passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +807 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_modules.libs/libgfortran-67378ab2.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-23768756.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-7897025b.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-e34bb864.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-503f0c35.3.29.so +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-aarch64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-aarch64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,2993 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.graphs sage.libs.gap
|
|
3
|
+
r"""
|
|
4
|
+
Extended affine Weyl groups
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Daniel Bump (2012): initial version
|
|
9
|
+
- Daniel Orr (2012): initial version
|
|
10
|
+
- Anne Schilling (2012): initial version
|
|
11
|
+
- Mark Shimozono (2012): initial version
|
|
12
|
+
- Nicolas M. Thiery (2012): initial version
|
|
13
|
+
- Mark Shimozono (2013): twisted affine root systems, multiple realizations, GL_n
|
|
14
|
+
"""
|
|
15
|
+
# ***************************************************************************
|
|
16
|
+
# Copyright (C) 2012 Daniel Bump <bump at match.stanford.edu>,
|
|
17
|
+
# 2012 Daniel Orr <danorr at live.unc.edu>
|
|
18
|
+
# 2012 Anne Schilling <anne at math.ucdavis.edu>
|
|
19
|
+
# 2012 Mark Shimozono <mshimo at math.vt.edu>
|
|
20
|
+
# 2012 Nicolas M. Thiery <nthiery at users.sf.net>
|
|
21
|
+
#
|
|
22
|
+
# 2013 Mark Shimozono <mshimo at math.vt.edu>
|
|
23
|
+
#
|
|
24
|
+
# This program is free software: you can redistribute it and/or modify
|
|
25
|
+
# it under the terms of the GNU General Public License as published by
|
|
26
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
27
|
+
# (at your option) any later version.
|
|
28
|
+
# https://www.gnu.org/licenses/
|
|
29
|
+
# ***************************************************************************
|
|
30
|
+
from sage.combinat.root_system.cartan_type import CartanType
|
|
31
|
+
from sage.combinat.root_system.weyl_group import WeylGroup
|
|
32
|
+
from sage.categories.groups import Groups
|
|
33
|
+
from sage.categories.sets_cat import Sets
|
|
34
|
+
from sage.misc.cachefunc import cached_method
|
|
35
|
+
from sage.structure.parent import Parent
|
|
36
|
+
from sage.structure.unique_representation import UniqueRepresentation
|
|
37
|
+
from sage.sets.family import Family
|
|
38
|
+
from sage.categories.realizations import Category_realization_of_parent
|
|
39
|
+
from sage.misc.bindable_class import BindableClass
|
|
40
|
+
from sage.combinat.root_system.fundamental_group import FundamentalGroupOfExtendedAffineWeylGroup
|
|
41
|
+
from sage.misc.abstract_method import abstract_method
|
|
42
|
+
from sage.categories.morphism import SetMorphism
|
|
43
|
+
from sage.categories.homset import Hom
|
|
44
|
+
from sage.groups.group_exp import GroupExp
|
|
45
|
+
from sage.groups.group_semidirect_product import GroupSemidirectProduct
|
|
46
|
+
from sage.combinat.root_system.root_system import RootSystem
|
|
47
|
+
from sage.rings.finite_rings.integer_mod import Mod
|
|
48
|
+
from sage.modules.free_module_element import vector
|
|
49
|
+
from sage.rings.integer_ring import ZZ
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def ExtendedAffineWeylGroup(cartan_type, general_linear=None, **print_options):
|
|
53
|
+
r"""
|
|
54
|
+
The extended affine Weyl group.
|
|
55
|
+
|
|
56
|
+
INPUT:
|
|
57
|
+
|
|
58
|
+
- ``cartan_type`` -- an affine or finite Cartan type (a finite Cartan type is an
|
|
59
|
+
abbreviation for its untwisted affinization)
|
|
60
|
+
- ``general_linear`` -- (default: ``None``) if ``True`` and ``cartan_type`` indicates
|
|
61
|
+
untwisted type A, returns the universal central extension
|
|
62
|
+
- ``print_options`` -- special instructions for printing elements (see below)
|
|
63
|
+
|
|
64
|
+
.. RUBRIC:: Mnemonics
|
|
65
|
+
|
|
66
|
+
- "P" -- subgroup of translations
|
|
67
|
+
- "Pv" -- subgroup of translations in a dual form
|
|
68
|
+
- "W0" -- classical Weyl group
|
|
69
|
+
- "W" -- affine Weyl group
|
|
70
|
+
- "F" -- fundamental group of length zero elements
|
|
71
|
+
|
|
72
|
+
There are currently six realizations: "PW0", "W0P, "WF", "FW", "PvW0", and "W0Pv".
|
|
73
|
+
|
|
74
|
+
"PW0" means the semidirect product of "P" with "W0" acting from the right.
|
|
75
|
+
"W0P" is similar but with "W0" acting from the left.
|
|
76
|
+
"WF" is the semidirect product of "W" with "F" acting from the right, etc.
|
|
77
|
+
|
|
78
|
+
Recognized arguments for ``print_options`` are:
|
|
79
|
+
|
|
80
|
+
- ``print_tuple`` -- boolean (default: ``False``); if ``True``, elements
|
|
81
|
+
are printed `(a,b)`, otherwise as `a * b`
|
|
82
|
+
- ``affine`` -- prefix for simple reflections in the affine Weyl group
|
|
83
|
+
- ``classical`` -- prefix for simple reflections in the classical Weyl group
|
|
84
|
+
- ``translation`` -- prefix for the translation elements
|
|
85
|
+
- ``fundamental`` -- prefix for the elements of the fundamental group
|
|
86
|
+
|
|
87
|
+
These options are not mutable.
|
|
88
|
+
|
|
89
|
+
The *extended affine Weyl group* was introduced in the following references.
|
|
90
|
+
|
|
91
|
+
REFERENCES:
|
|
92
|
+
|
|
93
|
+
.. [Iwahori] Iwahori,
|
|
94
|
+
*Generalized Tits system (Bruhat decomposition) on p-adic semisimple groups*.
|
|
95
|
+
1966 Algebraic Groups and Discontinuous
|
|
96
|
+
Subgroups (AMS Proc. Symp. Pure Math.., 1965) pp. 71-83 Amer. Math. Soc.,
|
|
97
|
+
Providence, R.I.
|
|
98
|
+
|
|
99
|
+
.. [Bour] Bourbaki, *Lie Groups and Lie Algebras* IV.2
|
|
100
|
+
|
|
101
|
+
- [Ka1990]_
|
|
102
|
+
|
|
103
|
+
.. RUBRIC:: Notation
|
|
104
|
+
|
|
105
|
+
- `R` -- an irreducible affine root system
|
|
106
|
+
- `I` -- set of nodes of the Dynkin diagram of `R`
|
|
107
|
+
- `R_0` -- the classical subsystem of `R`
|
|
108
|
+
- `I_0` -- set of nodes of the Dynkin diagram of `R_0`
|
|
109
|
+
- `E` -- extended affine Weyl group of type `R`
|
|
110
|
+
- `W` -- affine Weyl group of type `R`
|
|
111
|
+
- `W_0` -- finite (classical) Weyl group (of type `R_0`)
|
|
112
|
+
- `M` -- translation lattice for `W`
|
|
113
|
+
- `L` -- translation lattice for `E`
|
|
114
|
+
- `F` -- fundamental subgroup of `E` (the length zero elements)
|
|
115
|
+
- `P` -- finite weight lattice
|
|
116
|
+
- `Q` -- finite root lattice
|
|
117
|
+
- `P^\vee` -- finite coweight lattice
|
|
118
|
+
- `Q^\vee` -- finite coroot lattice
|
|
119
|
+
|
|
120
|
+
.. RUBRIC:: Translation lattices
|
|
121
|
+
|
|
122
|
+
The styles "PW0" and "W0P" use the following lattices:
|
|
123
|
+
|
|
124
|
+
- Untwisted affine: `L = P^\vee`, `M = Q^\vee`
|
|
125
|
+
- Dual of untwisted affine: `L = P`, `M = Q`
|
|
126
|
+
- `BC_n` (`A_{2n}^{(2)}`): `L = M = P`
|
|
127
|
+
- Dual of `BC_n` (`A_{2n}^{(2)\dagger}`): `L = M = P^\vee`
|
|
128
|
+
|
|
129
|
+
The styles "PvW0" and "W0Pv" use the following lattices:
|
|
130
|
+
|
|
131
|
+
- Untwisted affine: The weight lattice of the dual finite Cartan type.
|
|
132
|
+
- Dual untwisted affine: The same as for "PW0" and "W0P".
|
|
133
|
+
|
|
134
|
+
For mixed affine type (`A_{2n}^{(2)}`, aka `\tilde{BC}_n`, and their affine duals)
|
|
135
|
+
the styles "PvW0" and "W0Pv" are not implemented.
|
|
136
|
+
|
|
137
|
+
.. RUBRIC:: Finite and affine Weyl groups `W_0` and `W`
|
|
138
|
+
|
|
139
|
+
The finite Weyl group `W_0` is generated by the simple reflections `s_i` for `i \in I_0` where
|
|
140
|
+
`s_i` is the reflection across a suitable hyperplane `H_i` through the origin in the
|
|
141
|
+
real span `V` of the lattice `M`.
|
|
142
|
+
|
|
143
|
+
`R` specifies another (affine) hyperplane `H_0`. The affine Weyl group `W` is generated by `W_0`
|
|
144
|
+
and the reflection `S_0` across `H_0`.
|
|
145
|
+
|
|
146
|
+
.. RUBRIC:: Extended affine Weyl group `E`
|
|
147
|
+
|
|
148
|
+
The complement in `V` of the set `H` of hyperplanes obtained from the `H_i` by the action of
|
|
149
|
+
`W`, has connected components called alcoves. `W` acts freely and transitively on the set
|
|
150
|
+
of alcoves. After the choice of a certain alcove (the fundamental alcove),
|
|
151
|
+
there is an induced bijection from `W` to the set of alcoves under which the identity
|
|
152
|
+
in `W` maps to the fundamental alcove.
|
|
153
|
+
|
|
154
|
+
Then `L` is the largest sublattice of `V`, whose translations stabilize the set of alcoves.
|
|
155
|
+
|
|
156
|
+
There are isomorphisms
|
|
157
|
+
|
|
158
|
+
.. MATH::
|
|
159
|
+
|
|
160
|
+
\begin{aligned}
|
|
161
|
+
W &\cong M \rtimes W_0 \cong W_0 \ltimes M \\
|
|
162
|
+
E &\cong L \rtimes W_0 \cong W_0 \ltimes L
|
|
163
|
+
\end{aligned}
|
|
164
|
+
|
|
165
|
+
.. RUBRIC:: Fundamental group of affine Dynkin automorphisms
|
|
166
|
+
|
|
167
|
+
Since `L` acts on the set of alcoves, the group `F = L/M` may be viewed as a
|
|
168
|
+
subgroup of the symmetries of the fundamental alcove or equivalently the
|
|
169
|
+
symmetries of the affine Dynkin diagram.
|
|
170
|
+
`F` acts on the set of alcoves and hence on `W`. Conjugation by an element of `F`
|
|
171
|
+
acts on `W` by permuting the indices of simple reflections.
|
|
172
|
+
|
|
173
|
+
There are isomorphisms
|
|
174
|
+
|
|
175
|
+
.. MATH::
|
|
176
|
+
|
|
177
|
+
E \cong F \ltimes W \cong W \rtimes F
|
|
178
|
+
|
|
179
|
+
An affine Dynkin node is *special* if it is conjugate to the zero node under some
|
|
180
|
+
affine Dynkin automorphism.
|
|
181
|
+
|
|
182
|
+
There is a bijection `i` `\mapsto` `\pi_i` from the set of special nodes
|
|
183
|
+
to the group `F`, where `\pi_i` is the unique element of `F` that sends `0` to `i`.
|
|
184
|
+
When `L=P` (resp. `L=P^\vee`) the element `\pi_i` is induced
|
|
185
|
+
(under the isomorphism `F \cong L/M`) by addition of the coset of the
|
|
186
|
+
`i`-th fundamental weight (resp. coweight).
|
|
187
|
+
|
|
188
|
+
The length function of the Coxeter group `W` may be extended to `E` by
|
|
189
|
+
`\ell(w \pi) = \ell(w)` where `w \in W` and `\pi\in F`.
|
|
190
|
+
This is the number of hyperplanes in `H` separating the
|
|
191
|
+
fundamental alcove from its image by `w \pi` (or equivalently `w`).
|
|
192
|
+
|
|
193
|
+
It is known that if `G` is the compact Lie group of adjoint type with root
|
|
194
|
+
system `R_0` then `F` is isomorphic to the fundamental group of `G`, or
|
|
195
|
+
to the center of its simply-connected covering group. That is why we
|
|
196
|
+
call `F` the *fundamental group*.
|
|
197
|
+
|
|
198
|
+
In the future we may want to build an element of the group from an appropriate linear map f
|
|
199
|
+
on some of the root lattice realizations for this Cartan type: W.from_endomorphism(f).
|
|
200
|
+
|
|
201
|
+
EXAMPLES::
|
|
202
|
+
|
|
203
|
+
sage: E = ExtendedAffineWeylGroup(["A",2,1]); E
|
|
204
|
+
Extended affine Weyl group of type ['A', 2, 1]
|
|
205
|
+
sage: type(E)
|
|
206
|
+
<class 'sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class_with_category'>
|
|
207
|
+
|
|
208
|
+
sage: PW0 = E.PW0(); PW0
|
|
209
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
210
|
+
Multiplicative form of Coweight lattice of the Root system of type ['A', 2]
|
|
211
|
+
acted upon by Weyl Group of type ['A', 2]
|
|
212
|
+
(as a matrix group acting on the coweight lattice)
|
|
213
|
+
|
|
214
|
+
sage: W0P = E.W0P(); W0P
|
|
215
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
216
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)
|
|
217
|
+
acting on Multiplicative form of Coweight lattice of the Root system of type ['A', 2]
|
|
218
|
+
|
|
219
|
+
sage: PvW0 = E.PvW0(); PvW0
|
|
220
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
221
|
+
Multiplicative form of Weight lattice of the Root system of type ['A', 2]
|
|
222
|
+
acted upon by Weyl Group of type ['A', 2]
|
|
223
|
+
(as a matrix group acting on the weight lattice)
|
|
224
|
+
|
|
225
|
+
sage: W0Pv = E.W0Pv(); W0Pv
|
|
226
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
227
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)
|
|
228
|
+
acting on Multiplicative form of Weight lattice of the Root system of type ['A', 2]
|
|
229
|
+
|
|
230
|
+
sage: WF = E.WF(); WF
|
|
231
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
232
|
+
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)
|
|
233
|
+
acted upon by Fundamental group of type ['A', 2, 1]
|
|
234
|
+
|
|
235
|
+
sage: FW = E.FW(); FW
|
|
236
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
237
|
+
Fundamental group of type ['A', 2, 1] acting on Weyl Group of type ['A', 2, 1]
|
|
238
|
+
(as a matrix group acting on the root lattice)
|
|
239
|
+
|
|
240
|
+
When the realizations are constructed from each other as above, there are built-in coercions between them. ::
|
|
241
|
+
|
|
242
|
+
sage: F = E.fundamental_group()
|
|
243
|
+
sage: x = WF.from_reduced_word([0,1,2]) * WF(F(2)); x
|
|
244
|
+
S0*S1*S2 * pi[2]
|
|
245
|
+
sage: FW(x)
|
|
246
|
+
pi[2] * S1*S2*S0
|
|
247
|
+
sage: W0P(x)
|
|
248
|
+
s1*s2*s1 * t[-2*Lambdacheck[1] - Lambdacheck[2]]
|
|
249
|
+
sage: PW0(x)
|
|
250
|
+
t[Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2*s1
|
|
251
|
+
sage: PvW0(x)
|
|
252
|
+
t[Lambda[1] + 2*Lambda[2]] * s1*s2*s1
|
|
253
|
+
|
|
254
|
+
The translation lattice and its distinguished basis are obtained from ``E``::
|
|
255
|
+
|
|
256
|
+
sage: L = E.lattice(); L
|
|
257
|
+
Coweight lattice of the Root system of type ['A', 2]
|
|
258
|
+
sage: b = E.lattice_basis(); b
|
|
259
|
+
Finite family {1: Lambdacheck[1], 2: Lambdacheck[2]}
|
|
260
|
+
|
|
261
|
+
Translation lattice elements can be coerced into any realization::
|
|
262
|
+
|
|
263
|
+
sage: PW0(b[1]-b[2])
|
|
264
|
+
t[Lambdacheck[1] - Lambdacheck[2]]
|
|
265
|
+
sage: FW(b[1]-b[2])
|
|
266
|
+
pi[2] * S0*S1
|
|
267
|
+
|
|
268
|
+
The dual form of the translation lattice and its basis are similarly obtained::
|
|
269
|
+
|
|
270
|
+
sage: Lv = E.dual_lattice(); Lv
|
|
271
|
+
Weight lattice of the Root system of type ['A', 2]
|
|
272
|
+
sage: bv = E.dual_lattice_basis(); bv
|
|
273
|
+
Finite family {1: Lambda[1], 2: Lambda[2]}
|
|
274
|
+
sage: FW(bv[1]-bv[2])
|
|
275
|
+
pi[2] * S0*S1
|
|
276
|
+
|
|
277
|
+
The abstract fundamental group is accessed from ``E``::
|
|
278
|
+
|
|
279
|
+
sage: F = E.fundamental_group(); F
|
|
280
|
+
Fundamental group of type ['A', 2, 1]
|
|
281
|
+
|
|
282
|
+
Its elements are indexed by the set of special nodes of the affine Dynkin diagram::
|
|
283
|
+
|
|
284
|
+
sage: E.cartan_type().special_nodes()
|
|
285
|
+
(0, 1, 2)
|
|
286
|
+
sage: F.special_nodes()
|
|
287
|
+
(0, 1, 2)
|
|
288
|
+
sage: [F(i) for i in F.special_nodes()]
|
|
289
|
+
[pi[0], pi[1], pi[2]]
|
|
290
|
+
|
|
291
|
+
There is a coercion from the fundamental group into each realization::
|
|
292
|
+
|
|
293
|
+
sage: F(2)
|
|
294
|
+
pi[2]
|
|
295
|
+
sage: WF(F(2))
|
|
296
|
+
pi[2]
|
|
297
|
+
sage: W0P(F(2))
|
|
298
|
+
s2*s1 * t[-Lambdacheck[1]]
|
|
299
|
+
sage: W0Pv(F(2))
|
|
300
|
+
s2*s1 * t[-Lambda[1]]
|
|
301
|
+
|
|
302
|
+
Using ``E`` one may access the classical and affine Weyl groups and their morphisms
|
|
303
|
+
into each realization::
|
|
304
|
+
|
|
305
|
+
sage: W0 = E.classical_weyl(); W0
|
|
306
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)
|
|
307
|
+
sage: v = W0.from_reduced_word([1,2,1]); v
|
|
308
|
+
s1*s2*s1
|
|
309
|
+
sage: PW0(v)
|
|
310
|
+
s1*s2*s1
|
|
311
|
+
sage: WF(v)
|
|
312
|
+
S1*S2*S1
|
|
313
|
+
sage: W = E.affine_weyl(); W
|
|
314
|
+
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)
|
|
315
|
+
sage: w = W.from_reduced_word([2,1,0]); w
|
|
316
|
+
S2*S1*S0
|
|
317
|
+
sage: WF(w)
|
|
318
|
+
S2*S1*S0
|
|
319
|
+
sage: PW0(w)
|
|
320
|
+
t[Lambdacheck[1] - 2*Lambdacheck[2]] * s1
|
|
321
|
+
|
|
322
|
+
Note that for untwisted affine type, the dual form of the classical
|
|
323
|
+
Weyl group is isomorphic to the usual one, but acts on a different
|
|
324
|
+
lattice and is therefore different to sage::
|
|
325
|
+
|
|
326
|
+
sage: W0v = E.dual_classical_weyl(); W0v
|
|
327
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)
|
|
328
|
+
sage: v = W0v.from_reduced_word([1,2])
|
|
329
|
+
sage: x = PvW0(v); x
|
|
330
|
+
s1*s2
|
|
331
|
+
sage: y = PW0(v); y
|
|
332
|
+
s1*s2
|
|
333
|
+
sage: x.parent() == y.parent()
|
|
334
|
+
False
|
|
335
|
+
|
|
336
|
+
However, because there is a coercion from ``PvW0`` to ``PW0``,
|
|
337
|
+
the elements ``x`` and ``y`` compare as equal::
|
|
338
|
+
|
|
339
|
+
sage: x == y
|
|
340
|
+
True
|
|
341
|
+
|
|
342
|
+
An element can be created directly from a reduced word::
|
|
343
|
+
|
|
344
|
+
sage: PW0.from_reduced_word([2,1,0])
|
|
345
|
+
t[Lambdacheck[1] - 2*Lambdacheck[2]] * s1
|
|
346
|
+
|
|
347
|
+
Here is a demonstration of the printing options::
|
|
348
|
+
|
|
349
|
+
sage: E = ExtendedAffineWeylGroup(["A",2,1], affine='sx', classical='Sx',
|
|
350
|
+
....: translation='x', fundamental='pix')
|
|
351
|
+
sage: PW0 = E.PW0()
|
|
352
|
+
sage: y = PW0(E.lattice_basis()[1]); y
|
|
353
|
+
x[Lambdacheck[1]]
|
|
354
|
+
sage: FW = E.FW()
|
|
355
|
+
sage: FW(y)
|
|
356
|
+
pix[1] * sx2*sx1
|
|
357
|
+
sage: PW0.an_element()
|
|
358
|
+
x[2*Lambdacheck[1] + 2*Lambdacheck[2]] * Sx1*Sx2
|
|
359
|
+
|
|
360
|
+
.. TODO::
|
|
361
|
+
|
|
362
|
+
- Implement a "slow" action of `E` on any affine root or weight lattice realization.
|
|
363
|
+
- Implement the level `m` actions of `E` and `W` on the lattices of finite type.
|
|
364
|
+
- Implement the relevant methods from the usual affine Weyl group
|
|
365
|
+
- Implementation by matrices: style "M".
|
|
366
|
+
- Use case: implement the Hecke algebra on top of this
|
|
367
|
+
|
|
368
|
+
The semidirect product construction in sage currently only
|
|
369
|
+
admits multiplicative groups. Therefore for the styles involving "P" and "Pv", one must
|
|
370
|
+
convert the additive group of translations `L` into a multiplicative group by
|
|
371
|
+
applying the :class:`sage.groups.group_exp.GroupExp` functor.
|
|
372
|
+
|
|
373
|
+
.. RUBRIC:: The general linear case
|
|
374
|
+
|
|
375
|
+
The general linear group is not semisimple. Sage can build its extended
|
|
376
|
+
affine Weyl group::
|
|
377
|
+
|
|
378
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], general_linear=True); E
|
|
379
|
+
Extended affine Weyl group of GL(3)
|
|
380
|
+
|
|
381
|
+
If the Cartan type is ``['A', n-1, 1]`` and the parameter ``general_linear`` is not
|
|
382
|
+
True, the extended affine Weyl group that is built will be for `SL_n`, not
|
|
383
|
+
`GL_n`. But if ``general_linear`` is True, let `W_a` and `W_e` be the affine and
|
|
384
|
+
extended affine Weyl groups. We make the following nonstandard definition: the
|
|
385
|
+
extended affine Weyl group `W_e(GL_n)` is defined by
|
|
386
|
+
|
|
387
|
+
.. MATH::
|
|
388
|
+
|
|
389
|
+
W_e(GL_n) = P(GL_n) \rtimes W
|
|
390
|
+
|
|
391
|
+
where `W` is the finite Weyl group (the symmetric group `S_n`) and `P(GL_n)` is the weight lattice
|
|
392
|
+
of `GL_n`, which is usually identified with the lattice `\ZZ^n` of `n`-tuples of integers::
|
|
393
|
+
|
|
394
|
+
sage: PW0 = E.PW0(); PW0
|
|
395
|
+
Extended affine Weyl group of GL(3) realized by Semidirect product of
|
|
396
|
+
Multiplicative form of Ambient space of the Root system of type ['A', 2] acted upon
|
|
397
|
+
by Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)
|
|
398
|
+
sage: PW0.an_element()
|
|
399
|
+
t[(2, 2, 3)] * s1*s2
|
|
400
|
+
|
|
401
|
+
There is an isomorphism
|
|
402
|
+
|
|
403
|
+
.. MATH::
|
|
404
|
+
|
|
405
|
+
W_e(GL_n) = \ZZ \ltimes W_a
|
|
406
|
+
|
|
407
|
+
where the group of integers `\ZZ` (with generator `\pi`) acts on `W_a` by
|
|
408
|
+
|
|
409
|
+
.. MATH::
|
|
410
|
+
|
|
411
|
+
\pi\, s_i\, \pi^{-1} = s_{i+1}
|
|
412
|
+
|
|
413
|
+
and the indices of the simple reflections are taken modulo `n`::
|
|
414
|
+
|
|
415
|
+
sage: FW = E.FW(); FW
|
|
416
|
+
Extended affine Weyl group of GL(3) realized by
|
|
417
|
+
Semidirect product of Fundamental group of GL(3) acting on
|
|
418
|
+
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)
|
|
419
|
+
sage: FW.an_element()
|
|
420
|
+
pi[5] * S0*S1*S2
|
|
421
|
+
|
|
422
|
+
We regard `\ZZ` as the fundamental group of affine type `GL_n`::
|
|
423
|
+
|
|
424
|
+
sage: F = E.fundamental_group(); F
|
|
425
|
+
Fundamental group of GL(3)
|
|
426
|
+
sage: F.special_nodes()
|
|
427
|
+
Integer Ring
|
|
428
|
+
|
|
429
|
+
sage: x = FW.from_fundamental(F(10)); x
|
|
430
|
+
pi[10]
|
|
431
|
+
sage: x*x
|
|
432
|
+
pi[20]
|
|
433
|
+
sage: E.PvW0()(x*x)
|
|
434
|
+
t[(7, 7, 6)] * s2*s1
|
|
435
|
+
"""
|
|
436
|
+
cartan_type = CartanType(cartan_type)
|
|
437
|
+
if cartan_type.is_reducible():
|
|
438
|
+
raise ValueError("Extended affine Weyl groups are only implemented for irreducible affine Cartan types")
|
|
439
|
+
if cartan_type.is_finite(): # a finite Cartan type is an abbreviation for its untwisted affinization
|
|
440
|
+
cartan_type = cartan_type.affine()
|
|
441
|
+
elif not cartan_type.is_affine():
|
|
442
|
+
raise ValueError("Cartan type must be finite or affine")
|
|
443
|
+
|
|
444
|
+
return ExtendedAffineWeylGroup_Class(cartan_type, general_linear, **print_options)
|
|
445
|
+
|
|
446
|
+
|
|
447
|
+
class ExtendedAffineWeylGroup_Class(UniqueRepresentation, Parent):
|
|
448
|
+
r"""
|
|
449
|
+
The parent-with-realization class of an extended affine Weyl group.
|
|
450
|
+
"""
|
|
451
|
+
|
|
452
|
+
def __init__(self, cartan_type, general_linear, **print_options):
|
|
453
|
+
r"""
|
|
454
|
+
|
|
455
|
+
EXAMPLES::
|
|
456
|
+
|
|
457
|
+
sage: E = ExtendedAffineWeylGroup(["D",3,2])
|
|
458
|
+
sage: E in Groups().Infinite()
|
|
459
|
+
True
|
|
460
|
+
sage: TestSuite(E).run()
|
|
461
|
+
"""
|
|
462
|
+
if not cartan_type.is_affine():
|
|
463
|
+
raise ValueError("%s is not affine" % cartan_type)
|
|
464
|
+
|
|
465
|
+
self._cartan_type = cartan_type
|
|
466
|
+
|
|
467
|
+
self._prefixt = "t"
|
|
468
|
+
self._prefixf = "pi"
|
|
469
|
+
self._prefixcl = None
|
|
470
|
+
self._prefixaf = None
|
|
471
|
+
self._print_tuple = False
|
|
472
|
+
|
|
473
|
+
if general_linear is True:
|
|
474
|
+
self._general_linear = True
|
|
475
|
+
self._n = self._cartan_type.n + 1
|
|
476
|
+
else:
|
|
477
|
+
self._general_linear = False
|
|
478
|
+
for option in print_options:
|
|
479
|
+
if option == 'translation':
|
|
480
|
+
self._prefixt = print_options['translation']
|
|
481
|
+
elif option == 'fundamental':
|
|
482
|
+
self._prefixf = print_options['fundamental']
|
|
483
|
+
elif option == 'print_tuple':
|
|
484
|
+
self._print_tuple = print_options['print_tuple']
|
|
485
|
+
elif option == 'affine':
|
|
486
|
+
self._prefixaf = print_options['affine']
|
|
487
|
+
elif option == 'classical':
|
|
488
|
+
self._prefixcl = print_options['classical']
|
|
489
|
+
else:
|
|
490
|
+
raise ValueError("Print option %s is unrecognized" % option)
|
|
491
|
+
|
|
492
|
+
if self._prefixaf:
|
|
493
|
+
if not self._prefixcl:
|
|
494
|
+
if self._prefixaf.islower():
|
|
495
|
+
self._prefixcl = self._prefixaf.upper()
|
|
496
|
+
else:
|
|
497
|
+
self._prefixcl = self._prefixaf.lower()
|
|
498
|
+
elif self._prefixcl:
|
|
499
|
+
if self._prefixcl.islower():
|
|
500
|
+
self._prefixaf = self._prefixcl.upper()
|
|
501
|
+
else:
|
|
502
|
+
self._prefixaf = self._prefixcl.lower()
|
|
503
|
+
else:
|
|
504
|
+
self._prefixaf = "S"
|
|
505
|
+
self._prefixcl = "s"
|
|
506
|
+
|
|
507
|
+
self._ct0 = cartan_type.classical()
|
|
508
|
+
self._R0 = self._ct0.root_system()
|
|
509
|
+
self._I0 = self._ct0.index_set()
|
|
510
|
+
self._ct0v = self._ct0.dual()
|
|
511
|
+
self._R0v = self._ct0v.root_system()
|
|
512
|
+
self._a0check = self._cartan_type.acheck()[self._cartan_type.special_node()]
|
|
513
|
+
|
|
514
|
+
if self._cartan_type.is_untwisted_affine():
|
|
515
|
+
self._type = 'untwisted'
|
|
516
|
+
elif self._cartan_type.dual().is_untwisted_affine():
|
|
517
|
+
self._type = 'dual_untwisted'
|
|
518
|
+
elif self._a0check == 1:
|
|
519
|
+
# if there are three root lengths with the special affine node extra short
|
|
520
|
+
self._type = 'special_extra_short'
|
|
521
|
+
else:
|
|
522
|
+
# if there are three root lengths with the special affine node extra long
|
|
523
|
+
self._type = 'special_extra_long'
|
|
524
|
+
# this boolean is used to decide which translation lattice to use
|
|
525
|
+
self._untwisted = (self._type in ('untwisted', 'special_extra_long'))
|
|
526
|
+
|
|
527
|
+
# fundamental group
|
|
528
|
+
self._fundamental_group = FundamentalGroupOfExtendedAffineWeylGroup(cartan_type, prefix=self._prefixf, general_linear=self._general_linear)
|
|
529
|
+
|
|
530
|
+
# lattice data
|
|
531
|
+
if self._untwisted:
|
|
532
|
+
if self._general_linear:
|
|
533
|
+
self._lattice = self._R0.ambient_space()
|
|
534
|
+
self._simpleR0 = self._lattice.simple_roots()
|
|
535
|
+
else:
|
|
536
|
+
self._lattice = self._R0.coweight_lattice()
|
|
537
|
+
self._basis_name = 'Lambdacheck'
|
|
538
|
+
self._simpleR0 = self._R0.root_lattice().simple_roots()
|
|
539
|
+
self._basis = self._lattice.fundamental_weights()
|
|
540
|
+
if self._type == 'special_extra_long':
|
|
541
|
+
self._special_root = self._R0.coroot_lattice().highest_root()
|
|
542
|
+
# get the node adjacent to the special affine node
|
|
543
|
+
# the [0] is just taking the first and only list element among the neighbors of the distinguished node
|
|
544
|
+
node_adjacent_to_special = self._cartan_type.dynkin_diagram().neighbors(self._cartan_type.special_node())[0]
|
|
545
|
+
self._special_translation = self._lattice.fundamental_weight(node_adjacent_to_special)
|
|
546
|
+
else:
|
|
547
|
+
# untwisted affine case
|
|
548
|
+
self._special_root = self._R0.root_lattice().highest_root().associated_coroot()
|
|
549
|
+
self._special_translation = self._special_root
|
|
550
|
+
self._special_translation_covector = self._special_root.associated_coroot()
|
|
551
|
+
# in the "Pv" realization for the untwisted case, the weight lattice of dual type is used for translations
|
|
552
|
+
if self._general_linear:
|
|
553
|
+
self._dual_lattice = self._lattice
|
|
554
|
+
else:
|
|
555
|
+
self._dual_lattice = self._R0v.weight_lattice()
|
|
556
|
+
self._dual_basis_name = 'Lambda'
|
|
557
|
+
self._dual_basis = self._dual_lattice.fundamental_weights()
|
|
558
|
+
else:
|
|
559
|
+
self._lattice = self._R0.weight_lattice()
|
|
560
|
+
self._basis = self._lattice.fundamental_weights()
|
|
561
|
+
self._basis_name = 'Lambda'
|
|
562
|
+
self._simpleR0 = self._R0.coroot_lattice().simple_roots()
|
|
563
|
+
if self._type == 'special_extra_short':
|
|
564
|
+
self._special_root = self._R0.root_lattice().highest_root()
|
|
565
|
+
node_adjacent_to_special = self._cartan_type.dynkin_diagram().neighbors(self._cartan_type.special_node())[0]
|
|
566
|
+
self._special_translation = self._lattice.fundamental_weight(node_adjacent_to_special)
|
|
567
|
+
self._special_translation_covector = 2*self._special_root.associated_coroot()
|
|
568
|
+
else:
|
|
569
|
+
# dual untwisted case
|
|
570
|
+
self._special_root = self._R0.coroot_lattice().highest_root().associated_coroot()
|
|
571
|
+
self._special_translation = self._special_root
|
|
572
|
+
self._special_translation_covector = self._special_root.associated_coroot()
|
|
573
|
+
|
|
574
|
+
self._dual_lattice = self._lattice
|
|
575
|
+
self._dual_basis = self._basis
|
|
576
|
+
self._dual_basis_name = 'Lambda'
|
|
577
|
+
|
|
578
|
+
# classical and affine Weyl groups
|
|
579
|
+
self._W0 = WeylGroup(self._lattice, prefix=self._prefixcl)
|
|
580
|
+
self._W = WeylGroup(self._cartan_type.root_system().root_lattice(), prefix=self._prefixaf)
|
|
581
|
+
self._special_reflection = self._W0.from_reduced_word(self._special_root.associated_reflection())
|
|
582
|
+
|
|
583
|
+
if self._general_linear:
|
|
584
|
+
self._special_root = self._special_root.to_ambient()
|
|
585
|
+
self._special_translation = self._special_root
|
|
586
|
+
self._special_translation_covector = self._special_root
|
|
587
|
+
|
|
588
|
+
# "Pv" version of classical Weyl group; use same prefix as for W0
|
|
589
|
+
self._W0v = WeylGroup(self._dual_lattice, prefix=self._prefixcl)
|
|
590
|
+
|
|
591
|
+
# wrap the lattice into a multiplicative group for internal use in the semidirect product
|
|
592
|
+
self._exp_lattice = GroupExp()(self._lattice)
|
|
593
|
+
self._exp_dual_lattice = GroupExp()(self._dual_lattice)
|
|
594
|
+
|
|
595
|
+
self._extended = True
|
|
596
|
+
|
|
597
|
+
Parent.__init__(self, category=Groups().WithRealizations().Infinite())
|
|
598
|
+
|
|
599
|
+
# create the realizations (they are cached)
|
|
600
|
+
PW0 = self.PW0()
|
|
601
|
+
W0P = self.W0P()
|
|
602
|
+
WF = self.WF()
|
|
603
|
+
FW = self.FW()
|
|
604
|
+
PvW0 = self.PvW0()
|
|
605
|
+
W0Pv = self.W0Pv()
|
|
606
|
+
|
|
607
|
+
# coercions between realizations
|
|
608
|
+
|
|
609
|
+
W0P_to_PW0 = SetMorphism(Hom(W0P, PW0, Groups()), lambda x: PW0(x.to_opposite()))
|
|
610
|
+
W0P_to_PW0.register_as_coercion()
|
|
611
|
+
|
|
612
|
+
PW0_to_W0P = SetMorphism(Hom(PW0, W0P, Groups()), lambda x: W0P(x.to_opposite()))
|
|
613
|
+
PW0_to_W0P.register_as_coercion()
|
|
614
|
+
|
|
615
|
+
FW_to_WF = SetMorphism(Hom(FW, WF, Groups()), lambda x: WF(x.to_opposite()))
|
|
616
|
+
FW_to_WF.register_as_coercion()
|
|
617
|
+
|
|
618
|
+
WF_to_FW = SetMorphism(Hom(WF, FW, Groups()), lambda x: FW(x.to_opposite()))
|
|
619
|
+
WF_to_FW.register_as_coercion()
|
|
620
|
+
|
|
621
|
+
PW0_to_WF = SetMorphism(Hom(PW0, WF, Groups()), self.PW0_to_WF_func)
|
|
622
|
+
PW0_to_WF.register_as_coercion()
|
|
623
|
+
WF_to_PW0 = SetMorphism(Hom(WF, PW0, Groups()), self.WF_to_PW0_func)
|
|
624
|
+
WF_to_PW0.register_as_coercion()
|
|
625
|
+
|
|
626
|
+
PvW0_to_W0Pv = SetMorphism(Hom(PvW0, W0Pv, Groups()), lambda x: W0Pv(x.to_opposite()))
|
|
627
|
+
PvW0_to_W0Pv.register_as_coercion()
|
|
628
|
+
W0Pv_to_PvW0 = SetMorphism(Hom(W0Pv, PvW0, Groups()), lambda x: PvW0(x.to_opposite()))
|
|
629
|
+
W0Pv_to_PvW0.register_as_coercion()
|
|
630
|
+
|
|
631
|
+
if self._general_linear:
|
|
632
|
+
PW0_to_PvW0 = SetMorphism(Hom(PW0, PvW0, Groups()), lambda x: PvW0((x.cartesian_projection(0),x.cartesian_projection(1))))
|
|
633
|
+
PvW0_to_PW0 = SetMorphism(Hom(PvW0, PW0, Groups()), lambda x: PW0((x.cartesian_projection(0),x.cartesian_projection(1))))
|
|
634
|
+
W0P_to_W0Pv = SetMorphism(Hom(W0P, W0Pv, Groups()), lambda x: W0Pv((x.cartesian_projection(0),x.cartesian_projection(1))))
|
|
635
|
+
W0Pv_to_W0P = SetMorphism(Hom(W0Pv, W0P, Groups()), lambda x: W0P((x.cartesian_projection(0),x.cartesian_projection(1))))
|
|
636
|
+
elif self._untwisted:
|
|
637
|
+
PW0_to_PvW0 = SetMorphism(Hom(PW0, PvW0, Groups()), lambda x: PvW0((self.exp_dual_lattice()(x.cartesian_projection(0).value.to_dual_type_cospace()),self.dual_classical_weyl().from_reduced_word(x.cartesian_projection(1).reduced_word()))))
|
|
638
|
+
PvW0_to_PW0 = SetMorphism(Hom(PvW0, PW0, Groups()), lambda x: PW0((self.exp_lattice()(x.cartesian_projection(0).value.to_dual_type_cospace()),self.classical_weyl().from_reduced_word(x.cartesian_projection(1).reduced_word()))))
|
|
639
|
+
W0P_to_W0Pv = SetMorphism(Hom(W0P, W0Pv, Groups()), lambda x: W0Pv((self.dual_classical_weyl().from_reduced_word(x.cartesian_projection(0).reduced_word()),self.exp_dual_lattice()(x.cartesian_projection(1).value.to_dual_type_cospace()))))
|
|
640
|
+
W0Pv_to_W0P = SetMorphism(Hom(W0Pv, W0P, Groups()), lambda x: W0P((self.classical_weyl().from_reduced_word(x.cartesian_projection(0).reduced_word()),self.exp_lattice()(x.cartesian_projection(1).value.to_dual_type_cospace()))))
|
|
641
|
+
else:
|
|
642
|
+
PW0_to_PvW0 = SetMorphism(Hom(PW0, PvW0, Groups()), lambda x: PvW0((x.cartesian_projection(0),self.dual_classical_weyl().from_reduced_word(x.cartesian_projection(1).reduced_word()))))
|
|
643
|
+
PvW0_to_PW0 = SetMorphism(Hom(PvW0, PW0, Groups()), lambda x: PW0((x.cartesian_projection(0),self.classical_weyl().from_reduced_word(x.cartesian_projection(1).reduced_word()))))
|
|
644
|
+
W0P_to_W0Pv = SetMorphism(Hom(W0P, W0Pv, Groups()), lambda x: W0Pv((self.dual_classical_weyl().from_reduced_word(x.cartesian_projection(0).reduced_word()),x.cartesian_projection(1))))
|
|
645
|
+
W0Pv_to_W0P = SetMorphism(Hom(W0Pv, W0P, Groups()), lambda x: W0P((self.classical_weyl().from_reduced_word(x.cartesian_projection(0).reduced_word()),x.cartesian_projection(1))))
|
|
646
|
+
|
|
647
|
+
PW0_to_PvW0.register_as_coercion()
|
|
648
|
+
PvW0_to_PW0.register_as_coercion()
|
|
649
|
+
W0P_to_W0Pv.register_as_coercion()
|
|
650
|
+
W0Pv_to_W0P.register_as_coercion()
|
|
651
|
+
|
|
652
|
+
# coercions of the translation lattice into the appropriate realizations
|
|
653
|
+
P_to_PW0 = SetMorphism(Hom(self.lattice(), PW0, Sets()), PW0.from_translation)
|
|
654
|
+
P_to_PW0.register_as_coercion()
|
|
655
|
+
P_to_W0P = SetMorphism(Hom(self.lattice(), W0P, Sets()), W0P.from_translation)
|
|
656
|
+
P_to_W0P.register_as_coercion()
|
|
657
|
+
Pv_to_PvW0 = SetMorphism(Hom(self.dual_lattice(), PvW0, Sets()), PvW0.from_dual_translation)
|
|
658
|
+
Pv_to_PvW0.register_as_coercion()
|
|
659
|
+
Pv_to_W0Pv = SetMorphism(Hom(self.dual_lattice(), W0Pv, Sets()), W0Pv.from_dual_translation)
|
|
660
|
+
Pv_to_W0Pv.register_as_coercion()
|
|
661
|
+
|
|
662
|
+
# coercions of the classical Weyl group into the appropriate realizations
|
|
663
|
+
|
|
664
|
+
W0_to_PW0 = SetMorphism(Hom(self.classical_weyl(), PW0, Groups()), PW0.from_classical_weyl)
|
|
665
|
+
W0_to_PW0.register_as_coercion()
|
|
666
|
+
W0_to_W0P = SetMorphism(Hom(self.classical_weyl(), W0P, Groups()), W0P.from_classical_weyl)
|
|
667
|
+
W0_to_W0P.register_as_coercion()
|
|
668
|
+
W0v_to_PvW0 = SetMorphism(Hom(self.dual_classical_weyl(), PvW0, Groups()), PvW0.from_dual_classical_weyl)
|
|
669
|
+
W0v_to_PvW0.register_as_coercion()
|
|
670
|
+
W0v_to_W0Pv = SetMorphism(Hom(self.dual_classical_weyl(), W0Pv, Groups()), W0Pv.from_dual_classical_weyl)
|
|
671
|
+
W0v_to_W0Pv.register_as_coercion()
|
|
672
|
+
|
|
673
|
+
# coercions of the fundamental group into the appropriate realizations
|
|
674
|
+
|
|
675
|
+
F_to_WF = SetMorphism(Hom(self.fundamental_group(), WF, Groups()), WF.from_fundamental)
|
|
676
|
+
F_to_WF.register_as_coercion()
|
|
677
|
+
F_to_FW = SetMorphism(Hom(self.fundamental_group(), FW, Groups()), FW.from_fundamental)
|
|
678
|
+
F_to_FW.register_as_coercion()
|
|
679
|
+
|
|
680
|
+
# coercions of the affine Weyl group into the appropriate realizations
|
|
681
|
+
|
|
682
|
+
W_to_WF = SetMorphism(Hom(self.affine_weyl(), WF, Groups()), WF.from_affine_weyl)
|
|
683
|
+
W_to_WF.register_as_coercion()
|
|
684
|
+
|
|
685
|
+
W_to_FW = SetMorphism(Hom(self.affine_weyl(), FW, Groups()), FW.from_affine_weyl)
|
|
686
|
+
W_to_FW.register_as_coercion()
|
|
687
|
+
|
|
688
|
+
def PW0(self):
|
|
689
|
+
r"""
|
|
690
|
+
Realizes ``self`` in "PW0"-style.
|
|
691
|
+
|
|
692
|
+
EXAMPLES::
|
|
693
|
+
|
|
694
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).PW0()
|
|
695
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by
|
|
696
|
+
Semidirect product of Multiplicative form of
|
|
697
|
+
Coweight lattice of the Root system of type ['A', 2] acted upon by
|
|
698
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)
|
|
699
|
+
"""
|
|
700
|
+
return self.ExtendedAffineWeylGroupPW0()
|
|
701
|
+
|
|
702
|
+
def W0P(self):
|
|
703
|
+
r"""
|
|
704
|
+
Realizes ``self`` in "W0P"-style.
|
|
705
|
+
|
|
706
|
+
EXAMPLES::
|
|
707
|
+
|
|
708
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).W0P()
|
|
709
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
710
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)
|
|
711
|
+
acting on Multiplicative form of Coweight lattice of the Root system of type ['A', 2]
|
|
712
|
+
"""
|
|
713
|
+
return self.ExtendedAffineWeylGroupW0P()
|
|
714
|
+
|
|
715
|
+
def WF(self):
|
|
716
|
+
r"""
|
|
717
|
+
Realizes ``self`` in "WF"-style.
|
|
718
|
+
|
|
719
|
+
EXAMPLES::
|
|
720
|
+
|
|
721
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).WF()
|
|
722
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
723
|
+
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)
|
|
724
|
+
acted upon by Fundamental group of type ['A', 2, 1]
|
|
725
|
+
"""
|
|
726
|
+
return self.ExtendedAffineWeylGroupWF()
|
|
727
|
+
|
|
728
|
+
def FW(self):
|
|
729
|
+
r"""
|
|
730
|
+
Realizes ``self`` in "FW"-style.
|
|
731
|
+
|
|
732
|
+
EXAMPLES::
|
|
733
|
+
|
|
734
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).FW()
|
|
735
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
736
|
+
Fundamental group of type ['A', 2, 1] acting on
|
|
737
|
+
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)
|
|
738
|
+
"""
|
|
739
|
+
return self.ExtendedAffineWeylGroupFW()
|
|
740
|
+
|
|
741
|
+
def PvW0(self):
|
|
742
|
+
r"""
|
|
743
|
+
Realizes ``self`` in "PvW0"-style.
|
|
744
|
+
|
|
745
|
+
EXAMPLES::
|
|
746
|
+
|
|
747
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).PvW0()
|
|
748
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
749
|
+
Multiplicative form of Weight lattice of the Root system of type ['A', 2]
|
|
750
|
+
acted upon by Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)
|
|
751
|
+
"""
|
|
752
|
+
return self.ExtendedAffineWeylGroupPvW0()
|
|
753
|
+
|
|
754
|
+
def W0Pv(self):
|
|
755
|
+
r"""
|
|
756
|
+
Realizes ``self`` in "W0Pv"-style.
|
|
757
|
+
|
|
758
|
+
EXAMPLES::
|
|
759
|
+
|
|
760
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).W0Pv()
|
|
761
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
762
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)
|
|
763
|
+
acting on Multiplicative form of Weight lattice of the Root system of type ['A', 2]
|
|
764
|
+
"""
|
|
765
|
+
return self.ExtendedAffineWeylGroupW0Pv()
|
|
766
|
+
|
|
767
|
+
def cartan_type(self):
|
|
768
|
+
r"""
|
|
769
|
+
The Cartan type of ``self``.
|
|
770
|
+
|
|
771
|
+
EXAMPLES::
|
|
772
|
+
|
|
773
|
+
sage: ExtendedAffineWeylGroup(["D",3,2]).cartan_type()
|
|
774
|
+
['C', 2, 1]^*
|
|
775
|
+
"""
|
|
776
|
+
return self._cartan_type
|
|
777
|
+
|
|
778
|
+
def _repr_(self):
|
|
779
|
+
r"""
|
|
780
|
+
A string representing ``self``.
|
|
781
|
+
|
|
782
|
+
EXAMPLES::
|
|
783
|
+
|
|
784
|
+
sage: ExtendedAffineWeylGroup(['A',2,1])
|
|
785
|
+
Extended affine Weyl group of type ['A', 2, 1]
|
|
786
|
+
"""
|
|
787
|
+
if self._general_linear:
|
|
788
|
+
return "Extended affine Weyl group of GL(%s)" % self._n
|
|
789
|
+
return "Extended affine Weyl group of type %s" % self.cartan_type()
|
|
790
|
+
|
|
791
|
+
def fundamental_group(self):
|
|
792
|
+
r"""
|
|
793
|
+
Return the abstract fundamental group.
|
|
794
|
+
|
|
795
|
+
EXAMPLES::
|
|
796
|
+
|
|
797
|
+
sage: F = ExtendedAffineWeylGroup(['D',5,1]).fundamental_group(); F
|
|
798
|
+
Fundamental group of type ['D', 5, 1]
|
|
799
|
+
sage: [a for a in F]
|
|
800
|
+
[pi[0], pi[1], pi[4], pi[5]]
|
|
801
|
+
"""
|
|
802
|
+
return self._fundamental_group
|
|
803
|
+
|
|
804
|
+
def lattice(self):
|
|
805
|
+
r"""
|
|
806
|
+
Return the translation lattice for ``self``.
|
|
807
|
+
|
|
808
|
+
EXAMPLES::
|
|
809
|
+
|
|
810
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).lattice()
|
|
811
|
+
Coweight lattice of the Root system of type ['A', 2]
|
|
812
|
+
sage: ExtendedAffineWeylGroup(['A',5,2]).lattice()
|
|
813
|
+
Weight lattice of the Root system of type ['C', 3]
|
|
814
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).lattice()
|
|
815
|
+
Weight lattice of the Root system of type ['C', 2]
|
|
816
|
+
sage: ExtendedAffineWeylGroup(CartanType(['A',4,2]).dual()).lattice()
|
|
817
|
+
Coweight lattice of the Root system of type ['B', 2]
|
|
818
|
+
sage: ExtendedAffineWeylGroup(CartanType(['A',2,1]),
|
|
819
|
+
....: general_linear=True).lattice()
|
|
820
|
+
Ambient space of the Root system of type ['A', 2]
|
|
821
|
+
"""
|
|
822
|
+
|
|
823
|
+
return self._lattice
|
|
824
|
+
|
|
825
|
+
def exp_lattice(self):
|
|
826
|
+
r"""
|
|
827
|
+
Return the multiplicative version of the translation lattice for ``self``.
|
|
828
|
+
|
|
829
|
+
EXAMPLES::
|
|
830
|
+
|
|
831
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).exp_lattice()
|
|
832
|
+
Multiplicative form of Coweight lattice of the Root system of type ['A', 2]
|
|
833
|
+
"""
|
|
834
|
+
return self._exp_lattice
|
|
835
|
+
|
|
836
|
+
def lattice_basis(self):
|
|
837
|
+
r"""
|
|
838
|
+
Return the distinguished basis of the translation lattice for ``self``.
|
|
839
|
+
|
|
840
|
+
EXAMPLES::
|
|
841
|
+
|
|
842
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).lattice_basis()
|
|
843
|
+
Finite family {1: Lambdacheck[1], 2: Lambdacheck[2]}
|
|
844
|
+
sage: ExtendedAffineWeylGroup(['A',5,2]).lattice_basis()
|
|
845
|
+
Finite family {1: Lambda[1], 2: Lambda[2], 3: Lambda[3]}
|
|
846
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).lattice_basis()
|
|
847
|
+
Finite family {1: Lambda[1], 2: Lambda[2]}
|
|
848
|
+
sage: ExtendedAffineWeylGroup(CartanType(['A',4,2]).dual()).lattice_basis()
|
|
849
|
+
Finite family {1: Lambdacheck[1], 2: Lambdacheck[2]}
|
|
850
|
+
"""
|
|
851
|
+
return self._basis
|
|
852
|
+
|
|
853
|
+
def dual_lattice(self):
|
|
854
|
+
r"""
|
|
855
|
+
Return the dual version of the translation lattice for ``self``.
|
|
856
|
+
|
|
857
|
+
EXAMPLES::
|
|
858
|
+
|
|
859
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).dual_lattice()
|
|
860
|
+
Weight lattice of the Root system of type ['A', 2]
|
|
861
|
+
sage: ExtendedAffineWeylGroup(['A',5,2]).dual_lattice()
|
|
862
|
+
Weight lattice of the Root system of type ['C', 3]
|
|
863
|
+
"""
|
|
864
|
+
return self._dual_lattice
|
|
865
|
+
|
|
866
|
+
def exp_dual_lattice(self):
|
|
867
|
+
r"""
|
|
868
|
+
Return the multiplicative version of the dual version of the translation lattice for ``self``.
|
|
869
|
+
|
|
870
|
+
EXAMPLES::
|
|
871
|
+
|
|
872
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).exp_dual_lattice()
|
|
873
|
+
Multiplicative form of Weight lattice of the Root system of type ['A', 2]
|
|
874
|
+
"""
|
|
875
|
+
return self._exp_dual_lattice
|
|
876
|
+
|
|
877
|
+
def dual_lattice_basis(self):
|
|
878
|
+
r"""
|
|
879
|
+
Return the distinguished basis of the dual version of the translation lattice for ``self``.
|
|
880
|
+
|
|
881
|
+
EXAMPLES::
|
|
882
|
+
|
|
883
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).dual_lattice_basis()
|
|
884
|
+
Finite family {1: Lambda[1], 2: Lambda[2]}
|
|
885
|
+
sage: ExtendedAffineWeylGroup(['A',5,2]).dual_lattice_basis()
|
|
886
|
+
Finite family {1: Lambda[1], 2: Lambda[2], 3: Lambda[3]}
|
|
887
|
+
"""
|
|
888
|
+
return self._dual_basis
|
|
889
|
+
|
|
890
|
+
def classical_weyl(self):
|
|
891
|
+
r"""
|
|
892
|
+
Return the classical Weyl group of ``self``.
|
|
893
|
+
|
|
894
|
+
EXAMPLES::
|
|
895
|
+
|
|
896
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).classical_weyl()
|
|
897
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)
|
|
898
|
+
sage: ExtendedAffineWeylGroup(['A',5,2]).classical_weyl()
|
|
899
|
+
Weyl Group of type ['C', 3] (as a matrix group acting on the weight lattice)
|
|
900
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).classical_weyl()
|
|
901
|
+
Weyl Group of type ['C', 2] (as a matrix group acting on the weight lattice)
|
|
902
|
+
sage: ExtendedAffineWeylGroup(CartanType(['A',4,2]).dual()).classical_weyl()
|
|
903
|
+
Weyl Group of type ['C', 2] (as a matrix group acting on the coweight lattice)
|
|
904
|
+
"""
|
|
905
|
+
return self._W0
|
|
906
|
+
|
|
907
|
+
def dual_classical_weyl(self):
|
|
908
|
+
r"""
|
|
909
|
+
Return the dual version of the classical Weyl group of ``self``.
|
|
910
|
+
|
|
911
|
+
EXAMPLES::
|
|
912
|
+
|
|
913
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).dual_classical_weyl()
|
|
914
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)
|
|
915
|
+
sage: ExtendedAffineWeylGroup(['A',5,2]).dual_classical_weyl()
|
|
916
|
+
Weyl Group of type ['C', 3] (as a matrix group acting on the weight lattice)
|
|
917
|
+
"""
|
|
918
|
+
return self._W0v
|
|
919
|
+
|
|
920
|
+
def affine_weyl(self):
|
|
921
|
+
r"""
|
|
922
|
+
Return the affine Weyl group of ``self``.
|
|
923
|
+
|
|
924
|
+
EXAMPLES::
|
|
925
|
+
|
|
926
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).affine_weyl()
|
|
927
|
+
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)
|
|
928
|
+
sage: ExtendedAffineWeylGroup(['A',5,2]).affine_weyl()
|
|
929
|
+
Weyl Group of type ['B', 3, 1]^* (as a matrix group acting on the root lattice)
|
|
930
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).affine_weyl()
|
|
931
|
+
Weyl Group of type ['BC', 2, 2] (as a matrix group acting on the root lattice)
|
|
932
|
+
sage: ExtendedAffineWeylGroup(CartanType(['A',4,2]).dual()).affine_weyl()
|
|
933
|
+
Weyl Group of type ['BC', 2, 2]^* (as a matrix group acting on the root lattice)
|
|
934
|
+
"""
|
|
935
|
+
return self._W
|
|
936
|
+
|
|
937
|
+
def classical_weyl_to_affine(self, w):
|
|
938
|
+
r"""
|
|
939
|
+
The image of `w` under the homomorphism from the classical Weyl group into the affine Weyl group.
|
|
940
|
+
|
|
941
|
+
EXAMPLES::
|
|
942
|
+
|
|
943
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
944
|
+
sage: W0 = E.classical_weyl()
|
|
945
|
+
sage: w = W0.from_reduced_word([1,2]); w
|
|
946
|
+
s1*s2
|
|
947
|
+
sage: v = E.classical_weyl_to_affine(w); v
|
|
948
|
+
S1*S2
|
|
949
|
+
"""
|
|
950
|
+
return self.affine_weyl().from_reduced_word(w.reduced_word())
|
|
951
|
+
|
|
952
|
+
def dual_classical_weyl_to_affine(self, w):
|
|
953
|
+
r"""
|
|
954
|
+
The image of `w` under the homomorphism from the dual version of the classical
|
|
955
|
+
Weyl group into the affine Weyl group.
|
|
956
|
+
|
|
957
|
+
EXAMPLES::
|
|
958
|
+
|
|
959
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
960
|
+
sage: W0v = E.dual_classical_weyl()
|
|
961
|
+
sage: w = W0v.from_reduced_word([1,2]); w
|
|
962
|
+
s1*s2
|
|
963
|
+
sage: v = E.dual_classical_weyl_to_affine(w); v
|
|
964
|
+
S1*S2
|
|
965
|
+
"""
|
|
966
|
+
return self.affine_weyl().from_reduced_word(w.reduced_word())
|
|
967
|
+
|
|
968
|
+
def a_realization(self):
|
|
969
|
+
r"""
|
|
970
|
+
Return the default realization of an extended affine Weyl group.
|
|
971
|
+
|
|
972
|
+
EXAMPLES::
|
|
973
|
+
|
|
974
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).a_realization()
|
|
975
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
976
|
+
Multiplicative form of Coweight lattice of the Root system of type ['A', 2]
|
|
977
|
+
acted upon by Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)
|
|
978
|
+
"""
|
|
979
|
+
return self.PW0()
|
|
980
|
+
|
|
981
|
+
def group_generators(self):
|
|
982
|
+
r"""
|
|
983
|
+
Return a set of generators for the default realization of ``self``.
|
|
984
|
+
|
|
985
|
+
EXAMPLES::
|
|
986
|
+
|
|
987
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).group_generators()
|
|
988
|
+
(t[Lambdacheck[1]], t[Lambdacheck[2]], s1, s2)
|
|
989
|
+
"""
|
|
990
|
+
return self.a_realization().group_generators()
|
|
991
|
+
|
|
992
|
+
@cached_method
|
|
993
|
+
def PW0_to_WF_func(self, x):
|
|
994
|
+
r"""
|
|
995
|
+
Implement coercion from style "PW0" to "WF".
|
|
996
|
+
|
|
997
|
+
EXAMPLES::
|
|
998
|
+
|
|
999
|
+
sage: E = ExtendedAffineWeylGroup(["A", 2, 1])
|
|
1000
|
+
sage: x = E.PW0().an_element(); x
|
|
1001
|
+
t[2*Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2
|
|
1002
|
+
sage: E.PW0_to_WF_func(x)
|
|
1003
|
+
S0*S1*S2*S0*S1*S0
|
|
1004
|
+
|
|
1005
|
+
.. WARNING::
|
|
1006
|
+
|
|
1007
|
+
This function cannot use coercion, because it is used to define the coercion maps.
|
|
1008
|
+
"""
|
|
1009
|
+
i = x.first_descent(side='left')
|
|
1010
|
+
if i is None:
|
|
1011
|
+
t = x.to_translation_left()
|
|
1012
|
+
# t must be zero or a special fundamental basis element
|
|
1013
|
+
if self._general_linear:
|
|
1014
|
+
ispecial = ZZ.sum([t[j] for j in t.support()])
|
|
1015
|
+
elif t == self.lattice().zero():
|
|
1016
|
+
ispecial = 0
|
|
1017
|
+
else:
|
|
1018
|
+
supp = t.support()
|
|
1019
|
+
assert len(supp) == 1
|
|
1020
|
+
ispecial = supp[0]
|
|
1021
|
+
return self.WF().from_fundamental(self.fundamental_group()(ispecial))
|
|
1022
|
+
return self.PW0_to_WF_func(x.apply_simple_reflection(i, side='left')).apply_simple_reflection(i, side='left')
|
|
1023
|
+
|
|
1024
|
+
@cached_method
|
|
1025
|
+
def WF_to_PW0_func(self, x):
|
|
1026
|
+
r"""
|
|
1027
|
+
Coercion from style "WF" to "PW0".
|
|
1028
|
+
|
|
1029
|
+
EXAMPLES::
|
|
1030
|
+
|
|
1031
|
+
sage: E = ExtendedAffineWeylGroup(["A", 2, 1])
|
|
1032
|
+
sage: x = E.WF().an_element(); x
|
|
1033
|
+
S0*S1*S2 * pi[2]
|
|
1034
|
+
sage: E.WF_to_PW0_func(x)
|
|
1035
|
+
t[Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2*s1
|
|
1036
|
+
|
|
1037
|
+
.. WARNING::
|
|
1038
|
+
|
|
1039
|
+
Since this is used to define some coercion maps it cannot itself use coercion.
|
|
1040
|
+
"""
|
|
1041
|
+
w = x.to_affine_weyl_left()
|
|
1042
|
+
f = x.to_fundamental_group()
|
|
1043
|
+
i = w.first_descent(side='left')
|
|
1044
|
+
if i is not None:
|
|
1045
|
+
return self.WF_to_PW0_func(x.apply_simple_reflection(i, side='left')).apply_simple_reflection(i, side='left')
|
|
1046
|
+
# the element is in the fundamental group
|
|
1047
|
+
PW0 = self.PW0()
|
|
1048
|
+
ispecial = f.value()
|
|
1049
|
+
W = self.classical_weyl()
|
|
1050
|
+
if self._general_linear:
|
|
1051
|
+
r = ZZ(Mod(ispecial, self._n))
|
|
1052
|
+
weight = self.lattice().from_vector(vector([ZZ((ispecial-r)/self._n)]*self._n))
|
|
1053
|
+
if r != ZZ(0):
|
|
1054
|
+
weight = weight + self.lattice_basis()[r]
|
|
1055
|
+
wo = W.from_reduced_word(self.fundamental_group().reduced_word(r))
|
|
1056
|
+
else:
|
|
1057
|
+
wo = W.one()
|
|
1058
|
+
elif ispecial == 0:
|
|
1059
|
+
weight = self.lattice().zero()
|
|
1060
|
+
wo = W.one()
|
|
1061
|
+
else:
|
|
1062
|
+
weight = self.lattice_basis()[ispecial]
|
|
1063
|
+
wo = W.from_reduced_word(self.fundamental_group().reduced_word(ispecial))
|
|
1064
|
+
return PW0((weight,wo))
|
|
1065
|
+
|
|
1066
|
+
class Realizations(Category_realization_of_parent):
|
|
1067
|
+
r"""
|
|
1068
|
+
The category of the realizations of an extended affine Weyl group
|
|
1069
|
+
"""
|
|
1070
|
+
|
|
1071
|
+
def super_categories(self):
|
|
1072
|
+
r"""
|
|
1073
|
+
EXAMPLES::
|
|
1074
|
+
|
|
1075
|
+
sage: R = ExtendedAffineWeylGroup(['A',2,1]).Realizations(); R
|
|
1076
|
+
Category of realizations of Extended affine Weyl group of type ['A', 2, 1]
|
|
1077
|
+
sage: R.super_categories()
|
|
1078
|
+
[Category of associative inverse realizations of unital magmas]
|
|
1079
|
+
"""
|
|
1080
|
+
return [Groups().Realizations()]
|
|
1081
|
+
|
|
1082
|
+
class ParentMethods:
|
|
1083
|
+
|
|
1084
|
+
@cached_method
|
|
1085
|
+
def from_fundamental(self, x):
|
|
1086
|
+
r"""
|
|
1087
|
+
Return the image of `x` under the homomorphism from the fundamental group into
|
|
1088
|
+
``self``.
|
|
1089
|
+
|
|
1090
|
+
EXAMPLES::
|
|
1091
|
+
|
|
1092
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1])
|
|
1093
|
+
sage: PW0=E.PW0()
|
|
1094
|
+
sage: F = E.fundamental_group()
|
|
1095
|
+
sage: Is = F.special_nodes()
|
|
1096
|
+
sage: [(i, PW0.from_fundamental(F(i))) for i in Is]
|
|
1097
|
+
[(0, 1),
|
|
1098
|
+
(1, t[Lambdacheck[1]] * s1*s2*s3),
|
|
1099
|
+
(2, t[Lambdacheck[2]] * s2*s3*s1*s2),
|
|
1100
|
+
(3, t[Lambdacheck[3]] * s3*s2*s1)]
|
|
1101
|
+
sage: [(i, E.W0P().from_fundamental((F(i)))) for i in Is]
|
|
1102
|
+
[(0, 1),
|
|
1103
|
+
(1, s1*s2*s3 * t[-Lambdacheck[3]]),
|
|
1104
|
+
(2, s2*s3*s1*s2 * t[-Lambdacheck[2]]),
|
|
1105
|
+
(3, s3*s2*s1 * t[-Lambdacheck[1]])]
|
|
1106
|
+
sage: [(i, E.WF().from_fundamental(F(i))) for i in Is]
|
|
1107
|
+
[(0, 1), (1, pi[1]), (2, pi[2]), (3, pi[3])]
|
|
1108
|
+
|
|
1109
|
+
.. WARNING::
|
|
1110
|
+
|
|
1111
|
+
This method must be implemented by the "WF" and "FW" realizations.
|
|
1112
|
+
"""
|
|
1113
|
+
WF = self.realization_of().WF()
|
|
1114
|
+
return self(WF.from_fundamental(x))
|
|
1115
|
+
|
|
1116
|
+
def from_translation(self, la):
|
|
1117
|
+
r"""
|
|
1118
|
+
Return the element of translation by ``la`` in ``self``.
|
|
1119
|
+
|
|
1120
|
+
INPUT:
|
|
1121
|
+
|
|
1122
|
+
- ``self`` -- a realization of the extended affine Weyl group
|
|
1123
|
+
- ``la`` -- an element of the translation lattice
|
|
1124
|
+
|
|
1125
|
+
In the notation of the documentation for :meth:`ExtendedAffineWeylGroup`,
|
|
1126
|
+
``la`` must be an element of "P".
|
|
1127
|
+
|
|
1128
|
+
EXAMPLES::
|
|
1129
|
+
|
|
1130
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1]); PW0 = E.PW0()
|
|
1131
|
+
sage: b = E.lattice_basis(); b
|
|
1132
|
+
Finite family {1: Lambdacheck[1], 2: Lambdacheck[2]}
|
|
1133
|
+
sage: x = PW0.from_translation(2*b[1] - b[2]); x
|
|
1134
|
+
t[2*Lambdacheck[1] - Lambdacheck[2]]
|
|
1135
|
+
sage: FW = E.FW()
|
|
1136
|
+
sage: y = FW.from_translation(2*b[1] - b[2]); y
|
|
1137
|
+
S0*S2*S0*S1
|
|
1138
|
+
sage: FW(x) == y
|
|
1139
|
+
True
|
|
1140
|
+
|
|
1141
|
+
Since the implementation as a semidirect product requires
|
|
1142
|
+
wrapping the lattice group to make it multiplicative,
|
|
1143
|
+
we cannot declare that this map is a morphism for
|
|
1144
|
+
sage ``Groups()``.
|
|
1145
|
+
|
|
1146
|
+
.. WARNING::
|
|
1147
|
+
|
|
1148
|
+
This method must be implemented by the "PW0" and "W0P" realizations.
|
|
1149
|
+
"""
|
|
1150
|
+
PW0 = self.realization_of().PW0()
|
|
1151
|
+
return self(PW0.from_translation(la))
|
|
1152
|
+
|
|
1153
|
+
def from_dual_translation(self, la):
|
|
1154
|
+
r"""
|
|
1155
|
+
Return the image of ``la`` under the homomorphism of the dual version of the
|
|
1156
|
+
translation lattice into ``self``.
|
|
1157
|
+
|
|
1158
|
+
EXAMPLES::
|
|
1159
|
+
|
|
1160
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1]); PvW0 = E.PvW0()
|
|
1161
|
+
sage: bv = E.dual_lattice_basis(); bv
|
|
1162
|
+
Finite family {1: Lambda[1], 2: Lambda[2]}
|
|
1163
|
+
sage: x = PvW0.from_dual_translation(2*bv[1] - bv[2]); x
|
|
1164
|
+
t[2*Lambda[1] - Lambda[2]]
|
|
1165
|
+
sage: FW = E.FW()
|
|
1166
|
+
sage: y = FW.from_dual_translation(2*bv[1] - bv[2]); y
|
|
1167
|
+
S0*S2*S0*S1
|
|
1168
|
+
sage: FW(x) == y
|
|
1169
|
+
True
|
|
1170
|
+
"""
|
|
1171
|
+
return self(self.realization_of().PvW0().from_dual_translation(la))
|
|
1172
|
+
|
|
1173
|
+
@abstract_method
|
|
1174
|
+
def simple_reflections(self):
|
|
1175
|
+
r"""
|
|
1176
|
+
Return a family from the set of affine Dynkin nodes to the simple reflections
|
|
1177
|
+
in the realization of the extended affine Weyl group.
|
|
1178
|
+
|
|
1179
|
+
EXAMPLES::
|
|
1180
|
+
|
|
1181
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).W0P().simple_reflections()
|
|
1182
|
+
Finite family {0: s1*s2*s3*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[3]],
|
|
1183
|
+
1: s1, 2: s2, 3: s3}
|
|
1184
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).WF().simple_reflections()
|
|
1185
|
+
Finite family {0: S0, 1: S1, 2: S2, 3: S3}
|
|
1186
|
+
sage: ExtendedAffineWeylGroup(['A',3,1],
|
|
1187
|
+
....: print_tuple=True).FW().simple_reflections()
|
|
1188
|
+
Finite family {0: (pi[0], S0), 1: (pi[0], S1),
|
|
1189
|
+
2: (pi[0], S2), 3: (pi[0], S3)}
|
|
1190
|
+
sage: ExtendedAffineWeylGroup(['A',3,1],
|
|
1191
|
+
....: fundamental='f',
|
|
1192
|
+
....: print_tuple=True).FW().simple_reflections()
|
|
1193
|
+
Finite family {0: (f[0], S0), 1: (f[0], S1),
|
|
1194
|
+
2: (f[0], S2), 3: (f[0], S3)}
|
|
1195
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).PvW0().simple_reflections()
|
|
1196
|
+
Finite family {0: t[Lambda[1] + Lambda[3]] * s1*s2*s3*s2*s1,
|
|
1197
|
+
1: s1, 2: s2, 3: s3}
|
|
1198
|
+
"""
|
|
1199
|
+
|
|
1200
|
+
def simple_reflection(self, i):
|
|
1201
|
+
r"""
|
|
1202
|
+
Return the `i`-th simple reflection in ``self``.
|
|
1203
|
+
|
|
1204
|
+
INPUT:
|
|
1205
|
+
|
|
1206
|
+
- ``self`` -- a realization of the extended affine Weyl group
|
|
1207
|
+
- ``i`` -- an affine Dynkin node
|
|
1208
|
+
|
|
1209
|
+
EXAMPLES::
|
|
1210
|
+
|
|
1211
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).PW0().simple_reflection(0)
|
|
1212
|
+
t[Lambdacheck[1] + Lambdacheck[3]] * s1*s2*s3*s2*s1
|
|
1213
|
+
sage: ExtendedAffineWeylGroup(['C',2,1]).WF().simple_reflection(0)
|
|
1214
|
+
S0
|
|
1215
|
+
sage: ExtendedAffineWeylGroup(['D',3,2]).PvW0().simple_reflection(1)
|
|
1216
|
+
s1
|
|
1217
|
+
"""
|
|
1218
|
+
return self.simple_reflections()[i]
|
|
1219
|
+
|
|
1220
|
+
def from_classical_weyl(self, w):
|
|
1221
|
+
r"""
|
|
1222
|
+
Return the image of `w` from the finite Weyl group into ``self``.
|
|
1223
|
+
|
|
1224
|
+
EXAMPLES::
|
|
1225
|
+
|
|
1226
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0=E.PW0()
|
|
1227
|
+
sage: W0 = E.classical_weyl()
|
|
1228
|
+
sage: w = W0.from_reduced_word([2,1,3])
|
|
1229
|
+
sage: y = PW0.from_classical_weyl(w); y
|
|
1230
|
+
s2*s3*s1
|
|
1231
|
+
sage: y.parent() == PW0
|
|
1232
|
+
True
|
|
1233
|
+
sage: y.to_classical_weyl() == w
|
|
1234
|
+
True
|
|
1235
|
+
sage: W0P = E.W0P()
|
|
1236
|
+
sage: z = W0P.from_classical_weyl(w); z
|
|
1237
|
+
s2*s3*s1
|
|
1238
|
+
sage: z.parent() == W0P
|
|
1239
|
+
True
|
|
1240
|
+
sage: W0P(y) == z
|
|
1241
|
+
True
|
|
1242
|
+
sage: FW = E.FW()
|
|
1243
|
+
sage: x = FW.from_classical_weyl(w); x
|
|
1244
|
+
S2*S3*S1
|
|
1245
|
+
sage: x.parent() == FW
|
|
1246
|
+
True
|
|
1247
|
+
sage: FW(y) == x
|
|
1248
|
+
True
|
|
1249
|
+
sage: FW(z) == x
|
|
1250
|
+
True
|
|
1251
|
+
|
|
1252
|
+
.. WARNING::
|
|
1253
|
+
|
|
1254
|
+
Must be implemented in style "PW0" and "W0P".
|
|
1255
|
+
"""
|
|
1256
|
+
PW0 = self.realization_of().PW0()
|
|
1257
|
+
return self(PW0.from_classical_weyl(w))
|
|
1258
|
+
|
|
1259
|
+
def from_dual_classical_weyl(self, w):
|
|
1260
|
+
r"""
|
|
1261
|
+
Return the image of `w` from the finite Weyl group of dual form into ``self``.
|
|
1262
|
+
|
|
1263
|
+
EXAMPLES::
|
|
1264
|
+
|
|
1265
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); PvW0 = E.PvW0()
|
|
1266
|
+
sage: W0v = E.dual_classical_weyl()
|
|
1267
|
+
sage: w = W0v.from_reduced_word([2,1,3])
|
|
1268
|
+
sage: y = PvW0.from_dual_classical_weyl(w); y
|
|
1269
|
+
s2*s3*s1
|
|
1270
|
+
sage: y.parent() == PvW0
|
|
1271
|
+
True
|
|
1272
|
+
sage: y.to_dual_classical_weyl() == w
|
|
1273
|
+
True
|
|
1274
|
+
sage: x = E.FW().from_dual_classical_weyl(w); x
|
|
1275
|
+
S2*S3*S1
|
|
1276
|
+
sage: PvW0(x) == y
|
|
1277
|
+
True
|
|
1278
|
+
|
|
1279
|
+
.. WARNING::
|
|
1280
|
+
|
|
1281
|
+
Must be implemented in style "PvW0" and "W0Pv".
|
|
1282
|
+
"""
|
|
1283
|
+
return self(self.realization_of().PvW0().from_dual_classical_weyl(w))
|
|
1284
|
+
|
|
1285
|
+
def from_affine_weyl(self, w):
|
|
1286
|
+
r"""
|
|
1287
|
+
Return the image of `w` under the homomorphism from the affine Weyl group
|
|
1288
|
+
into ``self``.
|
|
1289
|
+
|
|
1290
|
+
EXAMPLES::
|
|
1291
|
+
|
|
1292
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0 = E.PW0()
|
|
1293
|
+
sage: W = E.affine_weyl()
|
|
1294
|
+
sage: w = W.from_reduced_word([2,1,3,0])
|
|
1295
|
+
sage: x = PW0.from_affine_weyl(w); x
|
|
1296
|
+
t[Lambdacheck[1] - 2*Lambdacheck[2] + Lambdacheck[3]] * s3*s1
|
|
1297
|
+
sage: FW = E.FW()
|
|
1298
|
+
sage: y = FW.from_affine_weyl(w); y
|
|
1299
|
+
S2*S3*S1*S0
|
|
1300
|
+
sage: FW(x) == y
|
|
1301
|
+
True
|
|
1302
|
+
|
|
1303
|
+
.. WARNING::
|
|
1304
|
+
|
|
1305
|
+
Must be implemented in style "WF" and "FW".
|
|
1306
|
+
"""
|
|
1307
|
+
WF = self.realization_of().WF()
|
|
1308
|
+
return self(WF.from_affine_weyl(w))
|
|
1309
|
+
|
|
1310
|
+
def from_reduced_word(self, word):
|
|
1311
|
+
r"""
|
|
1312
|
+
Convert an affine or finite reduced word into a group element.
|
|
1313
|
+
|
|
1314
|
+
EXAMPLES::
|
|
1315
|
+
|
|
1316
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).PW0().from_reduced_word([1,0,1,2])
|
|
1317
|
+
t[-Lambdacheck[1] + 2*Lambdacheck[2]]
|
|
1318
|
+
"""
|
|
1319
|
+
|
|
1320
|
+
return self.from_affine_weyl(self.realization_of().affine_weyl().from_reduced_word(word))
|
|
1321
|
+
|
|
1322
|
+
class ElementMethods:
|
|
1323
|
+
|
|
1324
|
+
@abstract_method
|
|
1325
|
+
def has_descent(self, i, side='right', positive=False) -> bool:
|
|
1326
|
+
r"""
|
|
1327
|
+
Return whether ``self`` * `s_i` < ``self`` where `s_i` is the `i`-th simple
|
|
1328
|
+
reflection in the realized group.
|
|
1329
|
+
|
|
1330
|
+
INPUT:
|
|
1331
|
+
|
|
1332
|
+
- ``i`` -- an affine Dynkin index
|
|
1333
|
+
|
|
1334
|
+
OPTIONAL:
|
|
1335
|
+
|
|
1336
|
+
- ``side`` -- ``'right'`` or ``'left'`` (default: ``'right'``)
|
|
1337
|
+
- ``positive`` -- boolean (default: ``False``)
|
|
1338
|
+
|
|
1339
|
+
If ``side='left'``, then the reflection acts
|
|
1340
|
+
on the left. If ``positive=True``, then the inequality is reversed.
|
|
1341
|
+
|
|
1342
|
+
EXAMPLES::
|
|
1343
|
+
|
|
1344
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); WF = E.WF()
|
|
1345
|
+
sage: F = E.fundamental_group()
|
|
1346
|
+
sage: x = WF.an_element(); x
|
|
1347
|
+
S0*S1*S2*S3 * pi[3]
|
|
1348
|
+
sage: I = E.cartan_type().index_set()
|
|
1349
|
+
sage: [(i, x.has_descent(i)) for i in I]
|
|
1350
|
+
[(0, True), (1, False), (2, False), (3, False)]
|
|
1351
|
+
sage: [(i, x.has_descent(i,side='left')) for i in I]
|
|
1352
|
+
[(0, True), (1, False), (2, False), (3, False)]
|
|
1353
|
+
sage: [(i, x.has_descent(i,positive=True)) for i in I]
|
|
1354
|
+
[(0, False), (1, True), (2, True), (3, True)]
|
|
1355
|
+
|
|
1356
|
+
.. WARNING::
|
|
1357
|
+
|
|
1358
|
+
This method is abstract because it is used in the recursive coercions
|
|
1359
|
+
between "PW0" and "WF" and other methods use this coercion.
|
|
1360
|
+
"""
|
|
1361
|
+
|
|
1362
|
+
def first_descent(self, side='right', positive=False, index_set=None):
|
|
1363
|
+
r"""
|
|
1364
|
+
Return the first descent of ``self``.
|
|
1365
|
+
|
|
1366
|
+
INPUT:
|
|
1367
|
+
|
|
1368
|
+
- ``side`` -- ``'left'`` or ``'right'`` (default: ``'right'``)
|
|
1369
|
+
- ``positive`` -- boolean (default: ``False``)
|
|
1370
|
+
- ``index_set`` -- an optional subset of Dynkin nodes
|
|
1371
|
+
|
|
1372
|
+
If ``index_set`` is not ``None``, then the descent must be in the ``index_set``.
|
|
1373
|
+
|
|
1374
|
+
EXAMPLES::
|
|
1375
|
+
|
|
1376
|
+
sage: x = ExtendedAffineWeylGroup(['A',3,1]).WF().an_element(); x
|
|
1377
|
+
S0*S1*S2*S3 * pi[3]
|
|
1378
|
+
sage: x.first_descent()
|
|
1379
|
+
0
|
|
1380
|
+
sage: x.first_descent(side='left')
|
|
1381
|
+
0
|
|
1382
|
+
sage: x.first_descent(positive=True)
|
|
1383
|
+
1
|
|
1384
|
+
sage: x.first_descent(side='left',positive=True)
|
|
1385
|
+
1
|
|
1386
|
+
"""
|
|
1387
|
+
if index_set is None:
|
|
1388
|
+
index_set = self.parent().realization_of().cartan_type().index_set()
|
|
1389
|
+
for i in index_set:
|
|
1390
|
+
if self.has_descent(i, side=side, positive=positive):
|
|
1391
|
+
return i
|
|
1392
|
+
return None
|
|
1393
|
+
|
|
1394
|
+
def apply_simple_reflection(self, i, side='right'):
|
|
1395
|
+
r"""
|
|
1396
|
+
Apply the `i`-th simple reflection to ``self``.
|
|
1397
|
+
|
|
1398
|
+
EXAMPLES::
|
|
1399
|
+
|
|
1400
|
+
sage: x = ExtendedAffineWeylGroup(['A',3,1]).WF().an_element(); x
|
|
1401
|
+
S0*S1*S2*S3 * pi[3]
|
|
1402
|
+
sage: x.apply_simple_reflection(1)
|
|
1403
|
+
S0*S1*S2*S3*S0 * pi[3]
|
|
1404
|
+
sage: x.apply_simple_reflection(0, side='left')
|
|
1405
|
+
S1*S2*S3 * pi[3]
|
|
1406
|
+
"""
|
|
1407
|
+
s = self.parent().simple_reflection(i)
|
|
1408
|
+
if side == 'right':
|
|
1409
|
+
return self*s
|
|
1410
|
+
else:
|
|
1411
|
+
return s*self
|
|
1412
|
+
|
|
1413
|
+
def apply_simple_projection(self, i, side='right', length_increasing=True):
|
|
1414
|
+
r"""
|
|
1415
|
+
Return the product of ``self`` by the simple reflection `s_i` if that product is
|
|
1416
|
+
of greater length than ``self`` and otherwise return ``self``.
|
|
1417
|
+
|
|
1418
|
+
INPUT:
|
|
1419
|
+
|
|
1420
|
+
- ``self`` -- an element of the extended affine Weyl group
|
|
1421
|
+
- ``i`` -- a Dynkin node (index of a simple reflection `s_i`)
|
|
1422
|
+
- ``side`` -- ``'right'`` or ``'left'`` (default: ``'right'``)
|
|
1423
|
+
according to which side of ``self`` the reflection `s_i`
|
|
1424
|
+
should be multiplied
|
|
1425
|
+
- ``length_increasing`` -- boolean (default: ``True``);
|
|
1426
|
+
if ``False``, do the above with the word "greater" replaced by "less"
|
|
1427
|
+
|
|
1428
|
+
EXAMPLES::
|
|
1429
|
+
|
|
1430
|
+
sage: x = ExtendedAffineWeylGroup(['A',3,1]).WF().an_element(); x
|
|
1431
|
+
S0*S1*S2*S3 * pi[3]
|
|
1432
|
+
sage: x.apply_simple_projection(1)
|
|
1433
|
+
S0*S1*S2*S3*S0 * pi[3]
|
|
1434
|
+
sage: x.apply_simple_projection(1, length_increasing=False)
|
|
1435
|
+
S0*S1*S2*S3 * pi[3]
|
|
1436
|
+
"""
|
|
1437
|
+
if self.has_descent(i, side=side, positive=length_increasing):
|
|
1438
|
+
return self.apply_simple_reflection(i, side=side)
|
|
1439
|
+
return self
|
|
1440
|
+
|
|
1441
|
+
def to_fundamental_group(self):
|
|
1442
|
+
r"""
|
|
1443
|
+
Return the image of ``self`` under the homomorphism to the fundamental group.
|
|
1444
|
+
|
|
1445
|
+
EXAMPLES::
|
|
1446
|
+
|
|
1447
|
+
sage: PW0 = ExtendedAffineWeylGroup(['A',3,1]).PW0()
|
|
1448
|
+
sage: b = PW0.realization_of().lattice_basis()
|
|
1449
|
+
sage: [(x, PW0.from_translation(x).to_fundamental_group()) for x in b]
|
|
1450
|
+
[(Lambdacheck[1], pi[1]), (Lambdacheck[2], pi[2]), (Lambdacheck[3], pi[3])]
|
|
1451
|
+
|
|
1452
|
+
.. WARNING::
|
|
1453
|
+
|
|
1454
|
+
Must be implemented in style "WF".
|
|
1455
|
+
"""
|
|
1456
|
+
WF = self.parent().realization_of().WF()
|
|
1457
|
+
return WF(self).to_fundamental_group()
|
|
1458
|
+
|
|
1459
|
+
def to_classical_weyl(self):
|
|
1460
|
+
r"""
|
|
1461
|
+
Return the image of ``self`` under the homomorphism to the classical Weyl group.
|
|
1462
|
+
|
|
1463
|
+
EXAMPLES::
|
|
1464
|
+
|
|
1465
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).WF().simple_reflection(0).to_classical_weyl()
|
|
1466
|
+
s1*s2*s3*s2*s1
|
|
1467
|
+
|
|
1468
|
+
.. WARNING::
|
|
1469
|
+
|
|
1470
|
+
Must be implemented in style "PW0".
|
|
1471
|
+
"""
|
|
1472
|
+
PW0 = self.parent().realization_of().PW0()
|
|
1473
|
+
return PW0(self).to_classical_weyl()
|
|
1474
|
+
|
|
1475
|
+
def to_dual_classical_weyl(self):
|
|
1476
|
+
r"""
|
|
1477
|
+
Return the image of ``self`` under the homomorphism to the dual form of the classical Weyl group.
|
|
1478
|
+
|
|
1479
|
+
EXAMPLES::
|
|
1480
|
+
|
|
1481
|
+
sage: x = ExtendedAffineWeylGroup(['A',3,1]).WF().simple_reflection(0).to_dual_classical_weyl(); x
|
|
1482
|
+
s1*s2*s3*s2*s1
|
|
1483
|
+
sage: x.parent()
|
|
1484
|
+
Weyl Group of type ['A', 3] (as a matrix group acting on the weight lattice)
|
|
1485
|
+
|
|
1486
|
+
.. WARNING::
|
|
1487
|
+
|
|
1488
|
+
Must be implemented in style "PvW0".
|
|
1489
|
+
"""
|
|
1490
|
+
PvW0 = self.parent().realization_of().PvW0()
|
|
1491
|
+
return PvW0(self).to_dual_classical_weyl()
|
|
1492
|
+
|
|
1493
|
+
def to_affine_weyl_left(self):
|
|
1494
|
+
r"""
|
|
1495
|
+
Return the projection of ``self`` to the affine Weyl group on the left,
|
|
1496
|
+
after factorizing using the style "WF".
|
|
1497
|
+
|
|
1498
|
+
EXAMPLES::
|
|
1499
|
+
|
|
1500
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0 = E.PW0()
|
|
1501
|
+
sage: b = E.lattice_basis()
|
|
1502
|
+
sage: [(x, PW0.from_translation(x).to_affine_weyl_left()) for x in b]
|
|
1503
|
+
[(Lambdacheck[1], S0*S3*S2),
|
|
1504
|
+
(Lambdacheck[2], S0*S3*S1*S0),
|
|
1505
|
+
(Lambdacheck[3], S0*S1*S2)]
|
|
1506
|
+
|
|
1507
|
+
.. WARNING::
|
|
1508
|
+
|
|
1509
|
+
Must be implemented in style "WF".
|
|
1510
|
+
"""
|
|
1511
|
+
WF = self.parent().realization_of().WF()
|
|
1512
|
+
return WF(self).to_affine_weyl_left()
|
|
1513
|
+
|
|
1514
|
+
def to_affine_weyl_right(self):
|
|
1515
|
+
r"""
|
|
1516
|
+
Return the projection of ``self`` to the affine Weyl group on the right,
|
|
1517
|
+
after factorizing using the style "FW".
|
|
1518
|
+
|
|
1519
|
+
EXAMPLES::
|
|
1520
|
+
|
|
1521
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0 = E.PW0()
|
|
1522
|
+
sage: b = E.lattice_basis()
|
|
1523
|
+
sage: [(x, PW0.from_translation(x).to_affine_weyl_right()) for x in b]
|
|
1524
|
+
[(Lambdacheck[1], S3*S2*S1),
|
|
1525
|
+
(Lambdacheck[2], S2*S3*S1*S2),
|
|
1526
|
+
(Lambdacheck[3], S1*S2*S3)]
|
|
1527
|
+
|
|
1528
|
+
.. WARNING::
|
|
1529
|
+
|
|
1530
|
+
Must be implemented in style "FW".
|
|
1531
|
+
"""
|
|
1532
|
+
FW = self.parent().realization_of().FW()
|
|
1533
|
+
return FW(self).to_affine_weyl_right()
|
|
1534
|
+
|
|
1535
|
+
def to_translation_left(self):
|
|
1536
|
+
r"""
|
|
1537
|
+
Return the projection of ``self`` to the translation lattice after factorizing
|
|
1538
|
+
it to the left using the style "PW0".
|
|
1539
|
+
|
|
1540
|
+
EXAMPLES::
|
|
1541
|
+
|
|
1542
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).PW0().simple_reflection(0).to_translation_left()
|
|
1543
|
+
Lambdacheck[1] + Lambdacheck[3]
|
|
1544
|
+
|
|
1545
|
+
.. WARNING::
|
|
1546
|
+
|
|
1547
|
+
Must be implemented in style "PW0".
|
|
1548
|
+
"""
|
|
1549
|
+
PW0 = self.parent().realization_of().PW0()
|
|
1550
|
+
return PW0(self).to_translation_left()
|
|
1551
|
+
|
|
1552
|
+
def to_translation_right(self):
|
|
1553
|
+
r"""
|
|
1554
|
+
Return the projection of ``self`` to the translation lattice after factorizing
|
|
1555
|
+
it to the right using the style "W0P".
|
|
1556
|
+
|
|
1557
|
+
EXAMPLES::
|
|
1558
|
+
|
|
1559
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).PW0().simple_reflection(0).to_translation_right()
|
|
1560
|
+
-Lambdacheck[1] - Lambdacheck[3]
|
|
1561
|
+
|
|
1562
|
+
.. WARNING::
|
|
1563
|
+
|
|
1564
|
+
Must be implemented in style "W0P".
|
|
1565
|
+
"""
|
|
1566
|
+
W0P = self.parent().realization_of().W0P()
|
|
1567
|
+
return W0P(self).to_translation_right()
|
|
1568
|
+
|
|
1569
|
+
def to_dual_translation_left(self):
|
|
1570
|
+
r"""
|
|
1571
|
+
Return the projection of ``self`` to the dual translation lattice after factorizing
|
|
1572
|
+
it to the left using the style "PvW0".
|
|
1573
|
+
|
|
1574
|
+
EXAMPLES::
|
|
1575
|
+
|
|
1576
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).PvW0().simple_reflection(0).to_dual_translation_left()
|
|
1577
|
+
Lambda[1] + Lambda[3]
|
|
1578
|
+
|
|
1579
|
+
.. WARNING::
|
|
1580
|
+
|
|
1581
|
+
Must be implemented in style "PvW0".
|
|
1582
|
+
"""
|
|
1583
|
+
PvW0 = self.parent().realization_of().PvW0()
|
|
1584
|
+
return PvW0(self).to_dual_translation_left()
|
|
1585
|
+
|
|
1586
|
+
def to_dual_translation_right(self):
|
|
1587
|
+
r"""
|
|
1588
|
+
Return the projection of ``self`` to the dual translation lattice after factorizing
|
|
1589
|
+
it to the right using the style "W0Pv".
|
|
1590
|
+
|
|
1591
|
+
EXAMPLES::
|
|
1592
|
+
|
|
1593
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).PW0().simple_reflection(0).to_dual_translation_right()
|
|
1594
|
+
-Lambda[1] - Lambda[3]
|
|
1595
|
+
|
|
1596
|
+
.. WARNING::
|
|
1597
|
+
|
|
1598
|
+
Must be implemented in style "W0Pv".
|
|
1599
|
+
"""
|
|
1600
|
+
W0Pv = self.parent().realization_of().W0Pv()
|
|
1601
|
+
return W0Pv(self).to_dual_translation_right()
|
|
1602
|
+
|
|
1603
|
+
def length(self):
|
|
1604
|
+
r"""
|
|
1605
|
+
Return the length of ``self`` in the Coxeter group sense.
|
|
1606
|
+
|
|
1607
|
+
EXAMPLES::
|
|
1608
|
+
|
|
1609
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0 = E.PW0()
|
|
1610
|
+
sage: I0 = E.cartan_type().classical().index_set()
|
|
1611
|
+
sage: [PW0.from_translation(E.lattice_basis()[i]).length() for i in I0]
|
|
1612
|
+
[3, 4, 3]
|
|
1613
|
+
"""
|
|
1614
|
+
return self.to_affine_weyl_left().length()
|
|
1615
|
+
|
|
1616
|
+
def coset_representative(self, index_set, side='right'):
|
|
1617
|
+
r"""
|
|
1618
|
+
Return the minimum length representative in the coset of ``self`` with respect to
|
|
1619
|
+
the subgroup generated by the reflections given by ``index_set``.
|
|
1620
|
+
|
|
1621
|
+
INPUT:
|
|
1622
|
+
|
|
1623
|
+
- ``self`` -- an element of the extended affine Weyl group
|
|
1624
|
+
- ``index_set`` -- a subset of the set of Dynkin nodes
|
|
1625
|
+
- ``side`` -- ``'right'`` or ``'left'`` (default: ``'right'``)
|
|
1626
|
+
the side on which the subgroup acts
|
|
1627
|
+
|
|
1628
|
+
EXAMPLES::
|
|
1629
|
+
|
|
1630
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); WF = E.WF()
|
|
1631
|
+
sage: b = E.lattice_basis()
|
|
1632
|
+
sage: I0 = E.cartan_type().classical().index_set()
|
|
1633
|
+
sage: [WF.from_translation(x).coset_representative(index_set=I0) for x in b]
|
|
1634
|
+
[pi[1], pi[2], pi[3]]
|
|
1635
|
+
"""
|
|
1636
|
+
while True:
|
|
1637
|
+
i = self.first_descent(index_set=index_set, side=side)
|
|
1638
|
+
if i is None:
|
|
1639
|
+
return self
|
|
1640
|
+
self = self.apply_simple_reflection(i,side=side)
|
|
1641
|
+
|
|
1642
|
+
def is_grassmannian(self, index_set, side='right'):
|
|
1643
|
+
r"""
|
|
1644
|
+
Return whether ``self`` is of minimum length in its coset with respect to the
|
|
1645
|
+
subgroup generated by the reflections of ``index_set``.
|
|
1646
|
+
|
|
1647
|
+
EXAMPLES::
|
|
1648
|
+
|
|
1649
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0 = E.PW0()
|
|
1650
|
+
sage: x = PW0.from_translation(E.lattice_basis()[1]); x
|
|
1651
|
+
t[Lambdacheck[1]]
|
|
1652
|
+
sage: I = E.cartan_type().index_set()
|
|
1653
|
+
sage: [(i, x.is_grassmannian(index_set=[i])) for i in I]
|
|
1654
|
+
[(0, True), (1, False), (2, True), (3, True)]
|
|
1655
|
+
sage: [(i, x.is_grassmannian(index_set=[i], side='left')) for i in I]
|
|
1656
|
+
[(0, False), (1, True), (2, True), (3, True)]
|
|
1657
|
+
"""
|
|
1658
|
+
return self == self.coset_representative(index_set=index_set,side=side)
|
|
1659
|
+
|
|
1660
|
+
def to_affine_grassmannian(self):
|
|
1661
|
+
r"""
|
|
1662
|
+
Return the unique affine Grassmannian element in the same coset of ``self``
|
|
1663
|
+
with respect to the finite Weyl group acting on the right.
|
|
1664
|
+
|
|
1665
|
+
EXAMPLES::
|
|
1666
|
+
|
|
1667
|
+
sage: elts = ExtendedAffineWeylGroup(['A',2,1]).PW0().some_elements()
|
|
1668
|
+
sage: [(x, x.to_affine_grassmannian()) for x in elts]
|
|
1669
|
+
[(t[2*Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2,
|
|
1670
|
+
t[2*Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2*s1)]
|
|
1671
|
+
"""
|
|
1672
|
+
|
|
1673
|
+
return self.coset_representative(index_set=self.parent().realization_of().cartan_type().classical().index_set())
|
|
1674
|
+
|
|
1675
|
+
def is_affine_grassmannian(self):
|
|
1676
|
+
r"""
|
|
1677
|
+
Return whether ``self`` is affine Grassmannian.
|
|
1678
|
+
|
|
1679
|
+
EXAMPLES::
|
|
1680
|
+
|
|
1681
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1]); PW0 = E.PW0()
|
|
1682
|
+
sage: F = E.fundamental_group()
|
|
1683
|
+
sage: [(x,PW0.from_fundamental(x).is_affine_grassmannian()) for x in F]
|
|
1684
|
+
[(pi[0], True), (pi[1], True), (pi[2], True)]
|
|
1685
|
+
sage: b = E.lattice_basis()
|
|
1686
|
+
sage: [(-x,PW0.from_translation(-x).is_affine_grassmannian()) for x in b]
|
|
1687
|
+
[(-Lambdacheck[1], True), (-Lambdacheck[2], True)]
|
|
1688
|
+
"""
|
|
1689
|
+
|
|
1690
|
+
return self == self.to_affine_grassmannian()
|
|
1691
|
+
|
|
1692
|
+
def bruhat_le(self, x):
|
|
1693
|
+
r"""
|
|
1694
|
+
Return whether ``self`` <= `x` in Bruhat order.
|
|
1695
|
+
|
|
1696
|
+
INPUT:
|
|
1697
|
+
|
|
1698
|
+
- ``self`` -- an element of the extended affine Weyl group
|
|
1699
|
+
- ``x`` -- another element with the same parent as ``self``
|
|
1700
|
+
|
|
1701
|
+
EXAMPLES::
|
|
1702
|
+
|
|
1703
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], print_tuple=True); WF = E.WF()
|
|
1704
|
+
sage: W = E.affine_weyl()
|
|
1705
|
+
sage: v = W.from_reduced_word([2,1,0])
|
|
1706
|
+
sage: w = W.from_reduced_word([2,0,1,0])
|
|
1707
|
+
sage: v.bruhat_le(w)
|
|
1708
|
+
True
|
|
1709
|
+
sage: vx = WF.from_affine_weyl(v); vx
|
|
1710
|
+
(S2*S1*S0, pi[0])
|
|
1711
|
+
sage: wx = WF.from_affine_weyl(w); wx
|
|
1712
|
+
(S2*S0*S1*S0, pi[0])
|
|
1713
|
+
sage: vx.bruhat_le(wx)
|
|
1714
|
+
True
|
|
1715
|
+
sage: F = E.fundamental_group()
|
|
1716
|
+
sage: f = WF.from_fundamental(F(2))
|
|
1717
|
+
sage: vx.bruhat_le(wx*f)
|
|
1718
|
+
False
|
|
1719
|
+
sage: (vx*f).bruhat_le(wx*f)
|
|
1720
|
+
True
|
|
1721
|
+
|
|
1722
|
+
.. WARNING::
|
|
1723
|
+
|
|
1724
|
+
Must be implemented by "WF".
|
|
1725
|
+
"""
|
|
1726
|
+
WF = self.parent().realization_of().WF()
|
|
1727
|
+
return WF(self).bruhat_le(WF(x))
|
|
1728
|
+
|
|
1729
|
+
def is_translation(self):
|
|
1730
|
+
r"""
|
|
1731
|
+
Return whether ``self`` is a translation element or not.
|
|
1732
|
+
|
|
1733
|
+
EXAMPLES::
|
|
1734
|
+
|
|
1735
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1]); FW = E.FW()
|
|
1736
|
+
sage: F = E.fundamental_group()
|
|
1737
|
+
sage: FW.from_affine_weyl(E.affine_weyl().from_reduced_word([1,2,1,0])).is_translation()
|
|
1738
|
+
True
|
|
1739
|
+
sage: FW.from_translation(E.lattice_basis()[1]).is_translation()
|
|
1740
|
+
True
|
|
1741
|
+
sage: FW.simple_reflection(0).is_translation()
|
|
1742
|
+
False
|
|
1743
|
+
"""
|
|
1744
|
+
w = self.to_classical_weyl()
|
|
1745
|
+
return w == w.parent().one()
|
|
1746
|
+
|
|
1747
|
+
def action(self, la):
|
|
1748
|
+
r"""
|
|
1749
|
+
Action of ``self`` on a lattice element ``la``.
|
|
1750
|
+
|
|
1751
|
+
INPUT:
|
|
1752
|
+
|
|
1753
|
+
- ``self`` -- an element of the extended affine Weyl group
|
|
1754
|
+
- ``la`` -- an element of the translation lattice of the extended
|
|
1755
|
+
affine Weyl group, the lattice denoted by the mnemonic "P" in the
|
|
1756
|
+
documentation for :meth:`ExtendedAffineWeylGroup`.
|
|
1757
|
+
|
|
1758
|
+
EXAMPLES::
|
|
1759
|
+
|
|
1760
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], affine='s')
|
|
1761
|
+
sage: x = E.FW().an_element(); x
|
|
1762
|
+
pi[2] * s0*s1*s2
|
|
1763
|
+
sage: la = E.lattice().an_element(); la
|
|
1764
|
+
2*Lambdacheck[1] + 2*Lambdacheck[2]
|
|
1765
|
+
sage: x.action(la)
|
|
1766
|
+
5*Lambdacheck[1] - 3*Lambdacheck[2]
|
|
1767
|
+
sage: E = ExtendedAffineWeylGroup(['C',2,1], affine='s')
|
|
1768
|
+
sage: x = E.PW0().from_translation(E.lattice_basis()[1])
|
|
1769
|
+
sage: x.action(E.lattice_basis()[2])
|
|
1770
|
+
Lambdacheck[1] + Lambdacheck[2]
|
|
1771
|
+
|
|
1772
|
+
.. WARNING::
|
|
1773
|
+
|
|
1774
|
+
Must be implemented by style "PW0".
|
|
1775
|
+
"""
|
|
1776
|
+
PW0 = self.parent().realization_of().PW0()
|
|
1777
|
+
return PW0(self).action(la)
|
|
1778
|
+
|
|
1779
|
+
def dual_action(self, la):
|
|
1780
|
+
r"""
|
|
1781
|
+
Action of ``self`` on a dual lattice element ``la``.
|
|
1782
|
+
|
|
1783
|
+
INPUT:
|
|
1784
|
+
|
|
1785
|
+
- ``self`` -- an element of the extended affine Weyl group
|
|
1786
|
+
- ``la`` -- an element of the dual translation lattice of the extended
|
|
1787
|
+
affine Weyl group, the lattice denoted by the mnemonic "Pv" in
|
|
1788
|
+
the documentation for :meth:`ExtendedAffineWeylGroup`.
|
|
1789
|
+
|
|
1790
|
+
EXAMPLES::
|
|
1791
|
+
|
|
1792
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], affine='s')
|
|
1793
|
+
sage: x = E.FW().an_element(); x
|
|
1794
|
+
pi[2] * s0*s1*s2
|
|
1795
|
+
sage: la = E.dual_lattice().an_element(); la
|
|
1796
|
+
2*Lambda[1] + 2*Lambda[2]
|
|
1797
|
+
sage: x.dual_action(la)
|
|
1798
|
+
5*Lambda[1] - 3*Lambda[2]
|
|
1799
|
+
sage: E = ExtendedAffineWeylGroup(['C',2,1], affine='s')
|
|
1800
|
+
sage: x = E.PvW0().from_dual_translation(E.dual_lattice_basis()[1])
|
|
1801
|
+
sage: x.dual_action(E.dual_lattice_basis()[2])
|
|
1802
|
+
Lambda[1] + Lambda[2]
|
|
1803
|
+
|
|
1804
|
+
.. WARNING::
|
|
1805
|
+
|
|
1806
|
+
Must be implemented by style "PvW0".
|
|
1807
|
+
"""
|
|
1808
|
+
PvW0 = self.parent().realization_of().PvW0()
|
|
1809
|
+
return PvW0(self).dual_action(la)
|
|
1810
|
+
|
|
1811
|
+
def action_on_affine_roots(self, beta):
|
|
1812
|
+
r"""
|
|
1813
|
+
Act by ``self`` on the affine root lattice element ``beta``.
|
|
1814
|
+
|
|
1815
|
+
EXAMPLES::
|
|
1816
|
+
|
|
1817
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
1818
|
+
sage: beta = E.cartan_type().root_system().root_lattice().an_element(); beta
|
|
1819
|
+
2*alpha[0] + 2*alpha[1] + 3*alpha[2]
|
|
1820
|
+
sage: x = E.FW().an_element(); x
|
|
1821
|
+
pi[2] * S0*S1*S2
|
|
1822
|
+
sage: x.action_on_affine_roots(beta)
|
|
1823
|
+
alpha[0] + alpha[1]
|
|
1824
|
+
|
|
1825
|
+
.. WARNING::
|
|
1826
|
+
|
|
1827
|
+
Must be implemented by style "FW".
|
|
1828
|
+
"""
|
|
1829
|
+
E = self.parent().realization_of()
|
|
1830
|
+
assert beta in RootSystem(E.cartan_type()).root_lattice()
|
|
1831
|
+
return E.FW()(self).action_on_affine_roots(beta)
|
|
1832
|
+
|
|
1833
|
+
def face_data(self, i):
|
|
1834
|
+
r"""
|
|
1835
|
+
Return a description of one of the bounding hyperplanes of the alcove of an extended affine Weyl group element.
|
|
1836
|
+
|
|
1837
|
+
INPUT:
|
|
1838
|
+
|
|
1839
|
+
- ``self`` -- an element of the extended affine Weyl group
|
|
1840
|
+
- ``i`` -- an affine Dynkin node
|
|
1841
|
+
|
|
1842
|
+
OUTPUT:
|
|
1843
|
+
|
|
1844
|
+
- A 2-tuple `(m,\beta)` defined as follows.
|
|
1845
|
+
|
|
1846
|
+
ALGORITHM:
|
|
1847
|
+
|
|
1848
|
+
Each element of the extended affine Weyl group corresponds to an alcove,
|
|
1849
|
+
and each alcove has a face for each affine Dynkin node. Given the data of ``self`` and `i`,
|
|
1850
|
+
let the extended affine Weyl group element ``self`` act on the affine simple root `\alpha_i`,
|
|
1851
|
+
yielding a real affine root, which can be expressed uniquely as
|
|
1852
|
+
|
|
1853
|
+
.. MATH::
|
|
1854
|
+
|
|
1855
|
+
``self`` \cdot \alpha_i = m \delta + \beta
|
|
1856
|
+
|
|
1857
|
+
where `m` is an integer (the height of the `i`-th bounding hyperplane of the alcove of ``self``)
|
|
1858
|
+
and `\beta` is a classical root (the normal vector for the hyperplane which points towards the alcove).
|
|
1859
|
+
|
|
1860
|
+
EXAMPLES::
|
|
1861
|
+
|
|
1862
|
+
sage: x = ExtendedAffineWeylGroup(['A',2,1]).PW0().an_element(); x
|
|
1863
|
+
t[2*Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2
|
|
1864
|
+
sage: x.face_data(0)
|
|
1865
|
+
(-1, alpha[1])
|
|
1866
|
+
"""
|
|
1867
|
+
Qaf = self.parent().realization_of().cartan_type().root_system().root_lattice()
|
|
1868
|
+
gamma = self.action_on_affine_roots(Qaf.simple_root(i))
|
|
1869
|
+
return gamma[0], Qaf.classical()(gamma)
|
|
1870
|
+
|
|
1871
|
+
def alcove_walk_signs(self):
|
|
1872
|
+
r"""
|
|
1873
|
+
Return a signed alcove walk for ``self``.
|
|
1874
|
+
|
|
1875
|
+
INPUT:
|
|
1876
|
+
|
|
1877
|
+
- An element ``self`` of the extended affine Weyl group.
|
|
1878
|
+
|
|
1879
|
+
OUTPUT:
|
|
1880
|
+
|
|
1881
|
+
- A 3-tuple (`g`, ``rw``, ``signs``).
|
|
1882
|
+
|
|
1883
|
+
ALGORITHM:
|
|
1884
|
+
|
|
1885
|
+
The element ``self`` can be uniquely written ``self`` = `g` * `w`
|
|
1886
|
+
where `g` has length zero and `w` is an element of the nonextended affine Weyl group.
|
|
1887
|
+
Let `w` have reduced word ``rw``.
|
|
1888
|
+
Starting with `g` and applying simple reflections from ``rw``, one obtains
|
|
1889
|
+
a sequence of extended affine Weyl group elements (that is, alcoves) and simple roots.
|
|
1890
|
+
The signs give the sequence of sides on which the alcoves lie, relative to the face
|
|
1891
|
+
indicated by the simple roots.
|
|
1892
|
+
|
|
1893
|
+
EXAMPLES::
|
|
1894
|
+
|
|
1895
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); FW=E.FW()
|
|
1896
|
+
sage: w = FW.from_reduced_word([0,2,1,3,0])*FW.from_fundamental(1); w
|
|
1897
|
+
pi[1] * S3*S1*S2*S0*S3
|
|
1898
|
+
sage: w.alcove_walk_signs()
|
|
1899
|
+
(pi[1], [3, 1, 2, 0, 3], [-1, 1, -1, -1, 1])
|
|
1900
|
+
"""
|
|
1901
|
+
We = self.parent()
|
|
1902
|
+
gw = We.realization_of().FW()(self)
|
|
1903
|
+
g = gw.cartesian_projection(0)
|
|
1904
|
+
w = gw.cartesian_projection(1)
|
|
1905
|
+
rw = w.reduced_word()
|
|
1906
|
+
u_curr = We.from_fundamental(g.value())
|
|
1907
|
+
signs = []
|
|
1908
|
+
for i in rw:
|
|
1909
|
+
m, beta = u_curr.face_data(i)
|
|
1910
|
+
if beta.is_positive_root():
|
|
1911
|
+
signs = signs + [1]
|
|
1912
|
+
else:
|
|
1913
|
+
signs = signs + [-1]
|
|
1914
|
+
u_curr = u_curr * We.simple_reflection(i)
|
|
1915
|
+
return g, rw, signs
|
|
1916
|
+
|
|
1917
|
+
class ExtendedAffineWeylGroupPW0Element(GroupSemidirectProduct.Element):
|
|
1918
|
+
r"""
|
|
1919
|
+
The element class for the "PW0" realization.
|
|
1920
|
+
"""
|
|
1921
|
+
|
|
1922
|
+
def has_descent(self, i, side='right', positive=False) -> bool:
|
|
1923
|
+
r"""
|
|
1924
|
+
Return whether ``self`` has `i` as a descent.
|
|
1925
|
+
|
|
1926
|
+
INPUT:
|
|
1927
|
+
|
|
1928
|
+
- ``i`` -- an affine Dynkin node
|
|
1929
|
+
|
|
1930
|
+
OPTIONAL:
|
|
1931
|
+
|
|
1932
|
+
- ``side`` -- ``'left'`` or ``'right'`` (default: ``'right'``)
|
|
1933
|
+
- ``positive`` -- boolean (default: ``False``)
|
|
1934
|
+
|
|
1935
|
+
EXAMPLES::
|
|
1936
|
+
|
|
1937
|
+
sage: w = ExtendedAffineWeylGroup(['A',4,2]).PW0().from_reduced_word([0,1]); w
|
|
1938
|
+
t[Lambda[1]] * s1*s2
|
|
1939
|
+
sage: w.has_descent(0, side='left')
|
|
1940
|
+
True
|
|
1941
|
+
"""
|
|
1942
|
+
|
|
1943
|
+
E = self.parent().realization_of()
|
|
1944
|
+
if side == 'right':
|
|
1945
|
+
self = ~self
|
|
1946
|
+
if positive:
|
|
1947
|
+
return not self.has_descent(i, side='left')
|
|
1948
|
+
la = self.cartesian_projection(0).value
|
|
1949
|
+
w = self.cartesian_projection(1)
|
|
1950
|
+
if i == 0:
|
|
1951
|
+
ip = la.scalar(E._special_translation_covector) * E._a0check
|
|
1952
|
+
if ip > 1:
|
|
1953
|
+
return True
|
|
1954
|
+
if ip < 1:
|
|
1955
|
+
return False
|
|
1956
|
+
return E._special_root.weyl_action(w, inverse=True).is_positive_root()
|
|
1957
|
+
ip = la.scalar(E._simpleR0[i]) # test height versus simple (co)root
|
|
1958
|
+
if ip < 0:
|
|
1959
|
+
return True
|
|
1960
|
+
if ip > 0:
|
|
1961
|
+
return False
|
|
1962
|
+
return w.has_descent(i, side='left')
|
|
1963
|
+
|
|
1964
|
+
def action(self, la):
|
|
1965
|
+
r"""
|
|
1966
|
+
Return the action of ``self`` on an element ``la`` of the translation lattice.
|
|
1967
|
+
|
|
1968
|
+
EXAMPLES::
|
|
1969
|
+
|
|
1970
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1]); PW0 = E.PW0()
|
|
1971
|
+
sage: x = PW0.an_element(); x
|
|
1972
|
+
t[2*Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2
|
|
1973
|
+
sage: la = E.lattice().an_element(); la
|
|
1974
|
+
2*Lambdacheck[1] + 2*Lambdacheck[2]
|
|
1975
|
+
sage: x.action(la)
|
|
1976
|
+
-2*Lambdacheck[1] + 4*Lambdacheck[2]
|
|
1977
|
+
"""
|
|
1978
|
+
w = self.cartesian_projection(1)
|
|
1979
|
+
assert la in w.parent().domain()
|
|
1980
|
+
return self.cartesian_projection(0).value + w.action(la)
|
|
1981
|
+
|
|
1982
|
+
def to_translation_left(self):
|
|
1983
|
+
r"""
|
|
1984
|
+
The image of ``self`` under the map that projects to the translation lattice
|
|
1985
|
+
factor after factoring it to the left as in style "PW0".
|
|
1986
|
+
|
|
1987
|
+
EXAMPLES::
|
|
1988
|
+
|
|
1989
|
+
sage: s = ExtendedAffineWeylGroup(['A',2,1]).PW0().S0(); s
|
|
1990
|
+
t[Lambdacheck[1] + Lambdacheck[2]] * s1*s2*s1
|
|
1991
|
+
sage: s.to_translation_left()
|
|
1992
|
+
Lambdacheck[1] + Lambdacheck[2]
|
|
1993
|
+
"""
|
|
1994
|
+
return self.cartesian_projection(0).value # undo the GroupExp
|
|
1995
|
+
|
|
1996
|
+
def to_classical_weyl(self):
|
|
1997
|
+
r"""
|
|
1998
|
+
Return the image of ``self`` under the homomorphism that projects to the classical
|
|
1999
|
+
Weyl group factor after rewriting it in either style "PW0" or "W0P".
|
|
2000
|
+
|
|
2001
|
+
EXAMPLES::
|
|
2002
|
+
|
|
2003
|
+
sage: s = ExtendedAffineWeylGroup(['A',2,1]).PW0().S0(); s
|
|
2004
|
+
t[Lambdacheck[1] + Lambdacheck[2]] * s1*s2*s1
|
|
2005
|
+
sage: s.to_classical_weyl()
|
|
2006
|
+
s1*s2*s1
|
|
2007
|
+
"""
|
|
2008
|
+
return self.cartesian_projection(1)
|
|
2009
|
+
|
|
2010
|
+
class ExtendedAffineWeylGroupPW0(GroupSemidirectProduct, BindableClass):
|
|
2011
|
+
r"""
|
|
2012
|
+
Extended affine Weyl group, realized as the semidirect product of the translation lattice
|
|
2013
|
+
by the finite Weyl group.
|
|
2014
|
+
|
|
2015
|
+
INPUT:
|
|
2016
|
+
|
|
2017
|
+
- ``E`` -- a parent with realization in :class:`ExtendedAffineWeylGroup_Class`
|
|
2018
|
+
|
|
2019
|
+
EXAMPLES::
|
|
2020
|
+
|
|
2021
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).PW0()
|
|
2022
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
2023
|
+
Multiplicative form of Coweight lattice of the Root system of type ['A', 2]
|
|
2024
|
+
acted upon by Weyl Group of type ['A', 2]
|
|
2025
|
+
(as a matrix group acting on the coweight lattice)
|
|
2026
|
+
"""
|
|
2027
|
+
|
|
2028
|
+
def __init__(self, E):
|
|
2029
|
+
r"""
|
|
2030
|
+
Create the PW0 realization of the extended affine Weyl group.
|
|
2031
|
+
|
|
2032
|
+
EXAMPLES::
|
|
2033
|
+
|
|
2034
|
+
sage: PW0 = ExtendedAffineWeylGroup(['D',3,2]).PW0()
|
|
2035
|
+
sage: TestSuite(PW0).run()
|
|
2036
|
+
"""
|
|
2037
|
+
# note that we have to use the multiplicative version of the translation lattice
|
|
2038
|
+
# and change the twist to deal with this
|
|
2039
|
+
def twist(w, l):
|
|
2040
|
+
return E.exp_lattice()(w.action(l.value))
|
|
2041
|
+
|
|
2042
|
+
GroupSemidirectProduct.__init__(self, E.exp_lattice(), E.classical_weyl(), twist=twist, act_to_right=False, prefix0=E._prefixt, print_tuple=E._print_tuple, category=E.Realizations())
|
|
2043
|
+
self._style = "PW0"
|
|
2044
|
+
|
|
2045
|
+
def _repr_(self):
|
|
2046
|
+
r"""
|
|
2047
|
+
A string representing ``self``.
|
|
2048
|
+
|
|
2049
|
+
EXAMPLES::
|
|
2050
|
+
|
|
2051
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).PW0()._repr_()
|
|
2052
|
+
"Extended affine Weyl group of type ['BC', 2, 2] realized by Semidirect product of Multiplicative form of Weight lattice of the Root system of type ['C', 2] acted upon by Weyl Group of type ['C', 2] (as a matrix group acting on the weight lattice)"
|
|
2053
|
+
"""
|
|
2054
|
+
return self.realization_of()._repr_() + " realized by " + super()._repr_()
|
|
2055
|
+
|
|
2056
|
+
def from_translation(self, la):
|
|
2057
|
+
r"""
|
|
2058
|
+
Map the translation lattice element ``la`` into ``self``.
|
|
2059
|
+
|
|
2060
|
+
EXAMPLES::
|
|
2061
|
+
|
|
2062
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], translation='tau',
|
|
2063
|
+
....: print_tuple=True)
|
|
2064
|
+
sage: la = E.lattice().an_element(); la
|
|
2065
|
+
2*Lambdacheck[1] + 2*Lambdacheck[2]
|
|
2066
|
+
sage: E.PW0().from_translation(la)
|
|
2067
|
+
(tau[2*Lambdacheck[1] + 2*Lambdacheck[2]], 1)
|
|
2068
|
+
"""
|
|
2069
|
+
E = self.realization_of()
|
|
2070
|
+
return self((E.exp_lattice()(la),self.cartesian_factors()[1].one()))
|
|
2071
|
+
|
|
2072
|
+
@cached_method
|
|
2073
|
+
def S0(self):
|
|
2074
|
+
r"""
|
|
2075
|
+
Return the affine simple reflection.
|
|
2076
|
+
|
|
2077
|
+
EXAMPLES::
|
|
2078
|
+
|
|
2079
|
+
sage: ExtendedAffineWeylGroup(['B',2]).PW0().S0()
|
|
2080
|
+
t[Lambdacheck[2]] * s2*s1*s2
|
|
2081
|
+
"""
|
|
2082
|
+
E = self.realization_of()
|
|
2083
|
+
return self((E.exp_lattice()(E.lattice()(E._special_translation)), E._special_reflection))
|
|
2084
|
+
|
|
2085
|
+
@cached_method
|
|
2086
|
+
def simple_reflection(self, i):
|
|
2087
|
+
r"""
|
|
2088
|
+
Return the `i`-th simple reflection in ``self``.
|
|
2089
|
+
|
|
2090
|
+
EXAMPLES::
|
|
2091
|
+
|
|
2092
|
+
sage: E = ExtendedAffineWeylGroup("G2")
|
|
2093
|
+
sage: [(i, E.PW0().simple_reflection(i)) for i in E.cartan_type().index_set()]
|
|
2094
|
+
[(0, t[Lambdacheck[2]] * s2*s1*s2*s1*s2), (1, s1), (2, s2)]
|
|
2095
|
+
"""
|
|
2096
|
+
if i == 0:
|
|
2097
|
+
return self.S0()
|
|
2098
|
+
else:
|
|
2099
|
+
E = self.realization_of()
|
|
2100
|
+
return self.from_classical_weyl(E.classical_weyl().simple_reflection(i))
|
|
2101
|
+
|
|
2102
|
+
@cached_method
|
|
2103
|
+
def simple_reflections(self):
|
|
2104
|
+
r"""
|
|
2105
|
+
Return a family for the simple reflections of ``self``.
|
|
2106
|
+
|
|
2107
|
+
EXAMPLES::
|
|
2108
|
+
|
|
2109
|
+
sage: ExtendedAffineWeylGroup("A3").PW0().simple_reflections()
|
|
2110
|
+
Finite family {0: t[Lambdacheck[1] + Lambdacheck[3]] * s1*s2*s3*s2*s1,
|
|
2111
|
+
1: s1, 2: s2, 3: s3}
|
|
2112
|
+
"""
|
|
2113
|
+
return Family(self.realization_of().cartan_type().index_set(), self.simple_reflection)
|
|
2114
|
+
|
|
2115
|
+
def from_classical_weyl(self, w):
|
|
2116
|
+
r"""
|
|
2117
|
+
Return the image of `w` under the homomorphism of the classical Weyl group into ``self``.
|
|
2118
|
+
|
|
2119
|
+
EXAMPLES::
|
|
2120
|
+
|
|
2121
|
+
sage: E = ExtendedAffineWeylGroup("A3",print_tuple=True)
|
|
2122
|
+
sage: E.PW0().from_classical_weyl(E.classical_weyl().from_reduced_word([1,2]))
|
|
2123
|
+
(t[0], s1*s2)
|
|
2124
|
+
"""
|
|
2125
|
+
return self((self.cartesian_factors()[0].one(),w))
|
|
2126
|
+
|
|
2127
|
+
class ExtendedAffineWeylGroupW0PElement(GroupSemidirectProduct.Element):
|
|
2128
|
+
r"""
|
|
2129
|
+
The element class for the W0P realization.
|
|
2130
|
+
"""
|
|
2131
|
+
|
|
2132
|
+
def has_descent(self, i, side='right', positive=False) -> bool:
|
|
2133
|
+
r"""
|
|
2134
|
+
Return whether ``self`` has `i` as a descent.
|
|
2135
|
+
|
|
2136
|
+
INPUT:
|
|
2137
|
+
|
|
2138
|
+
- ``i`` -- an index
|
|
2139
|
+
|
|
2140
|
+
OPTIONAL:
|
|
2141
|
+
|
|
2142
|
+
- ``side`` -- ``'left'`` or ``'right'`` (default: ``'right'``)
|
|
2143
|
+
- ``positive`` -- boolean (default: ``False``)
|
|
2144
|
+
|
|
2145
|
+
EXAMPLES::
|
|
2146
|
+
|
|
2147
|
+
sage: W0P = ExtendedAffineWeylGroup(['A',4,2]).W0P()
|
|
2148
|
+
sage: w = W0P.from_reduced_word([0,1]); w
|
|
2149
|
+
s1*s2 * t[Lambda[1] - Lambda[2]]
|
|
2150
|
+
sage: w.has_descent(0, side='left')
|
|
2151
|
+
True
|
|
2152
|
+
"""
|
|
2153
|
+
E = self.parent().realization_of()
|
|
2154
|
+
if side == 'left':
|
|
2155
|
+
self = ~self
|
|
2156
|
+
if positive:
|
|
2157
|
+
return not self.has_descent(i, side='right')
|
|
2158
|
+
w = self.cartesian_projection(0)
|
|
2159
|
+
la = self.cartesian_projection(1).value
|
|
2160
|
+
if i == 0:
|
|
2161
|
+
ip = la.scalar(E._special_translation_covector) * E._a0check
|
|
2162
|
+
if ip < -1:
|
|
2163
|
+
return True
|
|
2164
|
+
if ip > -1:
|
|
2165
|
+
return False
|
|
2166
|
+
return E._special_root.weyl_action(w).is_positive_root()
|
|
2167
|
+
ip = la.scalar(E._simpleR0[i]) # test height versus simple (co)root
|
|
2168
|
+
if ip > 0:
|
|
2169
|
+
return True
|
|
2170
|
+
if ip < 0:
|
|
2171
|
+
return False
|
|
2172
|
+
return w.has_descent(i, side='right')
|
|
2173
|
+
|
|
2174
|
+
def to_classical_weyl(self):
|
|
2175
|
+
r"""
|
|
2176
|
+
Project ``self`` into the classical Weyl group.
|
|
2177
|
+
|
|
2178
|
+
EXAMPLES::
|
|
2179
|
+
|
|
2180
|
+
sage: x = ExtendedAffineWeylGroup(['A',2,1]).W0P().simple_reflection(0); x
|
|
2181
|
+
s1*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[2]]
|
|
2182
|
+
sage: x.to_classical_weyl()
|
|
2183
|
+
s1*s2*s1
|
|
2184
|
+
"""
|
|
2185
|
+
return self.cartesian_projection(0)
|
|
2186
|
+
|
|
2187
|
+
def to_translation_right(self):
|
|
2188
|
+
r"""
|
|
2189
|
+
Project onto the right (translation) factor in the "W0P" style.
|
|
2190
|
+
|
|
2191
|
+
EXAMPLES::
|
|
2192
|
+
|
|
2193
|
+
sage: x = ExtendedAffineWeylGroup(['A',2,1]).W0P().simple_reflection(0); x
|
|
2194
|
+
s1*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[2]]
|
|
2195
|
+
sage: x.to_translation_right()
|
|
2196
|
+
-Lambdacheck[1] - Lambdacheck[2]
|
|
2197
|
+
"""
|
|
2198
|
+
return self.cartesian_projection(1).value
|
|
2199
|
+
|
|
2200
|
+
class ExtendedAffineWeylGroupW0P(GroupSemidirectProduct, BindableClass):
|
|
2201
|
+
r"""
|
|
2202
|
+
Extended affine Weyl group, realized as the semidirect product of the finite Weyl group
|
|
2203
|
+
by the translation lattice.
|
|
2204
|
+
|
|
2205
|
+
INPUT:
|
|
2206
|
+
|
|
2207
|
+
- ``E`` -- a parent with realization in :class:`ExtendedAffineWeylGroup_Class`
|
|
2208
|
+
|
|
2209
|
+
EXAMPLES::
|
|
2210
|
+
|
|
2211
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).W0P()
|
|
2212
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
2213
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)
|
|
2214
|
+
acting on Multiplicative form of Coweight lattice of the Root system of type ['A', 2]
|
|
2215
|
+
"""
|
|
2216
|
+
|
|
2217
|
+
def __init__(self, E):
|
|
2218
|
+
r"""
|
|
2219
|
+
EXAMPLES::
|
|
2220
|
+
|
|
2221
|
+
sage: W0P = ExtendedAffineWeylGroup(['D',3,2]).W0P()
|
|
2222
|
+
sage: TestSuite(W0P).run()
|
|
2223
|
+
"""
|
|
2224
|
+
def twist(w, l):
|
|
2225
|
+
return E.exp_lattice()(w.action(l.value))
|
|
2226
|
+
|
|
2227
|
+
GroupSemidirectProduct.__init__(self, E.classical_weyl(), E.exp_lattice(), twist=twist, act_to_right=True, prefix1=E._prefixt, print_tuple=E._print_tuple, category=E.Realizations())
|
|
2228
|
+
self._style = "W0P"
|
|
2229
|
+
|
|
2230
|
+
def _repr_(self):
|
|
2231
|
+
r"""
|
|
2232
|
+
A string representing ``self``.
|
|
2233
|
+
|
|
2234
|
+
EXAMPLES::
|
|
2235
|
+
|
|
2236
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).W0P()._repr_()
|
|
2237
|
+
"Extended affine Weyl group of type ['BC', 2, 2] realized by Semidirect product of Weyl Group of type ['C', 2] (as a matrix group acting on the weight lattice) acting on Multiplicative form of Weight lattice of the Root system of type ['C', 2]"
|
|
2238
|
+
"""
|
|
2239
|
+
return self.realization_of()._repr_() + " realized by " + super()._repr_()
|
|
2240
|
+
|
|
2241
|
+
def S0(self):
|
|
2242
|
+
r"""
|
|
2243
|
+
Return the zero-th simple reflection in style "W0P".
|
|
2244
|
+
|
|
2245
|
+
EXAMPLES::
|
|
2246
|
+
|
|
2247
|
+
sage: ExtendedAffineWeylGroup(["A",3,1]).W0P().S0()
|
|
2248
|
+
s1*s2*s3*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[3]]
|
|
2249
|
+
"""
|
|
2250
|
+
E = self.realization_of()
|
|
2251
|
+
return self((E._special_reflection,E.exp_lattice()(E.lattice()(-E._special_translation))))
|
|
2252
|
+
|
|
2253
|
+
def simple_reflection(self, i):
|
|
2254
|
+
r"""
|
|
2255
|
+
Return the `i`-th simple reflection in ``self``.
|
|
2256
|
+
|
|
2257
|
+
EXAMPLES::
|
|
2258
|
+
|
|
2259
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1]); W0P = E.W0P()
|
|
2260
|
+
sage: [(i, W0P.simple_reflection(i)) for i in E.cartan_type().index_set()]
|
|
2261
|
+
[(0, s1*s2*s3*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[3]]),
|
|
2262
|
+
(1, s1), (2, s2), (3, s3)]
|
|
2263
|
+
"""
|
|
2264
|
+
if i == 0:
|
|
2265
|
+
return self.S0()
|
|
2266
|
+
E = self.realization_of()
|
|
2267
|
+
return self.from_classical_weyl(E.classical_weyl().simple_reflection(i))
|
|
2268
|
+
|
|
2269
|
+
@cached_method
|
|
2270
|
+
def simple_reflections(self):
|
|
2271
|
+
r"""
|
|
2272
|
+
Return the family of simple reflections.
|
|
2273
|
+
|
|
2274
|
+
EXAMPLES::
|
|
2275
|
+
|
|
2276
|
+
sage: ExtendedAffineWeylGroup(["A",3,1]).W0P().simple_reflections()
|
|
2277
|
+
Finite family {0: s1*s2*s3*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[3]],
|
|
2278
|
+
1: s1, 2: s2, 3: s3}
|
|
2279
|
+
"""
|
|
2280
|
+
return Family(self.realization_of().cartan_type().index_set(), self.simple_reflection)
|
|
2281
|
+
|
|
2282
|
+
def from_classical_weyl(self, w):
|
|
2283
|
+
r"""
|
|
2284
|
+
Return the image of the classical Weyl group element `w` in ``self``.
|
|
2285
|
+
|
|
2286
|
+
EXAMPLES::
|
|
2287
|
+
|
|
2288
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1],print_tuple=True)
|
|
2289
|
+
sage: E.W0P().from_classical_weyl(E.classical_weyl().from_reduced_word([2,1]))
|
|
2290
|
+
(s2*s1, t[0])
|
|
2291
|
+
"""
|
|
2292
|
+
return self((w,self.cartesian_factors()[1].one()))
|
|
2293
|
+
|
|
2294
|
+
def from_translation(self, la):
|
|
2295
|
+
r"""
|
|
2296
|
+
Return the image of the lattice element ``la`` in ``self``.
|
|
2297
|
+
|
|
2298
|
+
EXAMPLES::
|
|
2299
|
+
|
|
2300
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1],print_tuple=True)
|
|
2301
|
+
sage: E.W0P().from_translation(E.lattice().an_element())
|
|
2302
|
+
(1, t[2*Lambdacheck[1] + 2*Lambdacheck[2]])
|
|
2303
|
+
"""
|
|
2304
|
+
return self((self.cartesian_factors()[0].one(),self.realization_of().exp_lattice()(la)))
|
|
2305
|
+
|
|
2306
|
+
class ExtendedAffineWeylGroupWFElement(GroupSemidirectProduct.Element):
|
|
2307
|
+
r"""
|
|
2308
|
+
Element class for the "WF" realization.
|
|
2309
|
+
"""
|
|
2310
|
+
|
|
2311
|
+
def has_descent(self, i, side='right', positive=False) -> bool:
|
|
2312
|
+
r"""
|
|
2313
|
+
Return whether ``self`` has `i` as a descent.
|
|
2314
|
+
|
|
2315
|
+
INPUT:
|
|
2316
|
+
|
|
2317
|
+
- ``i`` -- an affine Dynkin index
|
|
2318
|
+
|
|
2319
|
+
OPTIONAL:
|
|
2320
|
+
|
|
2321
|
+
- ``side`` -- ``'left'`` or ``'right'`` (default: ``'right'``)
|
|
2322
|
+
- ``positive`` -- boolean (default: ``False``)
|
|
2323
|
+
|
|
2324
|
+
EXAMPLES::
|
|
2325
|
+
|
|
2326
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
2327
|
+
sage: x = E.WF().an_element(); x
|
|
2328
|
+
S0*S1*S2 * pi[2]
|
|
2329
|
+
sage: [(i, x.has_descent(i)) for i in E.cartan_type().index_set()]
|
|
2330
|
+
[(0, True), (1, False), (2, False)]
|
|
2331
|
+
"""
|
|
2332
|
+
if side == 'right':
|
|
2333
|
+
self = ~self
|
|
2334
|
+
if positive:
|
|
2335
|
+
return not self.has_descent(i, side='left')
|
|
2336
|
+
return self.cartesian_projection(0).has_descent(i, side='left')
|
|
2337
|
+
|
|
2338
|
+
def to_fundamental_group(self):
|
|
2339
|
+
r"""
|
|
2340
|
+
Project ``self`` to the right (fundamental group) factor in the "WF" style.
|
|
2341
|
+
|
|
2342
|
+
EXAMPLES::
|
|
2343
|
+
|
|
2344
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
2345
|
+
sage: x = E.WF().from_translation(E.lattice_basis()[1]); x
|
|
2346
|
+
S0*S2 * pi[1]
|
|
2347
|
+
sage: x.to_fundamental_group()
|
|
2348
|
+
pi[1]
|
|
2349
|
+
"""
|
|
2350
|
+
return self.cartesian_projection(1)
|
|
2351
|
+
|
|
2352
|
+
def to_affine_weyl_left(self):
|
|
2353
|
+
r"""
|
|
2354
|
+
Project ``self`` to the left (affine Weyl group) factor in the "WF" style.
|
|
2355
|
+
|
|
2356
|
+
EXAMPLES::
|
|
2357
|
+
|
|
2358
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
2359
|
+
sage: x = E.WF().from_translation(E.lattice_basis()[1]); x
|
|
2360
|
+
S0*S2 * pi[1]
|
|
2361
|
+
sage: x.to_affine_weyl_left()
|
|
2362
|
+
S0*S2
|
|
2363
|
+
"""
|
|
2364
|
+
return self.cartesian_projection(0)
|
|
2365
|
+
|
|
2366
|
+
def bruhat_le(self, x):
|
|
2367
|
+
r"""
|
|
2368
|
+
Return whether ``self`` is less than or equal to `x` in the Bruhat order.
|
|
2369
|
+
|
|
2370
|
+
EXAMPLES::
|
|
2371
|
+
|
|
2372
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], affine='s',
|
|
2373
|
+
....: print_tuple=True); WF = E.WF()
|
|
2374
|
+
sage: r = E.affine_weyl().from_reduced_word
|
|
2375
|
+
sage: v = r([1,0])
|
|
2376
|
+
sage: w = r([1,2,0])
|
|
2377
|
+
sage: v.bruhat_le(w)
|
|
2378
|
+
True
|
|
2379
|
+
sage: vv = WF.from_affine_weyl(v); vv
|
|
2380
|
+
(s1*s0, pi[0])
|
|
2381
|
+
sage: ww = WF.from_affine_weyl(w); ww
|
|
2382
|
+
(s1*s2*s0, pi[0])
|
|
2383
|
+
sage: vv.bruhat_le(ww)
|
|
2384
|
+
True
|
|
2385
|
+
sage: f = E.fundamental_group()(2); f
|
|
2386
|
+
pi[2]
|
|
2387
|
+
sage: ff = WF.from_fundamental(f); ff
|
|
2388
|
+
(1, pi[2])
|
|
2389
|
+
sage: vv.bruhat_le(ww*ff)
|
|
2390
|
+
False
|
|
2391
|
+
sage: (vv*ff).bruhat_le(ww*ff)
|
|
2392
|
+
True
|
|
2393
|
+
"""
|
|
2394
|
+
if self.cartesian_projection(1) != x.cartesian_projection(1):
|
|
2395
|
+
return False
|
|
2396
|
+
return self.cartesian_projection(0).bruhat_le(x.cartesian_projection(0))
|
|
2397
|
+
|
|
2398
|
+
class ExtendedAffineWeylGroupWF(GroupSemidirectProduct, BindableClass):
|
|
2399
|
+
r"""
|
|
2400
|
+
Extended affine Weyl group, realized as the semidirect product of the affine Weyl group
|
|
2401
|
+
by the fundamental group.
|
|
2402
|
+
|
|
2403
|
+
INPUT:
|
|
2404
|
+
|
|
2405
|
+
- ``E`` -- a parent with realization in :class:`ExtendedAffineWeylGroup_Class`
|
|
2406
|
+
|
|
2407
|
+
EXAMPLES::
|
|
2408
|
+
|
|
2409
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).WF()
|
|
2410
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
2411
|
+
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)
|
|
2412
|
+
acted upon by Fundamental group of type ['A', 2, 1]
|
|
2413
|
+
"""
|
|
2414
|
+
|
|
2415
|
+
def __init__(self, E):
|
|
2416
|
+
r"""
|
|
2417
|
+
EXAMPLES::
|
|
2418
|
+
|
|
2419
|
+
sage: WF = ExtendedAffineWeylGroup(['D',3,2]).WF()
|
|
2420
|
+
sage: TestSuite(WF).run()
|
|
2421
|
+
"""
|
|
2422
|
+
def twist(g, w):
|
|
2423
|
+
return g.act_on_affine_weyl(w)
|
|
2424
|
+
|
|
2425
|
+
GroupSemidirectProduct.__init__(self, E.affine_weyl(), E.fundamental_group(), twist=twist, act_to_right=False, print_tuple=E._print_tuple, category=E.Realizations())
|
|
2426
|
+
self._style = "WF"
|
|
2427
|
+
|
|
2428
|
+
def _repr_(self):
|
|
2429
|
+
r"""
|
|
2430
|
+
A string representing ``self``.
|
|
2431
|
+
|
|
2432
|
+
EXAMPLES::
|
|
2433
|
+
|
|
2434
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).WF()._repr_()
|
|
2435
|
+
"Extended affine Weyl group of type ['BC', 2, 2] realized by Semidirect product of Weyl Group of type ['BC', 2, 2] (as a matrix group acting on the root lattice) acted upon by Fundamental group of type ['BC', 2, 2]"
|
|
2436
|
+
"""
|
|
2437
|
+
return self.realization_of()._repr_() + " realized by " + super()._repr_()
|
|
2438
|
+
|
|
2439
|
+
def from_affine_weyl(self, w):
|
|
2440
|
+
r"""
|
|
2441
|
+
Return the image of the affine Weyl group element `w` in ``self``.
|
|
2442
|
+
|
|
2443
|
+
EXAMPLES::
|
|
2444
|
+
|
|
2445
|
+
sage: E = ExtendedAffineWeylGroup(['C',2,1], print_tuple=True)
|
|
2446
|
+
sage: E.WF().from_affine_weyl(E.affine_weyl().from_reduced_word([1,2,1,0]))
|
|
2447
|
+
(S1*S2*S1*S0, pi[0])
|
|
2448
|
+
"""
|
|
2449
|
+
return self((w,self.cartesian_factors()[1].one()))
|
|
2450
|
+
|
|
2451
|
+
@cached_method
|
|
2452
|
+
def simple_reflections(self):
|
|
2453
|
+
r"""
|
|
2454
|
+
Return the family of simple reflections.
|
|
2455
|
+
|
|
2456
|
+
EXAMPLES::
|
|
2457
|
+
|
|
2458
|
+
sage: ExtendedAffineWeylGroup(["A",3,1], affine='r').WF().simple_reflections()
|
|
2459
|
+
Finite family {0: r0, 1: r1, 2: r2, 3: r3}
|
|
2460
|
+
"""
|
|
2461
|
+
E = self.realization_of()
|
|
2462
|
+
W = E.affine_weyl()
|
|
2463
|
+
return Family(E.cartan_type().index_set(), lambda i: self.from_affine_weyl(W.simple_reflection(i)))
|
|
2464
|
+
|
|
2465
|
+
@cached_method
|
|
2466
|
+
def from_fundamental(self, f):
|
|
2467
|
+
r"""
|
|
2468
|
+
Return the image of `f` under the homomorphism from the fundamental group into
|
|
2469
|
+
the right (fundamental group) factor in "WF" style.
|
|
2470
|
+
|
|
2471
|
+
EXAMPLES::
|
|
2472
|
+
|
|
2473
|
+
sage: E = ExtendedAffineWeylGroup(['E',6,1], print_tuple=True); WF = E.WF()
|
|
2474
|
+
sage: F = E.fundamental_group()
|
|
2475
|
+
sage: [(x, WF.from_fundamental(x)) for x in F]
|
|
2476
|
+
[(pi[0], (1, pi[0])), (pi[1], (1, pi[1])), (pi[6], (1, pi[6]))]
|
|
2477
|
+
"""
|
|
2478
|
+
return self((self.cartesian_factors()[0].one(),f))
|
|
2479
|
+
|
|
2480
|
+
class ExtendedAffineWeylGroupFWElement(GroupSemidirectProduct.Element):
|
|
2481
|
+
r"""
|
|
2482
|
+
The element class for the "FW" realization.
|
|
2483
|
+
"""
|
|
2484
|
+
|
|
2485
|
+
def has_descent(self, i, side='right', positive=False) -> bool:
|
|
2486
|
+
r"""
|
|
2487
|
+
Return whether ``self`` has descent at `i`.
|
|
2488
|
+
|
|
2489
|
+
INPUT:
|
|
2490
|
+
|
|
2491
|
+
- ``i`` -- an affine Dynkin index
|
|
2492
|
+
|
|
2493
|
+
OPTIONAL:
|
|
2494
|
+
|
|
2495
|
+
- ``side`` -- ``'left'`` or ``'right'`` (default: ``'right'``)
|
|
2496
|
+
- ``positive`` -- boolean (default: ``False``)
|
|
2497
|
+
|
|
2498
|
+
EXAMPLES::
|
|
2499
|
+
|
|
2500
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
2501
|
+
sage: x = E.FW().an_element(); x
|
|
2502
|
+
pi[2] * S0*S1*S2
|
|
2503
|
+
sage: [(i, x.has_descent(i)) for i in E.cartan_type().index_set()]
|
|
2504
|
+
[(0, False), (1, False), (2, True)]
|
|
2505
|
+
"""
|
|
2506
|
+
if side == 'left':
|
|
2507
|
+
self = ~self
|
|
2508
|
+
if positive:
|
|
2509
|
+
return not self.has_descent(i, side='right')
|
|
2510
|
+
return self.cartesian_projection(1).has_descent(i, side='right')
|
|
2511
|
+
|
|
2512
|
+
def to_fundamental_group(self):
|
|
2513
|
+
r"""
|
|
2514
|
+
Return the projection of ``self`` to the fundamental group in the "FW" style.
|
|
2515
|
+
|
|
2516
|
+
EXAMPLES::
|
|
2517
|
+
|
|
2518
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
2519
|
+
sage: x = E.FW().from_translation(E.lattice_basis()[2]); x
|
|
2520
|
+
pi[2] * S1*S2
|
|
2521
|
+
sage: x.to_fundamental_group()
|
|
2522
|
+
pi[2]
|
|
2523
|
+
"""
|
|
2524
|
+
return self.cartesian_projection(0)
|
|
2525
|
+
|
|
2526
|
+
def to_affine_weyl_right(self):
|
|
2527
|
+
r"""
|
|
2528
|
+
Project ``self`` to the right (affine Weyl group) factor in the "FW" style.
|
|
2529
|
+
|
|
2530
|
+
EXAMPLES::
|
|
2531
|
+
|
|
2532
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
2533
|
+
sage: x = E.FW().from_translation(E.lattice_basis()[1]); x
|
|
2534
|
+
pi[1] * S2*S1
|
|
2535
|
+
sage: x.to_affine_weyl_right()
|
|
2536
|
+
S2*S1
|
|
2537
|
+
"""
|
|
2538
|
+
return self.cartesian_projection(1)
|
|
2539
|
+
|
|
2540
|
+
def action_on_affine_roots(self, beta):
|
|
2541
|
+
r"""
|
|
2542
|
+
Act by ``self`` on the affine root lattice element ``beta``.
|
|
2543
|
+
|
|
2544
|
+
EXAMPLES::
|
|
2545
|
+
|
|
2546
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], affine='s')
|
|
2547
|
+
sage: x = E.FW().an_element(); x
|
|
2548
|
+
pi[2] * s0*s1*s2
|
|
2549
|
+
sage: v = RootSystem(['A',2,1]).root_lattice().an_element(); v
|
|
2550
|
+
2*alpha[0] + 2*alpha[1] + 3*alpha[2]
|
|
2551
|
+
sage: x.action_on_affine_roots(v)
|
|
2552
|
+
alpha[0] + alpha[1]
|
|
2553
|
+
"""
|
|
2554
|
+
g = self.cartesian_projection(0)
|
|
2555
|
+
w = self.cartesian_projection(1)
|
|
2556
|
+
return g.act_on_affine_lattice(w.action(beta))
|
|
2557
|
+
|
|
2558
|
+
class ExtendedAffineWeylGroupFW(GroupSemidirectProduct, BindableClass):
|
|
2559
|
+
r"""
|
|
2560
|
+
Extended affine Weyl group, realized as the semidirect product of the affine Weyl group
|
|
2561
|
+
by the fundamental group.
|
|
2562
|
+
|
|
2563
|
+
INPUT:
|
|
2564
|
+
|
|
2565
|
+
- ``E`` -- a parent with realization in :class:`ExtendedAffineWeylGroup_Class`
|
|
2566
|
+
|
|
2567
|
+
EXAMPLES::
|
|
2568
|
+
|
|
2569
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).FW()
|
|
2570
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
2571
|
+
Fundamental group of type ['A', 2, 1] acting on Weyl Group of type ['A', 2, 1]
|
|
2572
|
+
(as a matrix group acting on the root lattice)
|
|
2573
|
+
"""
|
|
2574
|
+
|
|
2575
|
+
def __init__(self, E):
|
|
2576
|
+
r"""
|
|
2577
|
+
|
|
2578
|
+
EXAMPLES::
|
|
2579
|
+
|
|
2580
|
+
sage: FW = ExtendedAffineWeylGroup(['D',3,2]).FW()
|
|
2581
|
+
sage: TestSuite(FW).run()
|
|
2582
|
+
"""
|
|
2583
|
+
def twist(g, w):
|
|
2584
|
+
return g.act_on_affine_weyl(w)
|
|
2585
|
+
|
|
2586
|
+
GroupSemidirectProduct.__init__(self, E.fundamental_group(), E.affine_weyl(), twist=twist, act_to_right=True, print_tuple=E._print_tuple, category=E.Realizations())
|
|
2587
|
+
self._style = "FW"
|
|
2588
|
+
|
|
2589
|
+
def _repr_(self):
|
|
2590
|
+
r"""
|
|
2591
|
+
A string representing ``self``.
|
|
2592
|
+
|
|
2593
|
+
EXAMPLES::
|
|
2594
|
+
|
|
2595
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).FW()._repr_()
|
|
2596
|
+
"Extended affine Weyl group of type ['BC', 2, 2] realized by Semidirect product of Fundamental group of type ['BC', 2, 2] acting on Weyl Group of type ['BC', 2, 2] (as a matrix group acting on the root lattice)"
|
|
2597
|
+
"""
|
|
2598
|
+
return self.realization_of()._repr_() + " realized by " + super()._repr_()
|
|
2599
|
+
|
|
2600
|
+
@cached_method
|
|
2601
|
+
def simple_reflections(self):
|
|
2602
|
+
r"""
|
|
2603
|
+
Return the family of simple reflections of ``self``.
|
|
2604
|
+
|
|
2605
|
+
EXAMPLES::
|
|
2606
|
+
|
|
2607
|
+
sage: ExtendedAffineWeylGroup(['A',2,1],print_tuple=True).FW().simple_reflections()
|
|
2608
|
+
Finite family {0: (pi[0], S0), 1: (pi[0], S1), 2: (pi[0], S2)}
|
|
2609
|
+
"""
|
|
2610
|
+
E = self.realization_of()
|
|
2611
|
+
W = E.affine_weyl()
|
|
2612
|
+
return Family(E.cartan_type().index_set(), lambda i: self.from_affine_weyl(W.simple_reflection(i)))
|
|
2613
|
+
|
|
2614
|
+
def from_affine_weyl(self, w):
|
|
2615
|
+
r"""
|
|
2616
|
+
Return the image of `w` under the map of the affine Weyl group into the right
|
|
2617
|
+
(affine Weyl group) factor in the "FW" style.
|
|
2618
|
+
|
|
2619
|
+
EXAMPLES::
|
|
2620
|
+
|
|
2621
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], print_tuple=True)
|
|
2622
|
+
sage: E.FW().from_affine_weyl(E.affine_weyl().from_reduced_word([0,2,1]))
|
|
2623
|
+
(pi[0], S0*S2*S1)
|
|
2624
|
+
"""
|
|
2625
|
+
return self((self.cartesian_factors()[0].one(),w))
|
|
2626
|
+
|
|
2627
|
+
@cached_method
|
|
2628
|
+
def from_fundamental(self, f):
|
|
2629
|
+
r"""
|
|
2630
|
+
Return the image of the fundamental group element `f` into ``self``.
|
|
2631
|
+
|
|
2632
|
+
EXAMPLES::
|
|
2633
|
+
|
|
2634
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], print_tuple=True)
|
|
2635
|
+
sage: E.FW().from_fundamental(E.fundamental_group()(2))
|
|
2636
|
+
(pi[2], 1)
|
|
2637
|
+
"""
|
|
2638
|
+
return self((f,self.cartesian_factors()[1].one()))
|
|
2639
|
+
|
|
2640
|
+
class ExtendedAffineWeylGroupPvW0Element(GroupSemidirectProduct.Element):
|
|
2641
|
+
r"""
|
|
2642
|
+
The element class for the "PvW0" realization.
|
|
2643
|
+
"""
|
|
2644
|
+
|
|
2645
|
+
def has_descent(self, i, side='right', positive=False) -> bool:
|
|
2646
|
+
r"""
|
|
2647
|
+
Return whether ``self`` has `i` as a descent.
|
|
2648
|
+
|
|
2649
|
+
INPUT:
|
|
2650
|
+
|
|
2651
|
+
- ``i`` -- an affine Dynkin index
|
|
2652
|
+
|
|
2653
|
+
OPTIONAL:
|
|
2654
|
+
|
|
2655
|
+
- ``side`` -- ``'left'`` or ``'right'`` (default: ``'right'``)
|
|
2656
|
+
- ``positive`` -- boolean (default: ``False``)
|
|
2657
|
+
|
|
2658
|
+
EXAMPLES::
|
|
2659
|
+
|
|
2660
|
+
sage: E = ExtendedAffineWeylGroup(['A',4,2])
|
|
2661
|
+
sage: w = E.PvW0().from_reduced_word([0,1]); w
|
|
2662
|
+
t[Lambda[1]] * s1*s2
|
|
2663
|
+
sage: [(i, w.has_descent(i, side='left')) for i in E.cartan_type().index_set()]
|
|
2664
|
+
[(0, True), (1, False), (2, False)]
|
|
2665
|
+
"""
|
|
2666
|
+
return self.parent().realization_of().PW0()(self).has_descent(i, side=side, positive=positive)
|
|
2667
|
+
|
|
2668
|
+
def dual_action(self, la):
|
|
2669
|
+
r"""
|
|
2670
|
+
Return the action of ``self`` on an element ``la`` of the dual version of the translation lattice.
|
|
2671
|
+
|
|
2672
|
+
EXAMPLES::
|
|
2673
|
+
|
|
2674
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
2675
|
+
sage: x = E.PvW0().an_element(); x
|
|
2676
|
+
t[2*Lambda[1] + 2*Lambda[2]] * s1*s2
|
|
2677
|
+
sage: la = E.dual_lattice().an_element(); la
|
|
2678
|
+
2*Lambda[1] + 2*Lambda[2]
|
|
2679
|
+
sage: x.dual_action(la)
|
|
2680
|
+
-2*Lambda[1] + 4*Lambda[2]
|
|
2681
|
+
"""
|
|
2682
|
+
w = self.cartesian_projection(1)
|
|
2683
|
+
assert la in w.parent().domain()
|
|
2684
|
+
return self.cartesian_projection(0).value + w.action(la)
|
|
2685
|
+
|
|
2686
|
+
def to_dual_translation_left(self):
|
|
2687
|
+
r"""
|
|
2688
|
+
The image of ``self`` under the map that projects to the dual translation lattice
|
|
2689
|
+
factor after factoring it to the left as in style "PvW0".
|
|
2690
|
+
|
|
2691
|
+
EXAMPLES::
|
|
2692
|
+
|
|
2693
|
+
sage: s = ExtendedAffineWeylGroup(['A',2,1]).PvW0().simple_reflection(0); s
|
|
2694
|
+
t[Lambda[1] + Lambda[2]] * s1*s2*s1
|
|
2695
|
+
sage: s.to_dual_translation_left()
|
|
2696
|
+
Lambda[1] + Lambda[2]
|
|
2697
|
+
"""
|
|
2698
|
+
return self.cartesian_projection(0).value # undo the GroupExp
|
|
2699
|
+
|
|
2700
|
+
def to_dual_classical_weyl(self):
|
|
2701
|
+
r"""
|
|
2702
|
+
Return the image of ``self`` under the homomorphism that projects to the dual classical
|
|
2703
|
+
Weyl group factor after rewriting it in either style "PvW0" or "W0Pv".
|
|
2704
|
+
|
|
2705
|
+
EXAMPLES::
|
|
2706
|
+
|
|
2707
|
+
sage: s = ExtendedAffineWeylGroup(['A',2,1]).PvW0().simple_reflection(0); s
|
|
2708
|
+
t[Lambda[1] + Lambda[2]] * s1*s2*s1
|
|
2709
|
+
sage: s.to_dual_classical_weyl()
|
|
2710
|
+
s1*s2*s1
|
|
2711
|
+
"""
|
|
2712
|
+
return self.cartesian_projection(1)
|
|
2713
|
+
|
|
2714
|
+
def is_translation(self):
|
|
2715
|
+
r"""
|
|
2716
|
+
Return whether ``self`` is a translation element or not.
|
|
2717
|
+
|
|
2718
|
+
EXAMPLES::
|
|
2719
|
+
|
|
2720
|
+
sage: PvW0 = ExtendedAffineWeylGroup(['A',2,1]).PvW0()
|
|
2721
|
+
sage: t = PvW0.from_reduced_word([1,2,1,0])
|
|
2722
|
+
sage: t.is_translation()
|
|
2723
|
+
True
|
|
2724
|
+
sage: PvW0.simple_reflection(0).is_translation()
|
|
2725
|
+
False
|
|
2726
|
+
"""
|
|
2727
|
+
w = self.to_dual_classical_weyl()
|
|
2728
|
+
return w == w.parent().one()
|
|
2729
|
+
|
|
2730
|
+
class ExtendedAffineWeylGroupPvW0(GroupSemidirectProduct, BindableClass):
|
|
2731
|
+
r"""
|
|
2732
|
+
Extended affine Weyl group, realized as the semidirect product of the dual form of the translation lattice
|
|
2733
|
+
by the finite Weyl group.
|
|
2734
|
+
|
|
2735
|
+
INPUT:
|
|
2736
|
+
|
|
2737
|
+
- ``E`` -- a parent with realization in :class:`ExtendedAffineWeylGroup_Class`
|
|
2738
|
+
|
|
2739
|
+
EXAMPLES::
|
|
2740
|
+
|
|
2741
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).PvW0()
|
|
2742
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
2743
|
+
Multiplicative form of Weight lattice of the Root system of type ['A', 2] acted
|
|
2744
|
+
upon by Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)
|
|
2745
|
+
"""
|
|
2746
|
+
|
|
2747
|
+
def __init__(self, E):
|
|
2748
|
+
r"""
|
|
2749
|
+
|
|
2750
|
+
EXAMPLES::
|
|
2751
|
+
|
|
2752
|
+
sage: PvW0 = ExtendedAffineWeylGroup(['D',3,2]).PvW0()
|
|
2753
|
+
sage: TestSuite(PvW0).run()
|
|
2754
|
+
"""
|
|
2755
|
+
# note that we have to use the multiplicative version of the translation lattice
|
|
2756
|
+
# and change the twist to deal with this
|
|
2757
|
+
def twist(w, l):
|
|
2758
|
+
return E.exp_dual_lattice()(w.action(l.value))
|
|
2759
|
+
|
|
2760
|
+
GroupSemidirectProduct.__init__(self, E.exp_dual_lattice(), E.dual_classical_weyl(), twist=twist, act_to_right=False, prefix0=E._prefixt, print_tuple=E._print_tuple, category=E.Realizations())
|
|
2761
|
+
self._style = "PvW0"
|
|
2762
|
+
|
|
2763
|
+
def _repr_(self):
|
|
2764
|
+
r"""
|
|
2765
|
+
A string representing ``self``.
|
|
2766
|
+
|
|
2767
|
+
EXAMPLES::
|
|
2768
|
+
|
|
2769
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).PvW0()._repr_()
|
|
2770
|
+
"Extended affine Weyl group of type ['BC', 2, 2] realized by Semidirect product of Multiplicative form of Weight lattice of the Root system of type ['C', 2] acted upon by Weyl Group of type ['C', 2] (as a matrix group acting on the weight lattice)"
|
|
2771
|
+
"""
|
|
2772
|
+
return self.realization_of()._repr_() + " realized by " + super()._repr_()
|
|
2773
|
+
|
|
2774
|
+
def from_dual_translation(self, la):
|
|
2775
|
+
r"""
|
|
2776
|
+
Map the dual translation lattice element ``la`` into ``self``.
|
|
2777
|
+
|
|
2778
|
+
EXAMPLES::
|
|
2779
|
+
|
|
2780
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], translation='tau',
|
|
2781
|
+
....: print_tuple=True)
|
|
2782
|
+
sage: la = E.dual_lattice().an_element(); la
|
|
2783
|
+
2*Lambda[1] + 2*Lambda[2]
|
|
2784
|
+
sage: E.PvW0().from_dual_translation(la)
|
|
2785
|
+
(tau[2*Lambda[1] + 2*Lambda[2]], 1)
|
|
2786
|
+
"""
|
|
2787
|
+
E = self.realization_of()
|
|
2788
|
+
return self((E.exp_dual_lattice()(la),self.cartesian_factors()[1].one()))
|
|
2789
|
+
|
|
2790
|
+
@cached_method
|
|
2791
|
+
def simple_reflections(self):
|
|
2792
|
+
r"""
|
|
2793
|
+
Return a family for the simple reflections of ``self``.
|
|
2794
|
+
|
|
2795
|
+
EXAMPLES::
|
|
2796
|
+
|
|
2797
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).PvW0().simple_reflections()
|
|
2798
|
+
Finite family {0: t[Lambda[1] + Lambda[3]] * s1*s2*s3*s2*s1,
|
|
2799
|
+
1: s1, 2: s2, 3: s3}
|
|
2800
|
+
"""
|
|
2801
|
+
E = self.realization_of()
|
|
2802
|
+
return Family(E.cartan_type().index_set(), lambda i: self(E.PW0().simple_reflection(i)))
|
|
2803
|
+
|
|
2804
|
+
def from_dual_classical_weyl(self, w):
|
|
2805
|
+
r"""
|
|
2806
|
+
Return the image of `w` under the homomorphism of the dual form of the classical Weyl group into ``self``.
|
|
2807
|
+
|
|
2808
|
+
EXAMPLES::
|
|
2809
|
+
|
|
2810
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1], print_tuple=True)
|
|
2811
|
+
sage: E.PvW0().from_dual_classical_weyl(
|
|
2812
|
+
....: E.dual_classical_weyl().from_reduced_word([1,2]))
|
|
2813
|
+
(t[0], s1*s2)
|
|
2814
|
+
"""
|
|
2815
|
+
return self((self.cartesian_factors()[0].one(),w))
|
|
2816
|
+
|
|
2817
|
+
class ExtendedAffineWeylGroupW0PvElement(GroupSemidirectProduct.Element):
|
|
2818
|
+
r"""
|
|
2819
|
+
The element class for the "W0Pv" realization.
|
|
2820
|
+
"""
|
|
2821
|
+
|
|
2822
|
+
def dual_action(self, la):
|
|
2823
|
+
r"""
|
|
2824
|
+
Return the action of ``self`` on an element ``la`` of the dual version of the translation lattice.
|
|
2825
|
+
|
|
2826
|
+
EXAMPLES::
|
|
2827
|
+
|
|
2828
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1])
|
|
2829
|
+
sage: x = E.W0Pv().an_element(); x
|
|
2830
|
+
s1*s2 * t[2*Lambda[1] + 2*Lambda[2]]
|
|
2831
|
+
sage: la = E.dual_lattice().an_element(); la
|
|
2832
|
+
2*Lambda[1] + 2*Lambda[2]
|
|
2833
|
+
sage: x.dual_action(la)
|
|
2834
|
+
-8*Lambda[1] + 4*Lambda[2]
|
|
2835
|
+
"""
|
|
2836
|
+
w = self.cartesian_projection(0)
|
|
2837
|
+
assert la in w.parent().domain()
|
|
2838
|
+
return w.action(self.cartesian_projection(1).value + la)
|
|
2839
|
+
|
|
2840
|
+
def has_descent(self, i, side='right', positive=False) -> bool:
|
|
2841
|
+
r"""
|
|
2842
|
+
Return whether ``self`` has `i` as a descent.
|
|
2843
|
+
|
|
2844
|
+
INPUT:
|
|
2845
|
+
|
|
2846
|
+
- ``i`` -- an affine Dynkin index
|
|
2847
|
+
|
|
2848
|
+
OPTIONAL:
|
|
2849
|
+
|
|
2850
|
+
- ``side`` -- ``'left'`` or ``'right'`` (default: ``'right'``)
|
|
2851
|
+
- ``positive`` -- boolean (default: ``False``)
|
|
2852
|
+
|
|
2853
|
+
EXAMPLES::
|
|
2854
|
+
|
|
2855
|
+
sage: w = ExtendedAffineWeylGroup(['A',4,2]).W0Pv().from_reduced_word([0,1]); w
|
|
2856
|
+
s1*s2 * t[Lambda[1] - Lambda[2]]
|
|
2857
|
+
sage: w.has_descent(0, side='left')
|
|
2858
|
+
True
|
|
2859
|
+
"""
|
|
2860
|
+
return self.parent().realization_of().W0P()(self).has_descent(i, side=side, positive=positive)
|
|
2861
|
+
|
|
2862
|
+
def to_dual_translation_right(self):
|
|
2863
|
+
r"""
|
|
2864
|
+
The image of ``self`` under the map that projects to the dual translation lattice
|
|
2865
|
+
factor after factoring it to the right as in style "W0Pv".
|
|
2866
|
+
|
|
2867
|
+
EXAMPLES::
|
|
2868
|
+
|
|
2869
|
+
sage: s = ExtendedAffineWeylGroup(['A',2,1]).W0Pv().simple_reflection(0); s
|
|
2870
|
+
s1*s2*s1 * t[-Lambda[1] - Lambda[2]]
|
|
2871
|
+
sage: s.to_dual_translation_right()
|
|
2872
|
+
-Lambda[1] - Lambda[2]
|
|
2873
|
+
"""
|
|
2874
|
+
return self.cartesian_projection(1).value # undo the GroupExp
|
|
2875
|
+
|
|
2876
|
+
def to_dual_classical_weyl(self):
|
|
2877
|
+
r"""
|
|
2878
|
+
Return the image of ``self`` under the homomorphism that projects to the dual classical
|
|
2879
|
+
Weyl group factor after rewriting it in either style "PvW0" or "W0Pv".
|
|
2880
|
+
|
|
2881
|
+
EXAMPLES::
|
|
2882
|
+
|
|
2883
|
+
sage: s = ExtendedAffineWeylGroup(['A',2,1]).W0Pv().simple_reflection(0); s
|
|
2884
|
+
s1*s2*s1 * t[-Lambda[1] - Lambda[2]]
|
|
2885
|
+
sage: s.to_dual_classical_weyl()
|
|
2886
|
+
s1*s2*s1
|
|
2887
|
+
"""
|
|
2888
|
+
return self.cartesian_projection(0)
|
|
2889
|
+
|
|
2890
|
+
def is_translation(self):
|
|
2891
|
+
r"""
|
|
2892
|
+
Return whether ``self`` is a translation element or not.
|
|
2893
|
+
|
|
2894
|
+
EXAMPLES::
|
|
2895
|
+
|
|
2896
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).W0Pv().from_reduced_word([1,2,1,0]).is_translation()
|
|
2897
|
+
True
|
|
2898
|
+
"""
|
|
2899
|
+
w = self.to_dual_classical_weyl()
|
|
2900
|
+
return w == w.parent().one()
|
|
2901
|
+
|
|
2902
|
+
class ExtendedAffineWeylGroupW0Pv(GroupSemidirectProduct, BindableClass):
|
|
2903
|
+
r"""
|
|
2904
|
+
Extended affine Weyl group, realized as the semidirect product of the finite Weyl group, acting on the
|
|
2905
|
+
dual form of the translation lattice.
|
|
2906
|
+
|
|
2907
|
+
INPUT:
|
|
2908
|
+
|
|
2909
|
+
- ``E`` -- a parent with realization in :class:`ExtendedAffineWeylGroup_Class`
|
|
2910
|
+
|
|
2911
|
+
EXAMPLES::
|
|
2912
|
+
|
|
2913
|
+
sage: ExtendedAffineWeylGroup(['A',2,1]).W0Pv()
|
|
2914
|
+
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of
|
|
2915
|
+
Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)
|
|
2916
|
+
acting on Multiplicative form of Weight lattice of the Root system of type ['A', 2]
|
|
2917
|
+
"""
|
|
2918
|
+
|
|
2919
|
+
def __init__(self, E):
|
|
2920
|
+
r"""
|
|
2921
|
+
EXAMPLES::
|
|
2922
|
+
|
|
2923
|
+
sage: W0Pv = ExtendedAffineWeylGroup(['D',3,2]).W0Pv()
|
|
2924
|
+
sage: TestSuite(W0Pv).run()
|
|
2925
|
+
"""
|
|
2926
|
+
# note that we have to use the multiplicative version of the translation lattice
|
|
2927
|
+
# and change the twist to deal with this
|
|
2928
|
+
def twist(w, l):
|
|
2929
|
+
return E.exp_dual_lattice()(w.action(l.value))
|
|
2930
|
+
|
|
2931
|
+
GroupSemidirectProduct.__init__(self, E.dual_classical_weyl(), E.exp_dual_lattice(), twist=twist, act_to_right=True, prefix1=E._prefixt, print_tuple=E._print_tuple, category=E.Realizations())
|
|
2932
|
+
self._style = "W0Pv"
|
|
2933
|
+
|
|
2934
|
+
def _repr_(self):
|
|
2935
|
+
r"""
|
|
2936
|
+
A string representing ``self``.
|
|
2937
|
+
|
|
2938
|
+
EXAMPLES::
|
|
2939
|
+
|
|
2940
|
+
sage: ExtendedAffineWeylGroup(['A',4,2]).W0Pv()._repr_()
|
|
2941
|
+
"Extended affine Weyl group of type ['BC', 2, 2] realized by Semidirect product of Weyl Group of type ['C', 2] (as a matrix group acting on the weight lattice) acting on Multiplicative form of Weight lattice of the Root system of type ['C', 2]"
|
|
2942
|
+
"""
|
|
2943
|
+
return self.realization_of()._repr_() + " realized by " + super()._repr_()
|
|
2944
|
+
|
|
2945
|
+
def from_dual_translation(self, la):
|
|
2946
|
+
r"""
|
|
2947
|
+
Map the dual translation lattice element ``la`` into ``self``.
|
|
2948
|
+
|
|
2949
|
+
EXAMPLES::
|
|
2950
|
+
|
|
2951
|
+
sage: E = ExtendedAffineWeylGroup(['A',2,1], translation='tau',
|
|
2952
|
+
....: print_tuple=True)
|
|
2953
|
+
sage: la = E.dual_lattice().an_element(); la
|
|
2954
|
+
2*Lambda[1] + 2*Lambda[2]
|
|
2955
|
+
sage: E.W0Pv().from_dual_translation(la)
|
|
2956
|
+
(1, tau[2*Lambda[1] + 2*Lambda[2]])
|
|
2957
|
+
"""
|
|
2958
|
+
E = self.realization_of()
|
|
2959
|
+
return self((self.cartesian_factors()[0].one(),E.exp_dual_lattice()(la)))
|
|
2960
|
+
|
|
2961
|
+
@cached_method
|
|
2962
|
+
def simple_reflections(self):
|
|
2963
|
+
r"""
|
|
2964
|
+
Return a family for the simple reflections of ``self``.
|
|
2965
|
+
|
|
2966
|
+
EXAMPLES::
|
|
2967
|
+
|
|
2968
|
+
sage: ExtendedAffineWeylGroup(['A',3,1]).W0Pv().simple_reflections()
|
|
2969
|
+
Finite family {0: s1*s2*s3*s2*s1 * t[-Lambda[1] - Lambda[3]],
|
|
2970
|
+
1: s1, 2: s2, 3: s3}
|
|
2971
|
+
"""
|
|
2972
|
+
E = self.realization_of()
|
|
2973
|
+
return Family(E.cartan_type().index_set(), lambda i: self(E.PW0().simple_reflection(i)))
|
|
2974
|
+
|
|
2975
|
+
def from_dual_classical_weyl(self, w):
|
|
2976
|
+
r"""
|
|
2977
|
+
Return the image of `w` under the homomorphism of the dual form of the classical Weyl group into ``self``.
|
|
2978
|
+
|
|
2979
|
+
EXAMPLES::
|
|
2980
|
+
|
|
2981
|
+
sage: E = ExtendedAffineWeylGroup(['A',3,1],print_tuple=True)
|
|
2982
|
+
sage: E.W0Pv().from_dual_classical_weyl(E.dual_classical_weyl().from_reduced_word([1,2]))
|
|
2983
|
+
(s1*s2, t[0])
|
|
2984
|
+
"""
|
|
2985
|
+
return self((w,self.cartesian_factors()[1].one()))
|
|
2986
|
+
|
|
2987
|
+
|
|
2988
|
+
ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0.Element = ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0Element
|
|
2989
|
+
ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0P.Element = ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PElement
|
|
2990
|
+
ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWF.Element = ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWFElement
|
|
2991
|
+
ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFW.Element = ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFWElement
|
|
2992
|
+
ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0.Element = ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0Element
|
|
2993
|
+
ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0Pv.Element = ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PvElement
|