passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +807 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_modules.libs/libgfortran-67378ab2.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-23768756.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-7897025b.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-e34bb864.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-503f0c35.3.29.so +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-aarch64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-aarch64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,1040 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.graphs
|
|
3
|
+
r"""
|
|
4
|
+
Representations of Lie algebras
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Travis Scrimshaw (2023-08-31): initial version
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
# ****************************************************************************
|
|
12
|
+
# Copyright (C) 2023 Travis Scrimshaw <tcscrims at gmail.com>
|
|
13
|
+
#
|
|
14
|
+
# This program is free software: you can redistribute it and/or modify
|
|
15
|
+
# it under the terms of the GNU General Public License as published by
|
|
16
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
17
|
+
# (at your option) any later version.
|
|
18
|
+
# https://www.gnu.org/licenses/
|
|
19
|
+
# ****************************************************************************
|
|
20
|
+
|
|
21
|
+
from sage.misc.cachefunc import cached_method
|
|
22
|
+
from sage.sets.family import Family, AbstractFamily
|
|
23
|
+
from sage.matrix.constructor import matrix
|
|
24
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
25
|
+
from sage.categories.modules import Modules
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class Representation_abstract:
|
|
29
|
+
r"""
|
|
30
|
+
Mixin class for (left) representations of Lie algebras.
|
|
31
|
+
|
|
32
|
+
INPUT:
|
|
33
|
+
|
|
34
|
+
- ``lie_algebra`` -- a Lie algebra
|
|
35
|
+
"""
|
|
36
|
+
def __init__(self, lie_algebra):
|
|
37
|
+
r"""
|
|
38
|
+
Initialize ``self``.
|
|
39
|
+
|
|
40
|
+
EXAMPLES::
|
|
41
|
+
|
|
42
|
+
sage: L = lie_algebras.sp(QQ, 6)
|
|
43
|
+
sage: R = L.trivial_representation()
|
|
44
|
+
sage: TestSuite(R).run()
|
|
45
|
+
"""
|
|
46
|
+
self._lie_algebra = lie_algebra
|
|
47
|
+
|
|
48
|
+
def lie_algebra(self):
|
|
49
|
+
r"""
|
|
50
|
+
Return the Lie algebra whose representation ``self`` is.
|
|
51
|
+
|
|
52
|
+
EXAMPLES::
|
|
53
|
+
|
|
54
|
+
sage: L = lie_algebras.sl(QQ, 4)
|
|
55
|
+
sage: R = L.trivial_representation()
|
|
56
|
+
sage: R.lie_algebra() is L
|
|
57
|
+
True
|
|
58
|
+
"""
|
|
59
|
+
return self._lie_algebra
|
|
60
|
+
|
|
61
|
+
def side(self):
|
|
62
|
+
r"""
|
|
63
|
+
Return that ``self`` is a left representation.
|
|
64
|
+
|
|
65
|
+
OUTPUT: the string ``'left'``
|
|
66
|
+
|
|
67
|
+
EXAMPLES::
|
|
68
|
+
|
|
69
|
+
sage: L = lie_algebras.sl(QQ, 4)
|
|
70
|
+
sage: R = L.trivial_representation()
|
|
71
|
+
sage: R.side()
|
|
72
|
+
'left'
|
|
73
|
+
"""
|
|
74
|
+
return 'left'
|
|
75
|
+
|
|
76
|
+
def _test_representation(self, **options):
|
|
77
|
+
r"""
|
|
78
|
+
Check (on some elements) that ``self`` is a representation of the
|
|
79
|
+
given Lie algebra using the basis of the Lie algebra.
|
|
80
|
+
|
|
81
|
+
EXAMPLES::
|
|
82
|
+
|
|
83
|
+
sage: L = lie_algebras.Heisenberg(QQ, 3)
|
|
84
|
+
sage: f = {b: b.adjoint_matrix() for b in L.basis()}
|
|
85
|
+
sage: R = L.representation(f)
|
|
86
|
+
sage: R._test_representation()
|
|
87
|
+
"""
|
|
88
|
+
tester = self._tester(**options)
|
|
89
|
+
S = tester.some_elements()
|
|
90
|
+
elts = self._lie_algebra.basis()
|
|
91
|
+
if elts.cardinality() == float('inf'):
|
|
92
|
+
elts = list(elts.some_elements())
|
|
93
|
+
from sage.misc.misc import some_tuples
|
|
94
|
+
for x, y in some_tuples(elts, 2, tester._max_runs):
|
|
95
|
+
for v in S:
|
|
96
|
+
tester.assertEqual(x.bracket(y) * v, x * (y * v) - y * (x * v))
|
|
97
|
+
|
|
98
|
+
def representation_matrix(self, elt):
|
|
99
|
+
"""
|
|
100
|
+
Return the matrix for the action of ``elt`` on ``self``.
|
|
101
|
+
|
|
102
|
+
EXAMPLES::
|
|
103
|
+
|
|
104
|
+
sage: H1 = lie_algebras.Heisenberg(QQ, 1)
|
|
105
|
+
sage: F = H1.faithful_representation(algorithm='minimal')
|
|
106
|
+
sage: P1 = F.representation_matrix(H1.gen(0)); P1
|
|
107
|
+
[0 0 0]
|
|
108
|
+
[0 0 0]
|
|
109
|
+
[1 0 0]
|
|
110
|
+
sage: Q1 = F.representation_matrix(H1.gen(1)); Q1
|
|
111
|
+
[ 0 0 0]
|
|
112
|
+
[ 0 0 -1]
|
|
113
|
+
[ 0 0 0]
|
|
114
|
+
sage: Z = P1.commutator(Q1); Z
|
|
115
|
+
[0 0 0]
|
|
116
|
+
[1 0 0]
|
|
117
|
+
[0 0 0]
|
|
118
|
+
sage: P1.commutator(Z) == Q1.commutator(Z) == 0
|
|
119
|
+
True
|
|
120
|
+
sage: (H1.gen(0) * F.an_element()).to_vector()
|
|
121
|
+
(0, 0, 2)
|
|
122
|
+
sage: P1 * F.an_element().to_vector()
|
|
123
|
+
(0, 0, 2)
|
|
124
|
+
sage: (H1.gen(1) * F.an_element()).to_vector()
|
|
125
|
+
(0, -3, 0)
|
|
126
|
+
sage: Q1 * F.an_element().to_vector()
|
|
127
|
+
(0, -3, 0)
|
|
128
|
+
sage: (H1.basis()['z'] * F.an_element()).to_vector()
|
|
129
|
+
(0, 2, 0)
|
|
130
|
+
sage: Z * F.an_element().to_vector()
|
|
131
|
+
(0, 2, 0)
|
|
132
|
+
"""
|
|
133
|
+
B = self.basis()
|
|
134
|
+
return matrix([(elt * B[k]).to_vector() for k in self.get_order()]).transpose()
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
class RepresentationByMorphism(CombinatorialFreeModule, Representation_abstract):
|
|
138
|
+
r"""
|
|
139
|
+
Representation of a Lie algebra defined by a Lie algebra morphism.
|
|
140
|
+
|
|
141
|
+
INPUT:
|
|
142
|
+
|
|
143
|
+
- ``lie_algebra`` -- a Lie algebra
|
|
144
|
+
- ``f`` -- the Lie algebra morphism defining the action of the basis
|
|
145
|
+
elements of ``lie_algebra``
|
|
146
|
+
- ``index_set`` -- (optional) the index set of the module basis
|
|
147
|
+
- ``on_basis`` -- boolean (default: ``False``); the function `f` defines a
|
|
148
|
+
map from the basis elements or from a generic element of ``lie_algebra``
|
|
149
|
+
|
|
150
|
+
If `f` is encoded as a ``dict`` or ``Family``, then the keys must
|
|
151
|
+
be indices of the basis of ``lie_algebra`` and the values being the
|
|
152
|
+
corresponding matrix defining the action. This sets ``on_basis=True``.
|
|
153
|
+
|
|
154
|
+
EXAMPLES::
|
|
155
|
+
|
|
156
|
+
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'y':1}})
|
|
157
|
+
sage: f = {x: Matrix([[1,0],[0,0]]), y: Matrix([[0,1],[0,0]])}
|
|
158
|
+
sage: L.representation(f)
|
|
159
|
+
Representation of Lie algebra on 2 generators (x, y) over Rational Field defined by:
|
|
160
|
+
[1 0]
|
|
161
|
+
x |--> [0 0]
|
|
162
|
+
[0 1]
|
|
163
|
+
y |--> [0 0]
|
|
164
|
+
|
|
165
|
+
We construct the direct sum of two copies of the trivial representation
|
|
166
|
+
for an infinite dimensional Lie algebra::
|
|
167
|
+
|
|
168
|
+
sage: L = lie_algebras.Affine(QQ, ['E',6,1])
|
|
169
|
+
sage: R = L.representation(lambda b: matrix.zero(QQ, 2), index_set=['a','b'])
|
|
170
|
+
sage: x = L.an_element()
|
|
171
|
+
sage: v = R.an_element(); v
|
|
172
|
+
2*R['a'] + 2*R['b']
|
|
173
|
+
sage: x * v
|
|
174
|
+
0
|
|
175
|
+
|
|
176
|
+
We construct a finite dimensional representation of the affline Lie algebra
|
|
177
|
+
of type `A_2^{(1)}`::
|
|
178
|
+
|
|
179
|
+
sage: L = lie_algebras.Affine(QQ, ['A',2,1]).derived_subalgebra()
|
|
180
|
+
sage: Phi_plus = list(RootSystem(['A',2]).root_lattice().positive_roots())
|
|
181
|
+
sage: def aff_action(key):
|
|
182
|
+
....: mat = matrix.zero(QQ, 3)
|
|
183
|
+
....: if key == 'c': # central element
|
|
184
|
+
....: return mat
|
|
185
|
+
....: b, ell = key
|
|
186
|
+
....: if b in Phi_plus: # positive root
|
|
187
|
+
....: ind = tuple(sorted(b.to_ambient().support()))
|
|
188
|
+
....: mat[ind] = 1
|
|
189
|
+
....: if ind[0] + 1 != ind[1]:
|
|
190
|
+
....: mat[ind] = -1
|
|
191
|
+
....: elif -b in Phi_plus: # negative root
|
|
192
|
+
....: ind = tuple(sorted(b.to_ambient().support(), reverse=True))
|
|
193
|
+
....: mat[ind] = 1
|
|
194
|
+
....: if ind[0] - 1 != ind[1]:
|
|
195
|
+
....: mat[ind] = -1
|
|
196
|
+
....: else: # must be in the Cartan
|
|
197
|
+
....: i = b.leading_support()
|
|
198
|
+
....: mat[i,i] = -1
|
|
199
|
+
....: mat[i-1,i-1] = 1
|
|
200
|
+
....: return mat
|
|
201
|
+
sage: F = Family(L.basis(), aff_action, name="lifted natural repr")
|
|
202
|
+
sage: R = L.representation(index_set=range(1,4), on_basis=F)
|
|
203
|
+
sage: x = L.an_element(); x
|
|
204
|
+
(E[alpha[2]] + E[alpha[1]] + h1 + h2 + E[-alpha[2]] + E[-alpha[1]])#t^0
|
|
205
|
+
+ (E[-alpha[1] - alpha[2]])#t^1 + (E[alpha[1] + alpha[2]])#t^-1 + c
|
|
206
|
+
sage: v = R.an_element(); v
|
|
207
|
+
2*R[1] + 2*R[2] + 3*R[3]
|
|
208
|
+
sage: x * v
|
|
209
|
+
R[1] + 5*R[2] - 3*R[3]
|
|
210
|
+
sage: R._test_representation() # verify that it is a representation
|
|
211
|
+
"""
|
|
212
|
+
@staticmethod
|
|
213
|
+
def __classcall_private__(cls, lie_algebra, f=None, index_set=None, on_basis=False, **kwargs):
|
|
214
|
+
r"""
|
|
215
|
+
Normalize inpute to ensure a unique representation.
|
|
216
|
+
|
|
217
|
+
EXAMPLES::
|
|
218
|
+
|
|
219
|
+
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'y':1}})
|
|
220
|
+
sage: f1 = {'x': Matrix([[1,0],[0,0]]), 'y': Matrix([[0,1],[0,0]])}
|
|
221
|
+
sage: R1 = L.representation(f1)
|
|
222
|
+
sage: f2 = Family({x: Matrix([[1,0],[0,0]]), y: Matrix(QQ, [[0,1],[0,0]])})
|
|
223
|
+
sage: R2 = L.representation(f2)
|
|
224
|
+
sage: R1 is R2
|
|
225
|
+
True
|
|
226
|
+
|
|
227
|
+
TESTS::
|
|
228
|
+
|
|
229
|
+
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'y':1}})
|
|
230
|
+
sage: f = {'x': Matrix([[1,0]]), 'y': Matrix([[0,1]])}
|
|
231
|
+
sage: L.representation(f)
|
|
232
|
+
Traceback (most recent call last):
|
|
233
|
+
...
|
|
234
|
+
ValueError: all matrices must be square
|
|
235
|
+
|
|
236
|
+
sage: f = {'x': Matrix([[1,0],[0,0]]), 'y': Matrix([[0]])}
|
|
237
|
+
sage: L.representation(f)
|
|
238
|
+
Traceback (most recent call last):
|
|
239
|
+
...
|
|
240
|
+
ValueError: all matrices must be square of size 2
|
|
241
|
+
|
|
242
|
+
sage: L.representation(index_set=[1,2,3])
|
|
243
|
+
Traceback (most recent call last):
|
|
244
|
+
...
|
|
245
|
+
ValueError: either 'f' or 'on_basis' must be specified
|
|
246
|
+
sage: L.representation(on_basis=lambda x: QQ.zero())
|
|
247
|
+
Traceback (most recent call last):
|
|
248
|
+
...
|
|
249
|
+
ValueError: the index set needs to be specified
|
|
250
|
+
"""
|
|
251
|
+
from sage.sets.finite_enumerated_set import FiniteEnumeratedSet
|
|
252
|
+
base = lie_algebra.base_ring()
|
|
253
|
+
C = Modules(base).WithBasis().FiniteDimensional()
|
|
254
|
+
C = C.or_subcategory(kwargs.pop('category', C))
|
|
255
|
+
B = lie_algebra.basis()
|
|
256
|
+
if not isinstance(on_basis, bool):
|
|
257
|
+
f = on_basis
|
|
258
|
+
on_basis = True
|
|
259
|
+
if isinstance(f, AbstractFamily):
|
|
260
|
+
if f.cardinality() < float('inf'):
|
|
261
|
+
f = dict(f)
|
|
262
|
+
on_basis = True
|
|
263
|
+
if isinstance(f, dict):
|
|
264
|
+
data = {}
|
|
265
|
+
dim = None
|
|
266
|
+
for k, mat in f.items():
|
|
267
|
+
if k in B:
|
|
268
|
+
k = k.leading_support()
|
|
269
|
+
if not mat.is_square():
|
|
270
|
+
raise ValueError("all matrices must be square")
|
|
271
|
+
if dim is None:
|
|
272
|
+
dim = mat.nrows()
|
|
273
|
+
elif mat.nrows() != dim or mat.ncols() != dim:
|
|
274
|
+
raise ValueError("all matrices must be square of size {}".format(dim))
|
|
275
|
+
data[k] = mat.change_ring(base)
|
|
276
|
+
data[k].set_immutable()
|
|
277
|
+
|
|
278
|
+
if index_set is None:
|
|
279
|
+
index_set = FiniteEnumeratedSet(range(dim))
|
|
280
|
+
f = Family(data)
|
|
281
|
+
on_basis = True
|
|
282
|
+
|
|
283
|
+
if f is None:
|
|
284
|
+
raise ValueError("either 'f' or 'on_basis' must be specified")
|
|
285
|
+
if index_set is None:
|
|
286
|
+
raise ValueError("the index set needs to be specified")
|
|
287
|
+
|
|
288
|
+
index_set = FiniteEnumeratedSet(index_set)
|
|
289
|
+
|
|
290
|
+
return super(cls, RepresentationByMorphism).__classcall__(cls, lie_algebra,
|
|
291
|
+
f, index_set, on_basis, category=C, **kwargs)
|
|
292
|
+
|
|
293
|
+
def __init__(self, lie_algebra, f, index_set, on_basis, category, **kwargs):
|
|
294
|
+
r"""
|
|
295
|
+
Initialize ``self``.
|
|
296
|
+
|
|
297
|
+
EXAMPLES::
|
|
298
|
+
|
|
299
|
+
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'y':1}})
|
|
300
|
+
sage: f = {'x': Matrix([[1,0],[0,0]]), 'y': Matrix([[0,1],[0,0]])}
|
|
301
|
+
sage: R = L.representation(f)
|
|
302
|
+
sage: TestSuite(R).run()
|
|
303
|
+
"""
|
|
304
|
+
if on_basis:
|
|
305
|
+
self._family = f
|
|
306
|
+
self._f = f.__getitem__
|
|
307
|
+
else:
|
|
308
|
+
self._f = f
|
|
309
|
+
prefix = kwargs.pop("prefix", 'R')
|
|
310
|
+
self._on_basis = on_basis
|
|
311
|
+
|
|
312
|
+
Representation_abstract.__init__(self, lie_algebra)
|
|
313
|
+
CombinatorialFreeModule.__init__(self, lie_algebra.base_ring(), index_set,
|
|
314
|
+
category=category, prefix=prefix, **kwargs)
|
|
315
|
+
|
|
316
|
+
def _repr_(self):
|
|
317
|
+
r"""
|
|
318
|
+
Return a string representation of ``self``.
|
|
319
|
+
|
|
320
|
+
EXAMPLES::
|
|
321
|
+
|
|
322
|
+
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'y':1}})
|
|
323
|
+
sage: f = {'x': Matrix([[1,0],[0,0]]), 'y': Matrix([[0,1],[0,0]])}
|
|
324
|
+
sage: L.representation(f)
|
|
325
|
+
Representation of Lie algebra on 2 generators (x, y) over Rational Field defined by:
|
|
326
|
+
[1 0]
|
|
327
|
+
x |--> [0 0]
|
|
328
|
+
[0 1]
|
|
329
|
+
y |--> [0 0]
|
|
330
|
+
|
|
331
|
+
sage: L = lie_algebras.Affine(QQ, ['E',6,1])
|
|
332
|
+
sage: F = Family(L.basis(), lambda b: matrix.zero(QQ, 2), name="zero map")
|
|
333
|
+
sage: L.representation(F, index_set=['a','b'], on_basis=True)
|
|
334
|
+
Representation of Affine Kac-Moody algebra of ['E', 6] in the Chevalley basis defined by:
|
|
335
|
+
Lazy family (zero map(i))_{i in Lazy family...}
|
|
336
|
+
|
|
337
|
+
sage: L.representation(lambda b: matrix.zero(QQ, 2), index_set=['a','b'])
|
|
338
|
+
Representation of Affine Kac-Moody algebra of ['E', 6] in the Chevalley basis defined by:
|
|
339
|
+
<function <lambda> at 0x...>
|
|
340
|
+
"""
|
|
341
|
+
ret = "Representation of {} defined by:".format(self._lie_algebra)
|
|
342
|
+
from sage.typeset.ascii_art import ascii_art
|
|
343
|
+
if self._on_basis:
|
|
344
|
+
B = self._lie_algebra.basis()
|
|
345
|
+
if B.cardinality() < float('inf'):
|
|
346
|
+
for k in B.keys():
|
|
347
|
+
ret += '\n' + repr(ascii_art(B[k], self._f(k), sep=" |--> ", sep_baseline=0))
|
|
348
|
+
else:
|
|
349
|
+
ret += '\n' + repr(self._family)
|
|
350
|
+
else:
|
|
351
|
+
ret += '\n' + repr(self._f)
|
|
352
|
+
return ret
|
|
353
|
+
|
|
354
|
+
class Element(CombinatorialFreeModule.Element):
|
|
355
|
+
def _acted_upon_(self, scalar, self_on_left=False):
|
|
356
|
+
r"""
|
|
357
|
+
Return the action of ``scalar`` on ``self``.
|
|
358
|
+
|
|
359
|
+
EXAMPLES::
|
|
360
|
+
|
|
361
|
+
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'y':1}})
|
|
362
|
+
sage: f = {'x': Matrix([[1,0],[0,0]]), 'y': Matrix([[0,1],[0,0]])}
|
|
363
|
+
sage: R = L.representation(f)
|
|
364
|
+
sage: v = R.an_element(); v
|
|
365
|
+
2*R[0] + 2*R[1]
|
|
366
|
+
sage: x * v
|
|
367
|
+
2*R[0]
|
|
368
|
+
sage: y * v
|
|
369
|
+
2*R[0]
|
|
370
|
+
sage: (2*x + 5*y) * v
|
|
371
|
+
14*R[0]
|
|
372
|
+
sage: v * x
|
|
373
|
+
Traceback (most recent call last):
|
|
374
|
+
...
|
|
375
|
+
TypeError: unsupported operand parent(s) for *: ...
|
|
376
|
+
|
|
377
|
+
sage: v = sum((i+4) * b for i, b in enumerate(R.basis())); v
|
|
378
|
+
4*R[0] + 5*R[1]
|
|
379
|
+
sage: (1/3*x - 5*y) * v
|
|
380
|
+
-71/3*R[0]
|
|
381
|
+
|
|
382
|
+
sage: L = lie_algebras.Affine(QQ, ['E',6,1])
|
|
383
|
+
sage: F = Family(L.basis(), lambda b: matrix.zero(QQ, 2), name="zero map")
|
|
384
|
+
sage: R = L.representation(F, index_set=['a','b'], on_basis=True)
|
|
385
|
+
sage: R.an_element()
|
|
386
|
+
2*R['a'] + 2*R['b']
|
|
387
|
+
sage: L.an_element() * R.an_element()
|
|
388
|
+
0
|
|
389
|
+
"""
|
|
390
|
+
P = self.parent()
|
|
391
|
+
if scalar in P._lie_algebra:
|
|
392
|
+
if self_on_left:
|
|
393
|
+
return None
|
|
394
|
+
if not self: # we are (already) the zero vector
|
|
395
|
+
return self
|
|
396
|
+
scalar = P._lie_algebra(scalar)
|
|
397
|
+
if not scalar: # we are acting by zero
|
|
398
|
+
return P.zero()
|
|
399
|
+
if P._on_basis:
|
|
400
|
+
mat = sum(c * P._f(k) for k, c in scalar.monomial_coefficients(copy=False).items())
|
|
401
|
+
else:
|
|
402
|
+
mat = P._f(scalar)
|
|
403
|
+
return P.from_vector(mat * self.to_vector())
|
|
404
|
+
|
|
405
|
+
return super()._acted_upon_(scalar, self_on_left)
|
|
406
|
+
|
|
407
|
+
|
|
408
|
+
class TrivialRepresentation(CombinatorialFreeModule, Representation_abstract):
|
|
409
|
+
r"""
|
|
410
|
+
The trivial representation of a Lie algebra.
|
|
411
|
+
|
|
412
|
+
The trivial representation of a Lie algebra `L` over a commutative ring
|
|
413
|
+
`R` is the `1`-dimensional `R`-module on which every element of `L`
|
|
414
|
+
acts by zero.
|
|
415
|
+
|
|
416
|
+
INPUT:
|
|
417
|
+
|
|
418
|
+
- ``lie_algebra`` -- a Lie algebra
|
|
419
|
+
|
|
420
|
+
REFERENCES:
|
|
421
|
+
|
|
422
|
+
- :wikipedia:`Trivial_representation`
|
|
423
|
+
"""
|
|
424
|
+
def __init__(self, lie_algebra, **kwargs):
|
|
425
|
+
r"""
|
|
426
|
+
Initialize ``self``.
|
|
427
|
+
|
|
428
|
+
EXAMPLES::
|
|
429
|
+
|
|
430
|
+
sage: L = lie_algebras.VirasoroAlgebra(QQ)
|
|
431
|
+
sage: R = L.trivial_representation()
|
|
432
|
+
sage: TestSuite(R).run()
|
|
433
|
+
"""
|
|
434
|
+
R = lie_algebra.base_ring()
|
|
435
|
+
cat = Modules(R).WithBasis().FiniteDimensional()
|
|
436
|
+
Representation_abstract.__init__(self, lie_algebra)
|
|
437
|
+
CombinatorialFreeModule.__init__(self, R, ['v'], prefix='T', category=cat, **kwargs)
|
|
438
|
+
|
|
439
|
+
def _repr_(self):
|
|
440
|
+
r"""
|
|
441
|
+
Return a string representation of ``self``.
|
|
442
|
+
|
|
443
|
+
EXAMPLES::
|
|
444
|
+
|
|
445
|
+
sage: L = lie_algebras.VirasoroAlgebra(QQ)
|
|
446
|
+
sage: L.trivial_representation()
|
|
447
|
+
Trivial representation of The Virasoro algebra over Rational Field
|
|
448
|
+
"""
|
|
449
|
+
return "Trivial representation of {}".format(self._lie_algebra)
|
|
450
|
+
|
|
451
|
+
class Element(CombinatorialFreeModule.Element):
|
|
452
|
+
def _acted_upon_(self, scalar, self_on_left=False):
|
|
453
|
+
r"""
|
|
454
|
+
Return the action of ``scalar`` on ``self``.
|
|
455
|
+
|
|
456
|
+
EXAMPLES::
|
|
457
|
+
|
|
458
|
+
sage: L = lie_algebras.VirasoroAlgebra(QQ)
|
|
459
|
+
sage: R = L.trivial_representation()
|
|
460
|
+
sage: L.an_element() * R.an_element()
|
|
461
|
+
0
|
|
462
|
+
sage: R.an_element() * L.an_element()
|
|
463
|
+
Traceback (most recent call last):
|
|
464
|
+
...
|
|
465
|
+
TypeError: unsupported operand parent(s) for *: ...
|
|
466
|
+
sage: 3 / 5 * R.an_element()
|
|
467
|
+
6/5*T['v']
|
|
468
|
+
"""
|
|
469
|
+
P = self.parent()
|
|
470
|
+
if scalar in P._lie_algebra:
|
|
471
|
+
if self_on_left:
|
|
472
|
+
return None
|
|
473
|
+
return P.zero()
|
|
474
|
+
return super()._acted_upon_(scalar, self_on_left)
|
|
475
|
+
|
|
476
|
+
|
|
477
|
+
class FaithfulRepresentationNilpotentPBW(CombinatorialFreeModule, Representation_abstract):
|
|
478
|
+
r"""
|
|
479
|
+
Return a faithful representation of a nilpotent Lie algebra
|
|
480
|
+
constructed using the PBW basis.
|
|
481
|
+
|
|
482
|
+
Let `L` be a `k`-step nilpotent Lie algebra. Define a weight function
|
|
483
|
+
on elements in `L` by the lower central series of `L`. Then a faithful
|
|
484
|
+
representation of `L` is `U(L) / U(L)^{k+1}`, where `U(L)^{k+1}`
|
|
485
|
+
is the (twosided) ideal of `U(L)` generated by all monomials
|
|
486
|
+
of weight at least `k + 1`.
|
|
487
|
+
|
|
488
|
+
We can also expand the ideal keeping the property that `I \cap Z(L) = 0`.
|
|
489
|
+
The resulting quotient `U(L) / I` remains faithful and is a minimal
|
|
490
|
+
faithful representation of `L` in the sense that it has no faithful
|
|
491
|
+
submodules or quotients. (Note: this is not necessarily the smallest
|
|
492
|
+
dimensional faithful representation of `L`.)
|
|
493
|
+
|
|
494
|
+
We consider an example of the rank 2 Heisenberg Lie algebra,
|
|
495
|
+
but with a non-standard basis given by `a = p_1 + z`, `b = q_1`,
|
|
496
|
+
and `c = q_1 + z`::
|
|
497
|
+
|
|
498
|
+
sage: scoeffs = {('a','b'): {'b':-1, 'c':1}, ('a','c'): {'b':-1, 'c':1}}
|
|
499
|
+
sage: L.<a,b,c> = LieAlgebra(QQ, scoeffs)
|
|
500
|
+
sage: TestSuite(L).run(elements=list(L.basis()))
|
|
501
|
+
sage: L.is_nilpotent()
|
|
502
|
+
True
|
|
503
|
+
sage: L.derived_series()
|
|
504
|
+
(Lie algebra on 3 generators (a, b, c) over Rational Field,
|
|
505
|
+
Ideal (b - c) of Lie algebra on 3 generators (a, b, c) over Rational Field,
|
|
506
|
+
Ideal () of Lie algebra on 3 generators (a, b, c) over Rational Field)
|
|
507
|
+
sage: F = L.faithful_representation()
|
|
508
|
+
sage: L.an_element() * F.an_element()
|
|
509
|
+
2*F[1, 0, 0] + 8*F[1, 1, 0] + 3*F[2, 0, 0] + 4*F[0, 1, 0]
|
|
510
|
+
+ 4*F[0, 2, 0] + 4*F[0, 0, 1]
|
|
511
|
+
|
|
512
|
+
sage: MF = L.faithful_representation(algorithm='minimal')
|
|
513
|
+
sage: MF.dimension()
|
|
514
|
+
3
|
|
515
|
+
sage: [MF.representation_matrix(be) for be in L.basis()]
|
|
516
|
+
[
|
|
517
|
+
[0 0 0] [ 0 0 0] [ 0 0 0]
|
|
518
|
+
[0 0 0] [ 0 0 -1] [ 1 0 -1]
|
|
519
|
+
[1 0 0], [ 0 0 0], [ 0 0 0]
|
|
520
|
+
]
|
|
521
|
+
|
|
522
|
+
An example with ``minimal=True`` for `H_2 \oplus A_1`, where `A_1` is
|
|
523
|
+
a `1`-dimensional Abelian Lie algebra::
|
|
524
|
+
|
|
525
|
+
sage: scoeffs = {('a','b'): {'b':-1, 'c':1}, ('a','c'): {'b':-1, 'c':1}}
|
|
526
|
+
sage: L.<a,b,c,d> = LieAlgebra(QQ, scoeffs)
|
|
527
|
+
sage: F = L.faithful_representation(); F
|
|
528
|
+
Faithful 11 dimensional representation of Lie algebra on 4
|
|
529
|
+
generators (a, b, c, d) over Rational Field
|
|
530
|
+
sage: MF = L.faithful_representation(algorithm='minimal'); MF
|
|
531
|
+
Minimal faithful representation of Lie algebra on 4
|
|
532
|
+
generators (a, b, c, d) over Rational Field
|
|
533
|
+
sage: MF.dimension()
|
|
534
|
+
4
|
|
535
|
+
|
|
536
|
+
INPUT:
|
|
537
|
+
|
|
538
|
+
- ``minimal`` -- boolean (default: ``False``); whether to construct
|
|
539
|
+
the minimal basis or not
|
|
540
|
+
|
|
541
|
+
REFERENCES:
|
|
542
|
+
|
|
543
|
+
- [BEdG2009]_
|
|
544
|
+
"""
|
|
545
|
+
def __init__(self, L, minimal=False):
|
|
546
|
+
r"""
|
|
547
|
+
Initialize ``self``.
|
|
548
|
+
|
|
549
|
+
EXAMPLES::
|
|
550
|
+
|
|
551
|
+
sage: H2 = lie_algebras.Heisenberg(QQ, 2)
|
|
552
|
+
sage: F = H2.faithful_representation()
|
|
553
|
+
sage: TestSuite(F).run(elements=list(F.basis()))
|
|
554
|
+
sage: MF = H2.faithful_representation(algorithm='minimal')
|
|
555
|
+
sage: TestSuite(MF).run(elements=list(MF.basis()))
|
|
556
|
+
|
|
557
|
+
sage: sc = {('a','b'): {'b':-1, 'c':1}, ('a','c'): {'b':-1, 'c':1}}
|
|
558
|
+
sage: L.<a,b,c> = LieAlgebra(QQ, sc)
|
|
559
|
+
sage: F = L.faithful_representation()
|
|
560
|
+
sage: TestSuite(F).run(elements=list(F.basis()))
|
|
561
|
+
sage: MF = L.faithful_representation(algorithm='minimal')
|
|
562
|
+
sage: TestSuite(MF).run(elements=list(MF.basis()))
|
|
563
|
+
"""
|
|
564
|
+
LCS = L.lower_central_series()
|
|
565
|
+
if LCS[-1].dimension() != 0:
|
|
566
|
+
raise ValueError("the Lie algebra must be nilpotent")
|
|
567
|
+
# construct an appropriate basis of L
|
|
568
|
+
basis_by_deg = {}
|
|
569
|
+
self._step = len(LCS) - 1
|
|
570
|
+
self._minimal = minimal
|
|
571
|
+
if self._minimal:
|
|
572
|
+
Z = L.center()
|
|
573
|
+
ZB = [L(b) for b in Z.basis()]
|
|
574
|
+
prev = LCS[-1]
|
|
575
|
+
for D in reversed(LCS[:-1]):
|
|
576
|
+
cur = []
|
|
577
|
+
for ind in range(len(ZB) - 1, -1, -1):
|
|
578
|
+
z = ZB[ind]
|
|
579
|
+
if z in D:
|
|
580
|
+
ZB.pop(ind)
|
|
581
|
+
cur.append(z)
|
|
582
|
+
k = self._step - len(basis_by_deg)
|
|
583
|
+
basis_by_deg[k] = cur
|
|
584
|
+
temp = [bred for b in D.basis() if (bred := Z.reduce(prev.reduce(L(b))))]
|
|
585
|
+
basis_by_deg[k].extend(L.echelon_form(temp))
|
|
586
|
+
prev = D
|
|
587
|
+
else:
|
|
588
|
+
prev = LCS[-1]
|
|
589
|
+
for D in reversed(LCS[:-1]):
|
|
590
|
+
temp = [L(bred) for b in D.basis() if (bred := prev.reduce(L(b)))]
|
|
591
|
+
basis_by_deg[self._step - len(basis_by_deg)] = L.echelon_form(temp)
|
|
592
|
+
prev = D
|
|
593
|
+
|
|
594
|
+
L_basis = sum((basis_by_deg[deg] for deg in sorted(basis_by_deg)), [])
|
|
595
|
+
|
|
596
|
+
if all(len(b.support()) == 1 for b in L_basis):
|
|
597
|
+
self._Lp = L
|
|
598
|
+
else:
|
|
599
|
+
cob = matrix([b._vector_() for b in L_basis]).transpose()
|
|
600
|
+
self._invcob = cob.inverse()
|
|
601
|
+
scoeffs = {}
|
|
602
|
+
for i, b in enumerate(L_basis):
|
|
603
|
+
for j, bp in enumerate(L_basis[i+1:], start=i + 1):
|
|
604
|
+
scoeffs[i, j] = (self._invcob * b.bracket(bp)._vector_()).dict()
|
|
605
|
+
index_set = tuple(range(L.dimension()))
|
|
606
|
+
from sage.algebras.lie_algebras.lie_algebra import LieAlgebra
|
|
607
|
+
self._Lp = LieAlgebra(L.base_ring(), scoeffs, index_set=index_set)
|
|
608
|
+
|
|
609
|
+
self._pbw = self._Lp.pbw_basis()
|
|
610
|
+
self._degrees = tuple(sum(([deg] * len(B) for deg, B in sorted(basis_by_deg.items())), []))
|
|
611
|
+
|
|
612
|
+
from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets
|
|
613
|
+
from sage.combinat.integer_vector_weighted import WeightedIntegerVectors
|
|
614
|
+
indices = DisjointUnionEnumeratedSets([WeightedIntegerVectors(n, self._degrees)
|
|
615
|
+
for n in range(self._step+1)])
|
|
616
|
+
|
|
617
|
+
if self._minimal:
|
|
618
|
+
X = {tuple(index) for index in indices}
|
|
619
|
+
monoid = self._pbw._indices
|
|
620
|
+
I = monoid._indices
|
|
621
|
+
one = L.base_ring().one()
|
|
622
|
+
pbw_gens = self._pbw.algebra_generators()
|
|
623
|
+
ZB = frozenset([L(b) for b in Z.basis()])
|
|
624
|
+
Zind = [i for i, b in enumerate(L_basis) if b in ZB]
|
|
625
|
+
Ztup = set()
|
|
626
|
+
for i in Zind:
|
|
627
|
+
vec = [0] * L.dimension()
|
|
628
|
+
vec[i] = 1
|
|
629
|
+
Ztup.add(tuple(vec))
|
|
630
|
+
|
|
631
|
+
def as_exp(s):
|
|
632
|
+
sm = s._monomial
|
|
633
|
+
return tuple([sm[i] if i in sm else 0 for i in I])
|
|
634
|
+
|
|
635
|
+
def test_ideal(m, X):
|
|
636
|
+
elt = self._pbw.element_class(self._pbw, {monoid(list(zip(I, m))): one})
|
|
637
|
+
for g in pbw_gens:
|
|
638
|
+
gelt = g * elt
|
|
639
|
+
if any(as_exp(s) in X for s in gelt.support()):
|
|
640
|
+
return False
|
|
641
|
+
return True
|
|
642
|
+
|
|
643
|
+
to_remove = {None}
|
|
644
|
+
while to_remove:
|
|
645
|
+
X -= to_remove
|
|
646
|
+
to_remove = set()
|
|
647
|
+
for m in X:
|
|
648
|
+
m = tuple(m)
|
|
649
|
+
if m in Ztup or not test_ideal(m, X):
|
|
650
|
+
continue
|
|
651
|
+
to_remove.add(m)
|
|
652
|
+
indices = sorted(X)
|
|
653
|
+
|
|
654
|
+
Representation_abstract.__init__(self, L)
|
|
655
|
+
CombinatorialFreeModule.__init__(self, L.base_ring(), indices, prefix='F', bracket=False)
|
|
656
|
+
|
|
657
|
+
def _repr_(self):
|
|
658
|
+
r"""
|
|
659
|
+
Return a string representation of ``self``.
|
|
660
|
+
|
|
661
|
+
EXAMPLES::
|
|
662
|
+
|
|
663
|
+
sage: H2 = lie_algebras.Heisenberg(QQ, 2)
|
|
664
|
+
sage: H2.faithful_representation()
|
|
665
|
+
Faithful 16 dimensional representation of Heisenberg algebra
|
|
666
|
+
of rank 2 over Rational Field
|
|
667
|
+
"""
|
|
668
|
+
if self._minimal:
|
|
669
|
+
return "Minimal faithful representation of {}".format(self._lie_algebra)
|
|
670
|
+
return "Faithful {} dimensional representation of {}".format(self.dimension(), self._lie_algebra)
|
|
671
|
+
|
|
672
|
+
def _latex_(self):
|
|
673
|
+
r"""
|
|
674
|
+
Return a string representation of ``self``.
|
|
675
|
+
|
|
676
|
+
EXAMPLES::
|
|
677
|
+
|
|
678
|
+
sage: H2 = lie_algebras.Heisenberg(QQ, 2)
|
|
679
|
+
sage: latex(H2.faithful_representation())
|
|
680
|
+
U(\text{\texttt{Heisenberg...}}) / U(\text{\texttt{Heisenberg...}})^{3}
|
|
681
|
+
"""
|
|
682
|
+
from sage.misc.latex import latex
|
|
683
|
+
g = latex(self._lie_algebra)
|
|
684
|
+
ret = "U({0}) / U({0})^{{{1}}}".format(g, self._step + 1)
|
|
685
|
+
if self._minimal:
|
|
686
|
+
return "\\min " + ret
|
|
687
|
+
return ret
|
|
688
|
+
|
|
689
|
+
def _project(self, elt):
|
|
690
|
+
r"""
|
|
691
|
+
The projection to ``self`` from the PBW basis.
|
|
692
|
+
|
|
693
|
+
EXAMPLES::
|
|
694
|
+
|
|
695
|
+
sage: sc = {('a','b'): {'b':-1, 'c':1}, ('a','c'): {'b':-1, 'c':1}}
|
|
696
|
+
sage: L.<a,b,c> = LieAlgebra(QQ, sc)
|
|
697
|
+
sage: F = L.faithful_representation()
|
|
698
|
+
sage: elt = F._to_pbw(a + b + c)^2; elt
|
|
699
|
+
PBW[0]^2 + 4*PBW[0]*PBW[1] - 2*PBW[0]*PBW[2] + 4*PBW[1]^2
|
|
700
|
+
- 4*PBW[1]*PBW[2] + PBW[2]^2 + 2*PBW[2]
|
|
701
|
+
sage: F._project(elt)
|
|
702
|
+
2*F[0, 0, 1] + 4*F[0, 2, 0] + 4*F[1, 1, 0] + F[2, 0, 0]
|
|
703
|
+
sage: F._project(F._to_pbw(a + b + c)^3)
|
|
704
|
+
0
|
|
705
|
+
"""
|
|
706
|
+
ret = {}
|
|
707
|
+
I = self._pbw._indices._indices
|
|
708
|
+
if self._minimal:
|
|
709
|
+
for m, c in elt._monomial_coefficients.items():
|
|
710
|
+
mm = m._monomial
|
|
711
|
+
vec = tuple([mm[i] if i in mm else 0 for i in I])
|
|
712
|
+
if vec in self._indices:
|
|
713
|
+
ret[self._indices(vec)] = c
|
|
714
|
+
else:
|
|
715
|
+
for m, c in elt._monomial_coefficients.items():
|
|
716
|
+
mm = m._monomial
|
|
717
|
+
vec = [mm[i] if i in mm else 0 for i in I]
|
|
718
|
+
if sum(e * d for e, d in zip(vec, self._degrees)) <= self._step:
|
|
719
|
+
ret[self._indices(vec)] = c
|
|
720
|
+
return self.element_class(self, ret)
|
|
721
|
+
|
|
722
|
+
def _to_pbw(self, elt):
|
|
723
|
+
"""
|
|
724
|
+
Return the PBW element corresponding to ``elt``.
|
|
725
|
+
|
|
726
|
+
EXAMPLES::
|
|
727
|
+
|
|
728
|
+
sage: sc = {('a','b'): {'b':-1, 'c':1}, ('a','c'): {'b':-1, 'c':1}}
|
|
729
|
+
sage: L.<a,b,c> = LieAlgebra(QQ, sc)
|
|
730
|
+
sage: F = L.faithful_representation()
|
|
731
|
+
sage: F._to_pbw(a)
|
|
732
|
+
PBW[0]
|
|
733
|
+
sage: F._to_pbw(b)
|
|
734
|
+
PBW[1]
|
|
735
|
+
sage: F._to_pbw(c)
|
|
736
|
+
PBW[1] - PBW[2]
|
|
737
|
+
|
|
738
|
+
sage: H2 = lie_algebras.Heisenberg(QQ, 2)
|
|
739
|
+
sage: F = H2.faithful_representation()
|
|
740
|
+
sage: F._to_pbw(sum(H2.basis()))
|
|
741
|
+
PBW['p1'] + PBW['p2'] + PBW['q1'] + PBW['q2'] + PBW['z']
|
|
742
|
+
"""
|
|
743
|
+
if self._Lp is self._lie_algebra:
|
|
744
|
+
return self._pbw(elt)
|
|
745
|
+
return self._pbw(self._Lp.from_vector(self._invcob * elt._vector_()))
|
|
746
|
+
|
|
747
|
+
class Element(CombinatorialFreeModule.Element):
|
|
748
|
+
def _lift_pbw(self):
|
|
749
|
+
"""
|
|
750
|
+
Return ``self`` as an element of the PBW basis.
|
|
751
|
+
|
|
752
|
+
EXAMPLES::
|
|
753
|
+
|
|
754
|
+
sage: H2 = lie_algebras.Heisenberg(QQ, 2)
|
|
755
|
+
sage: F = H2.faithful_representation()
|
|
756
|
+
sage: F.an_element()._lift_pbw()
|
|
757
|
+
3*PBW['q1'] + 2*PBW['q2'] + 2
|
|
758
|
+
"""
|
|
759
|
+
P = self.parent()
|
|
760
|
+
monoid = P._pbw._indices
|
|
761
|
+
I = monoid._indices
|
|
762
|
+
return P._pbw.element_class(P._pbw, {monoid(list(zip(I, m))): coeff
|
|
763
|
+
for m, coeff in self._monomial_coefficients.items()})
|
|
764
|
+
|
|
765
|
+
def _acted_upon_(self, scalar, self_on_left=False):
|
|
766
|
+
r"""
|
|
767
|
+
Return the action of ``scalar`` on ``self``.
|
|
768
|
+
|
|
769
|
+
EXAMPLES::
|
|
770
|
+
|
|
771
|
+
sage: H2 = lie_algebras.Heisenberg(QQ, 2)
|
|
772
|
+
sage: F = H2.faithful_representation()
|
|
773
|
+
sage: H2.an_element()
|
|
774
|
+
p1
|
|
775
|
+
sage: F.an_element()
|
|
776
|
+
2*F[0, 0, 0, 0, 0] + 2*F[0, 0, 0, 1, 0] + 3*F[0, 0, 1, 0, 0]
|
|
777
|
+
sage: H2.an_element() * F.an_element()
|
|
778
|
+
2*F[1, 0, 0, 0, 0] + 2*F[1, 0, 0, 1, 0] + 3*F[1, 0, 1, 0, 0]
|
|
779
|
+
sage: 5 * F.an_element()
|
|
780
|
+
10*F[0, 0, 0, 0, 0] + 10*F[0, 0, 0, 1, 0] + 15*F[0, 0, 1, 0, 0]
|
|
781
|
+
"""
|
|
782
|
+
P = self.parent()
|
|
783
|
+
if scalar in P._lie_algebra:
|
|
784
|
+
if self_on_left:
|
|
785
|
+
return None
|
|
786
|
+
if not self: # we are (already) the zero vector
|
|
787
|
+
return self
|
|
788
|
+
scalar = P._lie_algebra(scalar)
|
|
789
|
+
return P._project(P._to_pbw(scalar) * self._lift_pbw())
|
|
790
|
+
|
|
791
|
+
return super()._acted_upon_(scalar, self_on_left)
|
|
792
|
+
|
|
793
|
+
|
|
794
|
+
class FaithfulRepresentationPBWPosChar(CombinatorialFreeModule, Representation_abstract):
|
|
795
|
+
r"""
|
|
796
|
+
A faithful representation of a finite dimensional Lie algebra
|
|
797
|
+
in positive characteristic.
|
|
798
|
+
|
|
799
|
+
.. WARNING::
|
|
800
|
+
|
|
801
|
+
This is often a very large dimensional representation relative
|
|
802
|
+
to the dimension of the Lie algebra.
|
|
803
|
+
|
|
804
|
+
ALGORITHM:
|
|
805
|
+
|
|
806
|
+
We implement the algorithm given in [deG2000] Section 6.6. Let `L`
|
|
807
|
+
be a finite dimensional Lie algebra over a ring of characteristic `p`
|
|
808
|
+
with basis `(b_1, \ldots, b_n)`. We compute (monic) `p`-polynomials
|
|
809
|
+
`f_i` such that `A = \mathrm{ad}(b_i)` (the adjoint action of `b_i`)
|
|
810
|
+
solves `f_i(A) = 0` by using minimal polynomial of `A`. The
|
|
811
|
+
`(f_1, \ldots, f_n)` is a Gröbner basis for an ideal `I` of the
|
|
812
|
+
universal enveloping algebra `U(L)` such that the quotient `U(L) / I`
|
|
813
|
+
is a faithful representation of `L`.
|
|
814
|
+
|
|
815
|
+
EXAMPLES::
|
|
816
|
+
|
|
817
|
+
sage: # needs sage.libs.pari
|
|
818
|
+
sage: sl2 = LieAlgebra(GF(3), cartan_type=['A',1])
|
|
819
|
+
sage: F = sl2.faithful_representation()
|
|
820
|
+
sage: F
|
|
821
|
+
Faithful representation with p-multiplicities (1, 3, 1) of Lie algebra
|
|
822
|
+
of ['A', 1] in the Chevalley basis
|
|
823
|
+
sage: F.dimension()
|
|
824
|
+
243
|
|
825
|
+
"""
|
|
826
|
+
def __init__(self, L):
|
|
827
|
+
r"""
|
|
828
|
+
Initialize ``self``.
|
|
829
|
+
|
|
830
|
+
EXAMPLES::
|
|
831
|
+
|
|
832
|
+
sage: # needs sage.libs.pari
|
|
833
|
+
sage: sl2 = LieAlgebra(GF(3), cartan_type=['A',1])
|
|
834
|
+
sage: F = sl2.faithful_representation()
|
|
835
|
+
sage: TestSuite(F).run()
|
|
836
|
+
"""
|
|
837
|
+
R = L.base_ring()
|
|
838
|
+
self._p = R.characteristic()
|
|
839
|
+
if self._p == 0:
|
|
840
|
+
raise ValueError("the Lie algebra must be over a ring of positive characteristic")
|
|
841
|
+
|
|
842
|
+
self._pbw = L.pbw_basis()
|
|
843
|
+
self._key_order = tuple(self._pbw.algebra_generators().keys())
|
|
844
|
+
|
|
845
|
+
# calculate the Gröbner basis and p-exponents
|
|
846
|
+
gb = []
|
|
847
|
+
p_exp = []
|
|
848
|
+
B = L.basis()
|
|
849
|
+
for k in self._key_order:
|
|
850
|
+
b = B[k]
|
|
851
|
+
ad = b.adjoint_matrix()
|
|
852
|
+
g = ad.minpoly()
|
|
853
|
+
d = g.degree()
|
|
854
|
+
# TODO: Use the sparse polynomial ring?
|
|
855
|
+
x = g.parent().gen()
|
|
856
|
+
r = [x**(self._p**i) % g for i in range(d+1)]
|
|
857
|
+
deg = max(ri.degree() for ri in r)
|
|
858
|
+
mat = matrix(R, [[ri[j] for ri in r] for j in range(deg+1)])
|
|
859
|
+
la = mat.right_kernel_matrix()[0]
|
|
860
|
+
if la:
|
|
861
|
+
mongen = self._pbw._indices.monoid_generators()[k]
|
|
862
|
+
gb.append(self._pbw._from_dict({mongen ** (self._p ** i): val
|
|
863
|
+
for i, val in enumerate(la) if val},
|
|
864
|
+
remove_zeros=False))
|
|
865
|
+
p_exp.append(max(la.support()))
|
|
866
|
+
|
|
867
|
+
self._groebner_basis = gb
|
|
868
|
+
self._p_exp = tuple(p_exp)
|
|
869
|
+
self._degrees = [self._p ** m for m in self._p_exp]
|
|
870
|
+
|
|
871
|
+
from sage.groups.abelian_gps.abelian_group import AbelianGroup
|
|
872
|
+
indices = AbelianGroup(self._degrees)
|
|
873
|
+
|
|
874
|
+
Representation_abstract.__init__(self, L)
|
|
875
|
+
CombinatorialFreeModule.__init__(self, R, indices, prefix='', bracket=False)
|
|
876
|
+
|
|
877
|
+
def _repr_(self):
|
|
878
|
+
r"""
|
|
879
|
+
Return a string representation of ``self``.
|
|
880
|
+
|
|
881
|
+
EXAMPLES::
|
|
882
|
+
|
|
883
|
+
sage: # needs sage.libs.pari
|
|
884
|
+
sage: sl3 = LieAlgebra(GF(3), cartan_type=['A',2])
|
|
885
|
+
sage: sl3.faithful_representation()
|
|
886
|
+
Faithful representation with p-multiplicities (1, 1, 1, 3, 3, 1, 1, 1)
|
|
887
|
+
of Lie algebra of ['A', 2] in the Chevalley basis
|
|
888
|
+
"""
|
|
889
|
+
return "Faithful representation with p-multiplicities {} of {}".format(self.p_exponents(), self._lie_algebra)
|
|
890
|
+
|
|
891
|
+
def _latex_(self):
|
|
892
|
+
r"""
|
|
893
|
+
Return a string representation of ``self``.
|
|
894
|
+
|
|
895
|
+
EXAMPLES::
|
|
896
|
+
|
|
897
|
+
sage: # needs sage.libs.pari
|
|
898
|
+
sage: sl2 = LieAlgebra(GF(3), cartan_type=['A',1])
|
|
899
|
+
sage: latex(sl2.faithful_representation())
|
|
900
|
+
U(\mathfrak{g}(A_{1})_{\Bold{F}_{3}}) / \langle PBW_{\alpha_{1}}^{3},
|
|
901
|
+
2 PBW_{\alpha^\vee_{1}}^{27} + PBW_{\alpha^\vee_{1}},
|
|
902
|
+
PBW_{-\alpha_{1}}^{3} \rangle
|
|
903
|
+
"""
|
|
904
|
+
from sage.misc.latex import latex
|
|
905
|
+
g = latex(self._lie_algebra)
|
|
906
|
+
data = ', '.join(latex(f) for f in self._groebner_basis)
|
|
907
|
+
return "U({}) / \\langle {} \\rangle".format(g, data)
|
|
908
|
+
|
|
909
|
+
@cached_method
|
|
910
|
+
def p_exponents(self):
|
|
911
|
+
"""
|
|
912
|
+
Return the `p`-exponents of ``self``.
|
|
913
|
+
|
|
914
|
+
Let `p` be the characteristic of the base ring of ``self``.
|
|
915
|
+
The `p`-*exponents* are the exponents `m_i` such that the `i`-th
|
|
916
|
+
`p`-polynomial `f_i` is of degree `p^{m_i}`.
|
|
917
|
+
|
|
918
|
+
EXAMPLES::
|
|
919
|
+
|
|
920
|
+
sage: # needs sage.libs.pari
|
|
921
|
+
sage: sp4 = LieAlgebra(GF(3), cartan_type=['C',2])
|
|
922
|
+
sage: F = sp4.faithful_representation()
|
|
923
|
+
sage: F.p_exponents()
|
|
924
|
+
(1, 1, 1, 1, 3, 3, 1, 1, 1, 1)
|
|
925
|
+
"""
|
|
926
|
+
return self._p_exp
|
|
927
|
+
|
|
928
|
+
def groebner_basis(self):
|
|
929
|
+
"""
|
|
930
|
+
Return the defining Gröbner basis of ``self``.
|
|
931
|
+
|
|
932
|
+
EXAMPLES::
|
|
933
|
+
|
|
934
|
+
sage: # needs sage.libs.pari
|
|
935
|
+
sage: sp4 = LieAlgebra(GF(3), cartan_type=['C',2])
|
|
936
|
+
sage: F = sp4.faithful_representation()
|
|
937
|
+
sage: F.groebner_basis()
|
|
938
|
+
[PBW[alpha[2]]^3,
|
|
939
|
+
PBW[alpha[1]]^3,
|
|
940
|
+
PBW[alpha[1] + alpha[2]]^3,
|
|
941
|
+
PBW[2*alpha[1] + alpha[2]]^3,
|
|
942
|
+
2*PBW[alphacheck[1]]^27 + PBW[alphacheck[1]],
|
|
943
|
+
2*PBW[alphacheck[2]]^27 + PBW[alphacheck[2]],
|
|
944
|
+
PBW[-alpha[2]]^3,
|
|
945
|
+
PBW[-alpha[1]]^3,
|
|
946
|
+
PBW[-alpha[1] - alpha[2]]^3,
|
|
947
|
+
PBW[-2*alpha[1] - alpha[2]]^3]
|
|
948
|
+
"""
|
|
949
|
+
return self._groebner_basis
|
|
950
|
+
|
|
951
|
+
def _project(self, x):
|
|
952
|
+
r"""
|
|
953
|
+
The projection to ``self`` from the PBW basis.
|
|
954
|
+
|
|
955
|
+
EXAMPLES::
|
|
956
|
+
|
|
957
|
+
sage: # needs sage.libs.pari
|
|
958
|
+
sage: sl2 = LieAlgebra(GF(3), cartan_type=['A',1])
|
|
959
|
+
sage: F = sl2.faithful_representation()
|
|
960
|
+
sage: PBW = F._pbw
|
|
961
|
+
sage: elt = PBW.an_element(); elt
|
|
962
|
+
PBW[alpha[1]]^2*PBW[alphacheck[1]]^2*PBW[-alpha[1]]^3
|
|
963
|
+
+ 2*PBW[alpha[1]] + 1
|
|
964
|
+
sage: F._project(elt)
|
|
965
|
+
1 + 2*f0
|
|
966
|
+
sage: F._project(elt^2)
|
|
967
|
+
1 + f0 + f0^2
|
|
968
|
+
sage: F._project(elt^3)
|
|
969
|
+
1
|
|
970
|
+
|
|
971
|
+
sage: # needs sage.libs.pari
|
|
972
|
+
sage: elt = PBW(sum(sl2.basis())); elt
|
|
973
|
+
PBW[alpha[1]] + PBW[alphacheck[1]] + PBW[-alpha[1]]
|
|
974
|
+
sage: F._project(elt)
|
|
975
|
+
f2 + f1 + f0
|
|
976
|
+
sage: F._project(elt^2)
|
|
977
|
+
2*f2 + f2^2 + 2*f1 + 2*f1*f2 + f1^2 + 2*f0 + 2*f0*f2 + 2*f0*f1 + f0^2
|
|
978
|
+
sage: F._project(elt^3)
|
|
979
|
+
2*f2 + f1 + f1^3 + 2*f0
|
|
980
|
+
sage: F._project(elt^4)
|
|
981
|
+
f2 + 2*f2^2 + f1 + f1^2 + f1^3*f2 + f1^4 + f0 + f0*f2 + f0*f1^3 + 2*f0^2
|
|
982
|
+
"""
|
|
983
|
+
reduction = True
|
|
984
|
+
while reduction:
|
|
985
|
+
reduction = False
|
|
986
|
+
mc = x._monomial_coefficients
|
|
987
|
+
for m, c in mc.items():
|
|
988
|
+
d = m.dict()
|
|
989
|
+
for k, e, g in zip(self._key_order, self._degrees, self._groebner_basis):
|
|
990
|
+
if k not in d:
|
|
991
|
+
continue
|
|
992
|
+
if d[k] >= e:
|
|
993
|
+
d[k] -= e
|
|
994
|
+
x -= self._pbw.monomial(self._pbw._indices(d)) * g
|
|
995
|
+
reduction = True
|
|
996
|
+
break
|
|
997
|
+
data = {}
|
|
998
|
+
for m, c in x._monomial_coefficients.items():
|
|
999
|
+
d = m.dict()
|
|
1000
|
+
data[self._indices([d.get(k, 0) for k in self._key_order])] = c
|
|
1001
|
+
return self.element_class(self, data)
|
|
1002
|
+
|
|
1003
|
+
class Element(CombinatorialFreeModule.Element):
|
|
1004
|
+
def _acted_upon_(self, scalar, self_on_left=False):
|
|
1005
|
+
r"""
|
|
1006
|
+
Return the action of ``scalar`` on ``self``.
|
|
1007
|
+
|
|
1008
|
+
EXAMPLES::
|
|
1009
|
+
|
|
1010
|
+
sage: # needs sage.libs.pari
|
|
1011
|
+
sage: sl2 = LieAlgebra(GF(3), cartan_type=['A',1])
|
|
1012
|
+
sage: F = sl2.faithful_representation()
|
|
1013
|
+
sage: v = F.an_element(); v
|
|
1014
|
+
1 + 2*f2 + f0*f1*f2
|
|
1015
|
+
sage: sl2.an_element() * v
|
|
1016
|
+
f2 + 2*f2^2 + f1 + 2*f1*f2 + 2*f1^2*f2 + f0 + 2*f0*f2 + 2*f0*f2^2
|
|
1017
|
+
+ 2*f0*f1*f2 + f0*f1*f2^2 + f0*f1^2*f2 + f0^2*f1*f2
|
|
1018
|
+
sage: sl2.pbw_basis().an_element() * v
|
|
1019
|
+
1 + 2*f2 + 2*f0 + f0*f2 + f0*f1*f2 + 2*f0^2*f1*f2
|
|
1020
|
+
sage: 5 * v
|
|
1021
|
+
2 + f2 + 2*f0*f1*f2
|
|
1022
|
+
sage: v * 5
|
|
1023
|
+
2 + f2 + 2*f0*f1*f2
|
|
1024
|
+
sage: v._acted_upon_(sl2.an_element(), True) is None
|
|
1025
|
+
True
|
|
1026
|
+
"""
|
|
1027
|
+
P = self.parent()
|
|
1028
|
+
if scalar in P._lie_algebra or scalar in P._pbw:
|
|
1029
|
+
if self_on_left:
|
|
1030
|
+
return None
|
|
1031
|
+
if not self: # we are (already) the zero vector
|
|
1032
|
+
return self
|
|
1033
|
+
scalar = P._pbw(scalar)
|
|
1034
|
+
monoid = P._pbw._indices
|
|
1035
|
+
I = P._key_order
|
|
1036
|
+
lift = P._pbw.element_class(P._pbw, {monoid(list(zip(I, m.exponents()))): coeff
|
|
1037
|
+
for m, coeff in self._monomial_coefficients.items()})
|
|
1038
|
+
return P._project(scalar * lift)
|
|
1039
|
+
|
|
1040
|
+
return super()._acted_upon_(scalar, self_on_left)
|