passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +807 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_modules.libs/libgfortran-67378ab2.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-23768756.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-7897025b.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-e34bb864.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-503f0c35.3.29.so +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-aarch64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-aarch64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,907 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Orlik-Solomon Algebras
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
# ****************************************************************************
|
|
8
|
+
# Copyright (C) 2015 William Slofstra
|
|
9
|
+
# Travis Scrimshaw <tscrimsh at umn.edu>
|
|
10
|
+
#
|
|
11
|
+
# This program is free software: you can redistribute it and/or modify
|
|
12
|
+
# it under the terms of the GNU General Public License as published by
|
|
13
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
14
|
+
# (at your option) any later version.
|
|
15
|
+
# https://www.gnu.org/licenses/
|
|
16
|
+
# ****************************************************************************
|
|
17
|
+
|
|
18
|
+
from sage.misc.cachefunc import cached_method
|
|
19
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
20
|
+
from sage.categories.algebras import Algebras
|
|
21
|
+
from sage.sets.family import Family
|
|
22
|
+
from sage.modules.with_basis.invariant import FiniteDimensionalInvariantModule
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class OrlikSolomonAlgebra(CombinatorialFreeModule):
|
|
26
|
+
r"""
|
|
27
|
+
An Orlik-Solomon algebra.
|
|
28
|
+
|
|
29
|
+
Let `R` be a commutative ring. Let `M` be a matroid with groundset
|
|
30
|
+
`X`. Let `C(M)` denote the set of circuits of `M`. Let `E` denote
|
|
31
|
+
the exterior algebra over `R` generated by `\{ e_x \mid x \in X \}`.
|
|
32
|
+
The *Orlik-Solomon ideal* `J(M)` is the ideal of `E` generated by
|
|
33
|
+
|
|
34
|
+
.. MATH::
|
|
35
|
+
|
|
36
|
+
\partial e_S := \sum_{i=1}^t (-1)^{i-1} e_{j_1} \wedge e_{j_2}
|
|
37
|
+
\wedge \cdots \wedge \widehat{e}_{j_i} \wedge \cdots \wedge e_{j_t}
|
|
38
|
+
|
|
39
|
+
for all `S = \left\{ j_1 < j_2 < \cdots < j_t \right\} \in C(M)`,
|
|
40
|
+
where `\widehat{e}_{j_i}` means that the term `e_{j_i}` is being
|
|
41
|
+
omitted. The notation `\partial e_S` is not a coincidence, as
|
|
42
|
+
`\partial e_S` is actually the image of
|
|
43
|
+
`e_S := e_{j_1} \wedge e_{j_2} \wedge \cdots \wedge e_{j_t}` under the
|
|
44
|
+
unique derivation `\partial` of `E` which sends all `e_x` to `1`.
|
|
45
|
+
|
|
46
|
+
It is easy to see that `\partial e_S \in J(M)` not only for circuits
|
|
47
|
+
`S`, but also for any dependent set `S` of `M`. Moreover, every
|
|
48
|
+
dependent set `S` of `M` satisfies `e_S \in J(M)`.
|
|
49
|
+
|
|
50
|
+
The *Orlik-Solomon algebra* `A(M)` is the quotient `E / J(M)`. This is
|
|
51
|
+
a graded finite-dimensional skew-commutative `R`-algebra. Fix
|
|
52
|
+
some ordering on `X`; then, the NBC sets of `M` (that is, the subsets
|
|
53
|
+
of `X` containing no broken circuit of `M`) form a basis of `A(M)`.
|
|
54
|
+
(Here, a *broken circuit* of `M` is defined to be the result of
|
|
55
|
+
removing the smallest element from a circuit of `M`.)
|
|
56
|
+
|
|
57
|
+
In the current implementation, the basis of `A(M)` is indexed by the
|
|
58
|
+
NBC sets, which are implemented as frozensets.
|
|
59
|
+
|
|
60
|
+
INPUT:
|
|
61
|
+
|
|
62
|
+
- ``R`` -- the base ring
|
|
63
|
+
- ``M`` -- the defining matroid
|
|
64
|
+
- ``ordering`` -- (optional) an ordering of the groundset
|
|
65
|
+
|
|
66
|
+
EXAMPLES:
|
|
67
|
+
|
|
68
|
+
We create the Orlik-Solomon algebra of the uniform matroid `U(3, 4)`
|
|
69
|
+
and do some basic computations::
|
|
70
|
+
|
|
71
|
+
sage: M = matroids.Uniform(3, 4)
|
|
72
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
73
|
+
sage: OS.dimension()
|
|
74
|
+
14
|
|
75
|
+
sage: G = OS.algebra_generators()
|
|
76
|
+
sage: M.broken_circuits()
|
|
77
|
+
SetSystem of 1 sets over 4 elements
|
|
78
|
+
sage: M.broken_circuits()[0]
|
|
79
|
+
frozenset({1, 2, 3})
|
|
80
|
+
sage: G[1] * G[2] * G[3]
|
|
81
|
+
OS{0, 1, 2} - OS{0, 1, 3} + OS{0, 2, 3}
|
|
82
|
+
|
|
83
|
+
REFERENCES:
|
|
84
|
+
|
|
85
|
+
- :wikipedia:`Arrangement_of_hyperplanes#The_Orlik-Solomon_algebra`
|
|
86
|
+
|
|
87
|
+
- [CE2001]_
|
|
88
|
+
"""
|
|
89
|
+
@staticmethod
|
|
90
|
+
def __classcall_private__(cls, R, M, ordering=None):
|
|
91
|
+
"""
|
|
92
|
+
Normalize input to ensure a unique representation.
|
|
93
|
+
|
|
94
|
+
EXAMPLES::
|
|
95
|
+
|
|
96
|
+
sage: M = matroids.Wheel(3)
|
|
97
|
+
sage: from sage.algebras.orlik_solomon import OrlikSolomonAlgebra
|
|
98
|
+
sage: OS1 = OrlikSolomonAlgebra(QQ, M)
|
|
99
|
+
sage: OS2 = OrlikSolomonAlgebra(QQ, M, ordering=(0,1,2,3,4,5))
|
|
100
|
+
sage: OS3 = OrlikSolomonAlgebra(QQ, M, ordering=[0,1,2,3,4,5])
|
|
101
|
+
sage: OS1 is OS2 and OS2 is OS3
|
|
102
|
+
True
|
|
103
|
+
"""
|
|
104
|
+
if ordering is None:
|
|
105
|
+
ordering = sorted(M.groundset())
|
|
106
|
+
return super().__classcall__(cls, R, M, tuple(ordering))
|
|
107
|
+
|
|
108
|
+
def __init__(self, R, M, ordering=None):
|
|
109
|
+
"""
|
|
110
|
+
Initialize ``self``.
|
|
111
|
+
|
|
112
|
+
EXAMPLES::
|
|
113
|
+
|
|
114
|
+
sage: M = matroids.Wheel(3)
|
|
115
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
116
|
+
sage: TestSuite(OS).run()
|
|
117
|
+
|
|
118
|
+
We check on the matroid associated to the graph with 3 vertices and
|
|
119
|
+
2 edges between each vertex::
|
|
120
|
+
|
|
121
|
+
sage: # needs sage.graphs
|
|
122
|
+
sage: G = Graph([[1,2],[1,2],[2,3],[2,3],[1,3],[1,3]], multiedges=True)
|
|
123
|
+
sage: MG = Matroid(G)
|
|
124
|
+
sage: OS = MG.orlik_solomon_algebra(QQ)
|
|
125
|
+
sage: elts = OS.some_elements() + list(OS.algebra_generators())
|
|
126
|
+
sage: TestSuite(OS).run(elements=elts)
|
|
127
|
+
"""
|
|
128
|
+
self._M = M
|
|
129
|
+
self._sorting = {x:i for i,x in enumerate(ordering)}
|
|
130
|
+
|
|
131
|
+
# set up the dictionary of broken circuits
|
|
132
|
+
self._broken_circuits = {}
|
|
133
|
+
for c in self._M.circuits():
|
|
134
|
+
L = sorted(c, key=lambda x: self._sorting[x])
|
|
135
|
+
self._broken_circuits[frozenset(L[1:])] = L[0]
|
|
136
|
+
|
|
137
|
+
cat = Algebras(R).FiniteDimensional().WithBasis().Graded()
|
|
138
|
+
CombinatorialFreeModule.__init__(self, R, list(M.no_broken_circuits_sets(ordering)),
|
|
139
|
+
prefix='OS', bracket='{',
|
|
140
|
+
sorting_key=self._sort_key,
|
|
141
|
+
category=cat)
|
|
142
|
+
|
|
143
|
+
def _sort_key(self, x):
|
|
144
|
+
"""
|
|
145
|
+
Return the key used to sort the terms.
|
|
146
|
+
|
|
147
|
+
EXAMPLES::
|
|
148
|
+
|
|
149
|
+
sage: M = matroids.Wheel(3)
|
|
150
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
151
|
+
sage: OS._sort_key(frozenset({1, 2}))
|
|
152
|
+
(-2, [1, 2])
|
|
153
|
+
sage: OS._sort_key(frozenset({0, 1, 2}))
|
|
154
|
+
(-3, [0, 1, 2])
|
|
155
|
+
sage: OS._sort_key(frozenset({}))
|
|
156
|
+
(0, [])
|
|
157
|
+
"""
|
|
158
|
+
return (-len(x), sorted(x))
|
|
159
|
+
|
|
160
|
+
def _repr_term(self, m):
|
|
161
|
+
"""
|
|
162
|
+
Return a string representation of the basis element indexed by `m`.
|
|
163
|
+
|
|
164
|
+
EXAMPLES::
|
|
165
|
+
|
|
166
|
+
sage: M = matroids.Uniform(3, 4)
|
|
167
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
168
|
+
sage: OS._repr_term(frozenset([0]))
|
|
169
|
+
'OS{0}'
|
|
170
|
+
"""
|
|
171
|
+
return "OS{{{}}}".format(', '.join(str(t) for t in sorted(m)))
|
|
172
|
+
|
|
173
|
+
def _repr_(self):
|
|
174
|
+
"""
|
|
175
|
+
Return a string representation of ``self``.
|
|
176
|
+
|
|
177
|
+
EXAMPLES::
|
|
178
|
+
|
|
179
|
+
sage: M = matroids.Wheel(3)
|
|
180
|
+
sage: M.orlik_solomon_algebra(QQ)
|
|
181
|
+
Orlik-Solomon algebra of Wheel(3): Regular matroid of rank 3
|
|
182
|
+
on 6 elements with 16 bases
|
|
183
|
+
"""
|
|
184
|
+
return "Orlik-Solomon algebra of {}".format(self._M)
|
|
185
|
+
|
|
186
|
+
@cached_method
|
|
187
|
+
def one_basis(self):
|
|
188
|
+
"""
|
|
189
|
+
Return the index of the basis element corresponding to `1`
|
|
190
|
+
in ``self``.
|
|
191
|
+
|
|
192
|
+
EXAMPLES::
|
|
193
|
+
|
|
194
|
+
sage: M = matroids.Wheel(3)
|
|
195
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
196
|
+
sage: OS.one_basis() == frozenset()
|
|
197
|
+
True
|
|
198
|
+
"""
|
|
199
|
+
return frozenset({})
|
|
200
|
+
|
|
201
|
+
@cached_method
|
|
202
|
+
def algebra_generators(self):
|
|
203
|
+
r"""
|
|
204
|
+
Return the algebra generators of ``self``.
|
|
205
|
+
|
|
206
|
+
These form a family indexed by the groundset `X` of `M`. For
|
|
207
|
+
each `x \in X`, the `x`-th element is `e_x`.
|
|
208
|
+
|
|
209
|
+
EXAMPLES::
|
|
210
|
+
|
|
211
|
+
sage: M = matroids.Uniform(2, 2)
|
|
212
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
213
|
+
sage: OS.algebra_generators()
|
|
214
|
+
Finite family {0: OS{0}, 1: OS{1}}
|
|
215
|
+
|
|
216
|
+
sage: M = matroids.Uniform(1, 2)
|
|
217
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
218
|
+
sage: OS.algebra_generators()
|
|
219
|
+
Finite family {0: OS{0}, 1: OS{0}}
|
|
220
|
+
|
|
221
|
+
sage: M = matroids.Uniform(1, 3)
|
|
222
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
223
|
+
sage: OS.algebra_generators()
|
|
224
|
+
Finite family {0: OS{0}, 1: OS{0}, 2: OS{0}}
|
|
225
|
+
"""
|
|
226
|
+
return Family(sorted(self._M.groundset()),
|
|
227
|
+
lambda i: self.subset_image(frozenset([i])))
|
|
228
|
+
|
|
229
|
+
@cached_method
|
|
230
|
+
def product_on_basis(self, a, b):
|
|
231
|
+
r"""
|
|
232
|
+
Return the product in ``self`` of the basis elements
|
|
233
|
+
indexed by ``a`` and ``b``.
|
|
234
|
+
|
|
235
|
+
EXAMPLES::
|
|
236
|
+
|
|
237
|
+
sage: M = matroids.Wheel(3)
|
|
238
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
239
|
+
sage: OS.product_on_basis(frozenset([2]), frozenset([3,4]))
|
|
240
|
+
OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4}
|
|
241
|
+
|
|
242
|
+
::
|
|
243
|
+
|
|
244
|
+
sage: G = OS.algebra_generators()
|
|
245
|
+
sage: prod(G)
|
|
246
|
+
0
|
|
247
|
+
sage: G[2] * G[4]
|
|
248
|
+
-OS{1, 2} + OS{1, 4}
|
|
249
|
+
sage: G[3] * G[4] * G[2]
|
|
250
|
+
OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4}
|
|
251
|
+
sage: G[2] * G[3] * G[4]
|
|
252
|
+
OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4}
|
|
253
|
+
sage: G[3] * G[2] * G[4]
|
|
254
|
+
-OS{0, 1, 2} + OS{0, 1, 4} - OS{0, 2, 3} - OS{0, 3, 4}
|
|
255
|
+
|
|
256
|
+
TESTS:
|
|
257
|
+
|
|
258
|
+
Let us check that `e_{s_1} e_{s_2} \cdots e_{s_k} = e_S` for any
|
|
259
|
+
subset `S = \{ s_1 < s_2 < \cdots < s_k \}` of the groundset::
|
|
260
|
+
|
|
261
|
+
sage: # needs sage.graphs
|
|
262
|
+
sage: G = Graph([[1,2],[1,2],[2,3],[3,4],[4,2]], multiedges=True)
|
|
263
|
+
sage: MG = Matroid(G).regular_matroid()
|
|
264
|
+
sage: E = MG.groundset_list()
|
|
265
|
+
sage: OS = MG.orlik_solomon_algebra(ZZ)
|
|
266
|
+
sage: G = OS.algebra_generators()
|
|
267
|
+
sage: import itertools
|
|
268
|
+
sage: def test_prod(F):
|
|
269
|
+
....: LHS = OS.subset_image(frozenset(F))
|
|
270
|
+
....: RHS = OS.prod([G[i] for i in sorted(F)])
|
|
271
|
+
....: return LHS == RHS
|
|
272
|
+
sage: all( test_prod(F) for k in range(len(E)+1)
|
|
273
|
+
....: for F in itertools.combinations(E, k) )
|
|
274
|
+
True
|
|
275
|
+
"""
|
|
276
|
+
if not a:
|
|
277
|
+
return self.basis()[b]
|
|
278
|
+
if not b:
|
|
279
|
+
return self.basis()[a]
|
|
280
|
+
|
|
281
|
+
if not a.isdisjoint(b):
|
|
282
|
+
return self.zero()
|
|
283
|
+
|
|
284
|
+
R = self.base_ring()
|
|
285
|
+
# since a is disjoint from b, we can just multiply the generator
|
|
286
|
+
if len(a) == 1:
|
|
287
|
+
i = list(a)[0]
|
|
288
|
+
# insert i into nbc, keeping track of sign in coeff
|
|
289
|
+
ns = b.union({i})
|
|
290
|
+
ns_sorted = sorted(ns, key=lambda x: self._sorting[x])
|
|
291
|
+
coeff = (-1)**ns_sorted.index(i)
|
|
292
|
+
|
|
293
|
+
return R(coeff) * self.subset_image(ns)
|
|
294
|
+
|
|
295
|
+
# r is the accumulator
|
|
296
|
+
# we reverse a in the product, so add a sign
|
|
297
|
+
# note that l>=2 here
|
|
298
|
+
if len(a) % 4 < 2:
|
|
299
|
+
sign = R.one()
|
|
300
|
+
else:
|
|
301
|
+
sign = - R.one()
|
|
302
|
+
r = self._from_dict({b: sign}, remove_zeros=False)
|
|
303
|
+
|
|
304
|
+
# now do the multiplication generator by generator
|
|
305
|
+
G = self.algebra_generators()
|
|
306
|
+
for i in sorted(a, key=lambda x: self._sorting[x]):
|
|
307
|
+
r = G[i] * r
|
|
308
|
+
|
|
309
|
+
return r
|
|
310
|
+
|
|
311
|
+
@cached_method
|
|
312
|
+
def subset_image(self, S):
|
|
313
|
+
"""
|
|
314
|
+
Return the element `e_S` of `A(M)` (``== self``) corresponding to
|
|
315
|
+
a subset `S` of the groundset of `M`.
|
|
316
|
+
|
|
317
|
+
INPUT:
|
|
318
|
+
|
|
319
|
+
- ``S`` -- frozenset which is a subset of the groundset of `M`
|
|
320
|
+
|
|
321
|
+
EXAMPLES::
|
|
322
|
+
|
|
323
|
+
sage: M = matroids.Wheel(3)
|
|
324
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
325
|
+
sage: BC = sorted(M.broken_circuits(), key=sorted)
|
|
326
|
+
sage: for bc in BC: (sorted(bc), OS.subset_image(bc))
|
|
327
|
+
([1, 3], -OS{0, 1} + OS{0, 3})
|
|
328
|
+
([1, 4, 5], OS{0, 1, 4} - OS{0, 1, 5} - OS{0, 3, 4} + OS{0, 3, 5})
|
|
329
|
+
([2, 3, 4], OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4})
|
|
330
|
+
([2, 3, 5], OS{0, 2, 3} + OS{0, 3, 5})
|
|
331
|
+
([2, 4], -OS{1, 2} + OS{1, 4})
|
|
332
|
+
([2, 5], -OS{0, 2} + OS{0, 5})
|
|
333
|
+
([4, 5], -OS{3, 4} + OS{3, 5})
|
|
334
|
+
|
|
335
|
+
sage: # needs sage.graphs
|
|
336
|
+
sage: M4 = matroids.CompleteGraphic(4)
|
|
337
|
+
sage: OSM4 = M4.orlik_solomon_algebra(QQ)
|
|
338
|
+
sage: OSM4.subset_image(frozenset({2,3,4}))
|
|
339
|
+
OS{0, 2, 3} + OS{0, 3, 4}
|
|
340
|
+
|
|
341
|
+
An example of a custom ordering::
|
|
342
|
+
|
|
343
|
+
sage: # needs sage.graphs
|
|
344
|
+
sage: G = Graph([[3, 4], [4, 1], [1, 2], [2, 3], [3, 5], [5, 6], [6, 3]])
|
|
345
|
+
sage: MG = Matroid(G)
|
|
346
|
+
sage: s = [(5, 6), (1, 2), (3, 5), (2, 3), (1, 4), (3, 6), (3, 4)]
|
|
347
|
+
sage: sorted([sorted(c) for c in MG.circuits()])
|
|
348
|
+
[[(1, 2), (1, 4), (2, 3), (3, 4)],
|
|
349
|
+
[(3, 5), (3, 6), (5, 6)]]
|
|
350
|
+
sage: OSMG = MG.orlik_solomon_algebra(QQ, ordering=s)
|
|
351
|
+
sage: OSMG.subset_image(frozenset())
|
|
352
|
+
OS{}
|
|
353
|
+
sage: OSMG.subset_image(frozenset([(1,2),(3,4),(1,4),(2,3)]))
|
|
354
|
+
0
|
|
355
|
+
sage: OSMG.subset_image(frozenset([(2,3),(1,2),(3,4)]))
|
|
356
|
+
OS{(1, 2), (2, 3), (3, 4)}
|
|
357
|
+
sage: OSMG.subset_image(frozenset([(1,4),(3,4),(2,3),(3,6),(5,6)]))
|
|
358
|
+
-OS{(1, 2), (1, 4), (2, 3), (3, 6), (5, 6)}
|
|
359
|
+
+ OS{(1, 2), (1, 4), (3, 4), (3, 6), (5, 6)}
|
|
360
|
+
- OS{(1, 2), (2, 3), (3, 4), (3, 6), (5, 6)}
|
|
361
|
+
sage: OSMG.subset_image(frozenset([(1,4),(3,4),(2,3),(3,6),(3,5)]))
|
|
362
|
+
OS{(1, 2), (1, 4), (2, 3), (3, 5), (5, 6)}
|
|
363
|
+
- OS{(1, 2), (1, 4), (2, 3), (3, 6), (5, 6)}
|
|
364
|
+
+ OS{(1, 2), (1, 4), (3, 4), (3, 5), (5, 6)}
|
|
365
|
+
+ OS{(1, 2), (1, 4), (3, 4), (3, 6), (5, 6)}
|
|
366
|
+
- OS{(1, 2), (2, 3), (3, 4), (3, 5), (5, 6)}
|
|
367
|
+
- OS{(1, 2), (2, 3), (3, 4), (3, 6), (5, 6)}
|
|
368
|
+
|
|
369
|
+
TESTS::
|
|
370
|
+
|
|
371
|
+
sage: # needs sage.graphs
|
|
372
|
+
sage: G = Graph([[1,2],[1,2],[2,3],[2,3],[1,3],[1,3]], multiedges=True)
|
|
373
|
+
sage: MG = Matroid(G)
|
|
374
|
+
sage: sorted([sorted(c) for c in MG.circuits()])
|
|
375
|
+
[[0, 1], [0, 2, 4], [0, 2, 5], [0, 3, 4],
|
|
376
|
+
[0, 3, 5], [1, 2, 4], [1, 2, 5], [1, 3, 4],
|
|
377
|
+
[1, 3, 5], [2, 3], [4, 5]]
|
|
378
|
+
sage: OSMG = MG.orlik_solomon_algebra(QQ)
|
|
379
|
+
sage: OSMG.subset_image(frozenset())
|
|
380
|
+
OS{}
|
|
381
|
+
sage: OSMG.subset_image(frozenset([1, 2, 3]))
|
|
382
|
+
0
|
|
383
|
+
sage: OSMG.subset_image(frozenset([1, 3, 5]))
|
|
384
|
+
0
|
|
385
|
+
sage: OSMG.subset_image(frozenset([1, 2]))
|
|
386
|
+
OS{0, 2}
|
|
387
|
+
sage: OSMG.subset_image(frozenset([3, 4]))
|
|
388
|
+
-OS{0, 2} + OS{0, 4}
|
|
389
|
+
sage: OSMG.subset_image(frozenset([1, 5]))
|
|
390
|
+
OS{0, 4}
|
|
391
|
+
|
|
392
|
+
sage: # needs sage.graphs
|
|
393
|
+
sage: G = Graph([[1,2],[1,2],[2,3],[3,4],[4,2]], multiedges=True)
|
|
394
|
+
sage: MG = Matroid(G)
|
|
395
|
+
sage: sorted([sorted(c) for c in MG.circuits()])
|
|
396
|
+
[[0, 1], [2, 3, 4]]
|
|
397
|
+
sage: OSMG = MG.orlik_solomon_algebra(QQ)
|
|
398
|
+
sage: OSMG.subset_image(frozenset())
|
|
399
|
+
OS{}
|
|
400
|
+
sage: OSMG.subset_image(frozenset([1, 3, 4]))
|
|
401
|
+
-OS{0, 2, 3} + OS{0, 2, 4}
|
|
402
|
+
|
|
403
|
+
We check on a non-standard ordering::
|
|
404
|
+
|
|
405
|
+
sage: M = matroids.Wheel(3)
|
|
406
|
+
sage: o = [5,4,3,2,1,0]
|
|
407
|
+
sage: OS = M.orlik_solomon_algebra(QQ, ordering=o)
|
|
408
|
+
sage: BC = sorted(M.broken_circuits(ordering=o), key=sorted)
|
|
409
|
+
sage: for bc in BC: (sorted(bc), OS.subset_image(bc))
|
|
410
|
+
([0, 1], OS{0, 3} - OS{1, 3})
|
|
411
|
+
([0, 1, 4], OS{0, 3, 5} - OS{0, 4, 5} - OS{1, 3, 5} + OS{1, 4, 5})
|
|
412
|
+
([0, 2], OS{0, 5} - OS{2, 5})
|
|
413
|
+
([0, 2, 3], -OS{0, 3, 5} + OS{2, 3, 5})
|
|
414
|
+
([1, 2], OS{1, 4} - OS{2, 4})
|
|
415
|
+
([1, 2, 3], -OS{1, 3, 5} + OS{1, 4, 5} + OS{2, 3, 5} - OS{2, 4, 5})
|
|
416
|
+
([3, 4], OS{3, 5} - OS{4, 5})
|
|
417
|
+
"""
|
|
418
|
+
if not isinstance(S, frozenset):
|
|
419
|
+
raise ValueError("S needs to be a frozenset")
|
|
420
|
+
for bc in self._broken_circuits:
|
|
421
|
+
if bc.issubset(S):
|
|
422
|
+
i = self._broken_circuits[bc]
|
|
423
|
+
if i in S:
|
|
424
|
+
# ``S`` contains not just a broken circuit, but an
|
|
425
|
+
# actual circuit; then `e_S = 0`.
|
|
426
|
+
return self.zero()
|
|
427
|
+
coeff = self.base_ring().one()
|
|
428
|
+
# Now, reduce ``S``, and build the result ``r``:
|
|
429
|
+
r = self.zero()
|
|
430
|
+
switch = False
|
|
431
|
+
Si = S.union({i})
|
|
432
|
+
Ss = sorted(Si, key=lambda x: self._sorting[x])
|
|
433
|
+
for j in Ss:
|
|
434
|
+
if j in bc:
|
|
435
|
+
r += coeff * self.subset_image(Si.difference({j}))
|
|
436
|
+
if switch:
|
|
437
|
+
coeff *= -1
|
|
438
|
+
if j == i:
|
|
439
|
+
switch = True
|
|
440
|
+
return r
|
|
441
|
+
# So ``S`` is an NBC set.
|
|
442
|
+
return self.monomial(S)
|
|
443
|
+
|
|
444
|
+
def degree_on_basis(self, m):
|
|
445
|
+
"""
|
|
446
|
+
Return the degree of the basis element indexed by ``m``.
|
|
447
|
+
|
|
448
|
+
EXAMPLES::
|
|
449
|
+
|
|
450
|
+
sage: M = matroids.Wheel(3)
|
|
451
|
+
sage: OS = M.orlik_solomon_algebra(QQ)
|
|
452
|
+
sage: OS.degree_on_basis(frozenset([1]))
|
|
453
|
+
1
|
|
454
|
+
sage: OS.degree_on_basis(frozenset([0, 2, 3]))
|
|
455
|
+
3
|
|
456
|
+
"""
|
|
457
|
+
return len(m)
|
|
458
|
+
|
|
459
|
+
def as_gca(self):
|
|
460
|
+
r"""
|
|
461
|
+
Return the graded commutative algebra corresponding to ``self``.
|
|
462
|
+
|
|
463
|
+
EXAMPLES::
|
|
464
|
+
|
|
465
|
+
sage: # needs sage.combinat sage.geometry.polyhedron sage.graphs
|
|
466
|
+
sage: H = hyperplane_arrangements.braid(3)
|
|
467
|
+
sage: O = H.orlik_solomon_algebra(QQ)
|
|
468
|
+
sage: O.as_gca()
|
|
469
|
+
Graded Commutative Algebra with generators ('e0', 'e1', 'e2') in degrees (1, 1, 1)
|
|
470
|
+
with relations [e0*e1 - e0*e2 + e1*e2] over Rational Field
|
|
471
|
+
|
|
472
|
+
::
|
|
473
|
+
|
|
474
|
+
sage: N = matroids.catalog.Fano()
|
|
475
|
+
sage: O = N.orlik_solomon_algebra(QQ)
|
|
476
|
+
sage: O.as_gca() # needs sage.combinat sage.libs.singular
|
|
477
|
+
Graded Commutative Algebra with generators ('e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6')
|
|
478
|
+
in degrees (1, 1, 1, 1, 1, 1, 1) with relations
|
|
479
|
+
[e1*e2 - e1*e3 + e2*e3, e0*e1*e3 - e0*e1*e4 + e0*e3*e4 - e1*e3*e4,
|
|
480
|
+
e0*e2 - e0*e4 + e2*e4, e3*e4 - e3*e5 + e4*e5,
|
|
481
|
+
e1*e2*e4 - e1*e2*e5 + e1*e4*e5 - e2*e4*e5,
|
|
482
|
+
e0*e2*e3 - e0*e2*e5 + e0*e3*e5 - e2*e3*e5, e0*e1 - e0*e5 + e1*e5,
|
|
483
|
+
e2*e5 - e2*e6 + e5*e6, e1*e3*e5 - e1*e3*e6 + e1*e5*e6 - e3*e5*e6,
|
|
484
|
+
e0*e4*e5 - e0*e4*e6 + e0*e5*e6 - e4*e5*e6, e1*e4 - e1*e6 + e4*e6,
|
|
485
|
+
e2*e3*e4 - e2*e3*e6 + e2*e4*e6 - e3*e4*e6, e0*e3 - e0*e6 + e3*e6,
|
|
486
|
+
e0*e1*e2 - e0*e1*e6 + e0*e2*e6 - e1*e2*e6] over Rational Field
|
|
487
|
+
|
|
488
|
+
TESTS::
|
|
489
|
+
|
|
490
|
+
sage: # needs sage.geometry.polyhedron
|
|
491
|
+
sage: H = hyperplane_arrangements.Catalan(3,QQ).cone()
|
|
492
|
+
sage: O = H.orlik_solomon_algebra(QQ)
|
|
493
|
+
sage: A = O.as_gca() # needs sage.combinat
|
|
494
|
+
sage: H.poincare_polynomial()
|
|
495
|
+
20*x^3 + 29*x^2 + 10*x + 1
|
|
496
|
+
sage: [len(A.basis(i)) for i in range(5)] # needs sage.combinat
|
|
497
|
+
[1, 10, 29, 20, 0]
|
|
498
|
+
"""
|
|
499
|
+
from sage.algebras.commutative_dga import GradedCommutativeAlgebra
|
|
500
|
+
gens = self.algebra_generators()
|
|
501
|
+
gkeys = gens.keys()
|
|
502
|
+
names = ['e{}'.format(i) for i in range(len(gens))]
|
|
503
|
+
A = GradedCommutativeAlgebra(self.base_ring(), names)
|
|
504
|
+
rels = []
|
|
505
|
+
for bc in self._broken_circuits.items():
|
|
506
|
+
bclist = [bc[1]] + list(bc[0])
|
|
507
|
+
indices = [gkeys.index(el) for el in bclist]
|
|
508
|
+
indices.sort()
|
|
509
|
+
rel = A.zero()
|
|
510
|
+
sign = -(-1)**len(indices)
|
|
511
|
+
for i in indices:
|
|
512
|
+
mon = A.one()
|
|
513
|
+
for j in indices:
|
|
514
|
+
if j != i:
|
|
515
|
+
mon *= A.gen(j)
|
|
516
|
+
rel += sign * mon
|
|
517
|
+
sign = -sign
|
|
518
|
+
rels.append(rel)
|
|
519
|
+
I = A.ideal(rels)
|
|
520
|
+
return A.quotient(I)
|
|
521
|
+
|
|
522
|
+
def as_cdga(self):
|
|
523
|
+
r"""
|
|
524
|
+
Return the commutative differential graded algebra corresponding
|
|
525
|
+
to ``self`` with the trivial differential.
|
|
526
|
+
|
|
527
|
+
EXAMPLES::
|
|
528
|
+
|
|
529
|
+
sage: # needs sage.combinat sage.geometry.polyhedron sage.graphs
|
|
530
|
+
sage: H = hyperplane_arrangements.braid(3)
|
|
531
|
+
sage: O = H.orlik_solomon_algebra(QQ)
|
|
532
|
+
sage: O.as_cdga()
|
|
533
|
+
Commutative Differential Graded Algebra with generators ('e0', 'e1', 'e2')
|
|
534
|
+
in degrees (1, 1, 1) with relations [e0*e1 - e0*e2 + e1*e2] over Rational Field
|
|
535
|
+
with differential:
|
|
536
|
+
e0 --> 0
|
|
537
|
+
e1 --> 0
|
|
538
|
+
e2 --> 0
|
|
539
|
+
"""
|
|
540
|
+
return self.as_gca().cdg_algebra({})
|
|
541
|
+
|
|
542
|
+
def aomoto_complex(self, omega):
|
|
543
|
+
r"""
|
|
544
|
+
Return the Aomoto complex of ``self`` defined by ``omega``.
|
|
545
|
+
|
|
546
|
+
Let `A(M)` be an Orlik-Solomon algebra of a matroid `M`. Let
|
|
547
|
+
`\omega \in A(M)_1` be an element of (homogeneous) degree 1.
|
|
548
|
+
The Aomoto complete is the chain complex defined on `A(M)`
|
|
549
|
+
with the differential defined by `\omega \wedge`.
|
|
550
|
+
|
|
551
|
+
EXAMPLES::
|
|
552
|
+
|
|
553
|
+
sage: # needs sage.geometry.polyhedron sage.graphs
|
|
554
|
+
sage: OS = hyperplane_arrangements.braid(3).orlik_solomon_algebra(QQ)
|
|
555
|
+
sage: gens = OS.algebra_generators()
|
|
556
|
+
sage: AC = OS.aomoto_complex(gens[0])
|
|
557
|
+
sage: ascii_art(AC)
|
|
558
|
+
[0]
|
|
559
|
+
[1 0 0] [0]
|
|
560
|
+
[0 1 0] [1]
|
|
561
|
+
0 <-- C_2 <-------- C_1 <---- C_0 <-- 0
|
|
562
|
+
sage: AC.homology()
|
|
563
|
+
{0: Vector space of dimension 0 over Rational Field,
|
|
564
|
+
1: Vector space of dimension 0 over Rational Field,
|
|
565
|
+
2: Vector space of dimension 0 over Rational Field}
|
|
566
|
+
sage: AC = OS.aomoto_complex(-2*gens[0] + gens[1] + gens[2]); ascii_art(AC)
|
|
567
|
+
[ 1]
|
|
568
|
+
[-1 -1 -1] [ 1]
|
|
569
|
+
[-1 -1 -1] [-2]
|
|
570
|
+
0 <-- C_2 <----------- C_1 <----- C_0 <-- 0
|
|
571
|
+
sage: AC.homology()
|
|
572
|
+
{0: Vector space of dimension 0 over Rational Field,
|
|
573
|
+
1: Vector space of dimension 1 over Rational Field,
|
|
574
|
+
2: Vector space of dimension 1 over Rational Field}
|
|
575
|
+
|
|
576
|
+
TESTS::
|
|
577
|
+
|
|
578
|
+
sage: # needs sage.geometry.polyhedron sage.graphs
|
|
579
|
+
sage: OS = hyperplane_arrangements.braid(4).orlik_solomon_algebra(QQ)
|
|
580
|
+
sage: gens = OS.algebra_generators()
|
|
581
|
+
sage: OS.aomoto_complex(gens[0] * gens[1] * gens[3])
|
|
582
|
+
Traceback (most recent call last):
|
|
583
|
+
...
|
|
584
|
+
ValueError: omega must be a homogeneous element of degree 1
|
|
585
|
+
|
|
586
|
+
REFERENCES:
|
|
587
|
+
|
|
588
|
+
- [BY2016]_
|
|
589
|
+
"""
|
|
590
|
+
if not omega.is_homogeneous() or omega.degree() != 1:
|
|
591
|
+
raise ValueError("omega must be a homogeneous element of degree 1")
|
|
592
|
+
from sage.homology.chain_complex import ChainComplex
|
|
593
|
+
R = self.base_ring()
|
|
594
|
+
from collections import defaultdict
|
|
595
|
+
from sage.matrix.constructor import matrix
|
|
596
|
+
graded_basis = defaultdict(list)
|
|
597
|
+
B = self.basis()
|
|
598
|
+
for k in B.keys():
|
|
599
|
+
graded_basis[len(k)].append(k)
|
|
600
|
+
degrees = list(graded_basis)
|
|
601
|
+
data = {i: matrix.zero(R, len(graded_basis[i+1]), len(graded_basis[i]))
|
|
602
|
+
for i in degrees}
|
|
603
|
+
for i in degrees:
|
|
604
|
+
mat = data[i]
|
|
605
|
+
for j, key in enumerate(graded_basis[i]):
|
|
606
|
+
ret = (omega * B[key]).monomial_coefficients(copy=False)
|
|
607
|
+
for k, imkey in enumerate(graded_basis[i+1]):
|
|
608
|
+
if imkey in ret:
|
|
609
|
+
mat[k,j] = ret[imkey]
|
|
610
|
+
mat.set_immutable()
|
|
611
|
+
return ChainComplex(data, R)
|
|
612
|
+
|
|
613
|
+
|
|
614
|
+
class OrlikSolomonInvariantAlgebra(FiniteDimensionalInvariantModule):
|
|
615
|
+
r"""
|
|
616
|
+
The invariant algebra of the Orlik-Solomon algebra from the
|
|
617
|
+
action on `A(M)` induced from the ``action_on_groundset``.
|
|
618
|
+
|
|
619
|
+
INPUT:
|
|
620
|
+
|
|
621
|
+
- ``R`` -- the ring of coefficients
|
|
622
|
+
- ``M`` -- a matroid
|
|
623
|
+
- ``G`` -- a semigroup
|
|
624
|
+
- ``action_on_groundset`` -- (optional) a function defining the action
|
|
625
|
+
of ``G`` on the elements of the groundset of ``M``; default is ``g(x)``
|
|
626
|
+
|
|
627
|
+
EXAMPLES:
|
|
628
|
+
|
|
629
|
+
Lets start with the action of `S_3` on the rank `2` braid matroid::
|
|
630
|
+
|
|
631
|
+
sage: # needs sage.graphs
|
|
632
|
+
sage: M = matroids.CompleteGraphic(3)
|
|
633
|
+
sage: M.groundset()
|
|
634
|
+
frozenset({0, 1, 2})
|
|
635
|
+
sage: G = SymmetricGroup(3) # needs sage.groups
|
|
636
|
+
|
|
637
|
+
Calling elements ``g`` of ``G`` on an element `i` of `\{1, 2, 3\}`
|
|
638
|
+
defines the action we want, but since the groundset is `\{0, 1, 2\}`
|
|
639
|
+
we first add `1` and then subtract `1`::
|
|
640
|
+
|
|
641
|
+
sage: def on_groundset(g, x):
|
|
642
|
+
....: return g(x+1) - 1
|
|
643
|
+
|
|
644
|
+
Now that we have defined an action we can create the invariant, and
|
|
645
|
+
get its basis::
|
|
646
|
+
|
|
647
|
+
sage: # needs sage.graphs sage.groups
|
|
648
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=(G, on_groundset))
|
|
649
|
+
sage: OSG.basis()
|
|
650
|
+
Finite family {0: B[0], 1: B[1]}
|
|
651
|
+
sage: [OSG.lift(b) for b in OSG.basis()]
|
|
652
|
+
[OS{}, OS{0} + OS{1} + OS{2}]
|
|
653
|
+
|
|
654
|
+
Since it is invariant, the action of any ``g`` in ``G`` is trivial::
|
|
655
|
+
|
|
656
|
+
sage: # needs sage.graphs sage.groups
|
|
657
|
+
sage: x = OSG.an_element(); x
|
|
658
|
+
2*B[0] + 2*B[1]
|
|
659
|
+
sage: g = G.an_element(); g
|
|
660
|
+
(2,3)
|
|
661
|
+
sage: g * x
|
|
662
|
+
2*B[0] + 2*B[1]
|
|
663
|
+
|
|
664
|
+
sage: # needs sage.graphs sage.groups
|
|
665
|
+
sage: x = OSG.random_element()
|
|
666
|
+
sage: g = G.random_element()
|
|
667
|
+
sage: g * x == x
|
|
668
|
+
True
|
|
669
|
+
|
|
670
|
+
The underlying ambient module is the Orlik-Solomon algebra,
|
|
671
|
+
which is accessible via :meth:`ambient()`::
|
|
672
|
+
|
|
673
|
+
sage: M.orlik_solomon_algebra(QQ) is OSG.ambient() # needs sage.graphs sage.groups
|
|
674
|
+
True
|
|
675
|
+
|
|
676
|
+
There is not much structure here, so lets look at a bigger example.
|
|
677
|
+
Here we will look at the rank `3` braid matroid, and to make things
|
|
678
|
+
easier, we'll start the indexing at `1` so that the `S_6` action
|
|
679
|
+
on the groundset is simply calling `g`::
|
|
680
|
+
|
|
681
|
+
sage: # needs sage.graphs sage.groups
|
|
682
|
+
sage: M = matroids.CompleteGraphic(4); M.groundset()
|
|
683
|
+
frozenset({0, 1, 2, 3, 4, 5})
|
|
684
|
+
sage: new_bases = [frozenset(i+1 for i in j) for j in M.bases()]
|
|
685
|
+
sage: M = Matroid(bases=new_bases); M.groundset()
|
|
686
|
+
frozenset({1, 2, 3, 4, 5, 6})
|
|
687
|
+
sage: G = SymmetricGroup(6)
|
|
688
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=G)
|
|
689
|
+
sage: OSG.basis()
|
|
690
|
+
Finite family {0: B[0], 1: B[1]}
|
|
691
|
+
sage: [OSG.lift(b) for b in OSG.basis()]
|
|
692
|
+
[OS{}, OS{1} + OS{2} + OS{3} + OS{4} + OS{5} + OS{6}]
|
|
693
|
+
sage: (OSG.basis()[1])^2
|
|
694
|
+
0
|
|
695
|
+
sage: 5 * OSG.basis()[1]
|
|
696
|
+
5*B[1]
|
|
697
|
+
|
|
698
|
+
Next, we look at the same matroid but with an `S_3 \times S_3` action
|
|
699
|
+
(here realized as a Young subgroup of `S_6`)::
|
|
700
|
+
|
|
701
|
+
sage: # needs sage.graphs sage.groups
|
|
702
|
+
sage: H = G.young_subgroup([3, 3])
|
|
703
|
+
sage: OSH = M.orlik_solomon_algebra(QQ, invariant=H)
|
|
704
|
+
sage: OSH.basis()
|
|
705
|
+
Finite family {0: B[0], 1: B[1], 2: B[2]}
|
|
706
|
+
sage: [OSH.lift(b) for b in OSH.basis()]
|
|
707
|
+
[OS{}, OS{4} + OS{5} + OS{6}, OS{1} + OS{2} + OS{3}]
|
|
708
|
+
|
|
709
|
+
We implement an `S_4` action on the vertices::
|
|
710
|
+
|
|
711
|
+
sage: # needs sage.graphs sage.groups
|
|
712
|
+
sage: M = matroids.CompleteGraphic(4)
|
|
713
|
+
sage: G = SymmetricGroup(4)
|
|
714
|
+
sage: edge_map = {i: M.groundset_to_edges([i])[0][:2]
|
|
715
|
+
....: for i in M.groundset()}
|
|
716
|
+
sage: inv_map = {v: k for k, v in edge_map.items()}
|
|
717
|
+
sage: def vert_action(g, x):
|
|
718
|
+
....: a, b = edge_map[x]
|
|
719
|
+
....: return inv_map[tuple(sorted([g(a+1)-1, g(b+1)-1]))]
|
|
720
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=(G, vert_action))
|
|
721
|
+
sage: B = OSG.basis()
|
|
722
|
+
sage: [OSG.lift(b) for b in B]
|
|
723
|
+
[OS{}, OS{0} + OS{1} + OS{2} + OS{3} + OS{4} + OS{5}]
|
|
724
|
+
|
|
725
|
+
We use this to describe the Young subgroup `S_2 \times S_2` action::
|
|
726
|
+
|
|
727
|
+
sage: # needs sage.graphs sage.groups
|
|
728
|
+
sage: H = G.young_subgroup([2,2])
|
|
729
|
+
sage: OSH = M.orlik_solomon_algebra(QQ, invariant=(H, vert_action))
|
|
730
|
+
sage: B = OSH.basis()
|
|
731
|
+
sage: [OSH.lift(b) for b in B]
|
|
732
|
+
[OS{}, OS{5}, OS{1} + OS{2} + OS{3} + OS{4}, OS{0},
|
|
733
|
+
-1/2*OS{1, 2} + OS{1, 5} - 1/2*OS{3, 4} + OS{3, 5},
|
|
734
|
+
OS{0, 5}, OS{0, 1} + OS{0, 2} + OS{0, 3} + OS{0, 4},
|
|
735
|
+
-1/2*OS{0, 1, 2} + OS{0, 1, 5} - 1/2*OS{0, 3, 4} + OS{0, 3, 5}]
|
|
736
|
+
|
|
737
|
+
We demonstrate the algebra structure::
|
|
738
|
+
|
|
739
|
+
sage: matrix([[b*bp for b in B] for bp in B]) # needs sage.graphs sage.groups
|
|
740
|
+
[ B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7]]
|
|
741
|
+
[ B[1] 0 2*B[4] B[5] 0 0 2*B[7] 0]
|
|
742
|
+
[ B[2] -2*B[4] 0 B[6] 0 -2*B[7] 0 0]
|
|
743
|
+
[ B[3] -B[5] -B[6] 0 B[7] 0 0 0]
|
|
744
|
+
[ B[4] 0 0 B[7] 0 0 0 0]
|
|
745
|
+
[ B[5] 0 -2*B[7] 0 0 0 0 0]
|
|
746
|
+
[ B[6] 2*B[7] 0 0 0 0 0 0]
|
|
747
|
+
[ B[7] 0 0 0 0 0 0 0]
|
|
748
|
+
|
|
749
|
+
.. NOTE::
|
|
750
|
+
|
|
751
|
+
The algebra structure only exists when the action on the
|
|
752
|
+
groundset yields an equivariant matroid, in the sense that
|
|
753
|
+
`g \cdot I \in \mathcal{I}` for every `g \in G` and for
|
|
754
|
+
every `I \in \mathcal{I}`.
|
|
755
|
+
"""
|
|
756
|
+
def __init__(self, R, M, G, action_on_groundset=None, *args, **kwargs):
|
|
757
|
+
r"""
|
|
758
|
+
Initialize ``self``.
|
|
759
|
+
|
|
760
|
+
EXAMPLES::
|
|
761
|
+
|
|
762
|
+
sage: # needs sage.graphs sage.groups
|
|
763
|
+
sage: M = matroids.CompleteGraphic(4)
|
|
764
|
+
sage: new_bases = [frozenset(i+1 for i in j) for j in M.bases()]
|
|
765
|
+
sage: M = Matroid(bases=new_bases)
|
|
766
|
+
sage: G = SymmetricGroup(6)
|
|
767
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=G)
|
|
768
|
+
sage: TestSuite(OSG).run()
|
|
769
|
+
"""
|
|
770
|
+
ordering = kwargs.pop('ordering', None)
|
|
771
|
+
OS = OrlikSolomonAlgebra(R, M, ordering)
|
|
772
|
+
self._ambient = OS
|
|
773
|
+
|
|
774
|
+
if action_on_groundset is None:
|
|
775
|
+
# if sage knows the action, we don't need to provide it
|
|
776
|
+
|
|
777
|
+
def action_on_groundset(g, x):
|
|
778
|
+
return g(x)
|
|
779
|
+
|
|
780
|
+
self._groundset_action = action_on_groundset
|
|
781
|
+
|
|
782
|
+
self._side = kwargs.pop('side', 'left')
|
|
783
|
+
category = kwargs.pop('category', OS.category().Subobjects())
|
|
784
|
+
|
|
785
|
+
def action(g, m):
|
|
786
|
+
return OS.sum(c * self._basis_action(g, x)
|
|
787
|
+
for x, c in m._monomial_coefficients.items())
|
|
788
|
+
|
|
789
|
+
self._action = action
|
|
790
|
+
|
|
791
|
+
# Since an equivariant matroid yields a degree-preserving action
|
|
792
|
+
# on the basis of OS, the matrix which computes the action when
|
|
793
|
+
# computing the invariant will be a block matrix. To avoid dealing
|
|
794
|
+
# with huge matrices, we can split it up into graded pieces.
|
|
795
|
+
|
|
796
|
+
max_deg = max(b.degree() for b in OS.basis())
|
|
797
|
+
B = [] # initialize the basis
|
|
798
|
+
for d in range(max_deg + 1):
|
|
799
|
+
OS_d = OS.homogeneous_component(d)
|
|
800
|
+
OSG_d = OS_d.invariant_module(G, action=action, category=category)
|
|
801
|
+
B += [OS_d.lift(OSG_d.lift(b)) for b in OSG_d.basis()]
|
|
802
|
+
|
|
803
|
+
# `FiniteDimensionalInvariantModule.__init__` is already called
|
|
804
|
+
# by `OS_d.invariant_module`, and so we pass to the superclass
|
|
805
|
+
# of `FiniteDimensionalInvariantModule`, which is `SubmoduleWithBasis`.
|
|
806
|
+
from sage.modules.with_basis.subquotient import SubmoduleWithBasis
|
|
807
|
+
SubmoduleWithBasis.__init__(self, Family(B),
|
|
808
|
+
support_order=OS._compute_support_order(B),
|
|
809
|
+
ambient=OS,
|
|
810
|
+
unitriangular=False,
|
|
811
|
+
category=category,
|
|
812
|
+
*args, **kwargs)
|
|
813
|
+
|
|
814
|
+
# To subclass FiniteDimensionalInvariant module, we also need a
|
|
815
|
+
# self._semigroup attribute.
|
|
816
|
+
self._semigroup = G
|
|
817
|
+
|
|
818
|
+
def construction(self):
|
|
819
|
+
r"""
|
|
820
|
+
Return the functorial construction of ``self``.
|
|
821
|
+
|
|
822
|
+
This implementation of the method only returns ``None``.
|
|
823
|
+
|
|
824
|
+
TESTS::
|
|
825
|
+
|
|
826
|
+
sage: M = matroids.Wheel(3)
|
|
827
|
+
sage: from sage.algebras.orlik_solomon import OrlikSolomonAlgebra
|
|
828
|
+
sage: OS1 = OrlikSolomonAlgebra(QQ, M)
|
|
829
|
+
sage: OS1.construction() is None
|
|
830
|
+
True
|
|
831
|
+
"""
|
|
832
|
+
return None
|
|
833
|
+
|
|
834
|
+
def _basis_action(self, g, f):
|
|
835
|
+
r"""
|
|
836
|
+
Return the action of the group element ``g`` on the n.b.c. set ``f``
|
|
837
|
+
in the ambient Orlik-Solomon algebra.
|
|
838
|
+
|
|
839
|
+
INPUT:
|
|
840
|
+
|
|
841
|
+
- ``g`` -- a group element
|
|
842
|
+
- ``f`` -- ``frozenset`` for an n.b.c. set
|
|
843
|
+
|
|
844
|
+
OUTPUT:
|
|
845
|
+
|
|
846
|
+
- the result of the action of ``g`` on ``f`` inside
|
|
847
|
+
of the Orlik-Solomon algebra
|
|
848
|
+
|
|
849
|
+
EXAMPLES::
|
|
850
|
+
|
|
851
|
+
sage: # needs sage.graphs sage.groups
|
|
852
|
+
sage: M = matroids.CompleteGraphic(3)
|
|
853
|
+
sage: M.groundset()
|
|
854
|
+
frozenset({0, 1, 2})
|
|
855
|
+
sage: G = SymmetricGroup(3)
|
|
856
|
+
sage: def on_groundset(g, x):
|
|
857
|
+
....: return g(x+1)-1
|
|
858
|
+
sage: OSG = M.orlik_solomon_algebra(QQ, invariant=(G,on_groundset))
|
|
859
|
+
sage: act = lambda g: (OSG._basis_action(g,frozenset({0,1})),
|
|
860
|
+
....: OSG._basis_action(g,frozenset({0,2})))
|
|
861
|
+
sage: [act(g) for g in G]
|
|
862
|
+
[(OS{0, 1}, OS{0, 2}),
|
|
863
|
+
(-OS{0, 2}, OS{0, 1} - OS{0, 2}),
|
|
864
|
+
(-OS{0, 1} + OS{0, 2}, -OS{0, 1}),
|
|
865
|
+
(OS{0, 2}, OS{0, 1}),
|
|
866
|
+
(OS{0, 1} - OS{0, 2}, -OS{0, 2}),
|
|
867
|
+
(-OS{0, 1}, -OS{0, 1} + OS{0, 2})]
|
|
868
|
+
|
|
869
|
+
We also check that the ordering is respected::
|
|
870
|
+
|
|
871
|
+
sage: # needs sage.graphs sage.groups
|
|
872
|
+
sage: fset = frozenset({1,2})
|
|
873
|
+
sage: OS1 = M.orlik_solomon_algebra(QQ)
|
|
874
|
+
sage: OS1.subset_image(fset)
|
|
875
|
+
-OS{0, 1} + OS{0, 2}
|
|
876
|
+
sage: OS2 = M.orlik_solomon_algebra(QQ, range(2,-1,-1))
|
|
877
|
+
sage: OS2.subset_image(fset)
|
|
878
|
+
OS{1, 2}
|
|
879
|
+
sage: OSG2 = M.orlik_solomon_algebra(QQ,
|
|
880
|
+
....: invariant=(G,on_groundset),
|
|
881
|
+
....: ordering=range(2,-1,-1))
|
|
882
|
+
sage: g = G.an_element(); g
|
|
883
|
+
(2,3)
|
|
884
|
+
|
|
885
|
+
This choice of ``g`` acting on this choice of ``fset`` reverses
|
|
886
|
+
the sign::
|
|
887
|
+
|
|
888
|
+
sage: OSG._basis_action(g, fset) # needs sage.graphs sage.groups
|
|
889
|
+
OS{0, 1} - OS{0, 2}
|
|
890
|
+
sage: OSG2._basis_action(g, fset) # needs sage.graphs sage.groups
|
|
891
|
+
-OS{1, 2}
|
|
892
|
+
"""
|
|
893
|
+
OS = self._ambient
|
|
894
|
+
if not f:
|
|
895
|
+
return OS.one()
|
|
896
|
+
|
|
897
|
+
# basis_elt is an n.b.c. set, but it should be
|
|
898
|
+
# in a standardized order to deal with sign issues
|
|
899
|
+
basis_elt = sorted(f, key=OS._sorting.__getitem__)
|
|
900
|
+
|
|
901
|
+
gx = OS.one()
|
|
902
|
+
|
|
903
|
+
for e in basis_elt:
|
|
904
|
+
fset = frozenset([self._groundset_action(g, e)])
|
|
905
|
+
gx = gx * OS.subset_image(fset)
|
|
906
|
+
|
|
907
|
+
return gx
|