [22,1]:
891
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
892
+ # G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
893
+ # "(8,9)(19,20)", "(7,8)(18,19)", "(6,7)(17,18)", "(5,6)(16,17)",\
894
+ # "(4,12)(13,14)", "(4,13)(12,14)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
895
+ spectrum = [1, 0, 7, 0, 35, 0, 133, 0, 330, 0, 518, 0, 518, 0, 330, 0, 133, 0, 35, 0, 7, 0, 1]
896
+ self_dual_codes_22_1 = {"order autgp":867041280,"code":LinearCode(genmat),"spectrum":spectrum,
897
+ "Type":"I","Comment":""}
898
+ # [22,2]:
899
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
900
+ # G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
901
+ # "(8,9)(19,20)", "(7,8)(18,19)", "(5,6)(16,17)", "(5,16)(6,17)",\
902
+ # "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
903
+ spectrum = [1, 0, 5, 0, 25, 0, 117, 0, 330, 0, 546, 0, 546, 0, 330, 0, 117, 0, 25, 0, 5, 0, 1]
904
+ self_dual_codes_22_2 = {"order autgp":88473600,"code":LinearCode(genmat),"spectrum":spectrum,
905
+ "Type":"I","Comment":""}
906
+ # [22,3]:
907
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[8],_matId(n)[8]]))
908
+ # G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
909
+ # "(7,8)(18,19)", "(7,18)(8,19)", "(6,7)(17,18)", "(5,6)(16,17)",\
910
+ # "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
911
+ spectrum = [1, 0, 3, 0, 31, 0, 85, 0, 282, 0, 622, 0, 622, 0, 282, 0, 85, 0, 31, 0, 3, 0, 1]
912
+ self_dual_codes_22_3 = {"order autgp":247726080,"code":LinearCode(genmat),"spectrum":spectrum,
913
+ "Type":"I","Comment":"Same spectrum as the '[20,5]' code."}
914
+ # [22,4]:
915
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[10],_matId(n)[10]]))
916
+ # G = PermutationGroup( [ "(11,22)", "(9,10)(20,21)", "(9,20)(10,21)",\
917
+ # "(8,9)(19,20)", "(7,8)(18,19)", "(6,7)(17,18)", "(5,6)(16,17)",\
918
+ # "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
919
+ spectrum = [1, 0, 1, 0, 45, 0, 45, 0, 210, 0, 722, 0, 722, 0, 210, 0, 45, 0, 45, 0, 1, 0, 1]
920
+ self_dual_codes_22_4 = {"order autgp":3715891200,"code":LinearCode(genmat),"spectrum":spectrum,
921
+ "Type":"I","Comment":"Unique lowest weight codeword."}
922
+ # [22,5]:
923
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matA(n)[4],_matId(n)[8]]))
924
+ # G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
925
+ # "(8,16)(17,18)", "(8,17)(16,18)", "(7,8)(18,19)", "(6,7)(17,18)",\
926
+ # "(5,6)(16,17)", "(4,12)(13,14)", "(4,13)(12,14)", "(3,4)(14,15)",\
927
+ # "(2,3)(13,14)", "(1,2)(12,13)", "(1,5)(2,6)(3,7)(4,8)(12,16)(13,17)(14,18)(15,19)" ] )
928
+ spectrum = [1, 0, 3, 0, 31, 0, 85, 0, 282, 0, 622, 0, 622, 0, 282, 0, 85, 0, 31, 0, 3, 0, 1]
929
+ self_dual_codes_22_5 = {"order autgp":173408256,"code":LinearCode(genmat),"spectrum":spectrum,
930
+ "Type":"I","Comment":"Same spectrum as the '[20,3]' code."}
931
+ # [22,6]:
932
+ genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matA(n)[4],_matId(n)[10]]))
933
+ # G = PermutationGroup( [ "(11,22)", "(10,18)(19,20)", "(10,19)(18,20)",\
934
+ # "(9,10)(20,21)", "(8,9)(19,20)", "(7,8)(18,19)", "(5,6)(16,17)",\
935
+ # "(5,16)(6,17)", "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
936
+ spectrum = [1, 0, 1, 0, 29, 0, 61, 0, 258, 0, 674, 0, 674, 0, 258, 0, 61, 0, 29, 0, 1, 0, 1]
937
+ self_dual_codes_22_6 = {"order autgp":61931520,"code":LinearCode(genmat),"spectrum":spectrum,
938
+ "Type":"I","Comment":"Unique lowest weight codeword."}
939
+ self_dual_codes["22"] = {"0":self_dual_codes_22_0,"1":self_dual_codes_22_1,"2":self_dual_codes_22_2,
940
+ "3":self_dual_codes_22_3,"4":self_dual_codes_22_4,"5":self_dual_codes_22_5,
941
+ "6":self_dual_codes_22_6}
942
+ return self_dual_codes