passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +807 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_modules.libs/libgfortran-67378ab2.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-23768756.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-7897025b.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-e34bb864.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-503f0c35.3.29.so +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-aarch64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-aarch64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,942 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.groups sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Enumerating binary self-dual codes
|
|
5
|
+
|
|
6
|
+
This module implements functions useful for studying binary self-dual codes.
|
|
7
|
+
The main function is ``self_dual_binary_codes``, which is a case-by-case list
|
|
8
|
+
of entries, each represented by a Python dictionary.
|
|
9
|
+
|
|
10
|
+
Format of each entry: a Python dictionary with keys ``'order autgp'``, ``'spectrum'``,
|
|
11
|
+
``'code'``, ``'Comment'``, ``'Type'``, where
|
|
12
|
+
|
|
13
|
+
- ``'code'`` -- a sd code `C` of length `n`, dim `n/2`, over `\GF{2}`
|
|
14
|
+
|
|
15
|
+
- ``'order autgp'`` -- order of the permutation automorphism group of `C`
|
|
16
|
+
|
|
17
|
+
- ``'Type'`` -- the type of `C` (which can be ``'I'`` or ``'II'``, in the binary case)
|
|
18
|
+
|
|
19
|
+
- ``'spectrum'`` -- the spectrum `[A_0,A_1,...,A_n]`
|
|
20
|
+
|
|
21
|
+
- ``'Comment'`` -- possibly an empty string
|
|
22
|
+
|
|
23
|
+
Python dictionaries were used since they seemed to be both
|
|
24
|
+
human-readable and allow others to update the database easiest.
|
|
25
|
+
|
|
26
|
+
- The following double ``for`` loop can be time-consuming but should
|
|
27
|
+
be run once in a while for testing purposes. It should only print
|
|
28
|
+
``True`` and have no trace-back errors::
|
|
29
|
+
|
|
30
|
+
sage: for n in [4,6,8,10,12,14,16,18,20,22]: # not tested
|
|
31
|
+
....: C = self_dual_binary_codes(n); m = len(C.keys())
|
|
32
|
+
....: for i in range(m):
|
|
33
|
+
....: C0 = C["%s"%n]["%s"%i]["code"]
|
|
34
|
+
....: print([n,i,C["%s"%n]["%s"%i]["spectrum"] == C0.spectrum()])
|
|
35
|
+
....: print(C0 == C0.dual_code())
|
|
36
|
+
....: G = C0.automorphism_group_binary_code()
|
|
37
|
+
....: print(C["%s" % n]["%s" % i]["order autgp"] == G.order())
|
|
38
|
+
|
|
39
|
+
- To check if the "Riemann hypothesis" holds, run the following
|
|
40
|
+
code::
|
|
41
|
+
|
|
42
|
+
sage: R = PolynomialRing(CC,"T") # not tested
|
|
43
|
+
sage: T = R.gen() # not tested
|
|
44
|
+
sage: for n in [4,6,8,10,12,14,16,18,20,22]: # not tested
|
|
45
|
+
....: C = self_dual_binary_codes(n); m = len(C["%s"%n].keys())
|
|
46
|
+
....: for i in range(m):
|
|
47
|
+
....: C0 = C["%s"%n]["%s"%i]["code"]
|
|
48
|
+
....: if C0.minimum_distance()>2:
|
|
49
|
+
....: f = R(C0.sd_zeta_polynomial())
|
|
50
|
+
....: print([n,i,[z[0].abs() for z in f.roots()]])
|
|
51
|
+
|
|
52
|
+
You should get lists of numbers equal to 0.707106781186548.
|
|
53
|
+
|
|
54
|
+
Here's a rather naive construction of self-dual codes in the binary
|
|
55
|
+
case:
|
|
56
|
+
|
|
57
|
+
For even `m`, let `A_m` denote the `m\times m` matrix over `\GF{2}`
|
|
58
|
+
given by adding the all 1s matrix to the identity matrix (in
|
|
59
|
+
``MatrixSpace(GF(2),m,m)`` of course). If `M_1, ..., M_r` are square
|
|
60
|
+
matrices, let `diag(M_1,M_2,...,M_r)` denote the "block diagonal"
|
|
61
|
+
matrix with the matrices `M_i` on the diagonal and 0s elsewhere. Let
|
|
62
|
+
`C(m_1,...,m_r,s)` denote the linear code with generator matrix
|
|
63
|
+
having block form `G = (I, A)`, where
|
|
64
|
+
`A = diag(A_{m_1},A_{m_2},...,A_{m_r},I_s)`, for some
|
|
65
|
+
(even) `m_i`'s and `s`, where
|
|
66
|
+
`m_1+m_2+...+m_r+s=n/2`. Note: Such codes
|
|
67
|
+
`C(m_1,...,m_r,s)` are SD.
|
|
68
|
+
|
|
69
|
+
SD codes not of this form will be called (for the purpose of
|
|
70
|
+
documenting the code below) "exceptional". Except when `n` is
|
|
71
|
+
"small", most sd codes are exceptional (based on a counting
|
|
72
|
+
argument and table 9.1 in the Huffman+Pless [HP2003]_, page 347).
|
|
73
|
+
|
|
74
|
+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
75
|
+
|
|
76
|
+
AUTHORS:
|
|
77
|
+
|
|
78
|
+
- David Joyner (2007-08-11)
|
|
79
|
+
|
|
80
|
+
REFERENCES:
|
|
81
|
+
|
|
82
|
+
- [HP2003] \W. C. Huffman, V. Pless, Fundamentals of
|
|
83
|
+
Error-Correcting Codes, Cambridge Univ. Press, 2003.
|
|
84
|
+
|
|
85
|
+
- [P] \V. Pless, *A classification of self-orthogonal codes over GF(2)*,
|
|
86
|
+
Discrete Math 3 (1972) 209-246.
|
|
87
|
+
"""
|
|
88
|
+
|
|
89
|
+
from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF
|
|
90
|
+
from sage.matrix.matrix_space import MatrixSpace
|
|
91
|
+
from sage.matrix.constructor import matrix
|
|
92
|
+
from sage.matrix.constructor import block_diagonal_matrix
|
|
93
|
+
from sage.rings.integer_ring import ZZ
|
|
94
|
+
from sage.groups.perm_gps.permgroup import PermutationGroup
|
|
95
|
+
from sage.misc.cachefunc import cached_function
|
|
96
|
+
|
|
97
|
+
from sage.coding.linear_code import LinearCode
|
|
98
|
+
|
|
99
|
+
_F = GF(2)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
def _MS(n):
|
|
103
|
+
r"""
|
|
104
|
+
For internal use; returns the floor(n/2) x n matrix space over GF(2).
|
|
105
|
+
|
|
106
|
+
EXAMPLES::
|
|
107
|
+
|
|
108
|
+
sage: import sage.coding.self_dual_codes as self_dual_codes
|
|
109
|
+
sage: self_dual_codes._MS(2)
|
|
110
|
+
Full MatrixSpace of 1 by 2 dense matrices over Finite Field of size 2
|
|
111
|
+
sage: self_dual_codes._MS(3)
|
|
112
|
+
Full MatrixSpace of 1 by 3 dense matrices over Finite Field of size 2
|
|
113
|
+
sage: self_dual_codes._MS(8)
|
|
114
|
+
Full MatrixSpace of 4 by 8 dense matrices over Finite Field of size 2
|
|
115
|
+
"""
|
|
116
|
+
n2 = ZZ(n)/2
|
|
117
|
+
return MatrixSpace(_F, n2, n)
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
def _matA(n):
|
|
121
|
+
r"""
|
|
122
|
+
For internal use; returns a list of square matrices over GF(2) `(a_{ij})`
|
|
123
|
+
of sizes 0 x 0, 1 x 1, ..., n x n which are of the form
|
|
124
|
+
`(a_{ij} = 1) + (a_{ij} = \delta_{ij})`.
|
|
125
|
+
|
|
126
|
+
EXAMPLES::
|
|
127
|
+
|
|
128
|
+
sage: import sage.coding.self_dual_codes as self_dual_codes
|
|
129
|
+
sage: self_dual_codes._matA(4)
|
|
130
|
+
[
|
|
131
|
+
[0 1 1]
|
|
132
|
+
[0 1] [1 0 1]
|
|
133
|
+
[], [0], [1 0], [1 1 0]
|
|
134
|
+
]
|
|
135
|
+
"""
|
|
136
|
+
A = []
|
|
137
|
+
n2 = n.quo_rem(2)[0]
|
|
138
|
+
for j in range(n2+2):
|
|
139
|
+
MS0 = MatrixSpace(_F, j, j)
|
|
140
|
+
I = MS0.identity_matrix()
|
|
141
|
+
O = MS0(j*j*[1])
|
|
142
|
+
A.append(I+O)
|
|
143
|
+
return A
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def _matId(n):
|
|
147
|
+
r"""
|
|
148
|
+
For internal use; returns a list of identity matrices over GF(2)
|
|
149
|
+
of sizes (floor(n/2)-j) x (floor(n/2)-j) for j = 0 ... (floor(n/2)-1).
|
|
150
|
+
|
|
151
|
+
EXAMPLES::
|
|
152
|
+
|
|
153
|
+
sage: import sage.coding.self_dual_codes as self_dual_codes
|
|
154
|
+
sage: self_dual_codes._matId(6)
|
|
155
|
+
[
|
|
156
|
+
[1 0 0]
|
|
157
|
+
[0 1 0] [1 0]
|
|
158
|
+
[0 0 1], [0 1], [1]
|
|
159
|
+
]
|
|
160
|
+
"""
|
|
161
|
+
Id = []
|
|
162
|
+
n2 = n.quo_rem(2)[0]
|
|
163
|
+
for j in range(n2):
|
|
164
|
+
MSn = MatrixSpace(_F, n2-j, n2-j)
|
|
165
|
+
Id.append(MSn.identity_matrix())
|
|
166
|
+
return Id
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def _MS2(n):
|
|
170
|
+
r"""
|
|
171
|
+
For internal use; returns the floor(n/2) x floor(n/2) matrix space over GF(2).
|
|
172
|
+
|
|
173
|
+
EXAMPLES::
|
|
174
|
+
|
|
175
|
+
sage: import sage.coding.self_dual_codes as self_dual_codes
|
|
176
|
+
sage: self_dual_codes._MS2(8)
|
|
177
|
+
Full MatrixSpace of 4 by 4 dense matrices over Finite Field of size 2
|
|
178
|
+
"""
|
|
179
|
+
n2 = n.quo_rem(2)[0]
|
|
180
|
+
return MatrixSpace(_F, n2, n2)
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
def _I2(n):
|
|
184
|
+
r"""
|
|
185
|
+
Internal function.
|
|
186
|
+
|
|
187
|
+
EXAMPLES::
|
|
188
|
+
|
|
189
|
+
sage: from sage.coding.self_dual_codes import _I2
|
|
190
|
+
sage: _I2(3)
|
|
191
|
+
[1]
|
|
192
|
+
sage: _I2(5)
|
|
193
|
+
[1 0]
|
|
194
|
+
[0 1]
|
|
195
|
+
sage: _I2(7)
|
|
196
|
+
[1 0 0]
|
|
197
|
+
[0 1 0]
|
|
198
|
+
[0 0 1]
|
|
199
|
+
"""
|
|
200
|
+
return _MS2(n).identity_matrix()
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
@cached_function
|
|
204
|
+
def _And7():
|
|
205
|
+
"""
|
|
206
|
+
Auxiliary matrix And7.
|
|
207
|
+
|
|
208
|
+
EXAMPLES::
|
|
209
|
+
|
|
210
|
+
sage: from sage.coding.self_dual_codes import _And7
|
|
211
|
+
sage: _And7()
|
|
212
|
+
[1 1 1 0 0 1 1]
|
|
213
|
+
[1 1 1 0 1 0 1]
|
|
214
|
+
[1 1 1 0 1 1 0]
|
|
215
|
+
[0 0 0 0 1 1 1]
|
|
216
|
+
[0 1 1 1 0 0 0]
|
|
217
|
+
[1 0 1 1 0 0 0]
|
|
218
|
+
[1 1 0 1 0 0 0]
|
|
219
|
+
"""
|
|
220
|
+
return matrix(_F, [[1, 1, 1, 0, 0, 1, 1],
|
|
221
|
+
[1, 1, 1, 0, 1, 0, 1],
|
|
222
|
+
[1, 1, 1, 0, 1, 1, 0],
|
|
223
|
+
[0, 0, 0, 0, 1, 1, 1],
|
|
224
|
+
[0, 1, 1, 1, 0, 0, 0],
|
|
225
|
+
[1, 0, 1, 1, 0, 0, 0],
|
|
226
|
+
[1, 1, 0, 1, 0, 0, 0]])
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
@cached_function
|
|
230
|
+
def _H8():
|
|
231
|
+
"""
|
|
232
|
+
Auxiliary matrix H8.
|
|
233
|
+
|
|
234
|
+
EXAMPLES::
|
|
235
|
+
|
|
236
|
+
sage: from sage.coding.self_dual_codes import _H8
|
|
237
|
+
sage: _H8()
|
|
238
|
+
[ 1 1 1 1 1 1 1 1]
|
|
239
|
+
[ 1 -1 1 -1 1 -1 1 -1]
|
|
240
|
+
[ 1 1 -1 -1 1 1 -1 -1]
|
|
241
|
+
[ 1 -1 -1 1 1 -1 -1 1]
|
|
242
|
+
[ 1 1 1 1 -1 -1 -1 -1]
|
|
243
|
+
[ 1 -1 1 -1 -1 1 -1 1]
|
|
244
|
+
[ 1 1 -1 -1 -1 -1 1 1]
|
|
245
|
+
[ 1 -1 -1 1 -1 1 1 -1]
|
|
246
|
+
"""
|
|
247
|
+
return matrix(ZZ, [[1, 1, 1, 1, 1, 1, 1, 1],
|
|
248
|
+
[1, -1, 1, -1, 1, -1, 1, -1],
|
|
249
|
+
[1, 1, -1, -1, 1, 1, -1, -1],
|
|
250
|
+
[1, -1, -1, 1, 1, -1, -1, 1],
|
|
251
|
+
[1, 1, 1, 1, -1, -1, -1, -1],
|
|
252
|
+
[1, -1, 1, -1, -1, 1, -1, 1],
|
|
253
|
+
[1, 1, -1, -1, -1, -1, 1, 1],
|
|
254
|
+
[1, -1, -1, 1, -1, 1, 1, -1]]) # from Guava's Hadamard matrices database
|
|
255
|
+
|
|
256
|
+
# Remark: The above matrix constructions aid in computing some "small" self-dual codes.
|
|
257
|
+
|
|
258
|
+
############## main functions ##############
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
def self_dual_binary_codes(n):
|
|
262
|
+
r"""
|
|
263
|
+
Return the dictionary of inequivalent binary self dual codes of length `n`.
|
|
264
|
+
|
|
265
|
+
For `n=4` even, returns the sd codes of a given length, up to (perm)
|
|
266
|
+
equivalence, the (perm) aut gp, and the type.
|
|
267
|
+
|
|
268
|
+
The number of inequivalent "diagonal" sd binary codes in the database of
|
|
269
|
+
length n is ("diagonal" is defined by the conjecture above) is the
|
|
270
|
+
same as the restricted partition number of `n`, where only integers
|
|
271
|
+
from the set 1, 4, 6, 8, ... are allowed. This is the coefficient of
|
|
272
|
+
`x^n` in the series expansion
|
|
273
|
+
`(1-x)^{-1}\prod_{2^\infty (1-x^{2j})^{-1}}`. Typing the
|
|
274
|
+
command ``f = (1-x)(-1)\*prod([(1-x(2\*j))(-1) for j in range(2,18)])``
|
|
275
|
+
into Sage, we obtain for the coeffs of `x^4`,
|
|
276
|
+
`x^6`, ... [1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 15, 15,
|
|
277
|
+
22, 22, 30, 30, 42, 42, 56, 56, 77, 77, 101, 101, 135, 135, 176,
|
|
278
|
+
176, 231] These numbers grow too slowly to account for all the sd
|
|
279
|
+
codes (see Huffman+Pless' Table 9.1, referenced above). In fact, in
|
|
280
|
+
Table 9.10 of [HP2003]_, the number `B_n` of inequivalent sd binary codes
|
|
281
|
+
of length `n` is given::
|
|
282
|
+
|
|
283
|
+
n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
|
|
284
|
+
B_n 1 1 1 2 2 3 4 7 9 16 25 55 103 261 731
|
|
285
|
+
|
|
286
|
+
According to http://oeis.org/classic/A003179,
|
|
287
|
+
the next 2 entries are: 3295, 24147.
|
|
288
|
+
|
|
289
|
+
EXAMPLES::
|
|
290
|
+
|
|
291
|
+
sage: C = codes.databases.self_dual_binary_codes(10)
|
|
292
|
+
sage: C["10"]["0"]["code"] == C["10"]["0"]["code"].dual_code()
|
|
293
|
+
True
|
|
294
|
+
sage: C["10"]["1"]["code"] == C["10"]["1"]["code"].dual_code()
|
|
295
|
+
True
|
|
296
|
+
sage: len(C["10"].keys()) # number of inequiv sd codes of length 10
|
|
297
|
+
2
|
|
298
|
+
sage: C = codes.databases.self_dual_binary_codes(12)
|
|
299
|
+
sage: C["12"]["0"]["code"] == C["12"]["0"]["code"].dual_code()
|
|
300
|
+
True
|
|
301
|
+
sage: C["12"]["1"]["code"] == C["12"]["1"]["code"].dual_code()
|
|
302
|
+
True
|
|
303
|
+
sage: C["12"]["2"]["code"] == C["12"]["2"]["code"].dual_code()
|
|
304
|
+
True
|
|
305
|
+
"""
|
|
306
|
+
self_dual_codes = {}
|
|
307
|
+
|
|
308
|
+
if n == 4:
|
|
309
|
+
# this code is Type I
|
|
310
|
+
# [4,0]:
|
|
311
|
+
genmat = _I2(n).augment(_I2(n))
|
|
312
|
+
# G = PermutationGroup([ "(2,4)", "(1,2)(3,4)" ])
|
|
313
|
+
spectrum = [1, 0, 2, 0, 1]
|
|
314
|
+
self_dual_codes_4_0 = {"order autgp":8,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
315
|
+
"Type":"I","Comment":"Unique."}
|
|
316
|
+
self_dual_codes["4"] = {"0":self_dual_codes_4_0}
|
|
317
|
+
return self_dual_codes
|
|
318
|
+
|
|
319
|
+
if n == 6:
|
|
320
|
+
# this is Type I
|
|
321
|
+
# [6,0]:
|
|
322
|
+
genmat = _I2(n).augment(_I2(n))
|
|
323
|
+
# G = PermutationGroup( ["(3,6)", "(2,3)(5,6)", "(1,2)(4,5)"] )
|
|
324
|
+
spectrum = [1, 0, 3, 0, 3, 0, 1]
|
|
325
|
+
self_dual_codes_6_0 = {"order autgp":48,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
326
|
+
"Type":"I","Comment":"Unique"}
|
|
327
|
+
self_dual_codes["6"] = {"0":self_dual_codes_6_0}
|
|
328
|
+
return self_dual_codes
|
|
329
|
+
|
|
330
|
+
if n == 8:
|
|
331
|
+
# the first code is Type I, the second is Type II
|
|
332
|
+
# the second code is equiv to the extended Hamming [8,4,4] code.
|
|
333
|
+
# [8,0]:
|
|
334
|
+
genmat = _I2(n).augment(_I2(n))
|
|
335
|
+
# G = PermutationGroup( ["(4,8)", "(3,4)(7,8)", "(2,3)(6,7)", "(1,2)(5,6)"] )
|
|
336
|
+
spectrum = [1, 0, 4, 0, 6, 0, 4, 0, 1]
|
|
337
|
+
self_dual_codes_8_0 = {"order autgp":384,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
338
|
+
"Type":"I","Comment":"Unique Type I of this length."}
|
|
339
|
+
# [8,1]:
|
|
340
|
+
genmat = _I2(n).augment(_matA(n)[4])
|
|
341
|
+
# G = PermutationGroup( ["(4,5)(6,7)", "(4,6)(5,7)", "(3,4)(7,8)",\
|
|
342
|
+
# "(2,3)(6,7)", "(1,2)(5,6)"] )
|
|
343
|
+
spectrum = [1, 0, 0, 0, 14, 0, 0, 0, 1]
|
|
344
|
+
self_dual_codes_8_1 = {"order autgp":1344,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
345
|
+
"Type":"II","Comment":"Unique Type II of this length."}
|
|
346
|
+
self_dual_codes["8"] = {"0":self_dual_codes_8_0,"1":self_dual_codes_8_1}
|
|
347
|
+
return self_dual_codes
|
|
348
|
+
|
|
349
|
+
if n == 10:
|
|
350
|
+
# Both of these are Type I; one has a unique lowest weight codeword
|
|
351
|
+
# [10,0]:
|
|
352
|
+
genmat = _I2(n).augment(_I2(n))
|
|
353
|
+
# G = PermutationGroup( ["(5,10)", "(4,5)(9,10)", "(3,4)(8,9)",\
|
|
354
|
+
# "(2,3)(7,8)", "(1,2)(6,7)"] )
|
|
355
|
+
spectrum = [1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1]
|
|
356
|
+
self_dual_codes_10_0 = {"order autgp":3840,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
357
|
+
"Type":"I","Comment":"No Type II of this length."}
|
|
358
|
+
# [10,1]:
|
|
359
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
|
|
360
|
+
# G = PermutationGroup( ["(5,10)", "(4,6)(7,8)", "(4,7)(6,8)", "(3,4)(8,9)",\
|
|
361
|
+
# "(2,3)(7,8)", "(1,2)(6,7)"] )
|
|
362
|
+
spectrum = [1, 0, 1, 0, 14, 0, 14, 0, 1, 0, 1]
|
|
363
|
+
self_dual_codes_10_1 = {"order autgp":2688,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
364
|
+
"Type":"I","Comment":"Unique lowest weight nonzero codeword."}
|
|
365
|
+
self_dual_codes["10"] = {"0":self_dual_codes_10_0,"1":self_dual_codes_10_1}
|
|
366
|
+
return self_dual_codes
|
|
367
|
+
|
|
368
|
+
if n == 12:
|
|
369
|
+
# all of these are Type I
|
|
370
|
+
# [12,0]:
|
|
371
|
+
genmat = _I2(n).augment(_I2(n))
|
|
372
|
+
# G = PermutationGroup( ["(6,12)", "(5,6)(11,12)", "(4,5)(10,11)", "(3,4)(9,10)",\
|
|
373
|
+
# "(2,3)(8,9)", "(1,2)(7,8)"] )
|
|
374
|
+
spectrum = [1, 0, 6, 0, 15, 0, 20, 0, 15, 0, 6, 0, 1]
|
|
375
|
+
self_dual_codes_12_0 = {"order autgp":48080,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
376
|
+
"Type":"I","Comment":"No Type II of this length."}
|
|
377
|
+
# [12,1]:
|
|
378
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
|
|
379
|
+
# G = PermutationGroup( ["(2,3)(4,7)", "(2,4)(3,7)", "(2,4,9)(3,7,8)", "(2,4,8,10)(3,9)",\
|
|
380
|
+
# "(1,2,4,7,8,10)(3,9)", "(2,4,8,10)(3,9)(6,12)", "(2,4,8,10)(3,9)(5,6,11,12)"] )
|
|
381
|
+
spectrum = [1, 0, 2, 0, 15, 0, 28, 0, 15, 0, 2, 0, 1]
|
|
382
|
+
self_dual_codes_12_1 = {"order autgp":10752,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
383
|
+
"Type":"I","Comment":"Smallest automorphism group of these."}
|
|
384
|
+
# [12,2]:
|
|
385
|
+
genmat = _I2(n).augment(_matA(n)[6])
|
|
386
|
+
# G = PermutationGroup( ["(5,6)(11,12)", "(5,11)(6,12)", "(4,5)(10,11)", "(3,4)(9,10)",\
|
|
387
|
+
# "(2,3)(8,9)", "(1,2)(7,8)"] )
|
|
388
|
+
spectrum = [1, 0, 0, 0, 15, 0, 32, 0, 15, 0, 0, 0, 1]
|
|
389
|
+
self_dual_codes_12_2 = {"order autgp":23040,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
390
|
+
"Type":"I","Comment":"Largest minimum distance of these."}
|
|
391
|
+
self_dual_codes["12"] = {"0":self_dual_codes_12_0,"1":self_dual_codes_12_1,"2":self_dual_codes_12_2}
|
|
392
|
+
return self_dual_codes
|
|
393
|
+
|
|
394
|
+
if n == 14:
|
|
395
|
+
# all of these are Type I; one has a unique lowest weight codeword
|
|
396
|
+
# (there are 4 total inequiv sd codes of n = 14, by Table 9.10 [HP2003])
|
|
397
|
+
# [14,0]:
|
|
398
|
+
genmat = _I2(n).augment(_I2(n))
|
|
399
|
+
# G = PermutationGroup( ["(7,14)", "(6,7)(13,14)", "(5,6)(12,13)", "(4,5)(11,12)",\
|
|
400
|
+
# "(3,4)(10,11)", "(2,3)(9,10)", "(1,2)(8,9)"] )
|
|
401
|
+
spectrum = [1, 0, 7, 0, 21, 0, 35, 0, 35, 0, 21, 0, 7, 0, 1]
|
|
402
|
+
self_dual_codes_14_0 = {"order autgp":645120,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
403
|
+
"Type":"I","Comment":"No Type II of this length. Huge aut gp."}
|
|
404
|
+
# [14,1]:
|
|
405
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
|
|
406
|
+
# G = PermutationGroup( ["(7,14)", "(6,7)(13,14)", "(5,6)(12,13)", "(4,8)(9,10)",\
|
|
407
|
+
# "(4,9)(8,10)", "(3,4)(10,11)", "(2,3)(9,10)", "(1,2)(8,9)"] )
|
|
408
|
+
spectrum = [1, 0, 3, 0, 17, 0, 43, 0, 43, 0, 17, 0, 3, 0, 1]
|
|
409
|
+
self_dual_codes_14_1 = {"order autgp":64512,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
410
|
+
"Type":"I","Comment":"Automorphism group has order 64512."}
|
|
411
|
+
# [14,2]:
|
|
412
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
|
|
413
|
+
# G = PermutationGroup( ["(7,14)", "(5,6)(12,13)", "(5,12)(6,13)", "(4,5)(11,12)",\
|
|
414
|
+
# "(3,4)(10,11)", "(2,3)(9,10)", "(1,2)(8,9)"] )
|
|
415
|
+
spectrum = [1, 0, 1, 0, 15, 0, 47, 0, 47, 0, 15, 0, 1, 0, 1]
|
|
416
|
+
self_dual_codes_14_2 = {"order autgp":46080,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
417
|
+
"Type":"I","Comment":"Unique codeword of weight 2."}
|
|
418
|
+
# [14,3]:
|
|
419
|
+
genmat = _I2(n).augment(_And7())
|
|
420
|
+
# G = PermutationGroup( ["(7,11)(12,13)", "(7,12)(11,13)", "(6,9)(10,14)",\
|
|
421
|
+
# "(6,10)(9,14)", "(5,6)(8,9)", "(4,5)(9,10), (2,3)(11,12)", "(2,7)(3,13)",\
|
|
422
|
+
# "(1,2)(12,13)", "(1,4)(2,5)(3,8)(6,7)(9,13)(10,12)(11,14)"])
|
|
423
|
+
spectrum = [1, 0, 0, 0, 14, 0, 49, 0, 49, 0, 14, 0, 0, 0, 1]
|
|
424
|
+
self_dual_codes_14_3 = {"order autgp":56448,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
425
|
+
"Type":"I","Comment":"Largest minimum distance of these."}
|
|
426
|
+
self_dual_codes["14"] = {"0":self_dual_codes_14_0,"1":self_dual_codes_14_1,"2":self_dual_codes_14_2,
|
|
427
|
+
"3":self_dual_codes_14_3}
|
|
428
|
+
return self_dual_codes
|
|
429
|
+
|
|
430
|
+
if n == 16:
|
|
431
|
+
# 4 of these are Type I, 2 are Type II. The 2 Type II codes
|
|
432
|
+
# are formally equivalent but with different automorphism groups
|
|
433
|
+
# [16,0]:
|
|
434
|
+
genmat = _I2(n).augment(_I2(n))
|
|
435
|
+
# G = PermutationGroup( [ "(8,16)", "(7,8)(15,16)", "(6,7)(14,15)", "(5,6)(13,14)",
|
|
436
|
+
# "(4,5)(12,13)", "(3,4)(11,12)", "(2,3)(10,11)", "(1,2)(9,10)"] )
|
|
437
|
+
spectrum = [1, 0, 8, 0, 28, 0, 56, 0, 70, 0, 56, 0, 28, 0, 8, 0, 1]
|
|
438
|
+
self_dual_codes_16_0 = {"order autgp":10321920,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
439
|
+
"Type":"I","Comment":"Huge aut gp."}
|
|
440
|
+
# [16,1]:
|
|
441
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
|
|
442
|
+
# G = PermutationGroup( [ "(8,16)", "(7,8)(15,16)", "(6,7)(14,15)", "(5,6)(13,14)",\
|
|
443
|
+
# "(4,9)(10,11)", "(4,10)(9,11)", "(3,4)(11,12)", "(2,3)(10,11)", "(1,2)(9,10)"] )
|
|
444
|
+
spectrum = [1, 0, 4, 0, 20, 0, 60, 0, 86, 0, 60, 0, 20, 0, 4, 0, 1]
|
|
445
|
+
self_dual_codes_16_1 = {"order autgp":516096,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
446
|
+
"Type":"I","Comment":""}
|
|
447
|
+
# [16,2]:
|
|
448
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matA(n)[4]]))
|
|
449
|
+
# G = PermutationGroup( [ "(8,13)(14,15)", "(8,14)(13,15)", "(7,8)(15,16)", "(6,7)(14,15)",\
|
|
450
|
+
# "(5,6)(13,14)", "(4,9)(10,11)", "(4,10)(9,11)", "(3,4)(11,12)", "(2,3)(10,11)",\
|
|
451
|
+
# "(1,2)(9,10)","(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)"] )
|
|
452
|
+
spectrum = [1, 0, 0, 0, 28, 0, 0, 0, 198, 0, 0, 0, 28, 0, 0, 0, 1]
|
|
453
|
+
self_dual_codes_16_2 = {"order autgp":3612672,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
454
|
+
"Type":"II","Comment":"Same spectrum as the other Type II code."}
|
|
455
|
+
# [16,3]:
|
|
456
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
|
|
457
|
+
# G = PermutationGroup( [ "(8,16)", "(7,8)(15,16)", "(5,6)(13,14)", "(5,13)(6,14)",\
|
|
458
|
+
# "(4,5)(12,13)", "(3,4)(11,12)", "(2,3)(10,11)", "(1,2)(9,10)"] )
|
|
459
|
+
spectrum = [1, 0, 2, 0, 16, 0, 62, 0, 94, 0, 62, 0, 16, 0, 2, 0, 1]
|
|
460
|
+
self_dual_codes_16_3 = {"order autgp":184320,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
461
|
+
"Type":"I","Comment":""}
|
|
462
|
+
# [16,4]:
|
|
463
|
+
genmat = _I2(n).augment(_matA(n)[8])
|
|
464
|
+
# an equivalent form: See also [20,8] using A[10]
|
|
465
|
+
# [(1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1),
|
|
466
|
+
# (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1),
|
|
467
|
+
# (0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0),
|
|
468
|
+
# (0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0),
|
|
469
|
+
# (0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0),
|
|
470
|
+
# (0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0),
|
|
471
|
+
# (0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0),
|
|
472
|
+
# (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1)]
|
|
473
|
+
# G = PermutationGroup( [ "(7,8)(15,16)", "(7,15)(8,16)", "(6,7)(14,15)",\
|
|
474
|
+
# "(5,6)(13,14)","(4,5)(12,13)","(3,4)(11,12)", "(2,3)(10,11)", "(1,2)(9,10)"] )
|
|
475
|
+
spectrum = [1, 0, 0, 0, 28, 0, 0, 0, 198, 0, 0, 0, 28, 0, 0, 0, 1]
|
|
476
|
+
self_dual_codes_16_4 = {"order autgp":5160960,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
477
|
+
"Type":"II","Comment":"Same spectrum as the other Type II code. Large aut gp."}
|
|
478
|
+
# [16,5]:
|
|
479
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_And7(),_matId(n)[7]]))
|
|
480
|
+
# G = PermutationGroup( [ "(8,16)", "(7,12)(13,14)", "(7,13)(12,14)",\
|
|
481
|
+
# "(6,10)(11,15)", "(6,11)(10,15)", "(5,6)(9,10)", "(4,5)(10,11)",\
|
|
482
|
+
# "(2,3)(12,13)", "(2,7)(3,14)", "(1,2)(13,14)",\
|
|
483
|
+
# "(1,4)(2,5)(3,9)(6,7)(10,14)(11,13)(12,15)" ] )
|
|
484
|
+
spectrum = [1, 0, 1, 0, 14, 0, 63, 0, 98, 0, 63, 0, 14, 0, 1, 0, 1]
|
|
485
|
+
self_dual_codes_16_5 = {"order autgp":112896,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
486
|
+
"Type":"I","Comment":"'Exceptional' construction."}
|
|
487
|
+
# [16,6]:
|
|
488
|
+
J8 = MatrixSpace(ZZ,8,8)(64*[1])
|
|
489
|
+
genmat = _I2(n).augment(_I2(n)+_MS2(n)((_H8()+J8)/2))
|
|
490
|
+
# G = PermutationGroup( [ "(7,9)(10,16)", "(7,10)(9,16)", "(6,7)(10,11)",\
|
|
491
|
+
# "(4,6)(11,13)", "(3,5)(12,14)", "(3,12)(5,14)", "(2,3)(14,15)",\
|
|
492
|
+
# "(1,2)(8,15)", "(1,4)(2,6)(3,7)(5,16)(8,13)(9,12)(10,14)(11,15)" ] )
|
|
493
|
+
spectrum = [1, 0, 0, 0, 12, 0, 64, 0, 102, 0, 64, 0, 12, 0, 0, 0, 1]
|
|
494
|
+
self_dual_codes_16_6 = {"order autgp":73728,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
495
|
+
"Type":"I","Comment":"'Exceptional' construction. Min dist 4."}
|
|
496
|
+
self_dual_codes["16"] = {"0":self_dual_codes_16_0,"1":self_dual_codes_16_1,"2":self_dual_codes_16_2,
|
|
497
|
+
"3":self_dual_codes_16_3,"4":self_dual_codes_16_4,"5":self_dual_codes_16_5,"6":self_dual_codes_16_6}
|
|
498
|
+
return self_dual_codes
|
|
499
|
+
|
|
500
|
+
if n == 18:
|
|
501
|
+
# all of these are Type I, all are "extensions" of the n=16 codes
|
|
502
|
+
# [18,3] and [18,4] each has a unique lowest weight codeword. Also, they
|
|
503
|
+
# are formally equivalent but with different automorphism groups
|
|
504
|
+
# [18,0]:
|
|
505
|
+
genmat = _I2(n).augment(_I2(n))
|
|
506
|
+
# G = PermutationGroup( [ "(9,18)", "(8,9)(17,18)", "(7,8)(16,17)", "(6,7)(15,16)",\
|
|
507
|
+
# "(5,6)(14,15)", "(4,5)(13,14)", "(3,4)(12,13)", "(2,3)(11,12)", "(1,2)(10,11)" ] )
|
|
508
|
+
spectrum = [1, 0, 9, 0, 36, 0, 84, 0, 126, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1]
|
|
509
|
+
self_dual_codes_18_0 = {"order autgp":185794560,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
510
|
+
"Type":"I","Comment": "Huge aut gp. S_9x(ZZ/2ZZ)^9?"}
|
|
511
|
+
# [18,1]:
|
|
512
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
|
|
513
|
+
# G = PermutationGroup( [ "(9,18)", "(8,9)(17,18)", "(7,8)(16,17)", "(6,7)(15,16)",\
|
|
514
|
+
# "(5,6)(14,15)", "(4,10)(11,12)", "(4,11)(10,12)", "(3,4)(12,13)",\
|
|
515
|
+
# "(2,3)(11,12)", "(1,2)(10,11)" ] )
|
|
516
|
+
spectrum = [1, 0, 5, 0, 24, 0, 80, 0, 146, 0, 146, 0, 80, 0, 24, 0, 5, 0, 1]
|
|
517
|
+
self_dual_codes_18_1 = {"order autgp":5160960,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
518
|
+
"Type":"I","Comment": "Large aut gp."}
|
|
519
|
+
# [18,2]:
|
|
520
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
|
|
521
|
+
# G = PermutationGroup( [ "(9,18)", "(8,9)(17,18)", "(7,8)(16,17)", "(5,6)(14,15)",\
|
|
522
|
+
# "(5,14)(6,15)","(4,5)(13,14)", "(3,4)(12,13)", "(2,3)(11,12)", "(1,2)(10,11)"] )
|
|
523
|
+
spectrum = [1, 0, 3, 0, 18, 0, 78, 0, 156, 0, 156, 0, 78, 0, 18, 0, 3, 0, 1]
|
|
524
|
+
self_dual_codes_18_2 = {"order autgp":1105920,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
525
|
+
"Type":"I","Comment": ""}
|
|
526
|
+
# [18,3]:
|
|
527
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matA(n)[4],_matId(n)[8]]))
|
|
528
|
+
# G = PermutationGroup( [ "(9,18)", "(8,14)(15,16)", "(8,15)(14,16)", "(7,8)(16,17)",\
|
|
529
|
+
# "(6,7)(15,16)","(5,6)(14,15)", "(4,10)(11,12)", "(4,11)(10,12)",\
|
|
530
|
+
# "(3,4)(12,13)", "(2,3)(11,12)","(1,2)(10,11)",\
|
|
531
|
+
# "(1,5)(2,6)(3,7)(4,8)(10,14)(11,15)(12,16)(13,17)" ] )
|
|
532
|
+
spectrum = [1, 0, 1, 0, 28, 0, 28, 0, 198, 0, 198, 0, 28, 0, 28, 0, 1, 0, 1]
|
|
533
|
+
self_dual_codes_18_3 = {"order autgp":7225344,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
534
|
+
"Type":"I","Comment": "Large aut gp. Unique codeword of smallest nonzero wt.\
|
|
535
|
+
Same spectrum as '[18,4]' sd code."}
|
|
536
|
+
# [18,4]:
|
|
537
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[8],_matId(n)[8]]))
|
|
538
|
+
# G = PermutationGroup( [ "(9,18)", "(7,8)(16,17)", "(7,16)(8,17)", "(6,7)(15,16)", \
|
|
539
|
+
# "(5,6)(14,15)", "(4,5)(13,14)", "(3,4)(12,13)", "(2,3)(11,12)", "(1,2)(10,11)" ] )
|
|
540
|
+
spectrum = [1, 0, 1, 0, 28, 0, 28, 0, 198, 0, 198, 0, 28, 0, 28, 0, 1, 0, 1]
|
|
541
|
+
self_dual_codes_18_4 = {"order autgp":10321920,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
542
|
+
"Type":"I","Comment": "Huge aut gp. Unique codeword of smallest nonzero wt.\
|
|
543
|
+
Same spectrum as '[18,3]' sd code."}
|
|
544
|
+
# [18,5]:
|
|
545
|
+
C = self_dual_binary_codes(n-2)["%s" % (n-2)]["5"]["code"]
|
|
546
|
+
A0 = C.redundancy_matrix()
|
|
547
|
+
genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[8]]))
|
|
548
|
+
# G = PermutationGroup( [ "(5,10)(6,11)", "(5,11)(6,10)", "(5,11,12)(6,7,10)",\
|
|
549
|
+
# "(5,11,10,7,12,6,13)", "(2,15)(3,16)(5,11,10,7,12,6,13)",\
|
|
550
|
+
# "(2,16)(3,15)(5,11,10,7,12,6,13)", "(2,16,14)(3,15,4)(5,11,10,7,12,6,13)",\
|
|
551
|
+
# "(1,2,16,15,4,3,14)(5,11,10,7,12,6,13)", "(1,5,14,6,16,11,15,7,3,10,4,12,2,13)",\
|
|
552
|
+
# "(2,16,14)(3,15,4)(5,11,10,7,12,6,13)(9,18)",\
|
|
553
|
+
# "(2,16,14)(3,15,4)(5,11,10,7,12,6,13)(8,9,17,18)" ] )
|
|
554
|
+
spectrum = [1, 0, 2, 0, 15, 0, 77, 0, 161, 0, 161, 0, 77, 0, 15, 0, 2, 0, 1]
|
|
555
|
+
self_dual_codes_18_5 = {"order autgp":451584,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
556
|
+
"Type":"I","Comment": "'Exceptional' construction."}
|
|
557
|
+
# [18,6]:
|
|
558
|
+
C = self_dual_binary_codes(n-2)["%s" % (n-2)]["6"]["code"]
|
|
559
|
+
A0 = C.redundancy_matrix()
|
|
560
|
+
genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[8]]))
|
|
561
|
+
G = PermutationGroup( [ "(9,18)", "(7,10)(11,17)", "(7,11)(10,17)", "(6,7)(11,12)",
|
|
562
|
+
"(4,6)(12,14)", "(3,5)(13,15)", "(3,13)(5,15)", "(2,3)(15,16)", "(1,2)(8,16)",
|
|
563
|
+
"(1,4)(2,6)(3,7)(5,17)(8,14)(10,13)(11,15)(12,16)" ] )
|
|
564
|
+
spectrum = [1, 0, 1, 0, 12, 0, 76, 0, 166, 0, 166, 0, 76, 0, 12, 0, 1, 0, 1]
|
|
565
|
+
self_dual_codes_18_6 = {"order autgp":147456,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
566
|
+
"Type":"I","Comment": "'Exceptional'. Unique codeword of smallest nonzero wt."}
|
|
567
|
+
# [18,7] (equiv to H18 in [P])
|
|
568
|
+
genmat = _MS(n)([[1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0],
|
|
569
|
+
[0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,1],
|
|
570
|
+
[0,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1],
|
|
571
|
+
[0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1],
|
|
572
|
+
[0,0,0,0,1,0,0,0,0,1,1,0,0,1,0,1,1,0],
|
|
573
|
+
[0,0,0,0,0,1,0,0,0,1,0,1,0,1,0,1,1,0],
|
|
574
|
+
[0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,0],
|
|
575
|
+
[0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,1],
|
|
576
|
+
[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1]])
|
|
577
|
+
# G = PermutationGroup( [ "(9,10)(16,18)", "(9,16)(10,18)", "(8,9)(14,16)",\
|
|
578
|
+
# "(7,11)(12,17)", "(7,12)(11,17)", "(5,6)(11,12)", "(5,7)(6,17)",\
|
|
579
|
+
# "(4,13)(5,8)(6,14)(7,9)(10,12)(11,18)(16,17)", "(3,4)(13,15)",\
|
|
580
|
+
# "(1,2)(5,8)(6,14)(7,9)(10,12)(11,18)(16,17)", "(1,3)(2,15)",\
|
|
581
|
+
# "(1,5)(2,6)(3,7)(4,11)(10,18)(12,13)(15,17)" ] )
|
|
582
|
+
spectrum = [1, 0, 0, 0, 9, 0, 75, 0, 171, 0, 171, 0, 75, 0, 9, 0, 0, 0, 1]
|
|
583
|
+
self_dual_codes_18_7 = {"order autgp":82944,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
584
|
+
"Type":"I","Comment": "'Exceptional' construction. Min dist 4."}
|
|
585
|
+
# [18, 8] (equiv to I18 in [P])
|
|
586
|
+
I18 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
587
|
+
[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
588
|
+
[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
|
|
589
|
+
[0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
|
|
590
|
+
[1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0],
|
|
591
|
+
[0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0],
|
|
592
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],
|
|
593
|
+
[0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1],
|
|
594
|
+
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]])
|
|
595
|
+
genmat = _MS(n)([[1,0,0,0,0,0,0,0,0, 1, 1, 1, 1, 1, 0, 0, 0, 0],
|
|
596
|
+
[0,1,0,0,0,0,0,0,0, 1, 0, 1, 1, 1, 0, 1, 1, 1],
|
|
597
|
+
[0,0,1,0,0,0,0,0,0, 0, 1, 1, 0, 0, 0, 1, 1, 1],
|
|
598
|
+
[0,0,0,1,0,0,0,0,0, 0, 1, 0, 0, 1, 0, 1, 1, 1],
|
|
599
|
+
[0,0,0,0,1,0,0,0,0, 0, 1, 0, 1, 0, 0, 1, 1, 1],
|
|
600
|
+
[0,0,0,0,0,1,0,0,0, 1, 1, 0, 0, 0, 0, 1, 1, 1],
|
|
601
|
+
[0,0,0,0,0,0,1,0,0, 0, 0, 0, 0, 0, 1, 0, 1, 1],
|
|
602
|
+
[0,0,0,0,0,0,0,1,0, 0, 0, 0, 0, 0, 1, 1, 0, 1],
|
|
603
|
+
[0,0,0,0,0,0,0,0,1, 0, 0, 0, 0, 0, 1, 1, 1, 0]])
|
|
604
|
+
G = PermutationGroup( [ "(9,15)(16,17)", "(9,16)(15,17)", "(8,9)(17,18)",
|
|
605
|
+
"(7,8)(16,17)", "(5,6)(10,13)", "(5,10)(6,13)", "(4,5)(13,14)",
|
|
606
|
+
"(3,4)(12,14)", "(1,2)(6,10)", "(1,3)(2,12)" ] )
|
|
607
|
+
spectrum = [1, 0, 0, 0, 17, 0, 51, 0, 187, 0, 187, 0, 51, 0, 17, 0, 0, 0, 1]
|
|
608
|
+
self_dual_codes_18_8 = {"order autgp":322560,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
609
|
+
"Type":"I","Comment": "'Exceptional' construction. Min dist 4."}
|
|
610
|
+
self_dual_codes["18"] = {"0":self_dual_codes_18_0,"1":self_dual_codes_18_1,"2":self_dual_codes_18_2,
|
|
611
|
+
"3":self_dual_codes_18_3,"4":self_dual_codes_18_4,"5":self_dual_codes_18_5,
|
|
612
|
+
"6":self_dual_codes_18_6,"7":self_dual_codes_18_7,"8":self_dual_codes_18_8}
|
|
613
|
+
return self_dual_codes
|
|
614
|
+
|
|
615
|
+
if n == 20:
|
|
616
|
+
# all of these of these are Type I; 2 of these codes
|
|
617
|
+
# are formally equivalent but with different automorphism groups;
|
|
618
|
+
# one of these has a unique codeword of lowest weight
|
|
619
|
+
A10 = MatrixSpace(_F, 10, 10)([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
|
|
620
|
+
[1, 1, 1, 0, 1, 0, 1, 0, 1, 1],
|
|
621
|
+
[1, 0, 0, 1, 0, 1, 0, 1, 0, 1],
|
|
622
|
+
[0, 0, 0, 1, 1, 1, 0, 1, 0, 1],
|
|
623
|
+
[0, 0, 1, 1, 0, 1, 0, 1, 0, 1],
|
|
624
|
+
[0, 0, 0, 1, 0, 1, 1, 1, 0, 1],
|
|
625
|
+
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
|
|
626
|
+
[0, 0, 0, 1, 0, 0, 0, 0, 1, 1],
|
|
627
|
+
[0, 0, 0, 0, 0, 1, 0, 0, 1, 1],
|
|
628
|
+
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1]])
|
|
629
|
+
# [20,0]:
|
|
630
|
+
genmat = _I2(n).augment(_I2(n))
|
|
631
|
+
# G = PermutationGroup( ["(10,20)", "(9,10)(19,20)", "(8,9)(18,19)", "(7,8)(17,18)", "(6,7)(16,17)",\
|
|
632
|
+
# "(5,6)(15,16)", "(4,5)(14,15)", "(3,4)(13,14)", "(2,3)(12,13)", "(1,2)(11,12)"] )
|
|
633
|
+
spectrum = [1, 0, 10, 0, 45, 0, 120, 0, 210, 0, 252, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1]
|
|
634
|
+
self_dual_codes_20_0 = {"order autgp":3715891200,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
635
|
+
"Type":"I","Comment": "Huge aut gp"}
|
|
636
|
+
# [20,1]:
|
|
637
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
|
|
638
|
+
# G = PermutationGroup( [ "(10,20)", "(9,10)(19,20)", "(8,9)(18,19)", "(7,8)(17,18)", "(6,7)(16,17)",\
|
|
639
|
+
# "(5,6)(15,16)", "(4,11)(12,13)", "(4,12)(11,13)", "(3,4)(13,14)",\
|
|
640
|
+
# "(2,3)(12,13)", "(1,2)(11,12)"] )
|
|
641
|
+
spectrum = [1, 0, 6, 0, 29, 0, 104, 0, 226, 0, 292, 0, 226, 0, 104, 0, 29, 0, 6, 0, 1]
|
|
642
|
+
self_dual_codes_20_1 = {"order autgp":61931520,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
643
|
+
"Type":"I","Comment":""}
|
|
644
|
+
# [20,2]:
|
|
645
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
|
|
646
|
+
# G = PermutationGroup( [ "(10,20)", "(9,10)(19,20)", "(8,9)(18,19)", "(7,8)(17,18)",\
|
|
647
|
+
# "(5,6)(15,16)", "(5,15)(6,16)", "(4,5)(14,15)", "(3,4)(13,14)",\
|
|
648
|
+
# "(2,3)(12,13)", "(1,2)(11,12)"] )
|
|
649
|
+
spectrum = [1, 0, 4, 0, 21, 0, 96, 0, 234, 0, 312, 0, 234, 0, 96, 0, 21, 0, 4, 0, 1]
|
|
650
|
+
self_dual_codes_20_2 = {"order autgp":8847360,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
651
|
+
"Type":"I","Comment":""}
|
|
652
|
+
# [20,3]:
|
|
653
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matA(n)[4]]))
|
|
654
|
+
# G = PermutationGroup( [ "(5,6)(15,16)", "(5,15)(6,16)", "(4,5)(14,15)", "(3,4)(13,14)",\
|
|
655
|
+
# "(2,3)(12,13)", "(1,2)(11,12)", "(8,17)(9,10)", "(8,10)(9,17)", "(8,10,20)(9,19,17)",\
|
|
656
|
+
# "(8,19,20,9,17,10,18)", "(7,8,19,20,9,18)(10,17)"] )
|
|
657
|
+
spectrum = [1, 0, 0, 0, 29, 0, 32, 0, 226, 0, 448, 0, 226, 0, 32, 0, 29, 0, 0, 0, 1]
|
|
658
|
+
self_dual_codes_20_3 = {"order autgp":30965760,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
659
|
+
"Type":"I","Comment":"Min dist 4."}
|
|
660
|
+
# [20,4]:
|
|
661
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matA(n)[4],_matId(n)[8]]))
|
|
662
|
+
# G = PermutationGroup( [ "(5,15)(6,16)", "(5,16)(6,15)", "(5,16,7)(6,17,15)", "(5,15,8)(6,17,7)",\
|
|
663
|
+
# "(5,17,18)(6,15,8), (3,14)(4,13)(5,17,18)(6,15,8)", "(3,13)(4,14)(5,17,18)(6,15,8)",\
|
|
664
|
+
# "(2,3,14)(4,13,11)(5,17,18)(6,15,8)"," (2,3,12)(4,11,14)(5,17,18)(6,15,8)",\
|
|
665
|
+
# "(1,2,3,11,14,4,12)(5,17,18)(6,15,8)", "(1,5,13,17,14,8,2,7,3,16,12,6,11,18)(4,15)",\
|
|
666
|
+
# "(2,3,12)(4,11,14)(5,17,18)(6,15,8)(10,20)",\
|
|
667
|
+
# "(2,3,12)(4,11,14)(5,17,18)(6,15,8)(9,10,19,20)"] )
|
|
668
|
+
spectrum = [1, 0, 2, 0, 29, 0, 56, 0, 226, 0, 396, 0, 226, 0, 56, 0, 29, 0, 2, 0, 1]
|
|
669
|
+
self_dual_codes_20_4 = {"order autgp":28901376,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
670
|
+
"Type":"I","Comment":""}
|
|
671
|
+
# [20,5]:
|
|
672
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_And7(),_matId(n)[7]]))
|
|
673
|
+
# G = PermutationGroup( [ "(10,20)", "(9,10)(19,20)", "(8,9)(18,19)",\
|
|
674
|
+
# "(7,11)(12,14)", "(7,12)(11,14)", "(6,7)(12,13)", "(5,6)(11,12)",\
|
|
675
|
+
# "(4,15)(16,17)", "(4,16)(15,17)", "(2,3)(16,17)", "(2,4)(3,15)",\
|
|
676
|
+
# "(1,2)(15,16)", "(1,5)(2,6)(3,13)(4,7)(11,16)(12,15)(14,17)" ] ) # order 2709504
|
|
677
|
+
spectrum = [1, 0, 3, 0, 17, 0, 92, 0, 238, 0, 322, 0, 238, 0, 92, 0, 17, 0, 3, 0, 1]
|
|
678
|
+
self_dual_codes_20_5 = {"order autgp":2709504,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
679
|
+
"Type":"I","Comment": "'Exceptional' construction."}
|
|
680
|
+
# [20,6]:
|
|
681
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[8],_matId(n)[8]]))
|
|
682
|
+
# G = PermutationGroup( [ "(7,8)(17,18)", "(7,17)(8,18)", "(6,7)(16,17)", "(5,6)(15,16)",\
|
|
683
|
+
# "(4,5)(14,15)", "(3,4)(13,14)", "(2,3)(12,13)", "(1,2)(11,12)",\
|
|
684
|
+
# "(10,20)", "(9,10,19,20)"] )
|
|
685
|
+
spectrum = [1, 0, 2, 0, 29, 0, 56, 0, 226, 0, 396, 0, 226, 0, 56, 0, 29, 0, 2, 0, 1]
|
|
686
|
+
self_dual_codes_20_6 = {"order autgp":41287680,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
687
|
+
"Type":"I","Comment":""}
|
|
688
|
+
# [20,7]:
|
|
689
|
+
A0 = self_dual_binary_codes(n-4)["16"]["6"]["code"].redundancy_matrix()
|
|
690
|
+
genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[8]]))
|
|
691
|
+
# G = PermutationGroup( [ "(10,20)", "(9,10)(19,20)", "(7,11)(12,18)",\
|
|
692
|
+
# "(7,12)(11,18)", "(6,7)(12,13)", "(4,6)(13,15)", "(3,5)(14,16)",\
|
|
693
|
+
# "(3,14)(5,16)", "(2,3)(16,17)", "(1,2)(8,17)",\
|
|
694
|
+
# "(1,4)(2,6)(3,7)(5,18)(8,15)(11,14)(12,16)(13,17)" ] )
|
|
695
|
+
spectrum = [1,0,2,0,13,0,88,0,242,0,332,0,242,0,88,0,13,0,2,0,1]
|
|
696
|
+
self_dual_codes_20_7 = {"order autgp":589824,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
697
|
+
"Type":"I","Comment":"'Exceptional' construction."}
|
|
698
|
+
# [20,8]: (genmat, J20, and genmat2 are all equiv)
|
|
699
|
+
genmat = _I2(n).augment(_matA(n)[10])
|
|
700
|
+
J20 = _MS(n)([[1,1,1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
701
|
+
[0,0,1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
702
|
+
[0,0,0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
703
|
+
[0,0,0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
704
|
+
[0,0,0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
705
|
+
[0,0,0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
|
|
706
|
+
[0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
|
|
707
|
+
[0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0],
|
|
708
|
+
[0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
|
|
709
|
+
[1,0,1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]])
|
|
710
|
+
genmat2 = _MS(n)([[1,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
|
711
|
+
[0,1,0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1],
|
|
712
|
+
[0,0,1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
|
713
|
+
[0,0,0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0],
|
|
714
|
+
[0,0,0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0],
|
|
715
|
+
[0,0,0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0],
|
|
716
|
+
[0,0,0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0],
|
|
717
|
+
[0,0,0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0],
|
|
718
|
+
[0,0,0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0],
|
|
719
|
+
[0,0,0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1]])
|
|
720
|
+
# G = PermutationGroup( [ "(9,10)(19,20)", "(9,19)(10,20)", "(8,9)(18,19)", "(7,8)(17,18)",\
|
|
721
|
+
# "(6,7)(16,17)", "(5,6)(15,16)", "(4,5)(14,15)", "(3,4)(13,14)",\
|
|
722
|
+
# "(2,3)(12,13)", "(1,2)(11,12)"] )
|
|
723
|
+
spectrum = [1, 0, 0, 0, 45, 0, 0, 0, 210, 0, 512, 0, 210, 0, 0, 0, 45, 0, 0, 0, 1]
|
|
724
|
+
self_dual_codes_20_8 = {"order autgp":1857945600,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
725
|
+
"Type":"I","Comment":"Huge aut gp. Min dist 4."}
|
|
726
|
+
# [20,9]: (genmat, K20 are equiv)
|
|
727
|
+
genmat = _I2(n).augment(A10)
|
|
728
|
+
K20 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
729
|
+
[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
730
|
+
[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
731
|
+
[0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
|
|
732
|
+
[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
|
|
733
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
|
|
734
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
|
|
735
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
|
|
736
|
+
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0],
|
|
737
|
+
[0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,0,1,0]])
|
|
738
|
+
#genmat = K20 # not in standard form
|
|
739
|
+
# G = PermutationGroup( [ "(4,13)(5,15)", "(4,15)(5,13)", "(3,4,13)(5,11,15)",
|
|
740
|
+
# "(3,4,6,11,15,17)(5,13)", "(3,5,17,4,12)(6,15,7,11,13)",
|
|
741
|
+
# "(1,2)(3,5,17,4,7,11,13,6,15,12)", "(1,3,5,17,4,12)(2,11,13,6,15,7)",
|
|
742
|
+
# "(3,5,17,4,12)(6,15,7,11,13)(10,18)(19,20)", "(3,5,17,4,12)(6,15,7,11,13)(10,19)(18,20)",
|
|
743
|
+
# "(3,5,17,4,12)(6,15,7,11,13)(9,10)(16,18)",
|
|
744
|
+
# "(3,5,17,4,12)(6,15,7,11,13)(8,9)(14,16)" ] )
|
|
745
|
+
spectrum = [1, 0, 0, 0, 21, 0, 48, 0, 234, 0, 416, 0, 234, 0, 48, 0, 21, 0, 0, 0, 1]
|
|
746
|
+
self_dual_codes_20_9 = {"order autgp":4423680,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
747
|
+
"Type":"I","Comment": "Min dist 4."}
|
|
748
|
+
# [20,10]
|
|
749
|
+
L20 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
750
|
+
[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
751
|
+
[1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
752
|
+
[0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0],
|
|
753
|
+
[0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0],
|
|
754
|
+
[0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0],
|
|
755
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
|
|
756
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
|
|
757
|
+
[0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0],
|
|
758
|
+
[0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0]])
|
|
759
|
+
genmat = L20 # not in standard form
|
|
760
|
+
# G = PermutationGroup( [ "(17,18)(19,20)", "(17,19)(18,20)", "(15,16)(19,20)",
|
|
761
|
+
# "(15,17)(16,18)", "(10,11)(12,13)", "(10,12)(11,13)", "(9,10)(13,14)",
|
|
762
|
+
# "(8,9)(12,13)", "(3,4)(5,6)", "(3,5)(4,6)", "(2,3)(6,7)", "(1,2)(5,6)",
|
|
763
|
+
# "(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(19,20)" ] ) # order 1354752
|
|
764
|
+
spectrum = [1, 0, 0, 0, 17, 0, 56, 0, 238, 0, 400, 0, 238, 0, 56, 0, 17, 0, 0, 0, 1]
|
|
765
|
+
self_dual_codes_20_10 = {"order autgp":1354752,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
766
|
+
"Type":"I","Comment": "Min dist 4."}
|
|
767
|
+
# [20,11]
|
|
768
|
+
S20 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
769
|
+
[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
770
|
+
[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
771
|
+
[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
|
|
772
|
+
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
|
|
773
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
|
|
774
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
|
|
775
|
+
[1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,1,1,0,0],
|
|
776
|
+
[1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0],
|
|
777
|
+
[1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,1,0]] )
|
|
778
|
+
genmat = S20 # not in standard form
|
|
779
|
+
# G = PermutationGroup( [ "(17,18)(19,20)", "(17,19)(18,20)", "(13,14)(15,16)",
|
|
780
|
+
# "(13,15)(14,16)", "(11,12)(15,16)", "(11,13)(12,14)", "(9,10)(15,16)",
|
|
781
|
+
# "(9,11)(10,12)", "(5,6)(7,8)", "(5,7)(6,8)", "(3,4)(7,8)", "(3,5)(4,6)",
|
|
782
|
+
# "(1,2)(7,8)", "(1,3)(2,4)", "(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)" ] )
|
|
783
|
+
# G.order() = 294912
|
|
784
|
+
spectrum = [1, 0, 0, 0, 13, 0, 64, 0, 242, 0, 384, 0, 242, 0, 64, 0, 13, 0, 0, 0, 1]
|
|
785
|
+
self_dual_codes_20_11 = {"order autgp":294912,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
786
|
+
"Type":"I","Comment":"Min dist 4."}
|
|
787
|
+
# [20,12]
|
|
788
|
+
R20 = _MS(n)([[0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
789
|
+
[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
790
|
+
[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
|
|
791
|
+
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0],
|
|
792
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0],
|
|
793
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
|
|
794
|
+
[0,1,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0],
|
|
795
|
+
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0],
|
|
796
|
+
[1,1,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1],
|
|
797
|
+
[1,1,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,1,1]])
|
|
798
|
+
genmat = R20 # not in standard form
|
|
799
|
+
# G = PermutationGroup( [ "(17,18)(19,20)", "(17,19)(18,20)", "(15,16)(19,20)",
|
|
800
|
+
# "(15,17)(16,18)", "(11,12)(13,14)", "(11,13)(12,14)", "(9,10)(13,14)",
|
|
801
|
+
# "(9,11)(10,12)", "(5,6)(7,8)", "(5,7)(6,8)", "(3,4)(7,8)", "(3,5)(4,6)",
|
|
802
|
+
# "(3,9,15)(4,10,16)(5,11,17)(6,12,18)(7,14,19)(8,13,20)",
|
|
803
|
+
# "(1,2)(7,8)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)" ] ) # order 82944
|
|
804
|
+
spectrum = [1, 0, 0, 0, 9, 0, 72, 0, 246, 0, 368, 0, 246, 0, 72, 0, 9, 0, 0, 0, 1]
|
|
805
|
+
self_dual_codes_20_12 = {"order autgp":82944,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
806
|
+
"Type":"I","Comment":"Min dist 4."}
|
|
807
|
+
# [20,13]
|
|
808
|
+
M20 = _MS(n)([[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
809
|
+
[0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
|
|
810
|
+
[0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
|
|
811
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
|
|
812
|
+
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
|
|
813
|
+
[0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0],
|
|
814
|
+
[1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0],
|
|
815
|
+
[0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
|
|
816
|
+
[0,0,1,1,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0],
|
|
817
|
+
[0,0,0,0,0,0,1,1,0,1,1,0,1,0,0,1,0,0,0,0]])
|
|
818
|
+
genmat = M20 # not in standard form
|
|
819
|
+
# G = PermutationGroup( [ "(17,18)(19,20)", "(17,19)(18,20)", "(13,14)(15,16)",
|
|
820
|
+
# "(13,15)(14,16)", "(9,10)(11,12)", "(9,11)(10,12)", "(5,6)(7,8)",
|
|
821
|
+
# "(5,7)(6,8)", "(5,9)(6,11)(7,12)(8,10)(13,17)(14,19)(15,18)(16,20)",
|
|
822
|
+
# "(5,13)(6,15)(7,14)(8,16)(9,17)(10,20)(11,18)(12,19)",
|
|
823
|
+
# "(3,4)(6,7)(11,12)(13,17)(14,18)(15,19)(16,20)",
|
|
824
|
+
# "(2,3)(7,8)(9,13)(10,14)(11,15)(12,16)(19,20)",
|
|
825
|
+
# "(1,2)(6,7)(11,12)(13,17)(14,18)(15,19)(16,20)",
|
|
826
|
+
# "(1,5)(2,6)(3,7)(4,8)(9,17)(10,18)(11,19)(12,20)" ] )
|
|
827
|
+
spectrum = [1, 0, 0, 0, 5, 0, 80, 0, 250, 0, 352, 0, 250, 0, 80, 0, 5, 0, 0, 0, 1]
|
|
828
|
+
self_dual_codes_20_13 = {"order autgp":122880,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
829
|
+
"Type":"I","Comment": "Min dist 4."}
|
|
830
|
+
# [20,14]: # aut gp of this computed using a program by Robert Miller
|
|
831
|
+
A0 = self_dual_binary_codes(n-2)["18"]["8"]["code"].redundancy_matrix()
|
|
832
|
+
genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[9]]))
|
|
833
|
+
# [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
|
|
834
|
+
# [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
|
|
835
|
+
# [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0],
|
|
836
|
+
# [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0],
|
|
837
|
+
# [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0],
|
|
838
|
+
# [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0],
|
|
839
|
+
# [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0],
|
|
840
|
+
# [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0],
|
|
841
|
+
# [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
|
|
842
|
+
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]
|
|
843
|
+
# G = PermutationGroup( [ "(8,19)(16,17)", "(8,16)(17,19)", "(9,18)(16,17)", "(8,9)(18,19)",
|
|
844
|
+
# "(7,8)(17,18)", "(4,15)(5,14)", "(4,5)(14,15)", "(4,15)(6,11)", "(5,6)(11,14)",
|
|
845
|
+
# "(3,13)(4,15)", "(3,15)(4,13)", "(1,2)(4,15)", "(1,4)(2,15)(3,5)(13,14)", "(10,20)" ] )
|
|
846
|
+
spectrum = [1, 0, 1, 0, 17, 0, 68, 0, 238, 0, 374, 0, 238, 0, 68, 0, 17, 0, 1, 0, 1]
|
|
847
|
+
self_dual_codes_20_14 = {"order autgp":645120,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
848
|
+
"Type":"I","Comment": "'Exceptional' construction."}
|
|
849
|
+
# [20,15]:
|
|
850
|
+
A0 = self_dual_binary_codes(n-2)["18"]["7"]["code"].redundancy_matrix()
|
|
851
|
+
genmat = _I2(n).augment(block_diagonal_matrix([A0,_matId(n)[9]]))
|
|
852
|
+
# [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
|
853
|
+
# [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0],
|
|
854
|
+
# [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0],
|
|
855
|
+
# [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0],
|
|
856
|
+
# [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0],
|
|
857
|
+
# [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0],
|
|
858
|
+
# [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0],
|
|
859
|
+
# [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0],
|
|
860
|
+
# [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0],
|
|
861
|
+
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]
|
|
862
|
+
# G = PermutationGroup( [ "(10,20)", "(9,11)(17,19)", "(9,17)(11,19)", "(8,9)(15,17)",
|
|
863
|
+
# "(7,12)(13,18)", "(7,13)(12,18)", "(5,6)(12,13)", "(5,7)(6,18)",
|
|
864
|
+
# "(4,14)(5,8)(6,15)(7,9)(11,13)(12,19)(17,18)", "(3,4)(14,16)",
|
|
865
|
+
# "(1,2)(5,8)(6,15)(7,9)(11,13)(12,19)(17,18)", "(1,3)(2,16)",
|
|
866
|
+
# "(1,5)(2,6)(3,7)(4,12)(11,19)(13,14)(16,18)" ] ) # order 165888
|
|
867
|
+
spectrum = [1, 0, 1, 0, 9, 0, 84, 0, 246, 0, 342, 0, 246, 0, 84, 0, 9, 0, 1, 0, 1]
|
|
868
|
+
self_dual_codes_20_15 = {"order autgp":165888,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
869
|
+
"Type":"I","Comment":"'Exceptional' construction. Unique lowest wt codeword."}
|
|
870
|
+
self_dual_codes["20"] = {"0":self_dual_codes_20_0,"1":self_dual_codes_20_1,"2":self_dual_codes_20_2,
|
|
871
|
+
"3":self_dual_codes_20_3,"4":self_dual_codes_20_4,"5":self_dual_codes_20_5,
|
|
872
|
+
"6":self_dual_codes_20_6,"7":self_dual_codes_20_7,"8":self_dual_codes_20_8,
|
|
873
|
+
"9":self_dual_codes_20_9,"10":self_dual_codes_20_10,"11":self_dual_codes_20_11,
|
|
874
|
+
"12":self_dual_codes_20_12,"13":self_dual_codes_20_13,"14":self_dual_codes_20_14,
|
|
875
|
+
"15":self_dual_codes_20_15}
|
|
876
|
+
return self_dual_codes
|
|
877
|
+
|
|
878
|
+
if n == 22:
|
|
879
|
+
# all of these of these are Type I; 2 of these codes
|
|
880
|
+
# are formally equivalent but with different automorphism groups
|
|
881
|
+
# *** Incomplete *** (7 out of 25)
|
|
882
|
+
# [22,0]:
|
|
883
|
+
genmat = _I2(n).augment(_I2(n))
|
|
884
|
+
# G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
|
|
885
|
+
# "(8,9)(19,20)", "(7,8)(18,19)", "(6,7)(17,18)", "(5,6)(16,17)",\
|
|
886
|
+
# "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] ) # S_11x(ZZ/2ZZ)^11??
|
|
887
|
+
spectrum = [1, 0, 11, 0, 55, 0, 165, 0, 330, 0, 462, 0, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1]
|
|
888
|
+
self_dual_codes_22_0 = {"order autgp":81749606400,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
889
|
+
"Type":"I","Comment":"Huge aut gp."}
|
|
890
|
+
# [22,1]:
|
|
891
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matId(n)[4]]))
|
|
892
|
+
# G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
|
|
893
|
+
# "(8,9)(19,20)", "(7,8)(18,19)", "(6,7)(17,18)", "(5,6)(16,17)",\
|
|
894
|
+
# "(4,12)(13,14)", "(4,13)(12,14)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
|
|
895
|
+
spectrum = [1, 0, 7, 0, 35, 0, 133, 0, 330, 0, 518, 0, 518, 0, 330, 0, 133, 0, 35, 0, 7, 0, 1]
|
|
896
|
+
self_dual_codes_22_1 = {"order autgp":867041280,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
897
|
+
"Type":"I","Comment":""}
|
|
898
|
+
# [22,2]:
|
|
899
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matId(n)[6]]))
|
|
900
|
+
# G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
|
|
901
|
+
# "(8,9)(19,20)", "(7,8)(18,19)", "(5,6)(16,17)", "(5,16)(6,17)",\
|
|
902
|
+
# "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
|
|
903
|
+
spectrum = [1, 0, 5, 0, 25, 0, 117, 0, 330, 0, 546, 0, 546, 0, 330, 0, 117, 0, 25, 0, 5, 0, 1]
|
|
904
|
+
self_dual_codes_22_2 = {"order autgp":88473600,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
905
|
+
"Type":"I","Comment":""}
|
|
906
|
+
# [22,3]:
|
|
907
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[8],_matId(n)[8]]))
|
|
908
|
+
# G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
|
|
909
|
+
# "(7,8)(18,19)", "(7,18)(8,19)", "(6,7)(17,18)", "(5,6)(16,17)",\
|
|
910
|
+
# "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
|
|
911
|
+
spectrum = [1, 0, 3, 0, 31, 0, 85, 0, 282, 0, 622, 0, 622, 0, 282, 0, 85, 0, 31, 0, 3, 0, 1]
|
|
912
|
+
self_dual_codes_22_3 = {"order autgp":247726080,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
913
|
+
"Type":"I","Comment":"Same spectrum as the '[20,5]' code."}
|
|
914
|
+
# [22,4]:
|
|
915
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[10],_matId(n)[10]]))
|
|
916
|
+
# G = PermutationGroup( [ "(11,22)", "(9,10)(20,21)", "(9,20)(10,21)",\
|
|
917
|
+
# "(8,9)(19,20)", "(7,8)(18,19)", "(6,7)(17,18)", "(5,6)(16,17)",\
|
|
918
|
+
# "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
|
|
919
|
+
spectrum = [1, 0, 1, 0, 45, 0, 45, 0, 210, 0, 722, 0, 722, 0, 210, 0, 45, 0, 45, 0, 1, 0, 1]
|
|
920
|
+
self_dual_codes_22_4 = {"order autgp":3715891200,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
921
|
+
"Type":"I","Comment":"Unique lowest weight codeword."}
|
|
922
|
+
# [22,5]:
|
|
923
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[4],_matA(n)[4],_matId(n)[8]]))
|
|
924
|
+
# G = PermutationGroup( [ "(11,22)", "(10,11)(21,22)", "(9,10)(20,21)",\
|
|
925
|
+
# "(8,16)(17,18)", "(8,17)(16,18)", "(7,8)(18,19)", "(6,7)(17,18)",\
|
|
926
|
+
# "(5,6)(16,17)", "(4,12)(13,14)", "(4,13)(12,14)", "(3,4)(14,15)",\
|
|
927
|
+
# "(2,3)(13,14)", "(1,2)(12,13)", "(1,5)(2,6)(3,7)(4,8)(12,16)(13,17)(14,18)(15,19)" ] )
|
|
928
|
+
spectrum = [1, 0, 3, 0, 31, 0, 85, 0, 282, 0, 622, 0, 622, 0, 282, 0, 85, 0, 31, 0, 3, 0, 1]
|
|
929
|
+
self_dual_codes_22_5 = {"order autgp":173408256,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
930
|
+
"Type":"I","Comment":"Same spectrum as the '[20,3]' code."}
|
|
931
|
+
# [22,6]:
|
|
932
|
+
genmat = _I2(n).augment(block_diagonal_matrix([_matA(n)[6],_matA(n)[4],_matId(n)[10]]))
|
|
933
|
+
# G = PermutationGroup( [ "(11,22)", "(10,18)(19,20)", "(10,19)(18,20)",\
|
|
934
|
+
# "(9,10)(20,21)", "(8,9)(19,20)", "(7,8)(18,19)", "(5,6)(16,17)",\
|
|
935
|
+
# "(5,16)(6,17)", "(4,5)(15,16)", "(3,4)(14,15)", "(2,3)(13,14)", "(1,2)(12,13)" ] )
|
|
936
|
+
spectrum = [1, 0, 1, 0, 29, 0, 61, 0, 258, 0, 674, 0, 674, 0, 258, 0, 61, 0, 29, 0, 1, 0, 1]
|
|
937
|
+
self_dual_codes_22_6 = {"order autgp":61931520,"code":LinearCode(genmat),"spectrum":spectrum,
|
|
938
|
+
"Type":"I","Comment":"Unique lowest weight codeword."}
|
|
939
|
+
self_dual_codes["22"] = {"0":self_dual_codes_22_0,"1":self_dual_codes_22_1,"2":self_dual_codes_22_2,
|
|
940
|
+
"3":self_dual_codes_22_3,"4":self_dual_codes_22_4,"5":self_dual_codes_22_5,
|
|
941
|
+
"6":self_dual_codes_22_6}
|
|
942
|
+
return self_dual_codes
|